GC26-3875-0
File No. S370-30

Systems OS/VS2 MVS Data Management
Services Guide

Release 3.7

Includes the Following Selectable Units:

Data Management V$2.03.808
3800 Printing Subsystem VvS2.03.810
System Security Support 5752-832

PREFACE

Thisbook describes @l IBM data management except for VSAM (virtual storage access
method) and specialized applications such as the time sharing option (TSO), graphics,
teleprocessing, optical character readers, optical reader-sorters, and magnetic character
readers. These specialized applications are described in separate publications that are
listed in 1BM Systemy370 Bibliography,GC20-0001. To learn about VSAM or to write
programs that create and process VSAM data sets, refer to:

* Planning for Enhanced VSAM Under OSVS, GC26-3842, which introduces
V SAM and describes its concepts and functions.

* OSVSVirtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838, which describes how to create VSAM data sets and code the macro
instructions required to process them.

* OSVS2 Access Method Services, GC26-3841, describes the service program
commands used to manipulate VSAM data sets.

* OSVSVirtual Sorage Access Method (VSAM) Options for Advanced
Applications, GC26-3819, which describes-applications not required in the normal use
of VSAM.

If you know how to write assembl er-language programs and use job control statements,
you can use thisbook and OSVS2 MVS Data Management Macro Instructions,
GC26-3873, to write programs that create and process data sets. To use this book you
must have basic knowledge of the operating system as contained in OS'VS2 Release 3
Guide, GC28-0770; of assembler language as described in OSVS—DOSVS—V/M/370
Assembler Language, GC33-4010; and of job control language (JCL) as explained in
OSVS2 JCL, GC28-0692.

This book has three parts:

"Part 1: Introduction to Data Management” introduces you to the characteristics of data
sets, how you name them, how the system catal ogs them, and how you format the
records in them. The format of tracks on a direct-access storage device is explained
briefly.

Part 1 also describes the data control block (DCB) and the information it supplies to the
operating system. Special processing routines that you specify in the DCB macro
instruction are also explained in this section.

In "Part 2: Data Management Processing Procedures” there is an explanation of
data-processing techniques that includes the macro instructions for the queued access
technique and the basic access technique and the macro instructions for analyzing input
and output errors. The section on data-processing techniques also tells how to select an
access method and how to begin and end processing of a data set.

The section "Buffer Acquisition and Control” in Part 2 explains three different methods
you can use to obtain buffers and the macro instructions you use with each method. This
section also describes ways to control buffers: simple buffering for the queued access
technique, direct buffering and dynamic buffering for the basic access technique. In
addition, for the queued access technique, there is an explanation of the four modes of
moving the records in virtual storage: move mode, data mode, locate mode, and
substitute mode. Macro instructions for controlling buffers are described here, too.

The next four sections of Part 2 concern processing data sets of four different types: a
sequential data set, a partitioned data set, an indexed sequential data set, and adirect
data set. They explain the organization of the data sets and the macro instructions used
to process them. In the examples the macro instructions are coded in just enough detail

Preface 3

to make the examples clear. For a complete description of the operands and options
available, see OSV2 MVS Data Management Macro Instructions, GC26-3793.

"Part 3: Data Set Disposition and Space Allocation” tells you how to figure the amount
of space you need for a data set on a direct-access storage device and how to request that
space in your JCL DD statement. Y ou are given special directions for allocating space

for a partitioned data set and an indexed sequential data set. Part 3 also tells how to
indicate in the JCL DD statement the status of the data set at the beginning of and

during processing and how to indicate what you want the system to do with the data set
when processing has terminated. Y ou also are told how to use the DD statement to route
the data set to a system output writer, to concatenate data sets, to catalog data sets, and
to protect confidential data sets.

Appendix A describes data set 1abeling. Appendix B explains control characters you can
use to control card punches and printers. A glossary of acronyms and abbreviations used
in this book and the index follow Appendix B.

The following manuals are referred to in the text.

* OSVSMessage Library: V2 System Codes, GC38-1008

» OSVSMessage Library: V& System Messages, GC38-1002
e OSVX2 JCL, GC28-0692

« OSVX2 MVSCVOL Processor, GC26-3864

* OSVS2 MVS Resource Access Control Facility (RACF): General Information
Manual, GC28-0722

» OSVS2 Supervisor Services and Macro Instructions, GC28-0683
* OSVX2 System Programming Library: Data Management, GC26-3830
» OSVX2 System Programming Library: Debugging Handbook, VVolume 1,

GC28-0708

* OSV2 System Programming Library: Debugging Handbook, Volume 2,
GC28-0709

» OV System Programming Library: Initialization and Tuning Guide,
GC28-0681

» OSV&2 System Programming Library: Service Aids, GC28-0633
* OSVX System Programming Library: Supervisor, GC28-0628
» OSVX2 System Programming Library: System Generation Reference, GC26-3792

* IBM 3800 Printing Subsystem Programmer's Guide,
GC26-3846

* IBM 3890 Document Processor Machine and Programming Description,
GA24-3612

» OSData Management Services and Macro Instructions for IBM 1419/ 1275,
GC21-5006

* OSand OSVS Programming Support for the IBM 3505 Card Reader and
IBM 3525 Card Punch, GC21-5097

» OSVSIBM 3886 Optical Character Reader Model 1 Reference, GC24-5101
* OSVSMass Sorage System (MSS) Planning Guide, GC35-0011
* OSVSMass Sorage System (MSS) Services. General Information, GC35-0016

4 OS/VS2 MV S Data Management Services Guide

+ OSVSTapelLabels, GC26-3795
+ OS/VSUtilities, GC35-0005

In this manual, any references made to an IBM program product are not intended to
state or imply that only IBM's program product may be used; any functionally equivalent
program may be used instead. This manual has references to the following IBM program
products:

* RACF-Resource Access Control Facility Program Number, 5740-XXH

Preface 5

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

CONTENTS

PIEFBCE ...t 3
FIQUIES ..ttt e st e et e s beeeesaeessesreesresaeesreeneens 11
Summary Of AMENAMENLEScoceeeieiececece e s 13
Part 1: Introduction to Data Managementc.cccceveveveeenieseeceeceeceeeeeeneas 17
Data Set CharaCtefiStiCS ..o 17
Data Set 1dentifiCationcccooeireireirierereee s 19
Data SEt SIOragecvveverieveieeieeee e 19
DireCt-ACCESS VOIUMESoeiviietireeie ettt er e snene 20
Magnetic-Tape VOIUMES ..ot 20

Data Set RECOId FOIMELScccoueuiiiririeeneresieiese e e 21
Fixed-Length RECOISc.ccovveirieiicirieeeeesee e 22
Variable-Length Records..... it eviiiiiices e 24
Undefined-L ength Records 30
CONLrOl CharaCLEY ..ot 31

3800 Table Reference CharaCterccoveieinience e 31
Direct-Access Device CharaCteristiCs ... 31
TrACK FOIMELceiieiiieeeetee ettt ene e 32
TraCk AAAIrESSINGcoueieiieie e e e 33
TraCk OVEITIOW ..o 34
Write-Validity-Check Optionccooririieneieree e 34
The Data Control BIOCKc. covves o v et evvenies e 34
Data Set DESCIIPLION ..o e 35
Processing Program DeSCription ... 37
Macro Instruction Form (MACRF) ... 37
Exitsto Special Processing ROULINESccccoeerenenenineneeseeeseeie e 38
Modifying the Data Control BIOCKccocovviiiiiciiinccccne e 53
Sharing aDEA SELcceerieiriiireeeei s 54
Part 2: Data Management Processing ProCeduresccoevereneieeieniencncnnene 59
Data-Processing TEChNIQUESooueiiiiiiireneeese e 59
Queued AcCeSS TECHNIQUEcocoiiriiiiriireie e e 59
GET—Retrieve aRECOIcoovveiiriiiiireeeesee e 59
PUT—WHIITE 8 RECOI ..ottt 59
PUTX—Write an Updated Record cccooeies e e 60
Parallel Input Processing (QSAM ONlY) ..o 60
Basic ACCESS TECHNIQUEooiuiiiiiieee e e 62
READ—ReEa0 @BIOCKccooiiiririiiireersce e 63
WRITE—WIite @BlIOCKocoreeiirieiiiccecneeeee e 63
CHECK—Test Completion of Read or Write Operationccc... 63
WAIT—Wait for Completion of a Read or Write Operation 64

Data Event Control BIOCK (DECB)cccoivrenseneeeneereseeieseeeseeesneens 65
Error HandlinNgcoooe it e 65
SYNADAF—Perform SYNAD Analysis FUNCtionc.cccoveeeneennen. 65
SYNADRLS—Release SYNADAF Message and Save Aress 66
ATLAS—Perform Alternate Track Location Assignment 66
Selecting an ACCeSS MEhOdc.oouiiiiiieiee e 66
Opening and Closing aData Set ..., 67
OPEN—Prepare a Data Set for Processingccooccerecnncccnnicces 69
CLOSE—Terminate Processing of aData Setcoccoeeevvviieiicicnnnen, 70
ENnd-0f-VOlUME ProCESSINGcoueiveriiriiriiie e 72
FEOV—Force End of VOIUME.........cccoiiiiiiiiiee e, 74

Contents 7

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Buffer Acquisition and CONEIOl ..o 74
Buffer POOI CONSITUCTIONc.ooeiiieiiicisiciseeseee et saens 75
BUILD—Construct a Buffer POOIcccccciiies it et v e 75
BUILDRCD—BUuild a Buffer Pool and a Record Areacococvvvevneienecnnenennee 76
GETPOOL—Get a BUFfer POOIccoviiieiiieeerieieenesee e 76
Automatic Buffer POOI CONSLIUCLIONccviiriiieiieinee e 76
FREEPOOL—Free a Buffer POOI ..o 77
BUFFEr CONLIO ...t et st 77
SIMPIE BUFFEITNG ...t et 79
EXChange BUFFEIINGcoiveiiieiece e 82
RELSE—Release an INPUt BUFFEN ..o 82
TRUNC—Truncate an OUtput BUFFErcccveiiieiinicneeee e 83
GETBUF—Get aBuffer from aPool ...t 83
FREEBUF—Return a Buffer to aPoOl ... 83
FREEDBUF—Return a Dynamic Buffer to aPool ... 83
Processing a Sequential Data Set 83
Data Format—Device Type Considerations 84
V=T 0= (o I o N () TSRS 84
Paper-Tape REAEN (PT) ..ottt sttt s ae e 85
Card Reader and PUNCh (RD/PC)ccooiiiiiiiinieieseenesene e 85
e 1= () SR 86
Direct-AcCesS DEVICE (DA) ..ottt s es 87
DEVICE COMIIOL ...ttt ettt et sttt bbb s 87
CNTRL—CoNtrol an /O DEVICEccceieruieieeriieiesieeiens sreeieesiees sresies sesieesnennes se 87
PRTOV—Test for Printer OVErflIOWccoeiieiniinceeere e 88
SETPRT—PrIiNter SEtUPevvverreeieereeeee e 88
BSP—Backspace a Magnetic Tape or Direct-Access Volumecccceevevenenine 89
NOTE—Return the Relative Address of aBIocK ..., 89
POINT—POSItioN t0 @BIOCKcoiviiiiiiiieee e 89
DeViCe INAEPENAENCEoc.oiieieeeee et b e b 0
System Generation CONSIAEraliONScoceerieirieirieereesee e 90
Programming CONSIAEIatioNScccuiers wiriies crierienienies cresiesie st seeas sresbes sreeeeneens 91
Chained Scheduling for 1/0O Operations (including Nondirect-Access
Devicesfor 5740-AM3B ONIY) ..o et 92
Search Direct for Input Operations (Except 5740-AM3) ...cccoe. voiiiiiiies cevieeie e 93
Search Direct for Input Operations (5740-AM3 0NlY) ...ooeoiiiieinceeereeeeeeees 93
Creating a Sequential DatalSELcccevveirerineierieres + e e e e 93
Retrieving a Sequential Data SEtcoeererierirere et 94
Updating a Sequential Data SEtccccoieiriiiiiiere e e 94
Extending a Sequential Data SEtcooeoeeiriiririrene e e 96
Determining the Length of a Record When Using the BSAM
Ry N B 1V = o o PSPPSR 96
Writing a Short Block When Using the BSAM WRITE MaCro cccocveeieens cevveenen 96
Processing a Partitioned Datal SEcooiiiirieieeeeeeeeeree e e 97
Partitioned Data Set DIFECLOIYccociiiiiiicece ettt s 98
Processing aMember of a Partitioned Data Setcoceoeveereineencnceseeseeeeeae 100
BLDL—Construct a Directory ENtry LiStccccooioiiinienie e 101
FIND—POSItioN t0 @ MEMDENc.ooiiiiiiiie e e 101
STOW—UPdate the DIFECLONYccceveeeireeeeierere et 102
Creating a Partitioned Data Setccoooeieiiiiceeeeeeeecee et 102
Retrieving aMember of a Partitioned Data Setccoeveveeevnienisencenee e 104
Updating a Member of a Partitioned Data Setcccoeeeeeeiececicieciececece e 105
Updating iN PIaCe.........cioiic s 105
REWTtING 8MEMDEN ..o 106
Processing an Indexed Sequential Data Setcccoererinineniinise e 107

8 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Processing an Indexed Sequential Data Setcoeeeveveeveeeeicceeeeeeeeea, 107
Indexed Sequential Data Set OrganiZationccceevvererersererereseeenenen. 107
PrIME AFEA.....cuieiiiecieieieieic et seneneeas 108
INAEX ATEBS ...ttt snnen 108
OVEITIOW ATEBS......ocueucicieieieieteieeeie ettt 110
Adding Records to an Indexed Sequential Data Setcccoeeeveveennee, 110
Inserting New Records into an Existing Indexed
SeqUENtTAl DBEA SEL ... 110
Adding New Records to the End of an Indexed
Sequential DatAa SEL ... 111
Maintaining an Indexed Sequential Data Setccoceeevericccenecinnnenas 112
Indexed Sequential Buffer and Work Area Requirements 114
Controlling an Indexed Sequential Data Set Deviceccoceeveevivicnenene. 117
SETL—Specify Start of Sequential Retrieval ... 117
ESETL—End Sequential Retrievalccoooevrreenneeeceeeeee 118
Creating an Indexed Sequential Data Set 119
Retrieving and Updating an Indexed Sequential Data Set 121
Sequential Retrieval and Updatecoovvvivnnnnnnnnreeeeeeeeeeneee 121
Direct Retrieval and Update ... 121
Processing aDireCt Data Setcoovvveveeieierieieeeese s 127
Organizing aDireCt Data SEtccccucueereeirecirieeeieeeiee e 127
Referring to aRecord in aDirect Data Setccveveverecccecccceeeeeeas 128
Creating aDireCt Data Stcccovevevevevrrreessssese s 129
Adding or Updating Records on aDirect Data Setcccoccoevvevvecciinne, 131
Part 3: Data Set Disposition and Space AlOCaLIONcccveverereeirieerieeninn 135
Allocating Space on Direct-Access VOIUMEScocoerernieenererieenerenieienenenens 135
Specifying Space REQUIFEMENES ..ot 135
Estimating Space REQUIFEMENLS ... 136
Allocating Space for aPartitioned Data Setcccceeeevivececeviseeciens 138
Allocating Space for an Indexed Sequential Data Setccccccevvveveveeene, 138
Specifying aPrime DataAr€ac.ceueeveiieeieieeesese e 140
Specifying a Separate INdeX AT€acccocoevevererererrrrrrrreresessese s 141
Specifying an Independent Overflow Areacooeeeeeeenenenencieneneneenes 141
Calculating Space Requirements for an Indexed
Sequential DA SELcceveiirieiece e s 141
Control and Disposition Of Data SELScoccevrerieinenirieee e 145
Routing Data Through the System Input and Output Streams. 145
Concatenating Sequential and Partitioned Data Setscccceeevvvrvenee. 147
Rotational Position Sensing Considerationsccccoeeeeeeeeeenenenes 148
CatalOging Data SELSovvvveeeeriririreresis st 149
Entering aData Set Name inthe Catalogccccoeeevevcccccnecece, 150
Generation Data GrOUPSccvvvveverererereresesesesesesesesese st 150
Absolute Generation and Version NUMbErScccocervcccnecccceenes 150
Relative Generation NUMDEYcccviirriirrneeeeses e eeeees 151
Building a Generation INAEX ..o s 152
Creating a NeW GENEIratioNcccccoeeeereeerereneneeeese e seesesesens 152
Allocating @ GENEIioNovevererererrerrsrress s 152
Passing @ GENEFaLioNccccoveveeieeescee e 153
Creating an ISAM Data Set as part of a Generation Data Group 153
Retrieving & GENErationocooorrrrrererrssesereseseses e 153
Controlling Confidential Datacocoerrereenrinieeererieee e 154
Password Protection for NonVSAM Data Satsccccceececeicececenenns 154

RACF Protection for NonVSAM DASD Data Setsand Tape Volumes 155

Contents 9

Appendix A: Direct-Access L abels 157

VOlUME-LEDE! GIrOUP ... 157

Initial Volume Label FOrMatcceiirririiirneenereseeeses e 158
Data Set Control BIOCK (DSCB) ..ot 159
USEr Lael GrOUPS......c.cooiiiieiiiiciieteteses ettt s 159

User Header and Trailer Label FOrmatccoooeoeinneneienneneneeceeeeeee 160
Appendix B: Control Char aCterS.........cooererereieieeeeeeeese e e 161
MACHINE COUE........oiuiieeieee ettt b e s 161
Extended American National StandardsInstitute Code.........cccoevvevrnnnene. 162
Glossary of Acronymsand AbDreviations..........c.cccveeveeneinenneneneneseee 163
INdEX s 167

10 OS/VS2 MV S Data Management Services Guide

FIGURES

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Figure 1. Fixed-Length RECOIAScccvovviicveieecceeeceeeeeee s 22
Figure 2. Fixed-Length Recordsfor ASCIl Tapes c.cccceceeveveeeeeveeeevenene, 24
Figure 3. Nonspanned, Variable-Length Records —ccccoovvvvieecicene, 25
Figure 4. Spanned Variable-Length Records —.........ccccoovveeeivvececeeceeeeeee, 26
Figure 5. Segment Control CodeS ... 27
Figure 6. Spanned Variable-Length Records for BDAM Data Sets —.......... 28
Figure 7. Variable-Length Recordsfor ASCI Tapes cccccceevevevcvcvcvenna, 29
Figure 8. Undefined-Length RECOrdS ..o 30
Figure 9. Undefined-Length Records for ASCIl Tapes —cccceeevevevevenenene, 30
Figure 10. 2316 DiSK PaCKcccoviieieririrecieiesce e 32
Figure 11. Direct-Access Volume Track FOrmatscoccccceveeeiecvevennne. 32
Figure 12. Completing the Data Control BIOCK —.........ccccoevveeveiivicccveieie, 34
Figure 13. Sources and Sequence of Operations for Completing the

Data Control BIOCK ..o 36
Figure 14. Data Management EXit ROULINESccccceeurieurcinieincceeeeieeee 38
Figure 15. Format and Contents of an EXit List ...ccooovvvvnrnvrvrerrne 42
Figure 16. Parameter List Passed to User Label Exit Routine —.................... 43
Figure 17. System Response to a User Label Exit Routine Return Code ... 44
Figure 18. System Response to Block Count Exit Return Code 48
Figure 19. Defining an FCB Imagefor a3211cccooeeeveveveeeerisieeeeesinas 49
Figure 20. Parameter List Passed to DCB ABEND Exit Routine.. 50
Figure 21. Conditions for which Recovery Can Be Attempted 51
Figure 22. RECOVErY WOIK ATEa.cccvvevereiseceteese st 52
Figure 23. Maodifying aField in the Data Control BIOCKccccoveeinininines 53
Figure 24. JCL, Macro Instructions, and Procedures Required to Share

aData Set Using MUItiple DCBS........ccovvieeevneeeeecee e 55
Figure 25. Macro Instructions and Procedures Required to Share a

DataSet Using aSINgIe DCB........cocooivvnenerrerereeeereneseseeeeereneene 56
Figure 26. Parallel Processing of Three Data SEtSccccoevereeeeeceneninirisicenienes 61
Figure 27. Data Management Access Methodsccccceevreiiennnccneninieienes 66
Figure 28. Opening Three Data Sets Simultaneouslyccoveeeenvrcenenene 70
Figure 29. Record Processed When LEAVE or REREAD is Specified for

CLOSE TYPEST oottt 71
Figure 30. Closing Three Data Sets Simultaneouslycccoccveeeeecccnenenas 71
Figure 31. Constructing a Buffer Pool From a Static Storage Area 77
Figure 32. Constructing a Buffer Pool Using

GETPOOL and FREEPOOLccccoveieiririeciereseeee e 78
Figure 33. Simple Buffering with MACRF=GL and MACRF=PM 80
Figure 34. Simple Buffering with MACRF=GM and MACRF=PM 80
Figure 35. Simple Buffering with MACRF=GL and MACRF=PL 81
Figure 36. Simple Buffering with MACRF=GL and

MACRF=PM-UPDAT MOOE ...coceuerererererrireeeeieireseeee s 81
Figure 37. Buffering Technique and GET/PUT Processing Modes 82
Figure 38. Tape Density (DEN) ValUEScccueururiricirirricieieeiseie e 85
Figure 39. Creating a Sequential Data Set-Move Mode,

SIMPlE BUFfENNG....c.oovieieii e 94
Figure 40. Creating a Sequential Data Set-Locate Mode, Simple

BUFFEING. ... et 95
Figure 41. One Method of Determining the Length of the Record

When Using BSAM to Read Undefined-Length Records 97
Figure 42. A Partioned Data SEtccccccevvveeieieiecececeers et 97

Figures 11

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.

Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.

12 OS/VS2 MV S Data Management Services Guide

A Partioned Data Set Directory BIOCK ... 98
A Partioned Data Set Directory Entrycc.. vovceiveicens veeee v, 99
BUIlA LISt FOrMat ...ooveeieeeieee e 101
Creating One Member of aPartioned DataSet ~cccccvevienee. 103
Creating Members of a Partioned Data Set Using STOW 104
Retrieving One Member of a Partioned Data Set 104
Retrieving Several Members of a Partioned Data Set

Using BLDL, FIND and POINT ..ot 105
Updating a Member of a Partioned Data Setccoccveveeneene 106
Indexed Sequential Data Set Organization ..., 108
Format of Track Index ENtrieS ccoovoiiirireeeeeeeseeens 109
Adding Records to an Indexed Sequential DataSet ~ 111
Deleting Records From an Indexed Sequential DataSet ... 113
Creating an Indexed Sequential DataSet ooeovevecevenincircee, 120
Sequentially Updating an Indexed Sequential DataSet 122
Directly Updating an Indexed Sequential DataSet ... 124
Directly Updating an Indexed Sequential Data Set with

Variable-Length RECOrdScooeeiviiinine e 126
Creatinga DireCt DataSetcccoooeiereinieiereeeeeeereeesese e 130
Adding Recordsto aDirect DataSet ...occcoeveeeeencereeee 132
Updating aDirect Data SEl cccoveeveeereencesesese e 132
Direct-Access Storage Device CapaCitiescococeeeeeeeececnccene, 137
Direct-Access Device Overhead Formulas ... 137
Requestsfor Indexed Sequential Data SetS ..o, 140
Reissuing a READ for Unlike Concatenated Data Sets =~ 148
MV S Catal0g SITUCIUNE ..ot 149
Direct-Access Labeling ..o 157
Initial Volume Label ..o 158
User Header and Trailer LabelS ..o 159

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

SUMMARY OF AMENDMENTS

August, 1978

The information contained in the System Library Supplement GC26-3892, OSVS2
MVS System Security Support Selectable Unit: Data Management Services -SU32
(5752-832) has been incorporated into this publication by this Technical Newsletter.

A note has been added to the description of the DSORG operand concerning the
creation of adirect data set. Thisisin "Data Set Organization (DSORG)."

Under "Synchronous Error Routine Exit (SYNAD);" a note has been added concerning
EROPT and a physical block of data.

Thefigure, "Format and Contents of an Exit List," has been updated.

Under "Standard User Label Exit," the specification of labels by use of the LABEL=
parameter in a DD statement has been updated and the defer input trailer label exit 0C
has been qualified.

Under "User Totaling" (BSAM and QSAM only)," anote has been added regarding the
user totaling facility.

Under "End of Volume Exit," a note has been added concerning concatenated data sets
with unlike attributes.

Under "Opening and Closing a Data Set," the description of an indeterminate error has
been updated.

The description of RLSE under "CLOSE-Terminate Processing of a Data Set" has been
updated.

The default value for BUFNO when using QSAM has been updated.

A note has been added regarding the 4-byte buffer chain pointer under
"FREEPOOL -Free a Buffer Pool."

In the section "Chained Scheduling for I/O Operations," a new item has been added to
the chained scheduling restrictions. A restriction for chained scheduling with printer
channel control tapes has also been added.

Under "Updating a Sequential Data Set," a new rule has been added for L ocate mode.

Under "Find-Position to a Member," a note has been added regarding the search of a
concatenated series of directories.

In the section "Creating an Indexed Sequential Data Set," the paragraph concerning
blocked records has been updated.

A paragraph has been added about subtasking under the heading " Sharing a BISAM
DCB between Related Tasks."

The figure, "Directly Updating an Indexed Sequential Data Set" has been updated.

In the section "Processing a Direct Data Set," a paragraph has been added concerning
the DSORG parameter.

Under "Adding or Updating Records on a Direct Data Set," a note has been added
regarding extended search.

Under "Concatenating Sequential and Partitioned Data Sets," a note has been added
about spool data sets, and about data sets with unlike attributes.

Summary of Amendments 13

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Under "Concatenating Sequential and Partitioned Data Sets," a note has
been added about spool data sets, and about data sets with unlike attributes.

Under "Relative Generation Number," the description of skipping absolute
generation numbers has been expanded. Also the paragraph concerning
cataloging via JCL has been updated. The paragraph concerning catal oging of
new generation data groups has been updated also.

Sequential Access Method-Extended (SAM-E) Release 1
(5740-AM 3)

BPAM, BSAM, and QSAM support of direct-access storage devices (except
BSAM MACRF=WL, create BDAM data set) has been modified to
internally use the EXCPVR interface to 10S. This modification includes the
functions of the chained scheduling option (OPTCD=C) and the
search-direct option OPTCD=Z). These options, therefore, need not be
requested and are ignored if requested.

OSIVS2 MV S System Security Support (5752-832)

Documentation to support tape volumes has been added to the section
"RACEF Protection for NonV SAM Data Sets.”

OS/VS2 MVSIBM 3800 Printing Subsystem
(V'S2.03.810)

To use the SETPRT macro to support the IBM 3800 Printing Subsystem
requires OS/VS2 MV S IBM 3800 Printing Subsystem Selectable Unit
(VS2.03.810)

OS/VS2 MV S Data M anagement (V S2.03.808)

Open Extend Support

The EXTEND and OUTINX options will be supported for the OPEN macro.
These options alow the user to change the disposition of a data set to MOD.
In all other ways EXTEND and OUTINX are equivalent to the OUTPUT and
OUTIN options, respectively.

These new options will allow users of SAM and ISAM to add records to the
end of an existing data set even though DISP=OL D/NEW/MOD/SHR was
specified. In the past, the only way to add records to the end of the data set
was to specify DISP=MOD on the DD statement and OUTPUT on the
OPEN macro or to specify INOUT on the OPEN macro and read to
end-of-file or use the OPEN TY PE=J macro.

RACF Support

A section titled, "RACF Protection for NonVSAM Data Sets (V S2.03.808
only)" has been added to describe the five levels of access authority which a
user may have to a RACF-defined data set.

14 OS/VS2 MV S Data Management Services Guide

Release 3.7

Release 3

New Programming Support

Editorial Changes

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

The IBM 3350 Direct Access Storage and IBM 3344 Direct Access Storage
Device are now supported under VS2. Thisinformation is provided for
planning purposes only until the products become available.

The IBM 3850 Mass Storage System (M SS) is supported with this release.
The MSS virutal volumes are functionally equivalent to the 3330/3333 Disk
Storage, Model 1. For information on MSS, see OSVS Mass Storage System
(MSS) Planning Guide, GC35-0011. MSSinformation is provided for
planning purposes only until the system is available.

Exchange buffering support was removed for V S2 because it can badly affect
performance in avirtual system. If exchange buffering is specified, it will be
ignored by the system. If exchange buffering is denied by the system for any
reason, move mode will be used instead. Move mode is compatible with
exchange buffering.

Chained scheduling will now be supported by VS2 whether it is requested or
not (except for printers and format-U input records). This support was
changed to improve performance in avirtual system. Chained scheduling will
not be used where it previously was not allowed.

For QSAM, BUFNO will now default to 5 buffersinstead of 2.

« The explanation of the EODAD routine has been expanded.

« An explanation of how the SYNAD routine functions with QISAM load
mode has been added.

e A list of restrictions when sharing a direct data set in multitasking mode
has been added.

» The section titled "Updating a Sequential Data Set" has been expanded.

» A section titled "Writing a Short Block When Using the BSAM WRITE
Macro" has been added.

« An explanation of the capacity record (R0) has been added to the section
titled "Creating a Direct Data Set."

Summary of Amendments 15

PART 1: INTRODUCTION TO DATA
MANAGEMENT

Data Set Characteristics

The data management programs of the operating system help you achieve maximum
efficiency in managing the mass of data associated with the many programs that are
processed at your installation by providing systematic and effective means of organizing,
identifying, storing, cataloging, and retrieving all data, including programs, processed by
the operating system.

Data set storage control, along with an extensive catalog system, makes it possible for
you to retrieve data by symbolic name alone, without specifying device types and volume
serial numbers. In freeing computer personnel from maintaining involved volume seria
number inventory lists of stored data and programs, the catalog reduces manual
intervention and the likelihood of human error.

Data sets stored within the catal oging system can be classified according to installation
needs. For example, a sales department could classify the data it uses by geographic area,
by individual salesman, or by any other logical plan.

The cataloging system also makes it possible for you to classify successive generations or
updates of related data. These generations can be given an identical name and
subsequently be referred to relative to the current generation. The system automatically
maintains alist of the most recent generations.

Y ou can request data from a direct-access volume, aremote terminal, or atape volume,
and data organized sequentially or directly, in essentially the same way. In addition, data
management provides:

 Allocation of space on direct-access volumes. Flexibility and efficiency of
direct-access devices are improved through greater use of available space.

» Automatic retrieval of data sets by name alone.

» Freedom to defer specifications such as buffer length, block size, and device type until
ajob is submitted for processing. This permits the creation of programsthat arein
many ways independent of their operating environment.

Control of confidential datais provided by the data set security part of the operating
system. Y ou can prevent unauthorized access to payroll data, sales forecast data, and all
other data sets that require special security attention. An individual can use a
security-protected data set only after furnishing a predefined password.

Input/output routines are provided to efficiently schedule and control the transfer of
data between storage and input/output devices. Routines are available to:

¢ Read data
* Write data

» Transate data from ASCII (American National Standard Code for Information
Interchange) to EBCDIC (Extended Binary Coded Decimal Interchange Code) and
back

» Block and deblock records

» Overlap reading, writing, and processing operations
* Read and verify volume and data set labels

* Write data set labels

Part I: Introduction to Data Management 17

» Automatically position and reposition volumes
» Detect error conditions and correct them when possible
* Provide exits to user-written error and label routines

OS/V S data management programs also provide for a variety of methods for gaining
access to a data set. The methods are based on data set organization and data access
technique.

OS/V S data sets can be organized in four ways:

» Sequential: Records are placed in physical rather than logical sequence. Given one
record, the location of the next record is determined by its physical position in the
data set. Sequential organization is used for all magnetic-tape devices, and may be
selected for direct-access devices. Punched tape, punched cards, and printed output
are sequentially organized.

» Indexed Sequential: Records are arranged in sequence, according to akey that isa
part of every record, on the tracks of a direct-access volume. Anindex or set of
indexes maintained by the system gives the location of certain principal records. This
permits direct as well as sequential access to any record.

» Direct: Therecords within the data set, which must be on a direct-access volume, may
be organized in any manner you choose. All space alocated to the data set is available
for datarecords. No spaceis required for indexes. Y ou specify addresses by which
records are stored and retrieved directly.

» Partitioned: Independent groups of sequentially organized records, called members,
are in direct-access storage. Each member has a simple name stored in adirectory that
is part of the data set and contains the location of the member's starting point.
Partitioned data sets are generally used to store programs. As a result, they are often
referred to as libraries.

Requests for input/output operations on data sets through macro instructions employ

two techniques: the technique for queued access and the technique for basic access.
Each technique is identified according to its treatment of buffering and synchronization
of input and output with processing. The combination of an access technique and a given
data set organization is called an access method. 1n choosing an access method for a data
set, therefore, you must consider not only its organization, but also what you need to
specify through macro instructions. Also, you may choose a data organization according
to the access techniques and processing capahilities available.

The code generated by the macro instructions for both techniquesis optionally
reenterable depending on the form in which parameters are expressed.

In addition to the access methods provided by the operating system, an elementary
accesstechnique called execute channel program (EXCP) isalso provided. To use this
technique, you must establish your own system for organizing, storing, and retrieving
data. Its primary advantage is the complete flexihility it allows you in using the computer
directly.

An important feature of data management is that much of the detailed information
needed to store and retrieve data, such as device type, buffer processing technique, and
format of output records need not be supplied until the job is ready to be executed. This
device independence permits changes to those specifications to be made without changes
in the program. Therefore, you may design and test a program without knowing the exact
input/output devices that will be used when it is executed.

Device independence is a feature of both access techniques for processing a sequential
data set. To some extent, you determine the degree of device independence achieved.

18 OS/VS2 MV S Data Management Services Guide

Many useful device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some selectivity in their use.

Data Set | dentification

Data Set Storage

Any information that is a named, organized collection of logically related records can be
classified as a data set. The information is not restricted to a specific type, purpose, or
storage medium. A data set may be, for example, a source program, alibrary of macro
instructions, or afile of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on auxiliary
storage, you (or the operating system) must give the data set a name. The data set name
identifies agroup of records as a data set. All data sets recognized by name (referred to
without volume identification) and all data sets residing on a given volume must be
distinguished from one another by unique names. To assist in this, the system provides a
means of qualifying data set names.

A data set name is one simple name or a series of simple names joined together so that
each represents alevel of qualification. For example, the data set name
DEPT58.SMITH.DATA3 is composed of three simple names. Proceeding from the left,
each simple name is a category within which the next simple name is a subcategory.

Each simple name consists of from 1 to 8 alphameric characters, the first of which must
be aphabetic. The special character period (.) separates simple names from each other.
Including all simple names and periods, the length of the data set name must not exceed
44 characters. Thus, a maximum of 22 simple names can make up a data set name.

To permit different executions of a program to process different data sets without
program reassembly, the data set is not referred to by name in the processing program.
When the program is executed, the data set name and other pertinent information (such
as unit type and volume serial number) are specified in ajob control statement called the
data definition (DD) statement. To gain access to the data set during processing,
referenceis made to a data control block (DCB) associated with the name of the DD
statement. Space for a data control block, which specifies the particular data set to be
used, isreserved by a DCB macro instruction when your program is assembled.

System/370 provides a variety of devicesfor collecting, storing, and distributing data.
Degpite the variety, the devices have many common characteristics. The generic term
volume isused to refer to a standard unit of auxiliary storage. A volume may be areel of
magnetic tape, a disk pack, or adrum.

Each data set stored on a volume has its name, location, organization, and other control
information stored in the data set label or volume table of contents (for direct-access
volumes only). Thus, when the name of the data set and the volume on which it is stored
are made known to the operating system, a complete description of the data set,
including its location on the volume, can be retrieved. Then, the dataitself can be
retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic-tape and direct-access volumes, as
well as the data sets they contain. Magnetic-tape volumes can have standard or
nonstandard labels, or they can be unlabeled. Direct-access volumes must use standard
|labels. Standard labels include a volume label, a data set |abel for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set resides can be a burden and a
source of error. To aleviate this problem, the system provides for automatic catal oging
of data sets. The system can retrieve a cataloged data set if given only the name of the

Part 1: Introduction to Data Management 19

data set. If the name is qualified, each qualifier corresponds to one of the indexes in the
catalog. For example, the system finds the data set DEPT58.SMITH.DATA3 by
searching a master index to determine the location of the index name DEPT58, by
searching that index to find the location of the index SMITH, and by searching that
index for DATA3 to find the identification of the volume containing the data set.

By use of the catalog, collections of data sets related by a common external name and
the time sequence in which they were cataloged (their generation) can be identified; they
are caled generation data groups. For example, adata set name LAB.PAYROLL (0)
refers to the most recent data set of the group; LAB.PAYROLL (-1) refers to the second
most recent data set, etc. The same data set names can be used repeatedly with no
requirement to keep track of the volume serial numbers used.

Direct-Access Volumes

Direct-access volumes are used to store executable programs, including the operating
system itself. Direct-access storage is also used for data and for temporary working
storage. One direct-access storage volume may be used for many different data sets, and
space on it may be reallocated and reused. A volume table of contents (VTOC) is used
to account for each data set and available space on the volume.

Each direct-access volume isidentified by avolume label, which is stored in track O of
cylinder 0. Y ou may specify up to seven additional 1abels, located after the standard
volume label, for further identification.

TheVTOC isadata set consisting of data set control blocks (DSCBs) that describe the
contents of the direct-access volume. The VTOC can contain seven kinds of DSCBs,

each with a different purpose and a different format number. OSVS2 System
Programming Library: Debugging Handbook describes the seven kinds of DSCBS, their
purposes, and their formats.

Each direct-access volume isinitialized by a utility program before being used on the
system. The initialization program generates the volume label and constructs the table of
contents. For additional information on direct-access labels, see "Appendix A:
Direct-Access Labels."

When a data set is to be stored on a direct-access volume, you must supply the operating
system with the amount of space to be allocated to the data set, expressed in blocks,
tracks, or cylinders. Space allocation can be independent of device typeif the request is
expressed in blocks. If the request is made in tracks or cylinders, you must be aware of
such device considerations as cylinder capacity and track size.

Magnetic-Tape Volumes

Because data sets on magneti c-tape devices must be organized sequentially, the operating
system does not require space allocation procedures comparable to those for
direct-access devices. When a new data set is to be placed on a magnetic-tape volume,
you must specify the data set sequence number if it is not the first data set on the reel.
The operating system positions a volume with IBM standard labels, American National
Standard labels, or no labels so that the data set can be read or written. If the data set
has nonstandard labels, you must provide for volume positioning in your
nonstandard-label-processing routines. All data sets stored on a given magnetic-tape
volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you have not specified a
volume serial number, the system assigns a serial number to that volume and to any
additional volumes required for the data set. Each such volumeis assigned a seria

number of the form Lxxxyy where xxx indicates the data set sequence number from I1PL
to IPL and yy indicates the volume sequence number for the data set. If you specify
volume serial numbers for unlabeled volumes on which a data set is to be stored, the

20 OS/V'S2 MV S Data Management Services Guide

system assigns volume serial numbers to any additional volumes required. If data sets
residing on unlabeled volumes are to be cataloged or passed, you should specify the
volume serial numbers for the volumes required. Thiswill prevent data sets residing on
different volumes from being cataloged or passed under identical volume serial numbers.
Retrieval of such data sets could result in unpredictable errors.

Each data set and each data set label group on magnetic tape that is to be processed by
the operating system must be followed by atapemark. Tapemarks cannot exist within a
data set. When the operating system is used to create a tape with standard labels or no
labels, all tapemarks are automatically written. Two tapemarks are written after the last
trailer label group on avolume to indicate the last data set on the volume. On an
unlabeled volume, the two tapemarks are written after the last data set.

When the operating system is used to create a tape data set with nonstandard labels, the
delimiting tapemarks are not written. If the data set isto be retrieved by the operating
system, those tapemarks must be written by your nonstandard-label -processing routine.
Otherwise, tapemarks are not required after nonstandard labels since positioning of the
tape volumes must be handled by installation routines.

For more information on labels for magnetic-tape volumes, refer to OSVS Tape
Labels.

The data on magnetic-tape volumes can be in either EBCDIC or ASCII. ASCII isa7-bit
code consisting of 128 characters. It permits data on magnetic tape to be transferred
from one computer to another even though the two computers may be products of
different manufacturers.

Data management support of ASCII and of American National Standard tape labelsis
such that data management can translate records on input tapesin ASCII into EBCDIC
for internal processing and translate the EBCDIC back into ASCII for output. Records
on such input tapes may be sorted into ASCI| collating sequence.

Data Set Record Formats

A data set is composed of a collection of records that normally have some logical relation
to one another. The record is the basic unit of information used by a processing program.
It might be asingle character, all information resulting from a given business transaction,
or measurements recorded at a given point in an experiment. Much data processing
consists of reading, processing, and writing individual records.

The process of grouping a number of records before writing them on avolumeisreferred
to as blocking. A block ismade up of the data between interrecord gaps (IRGs). Each
block can consist of one or more records. Blocking conserves storage space on the
volume because it reduces the number of IRGs in the data set. In many cases, blocking
also increases processing efficiency by reducing the number of input/output operations
required to process a data set.

Records may be in one of four formats: fixed-length (format-F), variable-length for data
in EBCDIC (format-V), variable-length for data to be translated to or from ASCI|
(format-D), or undefined-length (format-U). The main consideration in the selection of
arecord format isthe nature of the data set itself. Y ou must know the type of input your
program will receive and the type of output it will produce. Selection of arecord format
is based on this knowledge, as well as on an understanding of the input/output devices
that are used to contain the data set and the access method used to read and write the
datarecords. The record format of adata set isindicated in the data control block
according to specifications in the DCB macro instruction, the DD statement, or the data
set label.

For ASCI| tapes, data can be in format-F, format-D, and format-U with the restrictions
noted under "Fixed-Length Records, ASCII tapes,” "Variable-Length

Part 1: Introduction to Data Management 21

Records—Format D," and "Undefined-Length Records.” When data management reads
records from ASCII tapes, it translates the records into EBCDIC. When data
management writes records onto ASCI|I tapes, it tranglates the records into ASCII.
Because you use input records after they are translated and because output records are
translated when you ask data management to write them, you work only with EBCDIC.

Note: Thereis no minimum requirement for block size; however, if a data check occurs
on a magnetic-tape device, any block shorter than 12 bytes in a Read operation or 18
bytesin aWrite operation is treated as a noise record and lost. No check for noise is
made unless a data check occurs. The sort/merge program does not accept physical
blocks or logical records shorter than 18 bytes from any device.

For the 3800 printer, the data in the record can contain two optional bytes. The optional
control character used for carriage control, followed by an optional table reference
character used for dynamically selecting a character arrangement table during printing.
Seethe IBM 3800 Printing Subsystem Programmer's Guide for more information on
the table reference character.

Fixed-L ength Records

The size of fixed-length (format-F) records, shown in Figure 1, is constant for all records
in the data set. The number of records within a block is constant for every block in the
data'set, unless the data set contains truncated (short) blocks. If the data set contains
unblocked format-F records, one record constitutes one block.

The system automatically performs physical length checking (except for card readers) on
blocked or unblocked format-F records. Allowances are made for truncated blocks.

Format-F records are shown in Figure 1. The optional control character (c), used for
stacker selection or carriage control, may be included in each record to be printed or

punched.
Block Block
A\
Blocked Records | Record A | Record B | Record C Record D | Record E | Record F
~
\\\ ~o -~
\\ - >N
AN >~
\\ Record ™~
c Data
\f Optional Control
\ Character - 1 Byte //
\
\ //
Block Block \\ / Block
Unblocked Records | Record A Record B Record C Record D

Figure 1. Fixed-Length Records

22 OS/VS2 MV S Data Management Services Guide

Fixed-Length Records, Standard Format: During creation of a sequential data set (to be
processed by BSAM or QSAM) with fixed-length records, the RECFM subparameter of
the DCB macro instruction may specify a standard format (RECFM=FS or FBS). A
standard-format data set must conform to the following specifications:

¢ All recordsin the data set are format-F records.

* No block except the last block is truncated. (With BSAM you must ensure that this
specification is met.)

» Every track except the last one contains the same number of blocks.

» Every track except the last oneisfilled to capacity as determined by the track capacity
formula established for the device. (These formulas are presented in Part 3 of this
book under "Allocating Space on Direct-Access Volumes.")

» The data set organization is physical-sequential. A member of a partitioned data set
cannot be specified.

A sequential data set with fixed-length records having a standard format can be read
more efficiently than a data set that doesn't specify a standard format. This efficiency is
possible because the system is able to determine the address of each record to be read
because each track contains the same number of blocks.

Y ou should never extend a data set of this type (by coding DISP=MOD) if the last block
is truncated, because the extension will cause the data set to contain a truncated block
that isn't the last block. Thistype of data set on magnetic tape should not be read
backward, because then the data set would begin with atruncated block. Consequently,
you probably won't want to use this type of data set with magnetic tape. If you use one
of the basic access techniques with this type of data set, you should not specify that the
track overflow feature is to be used with the data set.

Standard format should not be used to read records from a data set that was created
using aRECFM other than standard since other record formats may not creste the
precise format required by standard.

If at any time the characteristics of your data set are altered from the specifications
described above, then the data set should no longer be processed with the standard
format specification.

Fixed-L ength Records, ASCII Tapes. For ASCII tapes, format-F records are the same as
described above, with two exceptions:

» Control characters, if present, must. be American National Standards Institute (ANSI)
control characters.

» Records or blocks of records can contain block prefixes.

Figure 2 shows the format of fixed-length records for ASCII tapes and where control
characters and block prefixes go if they exist.

The block prefix can vary in length from 0 to 99 bytes but the length must be constant
for the data set being processed. For blocked records, the block prefix precedes the first
logical record. For unblocked records, the block prefix precedes each logical record.

Using QSAM and BSAM to read records with block prefixes requires that you specify
the BUFOFF operand in the DCB. When using QSAM, you cannot read the block prefix
on input. When using BSAM, you must account for the block prefix on both input and
output. When using either QSAM or BSAM, you must account for the length of the
block prefix in the BLKSIZE and BUFL operands of the DCB.

Part 1: Introduction to Data Management 23

Block Block
Ja — A} . B
Optional Optional

Blocked Block Reco Block
Records | Prefix Record A Record B cord C profix Record D Record E | Record F

~.
AN ~

~
Record ~

AN N ~.

£ |

c Data

LOptional Control
\ Character-1 Byte
\ /

/
Block Block \ Vi Block
— N O - n \ I A N
Unblocked Optional QOptional Optional Optional
R2co?§s Block | Record A Biock | Record B Block | Record C Block | Record D
Prefix Prefix Prefix Prefix

Figure 2. Fixed-Length Records for ASCII Tapes

When you use BSAM on output records, the operating system does not recognize a block
prefix. Therefore, if you want ablock prefix, it must be part of your record. Note that
you cannot include block prefixesin QSAM output records.

The block prefix can contain any data you want, but you must avoid using data types
such as binary, packed decimal, and floating-point that cannot be translated into ASCI|.

For more information about control characters, refer to "Control Character” and to
"Appendix B: Control Characters.”

Variable-L ength Records

The variable-length record formats are format-V and format-D. Format-V records can
be spanned; that is, records can be larger than the blocksize, as described below.
Format-D records are used for ASCI| tape data sets and cannot be spanned. Figure 3
shows blocked and unblocked variable-length records without spanning.

Variable-Length Records—Format V: Format V provides for variable-length records,
variable-length record segments, each of which describes its own characteristics, and
variable-length blocks of such records or record segments. Except when variable-length
track overflow records are specified for volumes on devices with the rotational position
sensing feature, the control program performs length checking of the block and uses the
record or segment length information in blocking and deblocking. The first 4 bytes of
each record, record segment, or block make up a descriptor word containing control
information. Y ou must allow for these additional 4 bytesin both your input and output
buffers.

Block Descriptor Word: A variable-length block consists of ablock descriptor word
(BDW) followed by one or more logical records or record segments. The block
descriptor word is a4-byte field that describes the block. The first 2 bytes specify the
block length ('11)-4 bytesfor the BDW plus the total length of all records or segments
within the block. Thislength can be from 8 to 32,760 bytes or, when you are using
WRITE with tape, from 18 to 32,760. The third and fourth bytes are reserved for future
system use and must be 0. If the system does your blocking—that is, when you use the
queued access technique—the operating system automatically provides the BDW when it
writes the data set. If you do your own blocking—that is, when you use the basic access
technique—you must supply the BDW.

24 OS/VS2 MV S Data Management Services Guide

Block
BDW ~
" LL

Biocked Records | LL | 00 | Record A | Record B | Record C LL | 00| Record D | Record £ | Record F

s LReservm-Z Bytes \ \\\\\\
L Block Length - \ T~
2 Bytes \ 2 T~
" RDW Data N
" —

Record | £0 |00 |c

r Optional Control Character /
L—— Reserved - 2 Bytes //

Record Length-

|
, /
| 2 Bytes Y
Block ! 7 Block
s — \ Bow |/
LL 7 " BDW Record
Unbiocked Records| LL { 00 | Record B LL| 00 Record C LL | 00 Record D

“ L_Reserved - 2 Bytes
e Block Length - 2 Bytes

Figure 3. Nonspanned, V ariable-Length Records

Record Descriptor Word: A variable-length logical record consists of a record descriptor
word (RDW) followed by the data. The record descriptor word is a 4-byte field
describing the record. The first 2 bytes contain the length (VP) of thelogical record
(including the 4-byte RDW). The length can be from 4 to 32,756. For information about
processing a sequential data set, see "Data Format—Device Type Considerations.” All
bits of the third and fourth bytes must be O, as other values are used for spanned records.
For output, you must provide the RDW except in data mode for spanned records
(described under "Buffer Control"). For output in data mode, you must provide the total
data length in the physical record length field (DCBPRECL) of the DCB. For input, the
operating system provides the RDW except in data mode. In data mode, the system
passes the record length to your program in the logical record length field (DCBLRECL)
of the DCB. The optional control character (c) may be specified as the fifth byte of each
record and must be followed by at least one byte of data (the length in the RDW, in this
case, would be six). Thefirst byte of datais atable reference character if OPTCD=J has
been specified. The RDW, the optional control character, and the optional table
reference character are not punched or printed.

Spanned Variable-Length Records (Sequential Access Method): The spanning feature of the
queued and basic sequential access methods enables you to create and process
variable-length logical records that are larger than one physical block and/or to pack
blocks with variable-length records by splitting the records into segments so that they
can be written into more than one block, as shown in Figure 4.

When spanning is specified for blocked records, the system triesto fill all blocks. For
unblocked records, arecord larger than blocksize is split and written in two or more
blocks, each block containing only one record or record segment. Thus the blocksize may
be set to the one that is best for a given device or processing situation. It is not restricted
by the maximum record length of adata set. A record may, therefore, span several

blocks, and may even span volumes. Note that alogical record spanning three or more
volumes cannot be processed in update mode (described under "Buffer Control") by
QSAM. A block can contain a combination of records and record segments, but not

Part 1: Introduction to Data Management 25

Block

BOW - L =
5\ N\
Last First Segment . Last First Segment
LL Segment | of Logical LL |::Brlr_net?é2':eRSeecg°r?gnBt LL of Logical| of Logical
of Logical | Record B 9 Record B | Record C
Record A
L, Reserved -1 \ \ A : N
2Bytes | ~ N \ | .
Block Length - | AN \ \ S
2 Bytes ! 20 N \\ j 11 \\ § 11 N
N /___/______\
” spw Data V" spw Data SDW Data
s
. Inter-
First mediate Last
Segment | 0 ¢ Segment 1] Segment | g¢
f ical : of Logical
of Log of Logical
Record Record Record
LOptional Control L— Segment Control L—Segment Control
Character Code Code
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)
Segment Length - 2 bytes 20
4 Y
RDW Data Portion of Logical Record B
N
>
Logical Record ﬂ Data :fortion Data :;)rtion Da(t): Pl(_:;tsiton
. c
(in User's Work Area) First Segment! Intermediate Segment | Segment

LOptional Control Character
beee—u Reserved - 2 Bytes
Record Length - 2 Bytes

Figure 4. Spanned V ariable-L ength Records

multiple segments of the same record. When records are added to or deleted from a data
set, or when the data set is processed again with different blocksize or record-size
parameters, he record segmenting will change.

Considerations for Processing Spanned Record Data Sets: When spanned records span
volumes, reading errors may occur when using QSAM if a volume which begins with a
middle or last segment is mounted first or if an FEOV macro instruction is issued
followed by another GET. QSAM cannot begin reading from the middle of the record.
The errors include duplicate records, program checks in the user's program, and invalid
input from the spanned record data set.

When a spanned record data set isto be opened in UPDAT mode and QSAM isused, a
record area must be provided by using the BUILDRCD macro instruction or by
specifying BFTEK=A in the DCB.

If you issue the FEQOV macro instruction when reading a data set that spans volumes, or
if a spanned multivolume data set is opened to other than the first volume, make sure
that each volume begins with the first (or only) segment of alogical record. Input
routines cannot begin reading in the middle of alogical record.

Segment Descriptor Word: Each record segment consists of a segment descriptor word
(SDW) followed by the data. The segment descriptor word, similar to the record
descriptor word, is a4-byte field that describes the segment. The first 2 bytes contain the
length ('llI') of the segment, including the 4-byte SDW. The length can be from 5 to
32,756 bytes or, when you are using WRITE with tape, from 18 to 32,756 bytes. The
third byte of the SDW contains the segment control code, which specifies the relative
position of the segment in the logical record. The segment control codeisin the
rightmost 2 bits of the byte. The segment control codes are shown in Figure 5. The

26 OS/VS2 MV S Data Management Services Guide

remaining bits of the third byte and all of the fourth byte are reserved for future system
use and must be 0.

Binary Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first or last segment

Figure 5. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after the record has
been segmented. Y ou or the operating system can build the SDW, depending on which
mode of processing is used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential access method move
mode, complete logical records, including the RDW, are processed in your work area.
GET consolidates segments into logical records and creates the RDW. PUT forms
segments as required and creates the SDW for each segment. Data mode is similar to
move mode, but allows reference only to the data portion of the logical record in your
work area. The logical record length is passed to you through the DCBLRECL field of
the data control block. In locate mode, both GET and PUT process one segment at a
time. However, in locate mode, if you provide your own record area using the
BUILDRCD macro instruction or if you ask the system to provide a record area by
specifying BFTEK=A, then GET, PUT, and PUTX process one logical record at atime.
(BFTEK=A or the BUILDRCD macro cannot be specified when logical records exceed
32,760 bytes. To process logical records that exceed 32,760 bytes, you must use locate
mode and specify LRECL=X in your DCB macro.)

A logical record spanning three or more volumes cannot be processed when the data set
is opened for update.

When unit-record devices are used with spanned records, the system assumes that
unblocked records are being processed and the block size must be equivalent to the
length of one print line or one card. Records that span blocks are written one segment at
atime.

SYSIN and SY SOUT Restrictions: Spanned variable-length records cannot be specified
for aSY SIN data set. If you're using QSAM to process a SY SOUT data set, move mode
(see "Buffer Control") is more efficient than locate mode.

Null Segments: A 1in bit position O of the SDW indicates a null segment. A null
segment means that there are no more segments in the block. Bits 1-7 of the SDW and
the remainder of the block must be binary zeros. A null segment is not an
end-of-logical-record delimiter. (Y ou do not have to be concerned about null segments
unless you have created a data set using null segments.)

Spanned Variable-Length Records (Basic Direct AccessMethod): The spanning feature of
the basic direct access method (BDAM) enables you to create and process
variable-length unblocked logical records that are longer than one track. The feature also
enables you to pack tracks with variable-length records by splitting the records into
segments. These segments can then be written onto more than one track, as shown in
Figure 6.

When you specify spanned, unblocked record format for the basic direct access method
and when a complete logical record cannot fit on the track, the system triesto fill the
track with arecord segment. Thus the maximum record length of a data set is not
restricted by block size. Furthermore, segmenting records allows arecord to span several
tracks, with each segment of the record on a different track. However, since the system

Part 1: Introduction to Data Management 27

Track 1 Track 2 Track 3
r - N f s — Al
Blgck
BDW Lo <

First Segment . Last Segment

LL of Logical LL lnterme'dlate Segr;\e:t of LL of Logical
Record A Logical Recor Record A
\ N LL = track size [N

Reterved - h o AN \\ ! \

2 Bytes \\\ N \\ \ ! \
Block Length - N N \\ \ : \\
2 Bytes AN \\\ \ \\ i \

N\ \
\
\/‘ M \\\ \/ ‘gg \ ; u,\ \\
SDw Data SDw Data SDw Data
Intermediate,
First Segment Igast
Segment of Logicat egment
of Logical L1 Record 20 of Logical 0
Record Record
Q—» Segment Control L—-Segment Control
Code Code
Reserved - 1 Byte
b—eeee Segment Control Code -
1 Byte {See Figure 5)
Segment Length - 2 Bytes
L
r N
BDW Data Portion of Logical Record A
Logical Record Data Portion Data Portion Data Portion
{in User's Work of of of Last
Area) First Segment Intermediate Segment | Segment
Biock Length - J)
2 Bytes
Reserved - Note: Not All Segment and Block Combinations are Represented
2 Bytes

Figure 6. Spanned Variable-Length Records for BDAM Data Sets

does not allow arecord to span volumes, all segments of alogical record in adirect data
set are on the same volume.

Variable-L ength Records—Format D: For ASCII tapes, variable-length records must be
format-D records. Format-D records are the same as format-V records, except:

« Control characters, if present, must be ANSI control characters.
* Records or blocks of records can contain block prefixes.

Figure 7 shows the format of variable-length records for ASCII tapes, where the record
descriptor word (RDW) must go, and where block prefixes and control characters can go
when they exist.

To specify ablock prefix, code the BUFOFF operand in the DCB macro. The block
prefix can vary in length from 0 to 99 bytes but its length must remain constant for the
data set being processed. For blocked records, the block prefix precedes the first logical
record in each block. For unblocked records, the block prefix precedes each logical
record. If the block prefix exists, it precedes the RDW.

To specify that the block prefix isto be treated asa BDW by data management for
format-D records on output, code BUFOFF=L as a DCB operand. Y our block prefix
must be 4 bytes long, and it must contain the length of the block, including the block
prefix. The maximum length of aformat D, BUFOFF=L block is 9999 because the
length (stated in binary by the user) is translated to a four-byte zoned decimal field on
the ASCII tape when the tape is written, and is then converted back to a two-byte length

28 OS/VS2 MV S Data Management Services Guide

Blocked
Records

Block Block
r * ™ I A~ N
Optional Optional
Block [Record A| Record B Record C Block | Record D Record E Record F
Prefix Prefix
\ T~
\ ~ -
\ I:e — -
! N
RDW Data
e — N
o c
| LOptional Control Character . -
v 7’ Reserved - 2 Bytes P
s “——— Record Length - — -
e 2 Bytes . —
s - - Block Block
z — T e N
Optional| Optionall Optional
Recocds ™ | Block Record C Block | Record D Block | Record E
¢ Prefix Prefix | Prefix

Note: Block prefixes on output records must be 4-bytes long.

Figure 7. Variable-Length Records for ASCII Tapes

field in binary followed by two bytes of zeros when the block isread. If you use QSAM
to write records, data management fillsin the block prefix for you. If you use BSAM to
write records, you must fill in the block prefix yourself. If you are using chained
scheduling to read blocked format-D records, coding BUFOFF= absolute expression in
the DCB is not allowed. Instead, BUFOFF=L is required, because the access method
needs binary RDWs and valid end-of -block addresses to unblock the records.

When using QSAM, you cannot read the block prefix on input. When using BSAM, you
must account for the block prefix on both input and output. When using either QSAM or
BSAM, you must account for the length of the block prefix in the BLKSIZE and BUFL
operands.

When you use BSAM on output records, the operating system does not recognize the
block prefix. Therefore, if you want ablock prefix, it must be part of your record.

The block prefix can contain any data you want, but you must avoid using data types,
such as binary, packed decimal, and, floating-point, that cannot be translated into ASCII.
For format-D records, the only time the block prefix can contain binary data is when you
have coded BUFOFF=L, which tells data management that the prefix isa BDW. Unlike
the block prefix, the RDW must always be in binary.

If you create variable-length records that are shorter than 18 bytes, data management
pads each one up to alength of 18 bytes when the records are written onto ASCI|I tape.
The padding character used isthe ASCII circumflex.

For more information about control characters, refer to "Control Character” and to
"Appendix B: Control Characters.”

Part I: Introduction to Data Management 29

Undefined-Length Records

Format U permits processing of records that do not conform to the F or VV format. As
shown in Figure 8, each block is treated as a record; therefore, deblocking must be
performed by your program. The optional control character may be used in the first byte
of each record. Because the system does not perform length checking on format-U
records, your program may be designed to read less than a complete block into virtual

storage.
Record
c Data
7
\\ Optional Control /
\\Character-1 Byte /
/
\ /
Block \ Bilock / Bilock
/
Record A Record B Record C

Figure 8. Undefined - Length Records

For ASCII tapes, format-U records are the same as described above, with the two
exceptions described for format-F records on ASCII tapes.

Figure 9 shows the format of undefined-length records for ASCII tapes and where a
control character and block prefix, if any, go.

Record
s — ™
Optional
Block c Data
Prefix
\
N f-Optional Control //
\ Character-1 Byte //
\
/
N
Block N Block / Block
r —— N\ Na * N/ - A \
Optional Optionat Optional
Block | Record A Block | Record B Block Record C
Prefix Prefix Prefix

Figure 9. Undefined - Length Records for ASCII Tapes

For format-U records, the user must specify the record length when issuing the WRITE,
PUT, or PUTX macro instruction. No length checking is performed by the system, so no
error indication will be given if the specified length does not match the buffer size or
physical record size.

In update mode, you must issue a GET or READ macro before you issue a PUTX or
WRITE macro to a data set on a direct-access device. If you change the record length
when you issue the PUTX or WRITE macro, the record will be padded with zeros or
truncated to match the length of the record received when the GET or READ macro was
issued. No error indication will be given.

30 OS/VS2 MV S Data Management Services Guide

Control Character

Y ou may specify in the DD statement, the DCB macro instruction, or the data set 1abel
that an optional control character is part of each record in the data set. The 1-byte
character is used to indicate a carriage control channel when the data set is printed or a
stacker bin when the data set is punched. Although the character is a part of the record
in storage, it is never printed or punched. For that reason, buffer areas must be large
enough to accommodate the character. If the immediate destination of the record is a
device, such as disk, that does not recognize the control character, the system assumes
that the control character isthe first byte of the data portion of the record. If the
destination of the record is a printer or punch and you have not indicated the presence of
acontrol character, the system regards the control character as the first byte of data. A
list of the control charactersisin "Appendix B: Control Characters.”

3800 Table Reference Char acter

The 3800 Table Reference Character is a numeric character (0,1,2, or 3) corresponding
to the order in which the character arrangement table names have been specified with the
CHARS keyword. It isused for selection of a character arrangement table during
printing. See 1BM 3800 Printing Subsystem Programmer's Guide for more
information on the table reference character.

Direct-Access Device Characteristics

Regardless of organization, data sets created using the operating system can be stored on
adirect-access volume. Each block of data has a distinct location and a unique address,
making it possible to locate any record without extensive searching. Thus, records can be
stored and retrieved either directly or sequentially.

Although direct-access devices differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volumeis divided into many concentric tracks. The number of
tracks and their capacity vary with the device. Each device has some type of access
mechanism, containing read/write heads that transfer data as the recording surface
rotates past them. Only one head at atime can transfer data.

Thelogical arrangement of related tracks is vertical rather than horizontal. As shownin
Figure 10, acylinder of a 2316 disk pack is composed of 20 tracks, one for each
recording surface. Because there are 203 tracks per recording surface, there are 203
vertical cylinders of 20 tracks each. If a data set extends to more than 1 track, itis
continued on the next track in the cylinder, not the next track on the same recording
surface.

Part 1: Introduction to Data Management 31

Track Format

00 Tracks 202 Track
— =

Comb-Type
Access Assembly

Ten Access Arms

Twenty Read-Write Heads
Cylinder

Figure 10. 2316 Disk Pack

Information is recorded on al direct-access volumes in a standard format. In addition to
device data, each track contains atrack descriptor record (capacity record or RO) and
data records.

As shown in Figure 11, there are two possible data record formats—count-data and
count-key-data—only one of which can be used for a particular data set.

In addition to device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (O if no keys are used),
and its data length.

Count-Data Format

Count Data

Count Data Ds | Count Data

Track Descriptor
Record (RO}

Data Record (R1) Data Record (Rn)

Count-Key-Data Format

Count Data

Count Key Data Bﬂ Count Key Data

Track Descriptor
Record (RO)

Data Record (R 1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

32 OS/VS2 MV S Data Management Services Guide

Track Addressing

If the records are written with keys, the key area (1 to 255 bytes) contains arecord key
that specifies the data record by part number, account number, sequence number, or
some other identifier. In some cases, records are written with keys so that they can be
located quickly.

Two types of addresses can be used to store and retrieve data on a direct-access volume:
actual addresses and relative addresses. The only advantage of using actual addressesis
the elimination of time required to convert from relative to actual addresses and vice
versa. When sequentially processing a multiple-volume data set, you can refer only to
records of the current volume.

Actual Addresses: When the system returns the actual address of arecord on a
direct-access volume to your program, it isin the form MBBCCHHR, where:

M

is a 1-byte binary number specifying the relative location of an entry in a data extent
block (DEB). The data extent block is created by the system when the data set is
opened. Each extent entry describes a set of consecutive tracks allocated for the data
Set.

BBCCHH

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head number for
the record (its track address). The cylinder and head numbers are recorded in the
count area for each record.

R

isa 1-byte binary number specifying the relative block number on the track. The
block number is also recorded in the count area.

If you use actual addressesin your program, the data set must be treated as unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to recordsin a
direct-access data set: relative block addresses and relative track addresses.

Therelative block address is a 3-byte binary number that indicates the position of the
block relative to the first block of the data set. Allocation of noncontinuous sets of
blocks does not affect the number. The first block of a data set aways has arelative
block address of O.

Therelative track address has the form TTR, where:
TT

is a 2-byte binary number specifying the position of the track relative to the first track
dlocated for the dataset. The TT for thefirst track is 0. Allocation of noncontinuous
sets of tracks does not affect the number.

R

isa 1-byte binary number specifying the number of the block relative to the first block
onthetrack TT. The R value for the first block of dataon atrack is 1.

Part I: Introduction to Data Management 33

Track Overflow

If the record overflow feature is available for the direct-access device being used, you

can reduce the amount of unused space on the volume by specifying the track overflow
option inthe DD statement or the DCB macro instruction associated with the data set. If
the option is used, a block that does not fit on the track is partially written on that track
and continued on the next track. (The track onto which the record is continued must be
physically next and must be part of the same extent as the track that holds the first part
of the record.) Each segment (the portion written on one track) of an overflow block has
acount area. The datalength field in the count area specifies the length of that segment
only. If the block is written with akey, thereis only one key areafor the block. It is
written with the first segment. If the track overflow option is not used, blocks are not
split between tracks.

Write-Validity-Check Option

Y ou can specify the write-validity-check option in either the DD statement or the DCB
macro instruction. After arecord is transferred from main to secondary storage, the
system reads the stored record (without data transfer) and, by testing for a data check
from the I/O device, verifies that the record was written correctly. This verification
requires an additional revolution of the device for each record that was written. Standard
error recovery procedures are initiated if an error condition is detected.

The Data Control Block

Y ou must describe the characteristics of a data set, the volume on which it resides, and
its processing requirements before processing can begin. During execution, the
descriptive information is made available to the operating system in the data control
block (DCB). A DCB isrequired for each data set and is created in a processing
program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB macro
instruction, a data definition (DD) statement, and a data set label. In addition, you can
provide or modify some of the information during execution by storing the pertinent data
in the appropriate field of the data control block. The specifications needed for
input/output operations are supplied during the initialization procedures of the OPEN
macro instruction. Therefore, the pertinent data can be provided when your job isto be
executed rather than when you write your program (see Figure 12).

DCB Macro

DD Statement Data Set Label

B FGHJ

C D | A E

Data Control Block

ABCDEFGHIJ

Figure 12. Completing the Data Control Block

34 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

When the OPEN macro instruction is executed, the Open routine:

« Completes the data control block

» Loads all necessary access method routines not already in virtual storage
* Initializes data sets by reading or writing labels and control information
 Constructs the necessary system control blocks

Information from aDD statement is stored in the job file control block (JFCB) by the
operating system. When the job is to be executed, the JFCB is made available to the
open routine. The data control block isfilled in with information from the DCB macro
instruction, the JFCB, or an existing data set label. If more than one source specifies
information for a particular field, only one sourceis used. A DD statement takes
precedence over a data set label, and a DCB macro instruction over both. However, you
can modify most data control block fields either before the data set is opened or when
the operating system returns control to your program (at the data control block open
exit). Some fields can be modified during processing.

Figure 13 illustrates the process and the sequence of filling in the data control block from
various sources. The primary source is your program, that is, the DCB macro instruction.
In general, you should use only those DCB parameters that are needed to ensure correct
processing. The other parameters can be filled in when your program is to be executed.
When a direct-access data set is opened (or a magnetic tape with standard labelsis
opened for INPUT, RDBACK, or INOUT), any field in the JFCB not completed by a
DD statement isfilled in from the data set label (if one exists). When opening a magnetic
tape for output, the tape label is assumed not to exist or to apply to the current data set
unless you specify DISP=MOD and a volume serial number in the volume parameter of
the DD statement. Any field not completed in the DCB isfilled in from the JFCB. Fields
in the DCB can then be completed or modified by your own DCB exit routine. Then all
DCB fields are unconditionally merged into corresponding JFCB fields if your data set is
opened for output. Thisis done by specifying OUTPUT, OUTIN, EXTEND, or
OUTINX inthe OPEN macro instruction. The DSORG field is not merged unless this
field contains zeros in the JFCB. If your data set is opened for input (INPUT, INOUT,
RDBACK, or UPDAT is specified in the OPEN macro instruction), the DCB fields are
not merged unless the corresponding JFCB fields contain zeros.

When the data set is closed, the data control block is restored to the condition it had
before the data set was opened (the buffer pool is not freed). The open and close
routines also use the updated JFCB to write the data set labels for output data sets. If the
data set is not closed when your program terminates, the operating system will close it
automatically.

Data Set Description

For each data set you are going to process, there must be a corresponding DCB and DD
statement. The characteristics of the data set and device-dependent information can be
supplied by either source. In addition, the DD statement must supply data set
identification, device characteristics, space allocation requests, and related information as
specifiedin OSVS2 JCL. You establish thelogical connection between aDCB and a
DD statement by specifying the name of the DD statement in the DDNAME field of the
DCB macro instruction, or by completing the field yourself before opening the data set.

Once the data set characteristics have been specified in the DCB macro instruction, they
can be changed only by modification of the DCB during execution. The fields of the
DCB discussed below are common to most data organizations and access techniques.

Part 1: Introduction to Data Management 35

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

DCB Data DCB
Macro —-@——F Control % Exit
Block Routine

DD Job File f-\ New
Statement "“————@—"‘ Control 7 g Data Set
Block \J Label

Oid
Data Set
Label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

Data Set Organization (DSORG): specifies the organization of the data set as physical
sequential (PS), indexed sequential (1S), partitioned (PO), or direct (DA). If the data set
contains absolute rather than relative addresses, you must mark it as unmovable by
adding a U to the DSORG parameter (for example, by coding DSORG=PSU). Y ou must
specify the data set organization in the DCB macro instruction. When creating or
processing an indexed sequential organization data set or creating a direct data set, you
must also specify DSORG in the DD statement. When creating a direct data set, the
DSORG in the DCB macro must specify PS or PSU and the DD statement must specify
DA or DAU.

Record Format (RECFM): specifies the characteristics of the records in the data set as
fixed-length (F), variable-length (V), or undefined-length (U). Blocked records are
specified as FB or VB. Y ou may also specify the records as fixed-length standard by
using FS or FBS. Y ou can request track overflow for records other than standard format
by adding aT to the RECFM parameter (for example, by coding FBT).

Record Length (LRECL): specifiesthe length, in bytes, of each record in the data set. If
the records are of variable length, the maximum record length must be specified. For
input, the field should be omitted for format-U records.

Blocksize (BLKSIZE): specifies the maximum length, in bytes, of ablock. If the records
are of format F, the blocksize must be an integral multiple of the record length except for
SY SOUT data sets. (See "Routing Data Through the System Input and Output Streams”
in Part 3 of this book.) If the records are of format V, the blocksize specified must be the
maximum blocksize. If records are unblocked, the blocksize must be 4 bytes greater than
the record length (LRECL). When spanned variable-length records are specified, the
blocksize is independent of the record length.

Key Length (KEYLEN): specifiesthe length (0-255) in bytes of an optional key which
precedes each block on a direct-access device. The value of KEYLEN isnot included in
BLKSIZE or LRECL but must be included in BUFL if buffer length is specified. Thus,
BUFL=KEYLEN+BLKSIZE.

36 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

Each of the data set description fields of the data control block, except as noted for data
set organization, can be specified when your job is to be executed. In addition, data set
identification and disposition, as well as device characteristics, can be specified at that
time. The parameters of the DD statement discussed below are common to most data set
organizations and devices.

Part I: Introduction to Data Management 36.1

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Data Definition Name (DDNAME): isthe name of the DD statement and connects the
DD statement to the data control block that specifies the same DDNAME.

Data Set Name (DSNAME): specifies the name of anewly defined data set, or refersto
apreviousy defined data set.

Data Control Block (DCB): provides, by means of subparameters, information to be used
to complete those fields of the data control block that were not specified in the DCB
macro instruction. This parameter cannot be used to modify a data control block.

Channel Separation and Affinity (SEP/AFF): requests that specified data sets use
different channels during input/output operations.

Input/Output Device (UNIT): specifies the number and type of 1/0 devicesto be
allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct-access volume
that should be allocated for the data set. Unused space can he released when your job is
finished.

Volume I dentification (VOLUME): identifies the particular volume or volumes, or the
number of volumes, to be assigned to the data set, or the volumes on which existing data
setsreside.

Data Set Label (LABEL): indicates the type and contents of the label or labels
associated with the data set. The operating system verifies standard labels. Standard
labels include those specified in the DD statement as SL (standard labels), SUL
(standard user labels), AL (American National Standard labels), and AUL (American
National Standard user labels). Nonstandard labels (NSL) can be specified only if your
installation has incorporated into the operating system routines to write and process
nonstandard |abels.

Data Set Disposition (DISP): describes the status of a data set and indicates what isto be
done with it at the end of the job step.

Processing Program Description

The operating system requires several types of processing information to ensure proper
control of your input/output operations. The forms of macro instructions in the program,
buffering requirements, and the addresses of your special processing routines must be
specified during either the assembly or the execution of your program. The DCB
parameters specifying buffer requirements are discussed in "Buffer Acquisition and
Control."

Because macro instructions are expanded during the assembly of your program, you must
supply the macro instruction forms that are to be used in processing each data set in the
associated DCB macro instruction. Y ou can supply buffering requirements and related
information in the DCB macro instruction, the DD statement, or by storing the pertinent
datain the appropriate field of the data control block before the end of your DCB exit
routine. If the addresses of special processing routines are omitted from the DCB macro
instruction, you must complete them in the DCB before opening the data set.

Macro Instruction Form (MACRF)

The MACRF parameter of the DCB macro instruction specifies not only the macro
instructions used in your program, but also the processing mode as discussed in the
section "Buffer Control." The organization of your data set, the macro instruction form,
and the processing mode determine which of the data access routines will be used during
execution.

Part 1: Introduction to Data Management 37

Exitsto Special Processing Routines
The DCB macro instruction can be used to identify the location of:
» A routine that performs end-of-data procedures
+ A routine that supplements the operating system's error recovery routine
» A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro instruction or you can complete
the DCB fields before opening the data set. Figure 14 summarizes the exits that you can
specify either explicitly in the DCB, or implicitly by specifying the address of an exit list

inthe DCB.

Exit Routine

End-of-Data-Set

Error Analysis

Standard User Label
(physical sequential
or direct organization)

DCB Open

JFCBE

End-of-Volume

Block Count

FCB Image

DCB ABEND

When Available

When no more sequential
records or blocks are
available

After an uncorrectable
input/output error

When opening, closing,

or reaching the end of a
data set, and when changing
volumes

When opening a data set

When opening a data set
for the 3800

When changing volumes

After unequal block count
comparison by end-of-volume
routine

When opening a data set or
issuing a SETPRT macro

When an ABEND condition
occursin Open, Close, or

Where Specified
EODAD operand

SYNAD operand

EXLST operand and
exit list

EXLST operand and
exit list
EXLST operand and
exit list
EXLST operand and
exit list
EXLST operand and
exit list

EXLST operand and
exit list

EXLST operand and
exit list

end-of-volume routine.

Figure 14. Data Management Exit Routines

End-of-Data-Set Exit Routine (EODAD): The EODAD parameter of the DCB macro
instruction specifies the address of your end-of-data routine, which may perform any
final processing on an input data set. This routine is entered when an FEOV macrois
issued or when a CHECK or GET macro isissued and there are no .more records or
blocksto beretrieved. (On a READ request, this routine is entered when you issue a
CHECK macro instruction to check for completion of the read operation. For aBSAM
data set that is opened for UPDAT, thisroutineis entered at the end of each volume.
This allows you to issue WRITE macros before an FEOV macro isissued.)

The EODAD routine is not a subroutine, but rather a continuation of the routine which
issued the CHECK, GET, or FEOV macro instruction. Once in your EODAD routine,
you can continue normal processing, such as reposition and resume processing of the
data set, close the data set, or process another data set.

For BSAM, you must first reposition the data set that reached end-of-dataif you wish to
issue aBSP, READ, or WRITE macro instruction. Y ou can reposition your data set by
issuing a CLOSE TYPE=T macro instruction. If a READ macro isissued before the
data set is repositioned, unpredictable results will occur.

38 OS/VS2 MV S Data Management Services Guide

For BPAM, you may reposition the data set by issuing a FIND or POINT macro
instruction. (CLOSE TY PE=T with BPAM results in a no operation performed.)

For QISAM, you can continue processing the input data set that reached end-of-data by
first issuing an ESETL macro to end the sequential retrieval, then issuing a SETL macro
to set the lower limit of sequential retrieval. Y ou can then issue GET macrosto the data
Set.

Y our task will be abnormally terminated under either of the following conditions:
» No exit routine is provided.

* A GET macro instruction isissued in the EODAD routine to the DCB which caused
this routine to be entered (unless the access method is QISAM).

When control is passed to the EODAD routine, the registers contain the following
information:

Register Contents
0-1 Reserved
2-13 Contents before execution of CHECK, GET, or FEOV macro instruction
14 Address of the instruction after the last issued GET, CHECK, or FEOV macro instruction
15 Reserved

Synchronous Error Routine Exit (SYNAD): The SYNAD parameter of the DCB macro
instruction specifies the address of an error routine that isto be given control when an
input/output error occurs. This routine can be used to analyze exceptional conditions or
uncorrectable errors. The block being read or written can be accepted or skipped, or
processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by the operating system, attempt to correct the error before
returning control to your program. An uncorrectable error usually causes an abnormal
termination of the task. However, if you specify in the DCB macro instruction the
address of an error analysis routine (called a SYNAD routine), the routine is given
control in the event of an uncorrectable error.

Y ou can write a SYNAD routine to determine the cause and type of error that occurred
by examining:

» The contents of the general registers

» Thedataevent control block (discussed in Part 2 under "Basic Access Technique™)
» Theexceptional condition code

» The standard status and sense indicators

Y ou can use the SY NADAF macro instruction to perform this analysis automatically.
This macro instruction produces an error message that can be printed by a subsequent
PUT or WRITE macro instruction.

After completing the analysis, you can return control to the operating system or close the
data set. If you close the data set, note that you may not use the temporary close

(CLOSE TYPE=T) option in the SYNAD routine. To continue processing the same data
set, you must first return control to the control program by a RETURN macro

instruction. The control program then transfers control to your processing program,
subject to the conditions described below. In no case should you attempt to reread or
rewrite the record, because the system has already attempted to recover from the error.

Part 1: Introduction to Data Management 39

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

When you are using GET and PUT to process a sequential data set, the
operating system provides three automatic error options (EROPT) to be used
if thereisno SYNAD routine or if you want to return control to your
program from the SYNAD routine:

e ACC accept the erroneous block
« SKP skip the erroneous block
e ABE abnormally terminate the task

These options are applicable only to data errors, as control errorsresult in
abnormal termination of the task. Data errors affect only the validity of a
block of data. Control errors affect information or operations necessary for
continued processing of the data set. These options are not applicable to
output errors, except output errors on the printer. When chained scheduling is
used, the SKP option is not available, and ACC isassumed if SKPis coded. If
the EROPT and SYNAD fields are not completed, ABE is assumed.

Since EROPT appliesto aphysical block of data, and not to alogical record,
use of SKP or ACC may result in incorrect assembly of spanned records.

When you use READ and WRITE macro instructions, errors are detected
when you issue a CHECK macro instruction. If you are processing a direct or
sequential data set and you return to the control program from your SYNAD
routine, the operating system assumes that you have accepted the bad record.
If you are creating a direct data set and you return to the control program
from your SYNAD routine, your task is abnormally terminated. In the case of
processing a direct data set, the return should be made to the control program
viaregister 14 in order to make a control block (the I0OB) available for reuse
in a subsequent READ or WRITE macro instruction.

For adetailed description of the register contents upon entry to your SYNAD
routine, refer to the tablesin OS'VS2 MVS Data Management Macro
Instructions. The tables there describe register contents for programs using
QISAM, BISAM, BDAM, BPAM, BSAM, and QSAM.

Your SYNAD routine can end by branching to another routine in your
program, such as aroutine that closes the data set. It can also end by
returning control to the control program, which then returns control to the
next sequential instruction (after the macro) in your program. If your routine
returns control, the conventions for saving and restoring register contents are
asfollows:

» The SYNAD routine must preserve the contents of registers 13 and 14. If
required by the logic of your program, the routine must also preserve the
contents of registers 2 through 12. Upon return to your program, the
contents of registers 2 through 12 will be the same as upon return to the
control program from the SYNAD routine.

» The SYNAD routine must not use the save area whose addressisin
register 13, because this areais used by the control program. If the routine
saves and restores register contents, it must provide its own save area.

« |f the SYNAD routine calls another routine or issues supervisor or data
management macro instructions, it must provide its own save area or issue
a SYNADAF macro instruction. The SY NADAF macro instruction
provides a save areafor its own use, and then makes this area available to
the SYNAD routine. Such a save area must be removed from the save area
chain by a SYNADRLS macro instruction before control is returned to the
control program.

40 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

When you use QSAM to read and transl ate paper-tape characters, your SY NAD routine
receives control when you request the record preceding the record in error. Before giving
control to your SYNAD routine, the system translates the requested record into your
buffer.

For example, suppose that you are using QSAM to read and translate a paper-tape data
set and that you have specified, in your DCB, SYNAD= (address) and EROPT=ACC.
Suppose also that the third record of the data set has a parity error. When you issue a

Part 1: Introduction to Data Management 40.1

GET request for the second record, the system trans ates that record into your buffer
and, as aresult of the error in the third record, passes control to your SYNAD routine.
Because you specified the accept option, the system returns control to your program
after your SYNAD error analysis routine completes its processing. When you issue a
GET request for the third record, all characters other than the erroneous one are
translated into your buffer; the erroneous character is moved, in normal sequence, into
your buffer without translation.

If the error analysis routine receives control from the Close routine when indexed
sequential data sets are being created (the DCB is opened for QISAM load mode), bit 3
of the IOBFLAGS field in the load mode buffer control table (IOBBCT) is set to one.
The DCBWKPTG6 field in the DCB contains an address of alist of work area pointers
(ISLVPTRS). The pointer to the IOBBCT isat offset 8 in thislist as shown in the
following diagram:

DCB W(?rk Area

Pointers

(ISLVPTRS) 10BBCT

) L1]
[T 4 0§ 1
248 8 L
DCBWKPT6 A (IOBBCT)
IOBF LAGS

If the error analysis routine receives control from the Close routine when indexed
sequential data sets are being processed using QISAM scan mode, bit 2 of the DCB field
DCBEXCD?2 is set to one.

Exit List (EXLST): The EXLST parameter of the DCB macro instruction specifies the
address of alist that contains the addresses of special processing routines, aforms

control buffer (FCB) image, or auser totaling area. An exit list must be created if user
label, data control block, end-of-volume, block count, JFCBE, or DCB ABEND exits are
used, or if aPDAB macro or FCB image is defined in the processing program.

The exit list is constructed of 4-byte entries that must be aligned on fullword boundaries.
Each exit list entry isidentified by a code in the high-order byte, and the address of the

routine, image, or areais specified in the 3 low-order bytes. Codes and addresses for the
exit list entries are shown in Figure 15.

Y ou can activate or deactivate any entry in the list by placing the required code in the
high-order byte. Care must be taken, however, not to destroy the last entry indication.
The operating system routines scan the list from top to bottom, and the first active entry
found with the proper code is selected.

Y ou can shorten the list during execution by setting the high-order bit to 1, and extend it
by setting the high-order bit to O.
When control is passed to an exit routine, the registers contain the following information:
Register Contents

0 Variable; see exit routine description.

The three, low-order bytes contain the address of DCB currently being processed, except
when user-label exits (X "01'-'04"), user totaling exit (X'0 A"), or DCB ABEND exit (X'11 ") is
taken, when register 1 contains the address of a parameter list. The contents of the

parameter list are described in each exit routine description.

2-13 Contents before execution of the macro instruction.
14 Return address (must not be altered by the exit routine).
15 Address of exit routine entry point.

Part 1: Introduction to Data Management 41

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Hexadecimal
Entry Type Code 3-byte Addr ess—Purpose
Inactive entry 00 Ignore the entry; it is not active.
Input header label exit 01 Process a user input header |abel.
Output header label exit 02 Create a user output header label.
Input trailer label exit 03 Process a user input trailer label.
Output trailer label exit 04 Create a user output trailer label.
Data control block exit 05 Take a data control block exit.
End-of-volume exit 06 Take an end-of-volume exit.
JFCB exit o7 JFCB address for RDJFCB and
OPEN TYPE=JSVCs.
08-09 Reserved for future use
JFCB exit 07 JFCB address for RDJFCB and OPEN
TYPE=JSVCs.
08-09 Reserved for future use
User totaling area 0A Address of beginning of user's totaling area.
Block count exit 0B Take a block-count-unequal exit.
Defer input trailer oC Defer processing of auser input trailer 1abel
label from end-of-data until closing.
Defer- nonstandard oD Defer processing a nonstandard input
input trailer label trailer labelmagnetic tape unit
end-of-data until closing (no exit routine
address).
OE-OF Reserved for future use
FCB image 10 Define an FCB image.
DCB ABEND exit 11 Examine the ABEND condition and select
one of several options.
QSAM paralel input 12 Address of the PDAB for which this DCB
isamember.
13-14 Reserved for future use
JFCBE exit 15 Take an exit during open to allow user to
examine JCL=specified setup requirements
for a 3800 printer.
16-7F Reserved for future use
Last entry 80 Treat thisentry aslast entry inlist.

This code can be specified with any of the
above but must always be specified
with the las entry.

Figure 15. Format and Contents of an Exit List

The conventions for saving and restoring register contents are as follows:

» Theexit routine must preserve the contents of register 14. It need not preserve the
contents of other registers. The control program restores the contents of registers 2-13
before returning control to your program.

» Theexit routine must not use the save area whose addressisin register 13, because
thisareais used by the control program. If the exit routine calls another routine or
issues supervisor or data management macro instructions, it must provide the address
of anew save areain register 13.

42 .0S/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

Standard User Label Exit: When you create a data set with physical sequential or direct
organization, you can provide routines to create your own data set labels. Y ou can also
provide routines to verify these labels when you use the data set as input. Each label is
80 characters long with the first 4 characters UHL1,UHL2,...,UHLS8 for a header |abel
or UTL1,UTL2,..,UTL8for atrailer label. User labels are not allowed on indexed
sequential data sets.

The physical location of the labels on the data set depends on the data set organization.
For direct (BDAM) data sets, user labels are placed on a separate user label track in the
first volume. User label exits are taken only during execution of the open and close
routines. Thus you may create or examine up to eight user header labels only during
execution of open and up to eight trailer labels only during execution of close. Since the
trailer labels are on the same track as the header |abels, the first volume of the data set
must be mounted when the data set is closed.

For physical sequential (BSAM or QSAM) data sets, you may create or examine up to
eight header labels and eight trailer labels on each volume of the data set. For ASCI|

Part |I: Introduction to Data Management 42.1

tape data sets, you may create an unlimited number of user header and trailer labels. The
user label exits are taken during open, close, and end-of-volume processing.

To create or verify labels, you must specify the addresses of your label exit routinesin an
exit list as shown in Figure 15. Thus you may have separate routines for creating or
verifying header and trailer label groups. Care must be taken if a magnetic tapeisread
backward, since the trailer label group is processed as header labels and the header label
group is processed as trailer labels.

When your routine receives control, the contents of register O are unpredictable.

Register 1 contains the address of a parameter list. The contents of registers 2-13 are the
same as when the macro instruction was issued. However, if your program does not issue
the CLOSE macro instruction, or abnormally terminates before issuing CLOSE, the
CLOSE macro instruction will be issued by the control program, with control-program
information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 16 shows the contents of the area.

Address of 80-byte buffer area

7 7
4 %O{ﬂag / Address of DCB being processed
8 e

Error flags Address of status information

i

12
Address of user totaling image area

Figure 16. Parameter List Passed to User Label Exit Routine

Thefirst address in the parameter list points to an 80-byte label buffer area. For input,
the control program reads a user label into this area before passing control to the label
routine. For output, the user label exit routine constructs labelsin this area and returns to
the control program, which writes the label. When an input trailer label routine receives
control, the EOF flag (high-order byte of the second entry in the parameter list) is set as
follows:

bit 0 = O: Entered at end-of-volume
bit 0 = 1: Entered at end-of-file
bits 1-7: Reserved

When a user label exit routine receives control after an uncorrectable 1/0 error has
occurred, the third entry of the parameter list contains the address of the standard status
information. The error flag (high-order byte of the third entry in the parameter list) is set
asfollows:

bit 0 = 1: Uncorrectable 1/O error
bit 1=1: Error occurred during writing of updated label
bits 2-7: Reserved

The fourth entry in the parameter list is the address of the user totaling image area. This
image areais the entry in the user totaling save area that corresponds to the last record
physically written on the volume. The image area is discussed further under "User
Totaling."

Part 1: Introduction to Data Management 43

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Each routine must create or verify one label of a header or trailer label group, place a
return code in register 15, and return control to the operating system. The operating
system responds to the decimal return code as shown in Figure 17.

Routine Type Return Code System Response

Input header 0 Normal processing is resumed. If there are any remaining labels
or in the label group, they are ignored.
trailer label

4 The next user label isread into the label buffer area and control is

returned to the exit routine. If there are no more labels in the label
group, normal processing is resumed.

8 The label iswritten from the label buffer area and normal processing is
resumed.
12 The label iswritten from the label area, the next label isread into the

label buffer area, and control is returned to the label processing
routine. If there are no more labels, processing is resumed.

Output header 0 Normal processing is resumed; no label iswritten from the label
or trailer label buffer area.
4 User label iswritten from the label buffer area. Normal processing is
resumed.
8 User label iswritten from the label buffer area. If fewer than eight

|abels have been created, control is returned to the exit routine, which
then creates the next label. If eight Iabels have been created, normal
processing is resumed.

LY our input label routines can only return these codes when you are processing a physical sequential data set opened for

UPDAT or adirect data set opened for OUTPUT or UPDAT. These return codes allow you to verify the existing labels,
update them if necessary, then request that the system write the updated labels.

Figure 17. System Response to a User Label Exit Routine Return Code

Y ou can create user labels only for data sets on magnetic-tape volumes with 1BM
standard labels or American National Standard labels and for data sets on direct-access
volumes. When you specify both user labels and IBM standard labelsin a DD statement
by specifying LABEL=(,SUL) and there is an active entry in the exit list, alabel exit
isalwaystaken. Thus, alabel exit istaken even when an input data set does not contain
user labels, or when no user label track has been allocated for writing labels on a direct-
access volume. In either case, the appropriate exit routine is entered with the buffer
area address parameter set to 0. On return from the exit routine, normal processing

is resumed; no return code is necessary.

Label exits are not taken for system output (SY SOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as follows:

* When an input data set is opened, the input header label exit O1 is taken. If the data
set is on tape being opened for RDBACK, user trailer labels will be processed.

* When an output data set is opened, the output header label exit 02 is taken. However,
if the data set already exists and DISP=MOD is coded in the DD statement, the input
trailer label exit 03 istaken to process any existing trailer labels. If the input trailer
label exit 03 does not exist, then the deferred input trailer label exit O Cistaken if it
exists; otherwise, no label exit istaken. For tape, these trailer labels will be
overwritten by the new output data or by EQV or close processing when writing new
standard trailer labels. For direct-access devices, these trailer labels will still exist
unless rewritten by EOV or close processing in an output trailer label exit.

44 OS/V S2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

When an input data set reaches end-of-volume, the input trailer l1abel exit
03 istaken. If the data set is on tape opened for RDBACK, header labels
will be processed. Theinput trailer label exit 03 is not taken if you issue an
FEOV macro instruction. If adefer input trailer label exit OC is present,
and an input trailer label exit 03 is not present, the 0 C exit is taken.

Part 1: Introduction to Data Management 44.1

After switching volumes, the input header label exit 01 is taken. If the data set
is on tape opened for RDBACK, trailer labels will be processed.

* When an output data set reaches end-of-volume, the output trailer label exit 04 is
taken. After switching volumes, output header label exit 02 is taken.

* When an input data set reaches end-of-data, the input trailer label exit 03 is taken
before the EODAD exit, unless the DCB exit list contains a defer input trailer label
exit OC.

* When an input data set is closed, no exit is taken unless the data set was previously
read to end-of-data and the defer input trailer label exit OC is present. If so, the defer
input trailer label exit 0C istaken to process trailer labels, or if the tape is opened for
RDBACK, header labels.

* When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read backward.
When you read backward, header 1abel exits are taken to processtrailer labels, and trailer
label exits are taken to process header labels. The system presents labels from alabel
group in ascending order by label number, which isthe order in which the labels were
created. If necessary, an exit routine can determine label type (UHL or UTL) and
number by examining the first four characters of each label. Tapes with IBM standard
labels and direct-access devices can have as many as eight user labels. Tapes with
American National Standard |abels can have unlimited user labels.

If an uncorrectable error occurs during reading or writing of a user label, the system
passes control to the appropriate exit routine with the third word of the parameter list
flagged and pointing to status information.

After an input error, the exit routine must return control with an appropriate return code
(O or 4). Noreturn code is required after an output error. If an output error occurs while
the system is opening a data set, the data set is not opened (DCB is flagged) and control
is returned to your program. If an output error occurs at any other time, the system
attempts to resume normal processing.

User Totaling (BSAM and QSAM only): When creating or processing a data set with user
labels, you may develop control totals for each volume of the data set and store this
information in your user labels. For example, a control total that was accumulated as the
data set was created can be stored in your user label and later compared with atotal
accumulated during processing of the volume. User totaling assists you by synchronizing
the control data you create with records physically written on a volume. For an output
data set without user labels, you can aso develop a control total that will be available to
your end-of-volume routine.

To request user totaling, you must specify OPTCD=T in the DCB macro instruction or
in the DCB parameter of the DD statement. The area in which you accumulate the
control data (the user totaling area) must be identified to the control program by an
entry of hexadecimal OA in the DCB exit list. OPTCD=T cannot be specified for SYSIN
or SYSOUT data sets.

The user totaling area, an area in storage that you provide, must begin on a halfword
boundary and be large enough to contain your accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes of the area and specify the length of the
entire area. A data set for which you have specified user totaling (OPTCD=T) will not
be opened if either the totaling area length or the addressin the exit listis O, or if thereis
no X'0A" entry in the exit list.

The control program establishes a user totaling save area, in which the control program
preserves an image of your totaling area, when an I/O operation is scheduled. When the
output user label exits are taken, the address of the save area entry (user totaling image

Part 1: Introduction to Data Management 45

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

area) corresponding to the last record physically written on avolumeis passed to you in
the fourth entry of the user label parameter list. This parameter list is described in the
section " Standard User Label Exit." When an end-of-volume exit is taken for an output
data set and user totaling has been specified, the address of the user totaling image area
isinregister O.

When using user totaling for an output data set, that is, when creating the data set, you
must update your control datain your totaling area beforeissuing aPUT or aWRITE
macro instruction. The control program places an image of your totaling areain the user
totaling save area when an 1/O operation is scheduled. A pointer to the save area entry
(user totaling image area) corresponding to the last record physically written on the
volume, is passed to you in your label processing routine. Thus you can include the
control total in your user labels. When subsequently using this data set for input, you can
accumul ate the same information as you read each record and compare this total with the
one previously stored in the user trailer label. If you have stored the total from the
preceding volume in the user header label of the current volume, you can process each
volume of a multivolume data set independently and still maintain this system of control.

When variable-length records are specified with the totaling facility for user labels,
specia considerations are necessary. Since the control program determines whether a
variable-length record will fit in abuffer after aPUT or aWRITE has been issued, the
total you have accumulated may include one more record than is actually written on the
volume. In the case of variable-length spanned records, the accumulated total will include
the control data from the volume-spanning record although only a segment of the record
ison that volume. However, when you process such a data set, the volume-spanning
record or the first record on the next volume will not be available to you until after the
volume switch and user label processing are completed. Thus the totaling information in
the user label may not agree with that developed during processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data set,
control data pertaining to each of the last two records and include both totalsin your
user labels. Then the total related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be available to your
user label routines. During subsequent processing of the data set, your user label routines
can determine if there is agreement between the generated information and one of the
two totals previously saved.

When the totaling facility for user labelsis selected with DASD devices and secondary
space is specified, the total accumulated may be one less than the actual written.

Data Control Block Open Exit: Y ou can specify in an exit list the address of aroutine
that completes or modifies a DCB and does any additional processing required before the
data set is completely open. The routine is entered during the opening process after the
JFCB has been used to supply information for the DCB. The routine can determine data
set characteristics by examining fields completed from the data set labels. When your
DCB exit routine receives control, the three, low-order bytes of register 1 will contain
the address of the DCB currently being processed.

Aswith label processing routines, register 14's contents must be preserved and restored
if any macro instructions are used in the routine. Control is returned to the operating
system by a RETURN macro instruction; no return code is required.

This exit is mutually exclusive with the JFCBE exit. If you need both the JFCBE and
data control block open exits, you must use the JFCBE exit to pass control to your
routines.

46 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

QSAM Parallel Input Exit: A request for parallel input processing isindicated by
including the address of a parallel data access block (PDAB) in the DCB exit list. The
address must be on a fullword boundary with the first byte of the entry containing X'12'
or, if itisthelast entry, X'92'. For more information on parallel input processing, see
"Parallel Input Processing (QSAM Only)."

Part 1: Introduction to Data Management 46.1

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

JFCBE Exit: JCL-specified setup requirements for the 3800 printer cause a JFCB
extension (JFCBE) to be created to reflect those specifications. A JFCBE exits if
BURST, MODIFY, CHARS, FLASH, or any copy group is coded on the DD statement.
The JFCBE exit can be used to examine or modify those specificationsin the JFCBE.

Y ou can provide a JFCBE exit routine to examine or modify those specifications. The
address of the routine should be placed in an exit list. The device allocated does not have
to be a3800. Thisexit is taken during open processing and is mutually exclusive with the
data control block exit. If you need both the JFCBE and data control block exits, you
must use the JFCBE exit to pass control to your routines.

When control is passed to your exit routine, the contents of register 0 and 1 will be:
Register Contents

0 If a JFCBE exists, this register will point to an areain unprotected storage into which a copy
of the JFCBE has been placed. If a JFCBE does not exist, this register will be zero.
1 The address of the DCB being processed.

Registers 2-15 will contain the standard user exit contents.

The area pointed to by register O will also contain the 4-byte FCB identification which is
obtained from the JFCB. The FCB identification is placed in the four bytes following the
176-byte JFCBE. If the FCB operand was not coded on the DD statement, this FCB
field will be binary zeros.

If your copy of the JFCBE is modified during an exit routine, you should indicate this
fact by turning on bit JFCBEOPN (X'80' in JFCBFLAG) in the JFCBE copy. On
return to open, this bit indicates whether the system copy is to be updated. The 4-byte
FCB identification in your areawill be used to update the JFCB regardless of the bit
setting. Checkpoint/restart also interrogates this bit to determine which version of the
JFCBE will be used at restart time. If this bit is not on, the JFCBE generated by the
restart JCL will be used.

End-of-Volume Exit: Y ou can specify in an exit list the address of aroutine that is
entered when end-of-volume is reached in processing of a physical sequential data set.

When you concatenate data sets with unlike attributes, no EQV exits are taken.

When the end-of-volume routine is entered, register O contains O unless user totaling was
specified. If you specified user totaling in the DCB macro instruction (by coding
OPTCD=T) or in the DD statement for an output data set, register O contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volumeisa
reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

Y ou can use the end-of-volume (EQV) exit routine to take a checkpoint by issuing the
CHKPT macro instruction, which isdiscussed in OS'VS2 Checkpoint/Restart;
specifications for the CHKPT macro are also included in OSVS2 MVS Data
Management Macro Instructions. If acheckpointed job step terminates abnormally, it
can be restarted from the EQOV checkpoint. When the job step is restarted, the volumeis
mounted and positioned as upon entry to the routine. Restart becomes impossible if
changes are made to the link pack area (LPA) library between the time the checkpoint is
taken and the time the job step is restarted. When the step is restarted, pointers to
end-of-volume modules must be the same as when the checkpoint was taken.

The end-of-volume exit routine returns control in the same manner as the data control
block exit routine. Register 14's contents must be preserved and restored if any macro
instructions are used in the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

0OS/VS2 MV S Data Management Services Guide 47

Block Count Exit: Y ou can specify in an exit list the address of a routine that will allow
you to abnormally terminate the task or continue processing when the end-of-volume
routine finds an unequal block count condition. When you are using standard labeled
input tapes, the block count in the trailer label is compared by the end-of-volume routine
with the block count in the DCB. The count in the trailer label reflects the number of
blocks written when the data set was created. The number of blocks read when the tape
isused asinput is contained in the DCBBLKCT field of the DCB.

The routine is entered during end-of-volume processing: The trailer label block count is
passed in register 0. Y ou may gain access to the count field in the DCB by using the
address passed in register 1 plus the proper displacement, as givenin OSVS2 System
Programming Library: Debugging Handbook. If the block count in the DCB differs
from that in the trailer label when no exit routine is provided, the task is abnormally
terminated. The routine must terminate with a RETURN macro instruction and areturn
code that indicates what action isto be taken by the operating system, as shownin
Figure 18. Aswith other exit routines, register 14's contents must be saved and restored
if any macro instructions are used.

Return Code System Action

0 Thetask is to be abnormally terminated.
4 Normal processing isto be resumed.

Figure 18. System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit: In an exit list, you can specify a code that
indicates that you want to defer nonstandard input trailer label processing from
end-of-data until the data set is closed. The address portion of the entry is not used by
the operating system.

An end-of-volume condition existsin several situations. Two examples are: (1) when the
system reads afilemark or tapemark at the end of a volume of a multivolume data set but
that volume is not the last, and (2) when the system reads a filemark or tapemark at the
end of adata set. Thefirst situation is referred to here as an end-of-volume condition,
and the second as an end-of -data condition, although it, too, can occur &t the end of a
volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For an
end-of-data condition when this exit code is specified, the EOV routine does not pass
control to your nonstandard input trailer label routine. Instead, the close routine passes
control to your end-of-data routine.

FCB Image Exit: Y ou can specify in an exit list the address of aforms control buffer
(FCB) image. This FCB image can be loaded into the forms control buffer of the printer
control unit. The FCB controls the movement of forms in printers that do not use a
carriage control tape.

Multiple exit list entriesin the exit list can define FCBs. The open and SETPRT routines
search the exit list for requested FCBs before searching SY S1.IMAGELIB.

Thefirst 4 bytes of the FCB image contain the image identifier. To load the FCB, this
image identifier is specified in the FCB parameter of the DD statement, by the SETPRT
macro instruction, or by the system operator in response to message IEC127D or
IEC129D.

For a 3211 the image identifier is followed by the FCB image described in OSV2
System Programming Library: Data Management. For a 3800, see 1BM 3800
Printing Subsystem Programmer's Guide.

Y ou can use an exit list to define an FCB image only when writing to an online printer.
Figure 19 illustrates one way the exit list can be used to define an FCB image.

48 OS/VS2 MV S Data Management Services Guide

DCB .., EXLST=EXLIST

EXLIST DS OF

DC X'10"' Flag code for FCB image
DC AL3 (FCBIMG) Address of FCB image
DC X'80000000" End of EXLST and a null entry
FCBIMG DC CL4' IMG1 ' FCB identifier
DC X'00" FCB is not a default
DC AL1 (67) Length of FCB
DC X'90" Offset print line
* 16 line character positions to the right
DC X'00"' Spacing is 6 lines per inch
DC 5X'00" Lines 2-6 no channel codes
DC X'1! Line 7 channel 1
DC 6X'00" Lines 8-13 no channel codes
DC X'2"' Line (or Lines) 14 channel 2
DC 5X'00" Line (or Lines) 15-19 no channel codes
DC X'3" Line (or Lines) 20 channel 3
DC 9X'00" Line (or Lines) 21-29 no channel codes
DC X'04" Line (or Lines) 30 channel 4
DC 19X'00" Line (or Lines) 31-49 no channel codes
DC X'05'" Line (or Lines) 50 channel 5
DC X'06' Line (or Lines) 51 channel 6
DC X'07! Line (or Lines) 52 channel 7
DC X'08" Line (or Lines) 53 channel 8
DC X'09' Line (or Lines) 54 channel 9
DC X'0A' Line (or Lines) 55 channel 10
DC X'0B' Line (or Lines) 56 channel 11
DC X'oc! Line (or Lines) 57 channel 12
DC 8X'00" Line (or Lines) 58-65 no channel codes
DC X'10" End of FCB image
END
//ddname DD UNIT=3211, FCB=(IMG1l,VERIFY)
/*

Figure 19. Defining an FCB Image for a 3211

DCB ABEND Exit: The DCB ABEND exit is provided to give you some options
regarding the action you want the system to take when a condition arises that may result
in abnormal termination of your task. This exit can be taken any time an ABEND
condition arises during the process of opening, closing, or handling an end-of-volume
condition for a DCB associated with your task.

When an ABEND condition arises, awrite-to-programmer message about the ABEND is
issued and your DCB ABEND exit is given control, provided there is an active DCB
ABEND exit routine address in the DCB being processed. If STOW called the

end-of -volume routines to get secondary space to write an end-of-file mark for a
partitioned data set, the DCB ABEND exit routine will not be given control if an
ABEND condition occurs. The contents of the registers when your exit routine is entered
are the same as for other DCB exit list routines except that the three, low-order bytes of
register 1 contain the address of the parameter list described in Figure 20. Y our ABEND
exit routine can choose one of four options:

» toimmediately terminate your task,

» todelay the ABEND until al of the DCBsin the same OPEN or CLOSE macro
instruction are opened or closed,

 toignorethe ABEND condition and continue processing without making reference to
the DCB on which the ABEND condition was encountered, or

 totry to recover from the error.

Part I: Introduction to Data Management 49

Bit Meaning
0-3 Reserved for Future Use
4 OK to Recover
5 OK to fgnore
6 OK to Delay
7 Reserved for Future Use
Displacement Fullword Boundary
0 System Completion Code™ Return Code Option Mask

4 DCB Address

8 Open/Close/End-of-Volume Work Area Address

12| 00

Recovery Work Area Address

*In the first 12 bits.
Figure 20. Parameter List Passed to DCB ABEND Exit Routine

Not all of these options are available for each ABEND condition. Your DCB ABEND
exit routine must determine which option is available by examining the contents of the
option mask byte (byte 3) of the parameter list. The address of the parameter list is
passed in register 1. Figure 20 shows the contents of the parameter list and the possible
settings of the option mask when your routine receives control. All information in the
parameter list isin binary.

When your DCB ABEND exit routine returns control to the system control program
(this can be done using the RETURN macro instruction), the option mask byte should
contain the setting that specifies the action you want to take. These actions and the
corresponding settings of the option mask byte are:

Bit Setting Action

0 abnormally terminate the task immediately

4 ignore the ABEND condition

8 delay the ABEND until the other DCBs being processed concurrently are opened or closed
12 make an attempt to recover

Y ou must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the parameter list)
to determine which options are available. If abit is set to 1, the corresponding option is
available. Indicate your choice by inserting the appropriate value in byte 3 of the
parameter list, overlaying the bits you inspected. If you use avalue that specifies an
option that is not available, the ABEND isissued immediately.

50 OS/VS2 MV S Data Management Services Guide

If the contents of the option mask are 0, you must request an immediate ABEND by
leaving the value of 0 in the option mask unchanged.

If bit 5 of the option mask is set to 1, you can ighore the ABEND by placing a decimal
value of 4 in byte 3 of the parameter list. Processing on the current DCB stops. If you
subsequently attempt to use this DCB, the results are unpredictable. If you ignore an
error in end-of-volume, the data set will be closed before contral is returned to your
program at the point which caused the end-of-volume condition (unless the
end-of-volume routines were called by the close routines). If the end-of-volume routines
were called by the close routines, an ABEND macro will be issued even though the
ignore option was selected.

If bit 6 of the option mask is set to 1, you can delay the ABEND by placing a decimal
value of 8 in byte 3 of the parameter list. All other DCBs waiting for open or close
processing will be processed before the ABEND isissued. For end-of-volume, however,
you can't delay the ABEND because the end-of-volume routine never has more than one
DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a decimal value
of 12 in byte 3 of the parameter list and provide information for the recovery attempt.
Figure 21 lists the ABEND conditions for which recovery can be attempted. For
ABEND conditions which can be ignored or delayed, see OSVSMessage Library:
VX System Messages.

System
Completion Return
Code Code Description of Error
213 04 DSCB was not found on volume specified.
237 04 Block count in DCB does not agree with block count in trailer label.
413 18 Data set was opened for input and no volume serial number was specified.
613 08 1/0 error occurred during reading of tape label.
10 1/O error occurred during writing of tape label.
14 1/0 error occurred during writing of tapemark following header |abels.
713 04 A data set on magnetic tape was opened for INOUT, but the volume
contained a data set whose expiration date had not been reached and the
operator denied permission.
717 10 I/O error occurred during reading of trailer label Ito update block count in
DCB.
813 04 Data set name on header |abel does not match data set name on DD
statement.

Figure 21. Conditions for which Recovery Can Be Attempted

Recovery Requirements; For the recovery attempt, you should supply arecovery work
area (see Figure 22) with anew volume serial number for each volume associated with
an error. If no new volumes are supplied, recovery will be attempted with the existing
volumes, but the likelihood of successful recovery is greatly reduced.

If you request recovery for system completion code 213, return code 04, you must
indicate in your job control language (JCL) that the volumes are nonsharable by
specifying unit affinity, deferred mounting, or more volumes than units for the data set.

If you request recovery for system completion code 237, return code 04, you don't need
to supply new volumes or awork area. The condition that caused the ABEND isthe
disagreement between the block count in the DCB and that in the trailer label. This
disagreement isignored to permit recovery.

Part I: Introduction to Data Management 51

Bit Meaning
0 Free This Work Area
1 Volume Serial Numbers Are
Provided
2-7 Reserved for Future Use
Halfword Boundary
Displacement
0 Length of This Work Area Option Byte Subpool Number
Number of
4 New Volumes New Volume Serial Numbers (6 bytes each)
~ ~
~— —
8

Figure 22. Recovery Work Area

If you request recovery for system completion code 717, return code 10, you don't need
to supply new volumes or awork area. The ABEND is caused by an /O error during
updating of the DCB block count. To permit recovery, the block count is not updated.
Consequently, an abnormal termination with system completion code 237, return code
04, may result when you try to read from the tape after recovery. Y ou may attempt
recovery from the ABEND with system completion code 237, return code 04, as
explained in the preceding paragraph.

System compl etion codes and their associated return codes are described in - OSVS
Message Library: V& System Codes.

The work areathat you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 22. Place a pointer to the
work areain the last 3 bytes of the parameter list pointed to by register 1 and described
in Figure 20.

If you acquire the storage for the work area by using the GETMAIN macro instruction,
you can request that it be freed by a FREEMAIN macro instruction after all information
has been extracted from it. Set the high-order bit of the option byte in the work areato 1
and place the number of the subpool from which the work area was requested in byte 3
of the recovery work area.

Only one recovery attempt per data set is allowed during open, close, or end-of-volume
processing. If arecovery attempt is unsuccessful, you may not request another recovery.
The second time through the exit routine you may request only one of the other options
(if allowed): issue the ABEND immediately, ignore the ABEND, or delay the ABEND.
If at any time you select an option that is not allowed, the ABEND isissued immediately.

52 OS/VS2 MV S Data Management Services Guide

Note that if recovery is successful, you still receive an ABEND message on your listing.
This message refers to the ABEND that would have been issued if the recovery had not
been successful.

Modifying the Data Control Block

Y ou can complete or modify the DCB during execution of your program. Y ou can aso
determine data set characteristics from information supplied by the data set |abels.
Changes or additions can be made before opening of the data set, after closing it, during
the DCB exit routine, or while the data set is open. Naturally, any information must be
supplied before it is needed.

Because each DCB does not have a symbolic name for each field, aDCBD macro
instruction must be used to supply the symbolic names. By loading a base register with
the address of the DCB to be processed, you can refer to any field symbolically.

The DCBD macro instruction generates a dummy control section (DSECT) named
IHADCB. The name of each field consists of DCB followed by the first five letters of
the keyword operand that represents the field in the DCB macro instruction. For
example, the field reserved for blocksize isreferred to as DCBBLKSI. For the names of
other fields, including names of bits, see OSVS2 MVS Data Management Macro
Instructions.

The attributes of each DCB field are defined in the dummy control section. Because each
field in the DCB is not necessarily aligned on afuliword boundary, care must be taken
when storing or moving datainto the field. The length attribute and the alignment of
each field can be determined from an assembly listing of the DCBD macro instruction.

The DCBD macro instruction can be coded once to describe all DCBs even though their
fields differ because of differences in data set organization and access technique. It must
not be coded more than once for asingle assembly. If it is coded before the end of a
control section, it must be followed by a CSECT or DSECT statement to resume the
original control section.

Changing an Addressin the Data Control. Block: Figure 23 illustrates how you can modify
afield in the data control block. The DCBD macro instruction defines the symbolic name

of each field.
OPEN (TEXTDCB, INOUT)

EOFEXIT CLOSE (TEXTDCB, REREAD) , TYPE=T
LA 10, TEXTDCB
USING IHADCB, 10
MVC DCBSYNAD+1 (3) ,=AL3 (OUTERROR)
B OouTPUT

INERROR STM 14,12, SYNADSA+12

OUTERROR STM 14,12, SYNADSA+12

TEXTDCB DCB DSORG=PS, MACRF= (R, W) , DDNAME=TEXTTAPE,

EODAD=EOFEXIT, SYNAD=INERROR

DCBD DSORG=PS

Figure 23. Modifying a Field in the Data Control Block

The data set defined by the data control block TEXTDCB is opened for use as both an
input and an output data set. When its use as an input data set is completed, the EODAD
routine closes the data set temporarily to reposition the volume for output. The EODAD

Part I: Introduction to Data Management 53

routine then uses the dummy control section IHADCB to change the error exit address
(SYNAD) from INERROR to OUTERROR.

The EODAD routine loads the address TEXTDCB into register 10, which it usesas a
base register for IHADCB. It then moves the address OUTERROR into the

DCBSY NAD field of the DCB. Thisfield isafullword, but contains information that
must not be disturbed in the high-order byte. For this reason, care must be taken to
change only the 3 low-order bytes of the field.

All unused address fields in the DCB, except DCBEXL ST, are set to 1 during the DCB
macro expansion. Many system routines interpret avalue of 1 in an address field to mean
"no address specified.” If you modify an address field and then want to reset it to "no
address specified,” you should set it to avalue of 1.

Sharing a Data Set

There are two conditions under which a data set on a direct-access device can be shared
by two or more tasks:

» Two or more DCBs are opened and used concurrently by the tasksto refer to the
same, shared data set (multiple DCBS).

* Only one DCB is opened and used concurrently by multiple tasksin asingle job step
(asingle, shared DCB).

Job control language (JCL) statements and macro instructions are provided in the
operating system to help you to ensure the integrity of the data sets you wish to share
among the tasks that process them. Figures 24 and 25 show which JCL and macro
instructions you should use, depending on the access method your task is using and mode
of access (input, output, or update).

Figure 24 describes the macro instructions, JCL, and processing procedures you should
use if more than one DCB has been opened to the shared data set. The DCBs can be
used by tasks in the same or different job steps.

54 OS/VS2 MV 'S Data Management Services Guide

MULTIPLE DCBs

Access M ethod
Access Mode BSAM, BPAM
BDAM Create QSAM BDAM QISAM BISAM

Input DISP = SHR DISP=SHR DISP = SHR DISP = SHR DISP = SHR
o No Facili il DISP=SHR No Facili DISP = SHR and
utput o Facility No Facility = o Facility ENO on Data Set
DISP = SHR and DISP = SHR and
Undate DISP=SHRand | D!SP=SHRand DISP = SHR and ENQonDataSet | ENQ on DataSet

P ENQ on Block Guarantee Discrete ENQ on Block and Guarantee and Guarantee

Blocks Discrete Blocks Discrete Blocks

DISP=SHR:

Each job step sharing an existing data set must code SHR as the subparameter of the DISP parameter on the DD statement for
the shared data set to allow the steps to execute concurrently. For additional information about ensuring data set integrity, see
OSV JCL. If thetasksarein the samejob step, DISP=SHR is not required.

No Facility:
There are no facilities in the operating system for sharing a data set under these conditions.

ENQ on Data Set:
In addition to coding DISP=SHR on the DD statement for the data set that is to he shared, each task must issue ENQ and
DEQ macro instructions haming the data set as resource for which exclusive control is required. The ENQ must be issued
before the GET (READ): the DEQ macro should be issued after the PUTX or CHECK macro that concludes the operation.
See OSV2 Supervisor Services and Macro Instructions for additional information on the use of ENQ and DEQ macro
instructions.

Guarantee Discrete Blocks:
When you are using the access methods that provide blocking and unblocking of records (QSAM, QISAM, and BISAM). itis
necessary that every task updating the data set ensure that it is not updating a block that contains a record being updated by
any other task. There are no facilities in the operating system for ensuring that discrete blocks are being processed by different
tasks.

ENQ on Block:
If you are updating a shared data set (specified by coding DISP=SHR on the DD statement) using BSAM or BPAM, your task
and all other tasks must serialize processing of each block of records by issuing an ENQ macro instruction before the READ
macro and a DEQ macro after the CHECK macro that follows the WRITE macro you issued to update the record. If you are
using BDAM, the same procedure may be used; however, BDAM provides for enqueuing on a block of records using the
READ exclusive option, which is requested by coding MACRF=X in the DCB and an X in the type operand of the READ and
WRITE macro instructions. See "Exclusive Control for Updating" in the section "Processing a Direct Data Set" of Part 2 for
an example of the use of the BDAM macros.

Figure 24. JCL, Macro Instructions, and Procedures Required to Share a Data Set Using Multiple DCBs

Part I: Introduction to Data Management 55

Figure 25 describes the macros you can use to serialize processing of a shared data set
when asingle DCB is being shared by several tasksin ajob step. The DISP=SHR
specification on the DD statement is not required.

Data sets can also be shared both ways at the same time: more than one DCB can be
opened for a shared data set, while more than one task can be sharing one of the DCBs.
Under this condition, the serialization techniques specified for indexed sequential and
direct data sets in the Figure 24 satisfy the requirement. For sequential and partitioned
data sets, the techniques specified in Figure 24 and Figure 25 must be used.

A SINGLE SHARED DCB

Access M ethod
fomsote | msam.zeam, Qs BoAM Qisam Brsan
Input ENQ ENQ '\;{‘;Qucitri:dn ENQ END
Output ENQ END ’\;;un(i:tri:g Ehslgqﬁneicléey END
Update END ENQ ENQ on Block ENQ ENQ

ENQ:
When adata set is being shared by two or more tasks in the same job step (all of which must he using the same DCB), each
task processing the data set must issue an ENQ macro instruction on a predefined resource name before issuing the macro or
macros that begin the input/output operation. Each task must also release exclusive control by issuing the DEQ macro
instruction at the next sequential instruction following the input/output macro. If, however, you are processing an indexed
sequential data set sequentially using the SETL and ESETL macros, you must issue the ENQ macro before the SETL macro
and the DEQ macro after the ESETL macro. Note also that if two tasks are writing different members of a partitioned data
set, each task should issue the ENQ macro instruction before the FIND macro and issue the DEQ macro after the STOW
macro that completes processing of the member. Additional reference information on the ENQ and DEQ macros is presented
in OS/VS2 Supervisor Services and Macro Instructions. For an example of the use of ENQ and DEQ macro instructions with
BISAM, see Figure 59.

No Action Required:
Sharing a Direct Data Set: BDAM supports multiple task users of a single DCB when working with existing data sets. When
operating in load mode, however, only one task may use the DCB at atime. The following restrictions and comments apply
when operating in a multitasking mode with existing data sets:

« Subpool 0 must he shared.

¢ The user should insure that a WAIT or CHECK macro has been issued for all outstanding BDAM requests before the task
issuing the READ or WRITE macro terminates. In case of abnormal termination this can he done through a STAE/STAI
or ESTAE exit.

« FREEDBUF and/or RELEX macros should he issued to free any resources that could still be held by the terminating task.
This can be done during or after task termination.

ENQ on Block:
When updating a shared BDAM data set, every task must use the BDAM exclusive control option, which is requested by
coding MACRF=X in the DCB macro and an X in the type operand of the READ and WRITE macro instructions. See
"Exclusive Control for Updating" in this book for an example of the use of BDAM macros. Note that all tasks sharing a data
set must share subpool 0 (see the ATTACH macro descriptionin OS/VS2 Supervisor Services and Macro Instructions).

Key Sequence:
Tasks sharing a QI SAM load-mode DCB must ensure that the records to be written are presented in ascending key sequence;

otherwise, a sequence check will result in (1) control being passed to the SYNAD routine identified by the DCB, or (2) if there
isno SYNAD routine, termination of the task.

Figure 25. Macro Instructions and Procedures Required to Share a Data Set Using a Single DCB

56 OS/VS2 MV S Data Management Services Guide

More information on opening and closing data sets by more than one task is contained in
Part 2, "Opening and Closing a Data Set."

Shar ed Direct-Access Storage Devices: At some installations, a direct-access storage
device is shared by two or more independent computing systems. Tasks executed on
these systems can share data sets stored on the device. For details, refer to OSVS2

System Programming Library: Supervisor.

Part I: Introduction to Data Management 57

PART 2: DATA MANAGEMENT PROCESSING
PROCEDURES

Data-Processing Techniques

The operating system allows you to concentrate most of your efforts on processing the
records read or written by the data management routines. To get the records read and
written, your main responsibilities are to describe the data set to be processed, the
buffering techniques to be used, and the access method. An access method has been
defined as the combination of data set organization and the technique used to gain access

to the data. Data access techniques are discussed here in two categories—queued and
basic.

Queued Access Technique

The queued access technique provides GET and PUT macro instructions for transmitting
data within virtual storage. These macro instructions cause automatic blocking and
deblocking of the records stored and retrieved. Anticipatory (look-ahead) buffering and
synchronization (overlap) of input and output operations with central processing unit
(CPU) processing are automatic features of the queued access technique.

Because the operating system controls buffer processing, ycu can use as many
input/output (1/0) buffers as needed without reissuing GET or PUT macro instructions
to fill or empty buffers. Usually, more than one input block isin storage at any given
time, so 1/0O operations do not delay record processing.

Because the operating system synchronizes input/output with processing, you need not
test for completion, errors, or exceptional conditions. After aGET or PUT macro
instruction isissued, control is not returned to your program until an input areaiisfilled
or an output areais available. Exitsto error analysis (SYNAD) and end-of-volume or
end-of-data (EODAD) routines are automatically taken when necessary.

GET—REetrieve a Record

The GET macro instruction obtains a record from an input data set. It operatesin a
logical sequential and device-independent manner. As required, the GET macro
instruction schedules the filling of input buffers, deblocks records, and directs input error
recovery procedures. For sequential data sets, it aso merges record segments into logical
records. After all records have been processed and the GET macro instruction detects an
end-of-data indication, the system automatically checks labels on sequential data sets and
passes control to your end-of-data (EODAD) routine. If an end-of-volume condition is
detected for a sequential data set, the system provides automatic volume switching if the
data set extends across several volumes or if concatenated data sets are being processed.

If you specify OPTCD=Q in the DCB, GET causes input datato be transated from
ASCII to EBCDIC.

PUT—Write a Record

The PUT macro instruction places arecord into an output data set. Like the GET macro
instruction, it operatesin alogical sequential and device-independent manner. As
required, the PUT macro instruction schedules the emptying of output buffers, blocks
records, and handles output error correction procedures. For sequential data sets, it also
initiates automatic volume switching and label creation, and also segments records for

spanning. If you specify OPTCD=Q in the DCB, PUT causes output to be translated
from EBCDIC to ASCII.

Part 2: Data Management Processing Procedures 59

If the PUT macro instruction is directed to a card punch or printer, the system
automatically adjusts the number of records or record segments per block of format-F or
format-V blocksto 1. Thus, you can specify arecord length (LRECL) and blocksize
(BLKSIZE) to provide an optimum blocksize if the records are temporarily placed on
magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be equivalent to the length of
one card or one print line. Record size may be greater than blocksize in this case.

PUTX—Write an Updated Record

The PUTX macro instruction is used to update a data set or to create an output data set
using records from an input data set as a base. PUTX updates, replaces, or inserts
records from existing data sets but does not create records.

When you use the PUTX macro instruction to update, each record is returned to the data
set referred to by a previous locate mode GET macro instruction. The buffer containing
the updated record is flagged and written back to the same location on the direct-access
storage device from which it was read. The block is not written until a GET macro
instruction isissued for the next buffer, except when a spanned record is to be updated.
In that case, the block is written with the next GET macro instruction.

When the PUTX macro instruction is used to create an output data set, you can add new
records by using the PUT macro instruction. As required, the PUTX macro instruction
blocks records, schedules the writing of output buffers, and handles output error
correction procedures.

Parallel I nput Processing (QSAM Only)

QSAM parallel input processing may be used to process two or more input data sets
concurrently, such as sorting or merging several data sets at the same time. This
eliminates the need for issuing a separate GET macro instruction to each DCB
processed. The get routine for parallel input processing selects a DCB with a ready
record and then transfers control to the normal get routine. If thereis no DCB with a
ready record, amultiple WAIT macro instruction is issued.

Parallel input processing provides alogical input record from a queue of data sets with
equal priority. The function supports QSAM with input processing, simple buffering,
locate or move mode, and fixed, variable, or undefined length records. Spanned records,
track-overflow records, dummy data sets, and SY SIN data sets are not supported.

Parallel input processing can be interrupted at any time to retrieve records from a
specific data set, or to issue control instructions to a specific data set. When the retrieval
process has been completed, parallel input processing may be resumed.

Data sets can be added to or deleted from the data set queue at any time. It is important
to note, however, that as each data set reaches an end-of-data condition, the data set
must be removed from the queue with the CLOSE macro instruction before a subsequent
GET macro instruction isissued for the queue; otherwise, the task may be terminated
abnormally.

A request for parallel input processing isindicated by including the address of a parallel
data access block (PDAB) in the DCB exit list. For additional information on the DCB
exit list, see "Exit List (EXLST)."

With the use of the PDAB macro instruction, you can create and format a work area that
identifies the maximum number of DCBs that can be processed at any one time. If you
exceed the maximum number of entries indicated in the PDAB macro when adding a
DCB to the queue with the OPEN macro, the data set will not be available for parallel
input processing; however, it may be available for sequential processing.

60 OS/VS2 MV S Data Management Services Guide

When issuing a paralel GET macro, register 1 must always point to a PDAB. Y ou may
load the register or let the GET macro do it for you. When control is returned to you,
register 1 contains the address of alogical record from one of the data sets in the queue;
registers 2-13 contain their original contents at the time the GET macro was issued;
registers 14, 15, and O are changed. Y ou can locate the data set from which the record
was retrieved through the PDAB. A fullword address in the PDAB (PDADCBEP) points
to the address of the DCB. It should be noted that this pointer may be invalid from the
time a CLOSE macro isissued to the issuing of the next parallel GET macro.

In Figure 26, not more than three data sets (MAXDCB=3 in the PDAB operand) will be
open for parallel processing at any given time. Assuming that data definition statements
and data sets are supplied, DATASET1, DATASET?2, and DATASET3 will be opened
for parallel input processing as specified in the input processing OPEN macro instruction.
Other attributes of each data set are QSAM (MACRF=G), simple buffering by default,
locate or move mode (MACRF=L or M), fixed length records (RECFM=F), and exit
list entry for aPDAB (X'92"). Note that both locate and move modes may be used in the
same data set queue. The mapping macros, DCBD and PDABD, are used to reference
the DCBs and the PDAB respectively.

OPEN

™™
BZ
™
Bz
™
BZ
GETRTN GET
LR

PUT

EODRTN EQU

CLOSE

CLC

BL

DATASET1 DCB

DATASET2 DCB

DATASET3 DCB

DATASET4 DCB

[DATASET1, (INPUT) , DATASET2, (INPUT), DATASET3, X
[INPUT) , DATASET4, (OUTPUT))
DATASET1+DCBQSWS—-IHADCB, DCBPOPEN Opened for parallel processing

SEQRTN Branch on no to sequential routine
DATASET2+DCBQSWS—-IHADCB, DCBRPOPEN

SEQRTN

DATASET3+DCBQSWS—-IHADCB, DCBPOPEN

SEQRTN

DCBQUEUE, BUFFERAD, TYPE=P

10,1 Save record pointer

Record updated in place

DATASET4, (10)
GETRTN
Close DCB which just reached EODAD

2, DCBQUEUE+PDADCBEP-THAPDAR
2,0(0,2)

((2))
ZEROS (2) , DCBQUEUE+PDANODCB-IHAPDAB Any DCBs left?
GETRTN Branch if yes

DDNAME=DDNAME1, DSORG=PS, MACRF=GL, RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3XLST

DDNAME=DDNAME?2, DSORG=PS, MACRF=GL, RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3XLST

DDNAME=DDNAME3, DSORG=PS, MACRF=GMC, RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3XLST
DDNAME=DDNAME4, DSORG=PS, MACRF=PM, RECFM=FB,

LRECL=80

DCBQUEUE PDAB MAXDCB=3

SET3XLST DC
ZEROS DC

0F'0',X'92',AL3 (DCBQUEUE)
X'0000"

DCBD DSORG=QS

PDABD

Note: The number of bytesrequired for PDAB iseqgual to 24+8n, where n is the value of the keyword,

MAXDCB.

Figure 26. Parallel Processing of Three Data Sets

Part 2: Data Management Processing Procedures 61

Following the OPEN macro instruction, tests are made to determine whether the DCBs
were opened for parallel processing. If not, the sequential processing routineis given
control.

When one or more data sets are opened for parallel processing, the get routine retrieves a
record, saves the pointer in register 10, processes the record, and writesit to
DATASETA4. This process continues until an end-of-data condition is detected on one of
the input data sets; the end-of-data routine locates the completed input data set and
removes it from the queue with the CLOSE macro instruction. A test is then made to
determine whether any data sets remain on the queue. Processing continuesin this
manner until the queue is empty.

Basic Access Technique

The basic access technique provides the READ and WRITE macro instructions for
transmitting data between virtual and auxiliary storage. Thistechnique is used when the
operating system cannot predict the sequence in which the records are to be processed or
when you do not want some or all of the automatic functions performed by the queued
access technique. Although the system does not provide anticipatory buffering or
synchronized scheduling, macro instructions are provided to help you program these
operations.

The READ and WRITE macro instructions process blocks, not records. Thus, blocking
and deblocking of records is your responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a READ or WRITE macro
instruction isissued. Moreover, the READ and WRITE macro instructions only initiate
input/output operations. To ensure that the operation is completed successfully, you
must issue a CHECK macro instruction to test the data event control block (DECB) or
issue a WAIT macro instruction and then check the DECB yourself. (The only exception
to thisiswhen the SYNAD or EODAD routine is entered, neither aWAIT or CHECK
macro instruction should be issued to previously outstanding READ or WRITE
requests.) The number of READ or WRITE macro instructions issued before a CHECK
macro instruction is used should not exceed the specified number of channel programs
(NCP).

Grouping Related Control Blocksin a Paging Environment: In an OS/VS system, related
control blocks (the DCB and DECB) and data areas (buffers and key areas) should be
coded so they assemble in the same area of your program. This will reduce the number of
paging operations required to read from and write to your data set.

Using Overlapped 1/0 with BSAM: When using BSAM with overlapped 1/0 (multiple
I/0 requests outstanding at one time), more than one DECB must be used. A different
DECB should be specified for each channel program. For example, if you specify
NCP=3 in your DCB for the data set and you are reading records from the data set, you
should code the following macrosin your program:

READ DECBL,...
READ DECB2....
READ DECBS3....
CHECK DECB1
CHECK DECB2
CHECK DECB3

62 OS/VS2 MV 'S Data Management Services Guide

READ—Read a Block

The READ macro instruction retrieves a data block from an input data set and placesit
in adesignated area of virtual storage. To allow overlap of the input operation with
processing, the system returns control to your program before the read operation is
completed. The DECB created for the read operation must be tested for successful
completion before the record is processed or the DECB is reused.

If an indexed sequential data set is being read, the block is brought into virtual storage
and the address of the record is returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK=R in your DCB, the data
management routines displace record segments after the first in arecord by key length.
Thus, you can expect the block descriptor word and the segment descriptor word at the
same locations in your buffer or buffers, regardless of whether you read the first segment
of arecord, which is preceded in the buffer by its key, or a subsequent segment, which
does not have akey. This procedureis called offset reading.

Y ou can specify variations of the READ macro instruction according to the organization
of the data set being processed and the type of processing to be done by the system as

follows:
Sequential
SF ~ Read the data set sequentially.
SB - Read the data set backward (magnetic tape. format-F and format-U

only). When RECFM=FBS, data sets with the last block truncated
cannot he read backward.

Indexed Sequential
K - Read the data set.
KU - Read for update. The system maintains the device address of the
record: thus, when a WRITE macro instruction returns the record, no
index search isrequired.
Direct
D - Usethedirect access method.
Locate the block using a block identification.
Locate the block using akey.
Provide device position feedback.
Maintain exclusive control of the block.
Provide next address feedback.
Next address can he a capacity record or logical record, whichever
occurred first.

CaOXTX

WRITE—Write a Block

The WRITE macro instruction places a data block in an output data set from a
designated area of virtual storage. The WRITE macro instruction can also be used to
return an updated record to a data set. To allow overlap of output operations with
processing, the system returns control to your program before the write operation is
completed. The DECB created for the write operation must be tested for successful
completion before the DECB can be reused. For ASCII tape data sets, do not issue more
than one WRITE on the same record, because the WRITE macro instruction causes the
datain the record areato be translated from EBCDIC to ASCII.

Part 2: Data Management Processing Procedures 63

Aswith the READ macro instruction, you can specify variations of the WRITE macro
instruction according to the organization of the data set and the type of processing to be
done by the system as follows:

Sequential
SF - Writethe data set sequentially.
SFR - Write the data set sequentially with next-address feedback.

Indexed Sequential
K - Writeablock containing an updated record, or replace a record with
afixed, unblocked record having the same key. The record to be
replaced need not have been read into virtual storage.

KN - Write anew record or change the length of a variable-length record.
Direct

SD - Writeadummy fixed-length record.

SZ - Writeacapacity record (RO). The system supplies the data,

writes the capacity record, and advances to the next trick.

D Use the direct access method.
Search argument identifies a block.
K Search argument is akey.
A Add a new block.
F Provide record location data (feedback).
X Release exclusive control.

CHECK—Test Completion of Read or Write Operation

When processing a data set, you can test for completion of a READ or WRITE request
by issuing a CHECK macro instruction. The system tests for errors and exceptional
conditions in the data event control block (DECB). Successive CHECK macro
instructions issued for the same data set must be issued in the same order asthe
associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit routines specified in the DCB
for error analysis (SYNAD) or, for sequential data sets, end-of-data (EODAD). It also
automatically initiates end-of-volume procedures (volume switching or extending output
data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be tranglated from
ASCII to EBCDIC.

WAIT—Wait for Completion of a Read or Write Operation

When processing a data set, you can test for completion of any READ or WRITE
request by issuing a WAIT macro instruction. The input/output operation is
synchronized with processing, but the DECB is not checked for errors or exceptional
conditions, nor are end-of-volume procedures initiated. Y our program must perform
these operations.

For BDAM and BISAM, aWAIT macro must be issued for each READ or WRITE
macro if MACRF=C is not coded in the associated DCB. When MACRF=C is coded,
and at all timesfor BSAM and BPAM, a CHECK macro must be issued for each READ
or WRITE macro. Since the CHECK macro incorporates the function of the WAIT
macro, aWAIT is normally redundant for those access methods. The ECBLIST form of
the WAIT macro may be useful, though, in selecting which of a number of outstanding
events should be checked first.

The WAIT macro instruction can be used to await completion of multiple read and write
operations. Each operation must then be checked or tested separately.

Example: Y ou have opened an input DCB for BSAM with NCP=2, and an output DCB
for BISAM with NCP=1 and without specifying MACRF=C. Y ou have issued two
BSAM READ macros and one BISAM WRITE macro. Y ou now issue the WAIT macro
with ECBLIST pointing to the BISAM DECB and the first BSAM DECB. (Since BSAM

64 OS/VS2 MV S Data Management Services Guide

requests are serialized, the first request must execute before the second one.) When you
regain control, you will inspect the DECBs to see which has completed (second bit on).
If it was BISAM, you will issue another WRITE macro. If it was BSAM, you will issue a
CHECK macro and then another READ macro.

Data Event Control Block (DECB)

A data event control block is a 16- to 32-byte area reserved by each READ or WRITE
macro instruction. It contains control information and pointers to standard status
indicators. It is described in detail in Appendix A of OSVS2 MVS Data Management
Macro Instructions.

The DECB is examined by the check routine when the 1/O operation is completed to
determineif an uncorrectable error or exceptional condition exists. If it does, control is
passed to your SYNAD routine. If you have no SYNAD routine, the task is abnormally
terminated.

Error Handling

The basic and queued access techniques both provide special macro instructions for
analyzing input/output errors. These macro instructions can be used in SYNAD routines
and in error analysis routines that are entered directly when you use the basic access
technique with indexed sequential data sets.

SYNADAF—Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and exceptional condition
code datathat is available to your error analysis routine. It produces an error message
that your routine can write into any appropriate data set. The message is in the form of
an unblocked variable-length record, but you can write it as a fixed-length record by
omitting the block length and record length fields that precede the message text.

The text of the message is 120 characters long, and begins with afield of 36 or 42
blanks; you can use the blank field to add your own remarks to the message. Following is
atypical message with the blank field omitted:

, TESTJOBD, STEP2DbbH, 283, TA,MASTERDD, READD, DATACHECKDDHDEDD,
0000015,BSAM

This message indicates that a data check occurred during reading of the fifteenth block of
adata set. The data set was identified by a DD statement named MASTER, and was on
amagnetic-tape volume on unit 283. The name of the job was TESTJOB; the name of
the job step was STEP2.

If the error analysis routine is entered because of an input error, the first 6 bytes of the
message (bytes 8-13) contain binary information. If no data was transmitted or if the
access method is QISAM, thefirst 6 bytes are blanks or binary zeros. If the error did not
prevent data transmission, the first 6 bytes contain the address of the input buffer and
the number of bytes read. Y ou can use this information to process records from the
block; for example, you might print each record after printing the error message. Before
printing the message, however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro instruction provides its own save area and makes this area
available to your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfills the routine's responsibility for providing a save area.

Part 2: Data Management Processing Procedures 65

SYNADRL S—Release SYNADAF Message and Save Areas

The SYNADRLS macro instruction rel eases the message and save areas provided by the
SYNADAF macro instruction. Y ou must issue this macro instruction before returning
from the error analysis routine.

ATLAS—Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from permanent
input/output errors when processing a data set in direct-access storage. After adata
check, or in certain missing-address-marker conditions, you can issue ATLASto assign
an alternate track to replace the error track or transfer data from the error track to the
alternate track.

The use of this macro requires a knowledge of channel programming. A detailed
description of the macro instruction and itsuseisincluded in OV System
Programming Library: Data Management.

If you do not use the ATLAS macro instruction, you can use the IEHATLAS utility
program to perform the same function. The principal difference between the macro
instruction and the utility program is that the latter provides error recovery only after
your own program has been completed. For a detailed description of IEHATLAS, refer
to OSVSUtilities.

Selecting an Access Method

Access methods are identified primarily by the data set organization to which they apply.
For instance, BDAM isthe basic access method for direct organization. Nevertheless,
there are times when an access method identified with one organization can be used to
process a data set usually thought of as organized in a different manner. Thus, a data set
created by the basic access method for sequential organization (BSAM) may be
processed by the basic direct access method (BDAM). If the queued access techniqueis
used to process a sequential data set, the access method is referred to as the queued
sequential access method (QSAM).

Basic access methods are used for all data organizations, while queued access methods
apply only to sequential and indexed sequential data sets as shown in Figure 27.

Data Set

Organization Access Technique
Basic Queued

Sequential BSAM QSAM

Partitioned BPAM

Indexed Sequential BISAM QISAM

Direct BDAM

Figure 27. Data Management Access Methods

It is possible to control an 1/O device directly while processing a data set with any data
organization without using a specific access method. The execute channel program
(EXCP) macro instruction uses the system programs that provide for scheduling and
queuing 1/0 requests, efficient use of channels and devices, data protection, interruption
procedures, error recognition and retry. Complete details about the EXCP macro arein
0OSVX System Programming Library: Data Management.

66 OS/VS2 MV S Data Management Services Guide

Temporary data sets can be handled by afacility called virtual 1/0 (VI10). Data sets for
which VIO is specified are located in external page storage. However, to the access
methods (BDAM, BPAM, BSAM, QSAM, and EXCP), the data sets appear to reside on
areal direct-access storage device. V10O provides these advantages:

» Elimination of some of the usual 1/0O device alocation and data management
overhead for temporary data sets.

* Generally more efficient use of direct-access storage space.

To use VIO, you must specify VIO=YES in the UNITNAME macro during system
generation, and you must specify a unit name (defined in the UNITNAME macro) on
the DD statement for your data set. For additional information on V1O, see OSV
System Programming Library: Initialization and Tuning Guide. For information on
the UNITNAME macro, see OSVS2 System Programming Library: System
Generation Reference. For information on changes to the DD statement, see

OSV2 JCL.

Opening and Closing a Data Set

Although your program has been assembled, the various data management routines
required for 1/O operations are not a part of the object code. In other words, your
program is not completely assembled until the DCBs are initialized for execution. Y ou
accomplish initialization by issuing the OPEN macro instruction. After all DCBs have
been completed, the system ensures that all required access method routines are loaded
and ready for use and that all channel command word lists and buffer areas are ready.

Access method routines are selected and loaded according to data control fields that
indicate:

» Dataorganization

» Buffering technique

» Accesstechnique

* 1/O unit characteristics

Thisinformation is used by the system to allocate virtual -storage space and load the
appropriate routines. These routines, the channel command word (CCW) lists, and
buffer areas created automatically by the system remain in virtual storage until the close
routine signals that they are no longer needed by the DCB that was using them.

When |/O operations for a data set are completed, you should issue a CL OSE macro
instruction to return the DCB to its original status, handle volume disposition, create data
set labels, complete writing of queued output buffers, and free virtual and auxiliary
storage.

Managing Buffer Poolswhen Closing Data Sets: After closing the data set, you should
issue a FREEPOOL macro instruction to rel ease the virtual storage used for the buffer
pool. If you plan to process other data sets, use FREEPOOL to regain the buffer pool
storage space. If you expect to reopen a data set using the same DCB, use FREEPOOL
unless the buffer pool created the first time the data set was opened will meet your needs
when you reopen the data set. FREEPOOL is discussed in more detail in the section
"Buffer Pool Construction.”

After the data set has been closed, the DCB can be used for another data set. If you do
not close the data set before a task terminates, the operating system closes it
automatically. If the DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can be unpredictable. Note,
however, that the operating system cannot automatically close any open data sets after
the normal termination of a program that was brought into virtual storage by the loader.

Part 2: Data Management Processing Procedures 67

Therefore, loaded programs must include CLOSE macro instructions for all open data
sets.

Simultaneous Opening and Closing of Multiple Data Sets: An OPEN or CLOSE macro
instruction can be used to initiate or terminate processing of more than one data set.
Simultaneous opening or closing is faster than issuing separate macro instructions;
however, additional storage spaceis required for each data set specified. The coding
examples in Figures 28 and 29 show the macro expansions for simultaneous open and
close operations.

Opening and Closing Data Sets Shared by More Than One Task: When more than one
task is sharing a data set, the following restrictions must be recognized. Failure to adhere
to these restrictions endangers the integrity of the shared data set.

» All tasks sharing a DCB must be in the job step that opened the DCB (see"Sharing a
Data Set").

» Each task sharing aDCB must ensure that all of the input and output operations it
initiated using a given DCB are complete, before the task terminates. A CLOSE
macro instruction issued for the DCB will ensure termination of all input and output
operations.

» A DCB can be closed only by the task that opened it.
Considerations for Opening and Closing Data Sets:

» Two or more DCBs should never be concurrently open for output to the same data set
on a direct-access device, except with the basic indexed sequential access method
(BISAM). Otherwise the end-of-file record written by CLOSE for one DCB may
overlay data associated with another DCB.

» If one DCB is concurrently open for input and one for output to the same data set on
adirect-access device, the input DCB may be unable to read what the output DCB
wrote if the output DCB extended the data set.

+ |If you want to use the same DD statement for two or more DCBS, you cannot specify
parameters for fields in the first DCB and then be assured of obtaining the default
parameters for the same fields in any subsequent DCB using the same DD statement.
Thisistrue for both input and output and is especially important when you are using
more than one access method. Any action on one DCB that alters the JFCB affects
the other DCB(s) and thus can cause unpredictable results. Therefore, unless the
parameters of all DCBs using one DD statement are the same, you should use separate
DD statements.

» Associated data sets for the 3525 Card Punch can be opened in any order, but all data
sets must be opened before any processing can begin. Associated data sets can be
closed in any order, but once a data set has been closed, 1/0 operations cannot be
performed on any of the associated data sets. See OS and OS'VS Programming
Support for the IBM 3505 Card Reader and IBM 3525 Card Punch for more
information.

» Volume disposition specified in the OPEN or CLOSE macro instruction can be
overridden by the system if necessary. However, you need not be concerned; the
system automatically requests the mounting and demounting of volumes, depending
upon the availability of devices at a particular time. Additional information on volume
disposition is provided in OS/'VS2 JCL.

There are two classes of errors that can occur during open, close, and end-of-volume
processing; determinate and indeterminate errors. Determinate errors are errors
associated with a system compl etion code. For example, a condition associated with
the 213 completion code with areturn code of 04 might be detected during open

68 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

processing, indicating that aformat-1 DSCB could not be found for a data set being
opened. Indeterminate errors are errors that cannot be anticipated, such as a program
check.

If a determinate error occurs during the processing resulting from a concurrent OPEN
or CLOSE macro instruction, an attempt will be made to complete open or close
processing of the DCBs that are not associated with the DCB in error. Note that you
can also choose to abnormally terminate the task immediately by coding a DCB
ABEND exit routine that indicates the "immediate termination™ option (see"DCB
ABEND Exit"). When all open or close processing is completed, abnormal
termination processing is begun. Abnormal termination involves forcing all DCBs
associated with a given OPEN or CLOSE macro to close status, thereby freeing all
storage, devices, and other system resources related to the DCBs.

If an indeterminate error (such as a program check) occurs during open, close, or

EOQV processing, no attempt is made by the system control program to complete
concurrent open or close processing. The DCBs associated with the OPEN or CLOSE
macro are forced to close status if possible, and the resources related to each DCB are
freed.

To determine the status of any DCB after an indeterminate error, the OPEN
(CLOSE) return codein register 15 must be interrogated for the following values:

0 - All entriesin the parameter list opened successfully.

4 - All entriesin the parameter list have successfully completed open, but one or more entries
have a warning message.

8 - One or more entries in the parameter list were not opened successfully. The entries with
errors were restored to their pre-open status.

12 - One or more entries in the parameter list were not opened successfully. The entries with
errors were not restored, and cannot be reopened without restoration.

For more information on error processing and system recovery, see OSVX2 System
Programming Library: Supervisor.

During task termination the system issues a CLOSE macro for each data set which is
still open. If thisis an abnormal termination, the QSAM close routines (which would
normally finish processing buffers) are bypassed. Any outstanding I/O requests are
purged. Thus, your last data records may be lost for a QSAM output data set.

It isagood procedure to close an ISAM data set before task termination because, if an
I/0O error is detected, the ISAM close routines cannot return the problem program
registersto the SY NAD routine, causing unpredictable results.

Part 2: Data Management Processing Procedures 69

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

OPEN—Prepare a Data Set for Processing

The OPEN macro instruction is used to complete a data control block for an
associated data set. The method of processing and the volume positioning
instruction in the event of an end-of-volume condition can be specified.

Processing Method: Y ou can process a data set as either input or output. This
is done by coding INPUT, OUTPUT, or EXTEND as the processing method
operand of the OPEN macro. For BSAM, code INOUT, OUTIN, or
OUTINX. If the data set resides on a direct-access volume, you can code
UPDAT in the processing method operand to indicate that records can be
updated. By coding RDBACK in this operand, you can specify that a
magneti c-tape volume containing format-F or format-U recordsisto be read
backward. Variable-length records cannot be read backward. If the processing
method operand is omitted from the OPEN macro instruction, INPUT is
assumed. The operand isignored by the basic indexed sequential access
method (BISAM); it must be specified as OUTPUT or EXTEND when you
are using the queued indexed sequential access method (QISAM) to create an
indexed sequential data set. Y ou can override the INOUT, OUTIN, UPDAT,
or OUTINX at execution by using the LABEL parameter of the DD
statement, asdiscussed in OSVS2 JCL.

SYSIN and SY SOUT data sets must be opened for INPUT and OUTPUT,
respectively. INOUT istreated as INPUT, OUTIN, EXTEND, or
OUTINX istreated as OUTPUT. UPDAT and RDBACK cannot be used.

In Figure 28, the data sets associated with three DCBs are to be opened
simultaneoudly.

OPEN (TEXTDCB, CONVDCB, (OUTPUT) , PRINTDCRE,
(OUTPUT))

CNOP 0,4 Align list to fullword

BAL 1,*+16 Load regl w/list address

DC ALl (0) Option byte

DC AL3 (TEXTDCB) DCB address

DC ALl (15) Optionbyte

DC AL3 (CONVDCB) DCB address

DC ALl (143) Option byte

DC AL3 (PRINTDCB) DCB address

SVvC 19 Issue open SVC

Figure 28. Opening Three Data Sets Simultaneously

Since no processing method operand is specified for TEXTDCB, the system
assumes INPUT. Both CONVDCB and PRINTDCB are opened for output.
No volume positioning options are specified; thus, the disposition indicated by
the DD statement DISP parameter is used.

At execution, the SV C 19 instruction passes control to the Open routine,
which then initializes the three DCBs and |oads the appropriate access
method routines.

CLOSE—Terminate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a data set
and release it from a DCB. The volume positioning that is to result from
closing the data set can also be specified. Volume positioning options are the
same as those that can be specified for end-of-volume conditions in the

OPEN macro instruction or the DD statement. An additional volume
positioning option, REWIND, is available and can be specified by the CLOSE
macro instruction for magnetic-tape volumes. REWIND positions the tape at
the load point regardless of the direction of processing.

70 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

Y ou can code CLOSE TY PE=T and perform some close functions for
sequential data sets on magnetic tape and direct-access volumes processed
with BSAM. When you use TY PE=T, the DCB used to process the data set
maintains its open status, and you should not issue another OPEN macro
instruction to continue processing the same data set. This option cannot be
used in a SYNAD routine.

The TYPE=T operand causes the system control program to process labels,
modify some of the fields in the system control blocks for that data set, and
reposition the volume (or current volume in the case of multivolume data
sets) in much the same way that the normal CLOSE macro does. When you
code TYPE=T, you can specify that the volume either be positioned at the
end of data (the LEAVE option) or be repositioned at the beginning of data
(the REREAD option). Magnetic-tape volumes are repositioned either
immediately before the first datarecord or immediately after the last data
record; the presence of tape labels has no effect on repositioning.

Figure 29, which assumes a sample data set containing 1000 records,
illustrates the rel ationship between each positioning option and the point at
which you resume processing the data set after issuing the temporary close.

If you code the release (RLSE) operand on the DD statement for an output
data set, it isignored by temporary close (CLOSE TYPE=T).. If thelast
operation occurring prior to closing the data set was a write, any unused space
will be released when you finally issue the normal CLOSE macro instruction.

It is possible to use BSAM to process a data set that is not
physical-sequential; if you use CLOSE TY PE=T for them, the following
restrictions apply:

« The DCB for the data set you are processing on a direct-access device
must specify either DSORG=PS or DSORG=PSU for input processing,
and either DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU
for output processing.

+ The DCB must not be open for input to a member of a partitioned data
Set.

Part 2: Data Management Processing Procedures 70.1

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Begin processing

Begin
i tape data set
processing
data set (open for read
backward)
/ i) \
1§ {
Record Record Record Record Record
1 2 3 999 1000

If you CLOSE TYPE =T and specify

After temporary close, you will

resume processing

LEAVE

Immediately after record 1000

LEAVE (with tape data set open
for read backward)

Immediately before record 1

REREAD

Immediately before record 1

REREAD (with tape data set open
for read backward)

Immediately after record 1000

Figure 29. Record Processed When LEAVE or REREAD is Specified for CLOSE TY PE=T

* |f you open a data set on a direct-access device for output and issue CLOSE
TYPE=T, the volume will be repositioned only if the data set was created with
DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU (you cannot specify
the REREAD option if DSORG=PO or DSORG=POU is specified). (This restriction
prohibits the use of temporary close following or during the building of aBDAM data
set that is created by specifying BSAM MACRF=WL).

* If you open the data set for input and issue CLOSE TY PE=T with the LEAVE
option, the volume will be repositioned only if the data set specifies DSORG=PS or
DSORG=PO.

Note: When a data control block is shared among multiple tasks, only the task that
opened the data set can close it unless TY PE=T is specified.

Before issuing the CLOSE macro, a CHECK macro must be issued for all DECBs that
have outstanding 1/0 from WRITE macro instructions. When CLOSE TYPE=T is
specified, a CHECK macro must be issued for all DECBs that have outstanding 1/0

from either WRITE or READ macro instructions.

In Figure 30, the data sets associated with three DCBs are to be closed simultaneously.

+ 4+ + + + + + + +

CLOSE
CNOP
BAL

DC
DC
DC
DC
DC
DC

SVC

(TEXTDCB, CONVDCB, PRINTDCRB)
Align list to fullword
Load regl w/list addr

0,4

1,*+16

ALl (0)

AL3 (TEXTDCB)
ALl (0)

AL3 (CONVDCB)
ALl (128)

AL3 (PRINTDCB)
20

Figure 30. Closing Three Data Sets Simultaneously

Option byte
DCB address
Option byte
DCB address
Option byte
DCB address

Issue close SVC

Part 2: Data M anagement Processing Procedures 71

Because no volume positioning operands are specified, the position indicated by the DD
statement DI SP parameter is used.

At execution, the SV C 20 instruction passes control to the Close routine, which
terminates processing of the three data sets and returns the three DCBs to their original
status.

Releasing Data Sets and Volumes: Y ou are offered the option of being able to release
data sets and the volumes the data sets reside on when your task is no longer using them.
Assuming that you are not sharing data sets, these data sets and the volumes on which
they reside, would otherwise remain unavailable for use by other tasks until the job step
that opened them is terminated.

There are two ways to code the CLOSE macro instruction that can result in releasing a
data set and the volume on which it resides at the time the data set is closed:

In conjunction with the FREE=CL OSE parameter of the DD statement you can code;

CLOSE (DCB1,DISP)or
CLOSE (DCB1,REWIND)

If you do not code FREE=CL OSE on the DD statement, you can code;
CLOSE (DCB1,FREE)

See OSV2 JCL for information about how to use and code the FREE=CL OSE
parameter of the DD statement.

In either case, tape data sets and the volume on which the tape is mounted will be freed
for use by another job step. Data sets on direct-access devices will be freed and the
volumes on which they reside will be freed if no other data sets on the volume are open.
Additional information on volume disposition is provided in OS/'VS2 JCL..

Data sets being temporarily closed (using CLOSE TY PE=T) cannot be released at the
time the data set is closed. They will be released at termination of the job step.

Refer to OSVS Data Management Macro Instructions for additional information and
coding restrictions.
End-of-Volume Processing

Control is passed automatically to the data management end-of-volume routine when
any of the following conditions is detected:

» Tapemark (input tape volume)
» Filemark or end of last extent (input direct-access volume)

» End-of-dataindicator (input device other than magnetic tape or direct-access
volume). An example of thiswould be the last card read on a card reader.

* End of redl (output tape volume)
* End of extent (output direct-access volume)

Y ou may issue aforce end-of-volume (FEOV) macro instruction before the
end-of-volume condition is detected.

If the LABEL parameter of the associated DD statement indicates standard labels, the
end-of-volume routine checks or creates standard trailer labels. If SUL or AUL is
specified, control is passed to the appropriate user label routineiif it is specified in your
exit list.

If multiple-volume data sets are specified in your DD statement, automatic volume
switching is accomplished by the end-of-volume routine. When an end-of-volume

72 OS/VS2 MV S Data Management Services Guide

condition exists on an output data set, additional spaceis allocated as indicated in your
DD statement. If no more volumes are specified or if more than specified are required,
the storage is obtained from any available volume on a device of the same type. If no
such volume is available, your job is terminated.

Volume Positioning: When an end-of-volume condition is detected, the system positions
the volume according to the disposition specified in the DD statement unless the volume
disposition is specified in the OPEN macro instruction. Volume positioning instructions
for a sequential data set on magnetic tape can be specified as LEAVE or REREAD.

LEAVE
positions a labeled tape to the point following the tape mark that follows the data set
trailer label group, and an unlabeled volume to the point following the tape mark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header |abel group, and an
unlabel ed tape to the point preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the tape mark that follows the data set
trailer label group, and an unlabeled tape to the point following the tape mark that
follows the last block of the data set.

If, however, you want to position the current volume according to the option specified in
the DISP parameter of the DD statement, you code DISP in the OPEN macro
instruction.

DISP
specifies that a tape volume is to be disposed of in the manner implied by the DD
statement associated with the data set. Direct-access volume positioning and
disposition are not affected by this parameter of the OPEN macro instruction. There
are several dispositions that can be specified in the DISP parameter of the DD
statement; DISP can be PASS, DELETE, KEEP, CATLG, or UNCATLG.

The resultant action at the time an end-of-volume condition arises depends on (1)
how many tape units are allocated to the data set and (2) how many volumes are
specified for the data set in the DD statement. Thisis determined by the UNIT and
VOLUME parameters of the DD statement associated with the data set. If the
number of volumesis greater than the number of units alocated, the current volume
will be rewound and unloaded. If the number of volumesisless than or equal to the
number of units, the current volume is merely rewound.

A volume positioning instruction can be specified only if the processing method
operand has been specified. It isignored if devices other than magnetic-tape and
direct-access are used, or if the number of volumes exceeds the number of available
units.

Part 2: Data Management Processing Procedures 73

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

For magnetic-tape volumes that are not being unloaded, positioning varies according
to the direction of the last input operation and the existence of tape labels.

If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the tapemark that follows the data set

trailer label group, and an unlabeled volume to the point following the tapemark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label group, and an
unlabel ed tape to the point preceding the first block of the data set.

If the tape was last read backward:

LEAVE

positions a labeled tape to the point preceding the data set header label group, and an
unlabel ed tape to the point preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the tapemark that follows the data set

trailer label group, and an unlabeled tape to the point following the tapemark that
follows the last block of the data set.

FEOV—Force End of Volume

The FEOV macro instruction directs the operating system to initiate end-of-volume
processing before the physical end of the current volume is reached. If another volume
has been specified for the data set, volume switching takes place automatically. The
volume positioning options REWIND and LEAVE are available.

If an FEOV macro isissued for a spanned multivolume data set which is being read using
QSAM, errors may occur when the next GET macro isissued. These errors are
documented in the section, "Spanned Variable-L ength Records” in "Part 1: Introduction
to Data Management."

The FEOV macro instruction can only be used when you are using BSAM or QSAM.
FEOQV isignored if issued for a SY SIN or SY SOUT data set.

Buffer Acquisition and Control

The operating system provides several methods of buffer acquisition and control. Each
buffer (virtual-storage area used for intermediate storage of input/output data) usually
corresponds in length to the size of ablock in the data set being processed. When you
use the queued access technique, any reference to a buffer actually refers to the next
record (buffer segment).

Y ou can assign more than one buffer to a data set by associating the buffer with a buffer
pool. A buffer pool must be constructed in a virtual-storage area allocated for a given
number of buffers of agiven length.

The number of buffers you assign to a data set should be a tradeoff against the frequency
with which you refer to each buffer. A buffer that is not referred to for arelatively long
period of time may be paged out. If this were allowed to happen to any considerable
degree, it could result in agreater number of buffers actually decreasing throughput.

Buffer segments and buffers within the buffer pool are controlled automatically by the
system when the queued access technique is used. However, you can terminate
processing of a buffer by issuing arelease (REL SE) macro instruction for input or a
truncate (TRUNC) macro instruction for output. Two buffering techniques, simple and

74 OS/VS2 MV S Data Management Services Guide

exchange, can be used to process a sequential data set. Only simple buffering can be used
to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as work areas rather than as
intermediate storage areas. Y ou can control them directly, by using the GETBUF and
FREEBUF macro instructions, or dynamically for BDAM and BISAM, by requesting
dynamic buffering in your DCB macro instruction and your READ or WRITE macro
instruction. If you request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction isissued. That buffer will be freed when you
issue a WRITE or FREEDBUF macro instruction.

Buffer Pool Construction
Buffer pool construction can be accomplished in any of three ways:
» Statically using the BUILD macro instruction
* Explicitly using the GETPOOL macro instruction
» Automatically by the system when the data set is opened

If QSAM simple buffering is used, the buffers are automatically returned to the pool
when the data set is closed. If the buffer pool is constructed explicitly or automatically,
the virtual storage area must be returned to the system by the FREEPOOL macro
instruction.

In many applications, fullword or doubleword alignment of ablock within abuffer is
important. Y ou can specify in the DCB that buffers are to start on either a doubleword
boundary or afullword boundary that is not also a doubleword boundary (by coding
BFALN=D or F). If doubleword alignment is specified for format-V records, the fifth
byte of the first record in the block is so aligned. For that reason, fullword alignment
must be requested to align the first byte of the variable-length record on a doubleword
boundary. The alignment of the records following the first in the block depends on the
length of the previous records.

Note that buffer alignment provides alignment only for the buffer. If records from ASCI|I
magnetic tape are read and the records use the block prefix, the boundary alignment of
logical records within the buffer depends on the length of the block prefix. If the length
is4, logical records are on fullword boundaries. If the length is 8, logical records are on
doubleword boundaries.

If the BUILD macro instruction is used to construct the buffer pool, alignment depends
on the alignment of the first byte of the reserved storage area.

When you process multiple QISAM data sets, you can use a common buffer pool. To do
this, however, you must use the BUILD macro instruction to reformat the buffer pool
before opening each data set.

BUIL D—Construct a Buffer Pool

When you know, before program assembly, both the number and the size of the buffers
required for a given data set, you can reserve an area of appropriate sizeto be used asa
buffer pool. Any type of area can be used—for example, a predefined storage area or an
area of coding no longer needed.

A BUILD macro instruction, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must be the same
as that specified for the buffer pool control block (BUFCB) in your DCB. The buffer
pool control block is an 8-byte field preceding the buffers in the buffer pool. The number
(BUFNO) and length (BUFL) of the buffers must also be specified. For QSAM, the
length of BUFL must be at least the blocksize.

Part 2: Data Management Processing Procedures 75

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

When the data set using the buffer pool is closed, you can reuse the area as required.
Y ou can also reissue the BUILD macro instruction to reconstruct the areainto a new
buffer pool to be used by another data set.

Y ou can assign the buffer pool to two or more data sets that require buffers of the same
length. To do this, you must construct an arealarge enough to accommodate the total
number of buffers required at any one time during execution. That is, if each of two data
sets requires five buffers (BUFNO=5), the BUILD macro instruction should specify ten
buffers. The area must also be large enough to contain the 8-byte buffer pool control
block.

BUILDRCD—Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction, like the BUILD macro instruction, causes a buffer
pool to be constructed in an area of virtual storage you provide. In addition, BUILDRCD
makes it possible for you to access variable-length, spanned records as complete logical
records, rather than as segments.

Y ou must be processing with QSAM in the locate mode and you must be processing
either VS or VBS records, if you want to access the variable-length, spanned records as
logical records. If you issue the BUILDRCD macro before the data set is opened, or
during your DCB exit routine, you automatically get logical records rather than segments
of spanned records.

Only one logical record storage areais built, no matter how many buffers are specified,;
therefore, you can't share the buffer pool with other data sets that may be open at the
sametime.

GETPOOL—Get a Buffer Pool

If aspecified areais not reserved for use as a buffer pool, or you want to defer specifying
the number and length of the buffers until execution of your program, you should use the
GETPOOL macro instruction. It enables you to vary the size and number of buffers
according to the needs of the data set being processed.

The GETPOOL macro instruction structures a virtual-storage area allocated by the
system into a buffer pool, assigns a buffer pool control block, and associates the pool
with a specific data set. The GETPOOL macro instruction should be issued either before
opening of the data set or during your DCB exit routine.

When using GETPOOL with QSAM, specify a buffer length (BUFL) of at least as large
as the blocksize.

Automatic Buffer Pool Construction

If you have requested a buffer pool and have not used an appropriate macro instruction
by the end of your DCB exit routine, the system automatically allocates virtual-storage
space for a buffer pool. The buffer pool control block is also assigned and the pool is
associated with a specific DCB. For BSAM, a buffer pool is requested by specifying
BUFNO. For QSAM, BUFNO can be specified or allowed to default to 5. If

you are using the basic access technique to process an indexed sequential or direct data
set, you must indicate dynamic buffer control. Otherwise, the system does not construct
the buffer pool automatically.

Because a buffer pool obtained automatically is not freed automatically when you issue a
CLOSE macro instruction, you should also issue a FREEPOOL or FREEMAIN macro
instruction, which is discussed in the next section.

76 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

FREEPOOL —Free a Buffer Pool

Any buffer pool assigned to a DCB either automatically by the OPEN macro instruction
(except when dynamic buffer control is used) or explicitly by the GETPOOL macro
instruction should be released before your program is terminated. The FREEPOOL
macro instruction should be issued to release the virtual-storage area as soon as the
buffers are no longer needed. When you are using the queued access technique, a data
set must be closed first. When you are using exchange buffering, the buffer pool must
not be released until all the data sets have been closed.

If the OPEN macro was issued while running under a protect key of zero, abuffer pool
which was obtained by OPEN should be released by issuing the FREEMAIN macro
instead of the FREEPOOL macro. Thisis necessary because the buffer pool acquired
under these conditions will be in storage assigned to subpool 252.

Constructing a Buffer Pool: Figures 31 and 32 illustrate several possible methods of
constructing a buffer pool. They do not take into account the method of processing or
controlling the buffersin the pool.

In Figure 31, a static storage area named INPOOL is alocated during program assembly.
The BUILD macro instruction, issued during execution, arranges the buffer pool into ten
buffers, each 52 bytes long. Five buffers are assigned to INDCB and five to OUTDCB,
as specified in the DCB macro instruction for each. The two data sets share the buffer
pool because both specify INPOOL as the buffer pool control block. Notice that an
additional 8 bytes have been allocated for the buffer pool to contain the buffer pool
control block. The 4-byte chain pointer which occupies the first four bytes of the buffer
isincluded in the buffer, so no allowance need be made for this field.

In Figure 32, two buffer pools are constructed explicitly by the GETPOOL macro
instructions. Ten input buffers are provided, each 52 bytes long, to contain one
fixed-length record; five output buffers are provided, each 112 byteslong, to contain two
blocked records plus an 8-byte count field (required by ISAM). Notice that both data
sets are closed before the buffer pools are released by the FREEPOOL macro
instructions. The same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

Buffer Control

Y our program can use four techniques to control the buffers used by your program. The
advantages of each depend to a great extent upon the type of job you are doing. Simple
and exchange buffering are provided for the queued access technique. The basic access

technique provides for either direct or dynamic buffer control.

Processing
BUILD INPOOL, 10,52 Structure a buffer pool
OPEN (INDCB,OUTDCB, (OUTPUT))

Processing

ENDJOB CLOSE (INDCB, OUTDCB)
Processing
RETURN Return to system control
INDCB DCB BUFNO=5, BUFCB=INPOOL, EODAD=ENDJOB ,———
OUTDCB DCB BUFNO=5, BUFCB=INPOOL, ———
CNOP 0,8 Force boundary alignment
INPOOL DS CL528 Buffer pool

eee

Figure 31. Constructing a Buffer Pool From a Static Storage Area

Part 2: Data Management Processing Procedures 77

GETPOOL INDCB, 10,52 Construct a 1l0-buffer pool

GETPOOL OUTDCB, 5,112 Construct a 5-buffer pool
OPEN (INDCB,,OUTDCB, (OUTPUT))
ENDJOB CLOSE (INDCB,,OUTDCB)
FREEPOOL INDCB Release buffer pools after all

I/0 is complete
FREEPOOL OUTDCB

RETURN Return to system control
INDCB DCB DSORG=PS, BFALN=F, LRECL=52, RECFM=F, EODAD=ENDJOB, ———
OUTDCB DCB DSORG=IS, BFALN=D, LRECL=52,KEYLEN=10, BLKSIZE=104, C

RKP=0,RECFM=FB, ---

Figure 32. Constructing a Buffer Pool Using GETPOOL and FREEPOOL

Although only simple buffering can be used to process an indexed sequential data set,
buffer segments and buffers within a buffer pool are controlled automatically by the
operating system.

In addition, the queued access technique provides four processing modes that determine
the extent of data movement in virtual storage. Move, data, locate, or substitute mode
processing can be specified for either the GET or PUT macro instruction. The buffer
processing mode is specified in the MACREF field of the DCB macro instruction. The
movement of arecord is determined as follows:

* Movemode: The record is moved from an input buffer to your. work area, or from
your work areato an output buffer.

+ Data mode (QSAM format-V spanned records only): The same as The move mode
except only the data portion of the record is moved.

» Locate mode: Therecord isnot moved. Instead, the address of the next input or
output buffer is placed in register 1. For QSAM format-V spanned records, if you
have specified logical records by specifying BFTEK=A or by issuing the BUILDRCD
macro instruction, the address returned in register 1 pointsto arecord area where the
spanned record is assembled or segmented.

The PUT-locate routine uses the value in the DCBLRECL field to determine whether
another record will fit into your buffer. Therefore, when you write a short record, you
can maximize the number of records per block by modifying the DCBLRECL field
before you issue a PUT-locate to get a buffer sesgment for the short record. The
processing sequence follows:

1. Register 1 isreturned to you with the address of the next buffer segment.
2. Move the record into the output buffer segment.
3. Put the length of the next (short) record into DCBLRECL.
4. Issue PUT-locate.
5. Move the short record into the buffer segment.
« Substitute mode: Move mode is used when substitute mode is requested in MV S.

Two processing modes of the PUTX macro instruction can be used in conjunction with a
GET-locate macro instruction. The update mode returns an updated record to the data
set from which it was read; the output mode transfers an updated record to an output
data set. There is no actual movement of datain virtual storage. The processing modeis
specified by the operand of the PUTX macro instruction, as explained in OSVS2 MVS
Data Management Macro Instructions.

78 OS/VS2 MV S Data Management Services Guide

e of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

If you use the basic access technique, you can control buffersin one of two ways:

* Directly, using the GETBUF macro instruction to retrieve a buffer constructed as
described above. A buffer can then be returned to the pool by the FREEBUF macro
instruction.

Part 2: Data Management Processing Procedures 78.1

Simple Buffering

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

» Dynamically, by requesting -a dynamic buffer in your READ or WRITE macro
instruction. This technique can be used only when you are using BISAM or BDAM. If
you request dynamic buffering, the system automatically provides a buffer each time a
READ macro instruction isissued. The buffer is supplied from a buffer pool that is
created by the system when the data set is opened. The buffer isreleased (returned to
the pool) upon completion of a WRITE macro instruction when you are updating. If
you do not update the record in the buffer and thus release the buffer when the record
iswritten, the FREEDBUF macro instruction may be used. If you are processing an
indexed sequential data set, the buffer is automatically released upon the next issuance
of the READ macro instruction if there has been no intervening WRITE or
FREEDBUF macro instruction.

Theterm simple buffering refersto the relationship of segments within the buffer. All
segments in a simple buffer are together in storage and are always associated with the
same data set. When the buffer pool is constructed, the system creates a channel
command word (CCW) for each buffer in the buffer pool. For this reason, each record
must be physically moved from an input buffer segment to an output buffer segment. It
can be processed within either segment or in awork area.

If you use simple buffering, records of any format can be processed. New records can be
inserted and old records deleted as required to create a new data set. A record can be
moved and processed as follows:

» Processed in an input buffer and then moved to an output buffer (GET-locate,
PUT-move/PUTX-output)

* Moved from an input buffer to an output buffer where it can be processed
(GET-move, PUT-locate)

* Moved from an input buffer to awork area where it can be processed and then moved
to an output buffer (GET-move, PUT-move)

* Processed in an input buffer and returned to the data set (GET-locate, PUT X -update)

The following examplesillustrate the control of simple buffers and the processing modes
that can be used. The buffer pools may have been constructed in any way previously
described.

Simple Buffering—GET-locate, PUT-move/PUT X-output: The GET macro instruction
(step A, Figure 33) locates the next input record to be processed. Its addressis returned
in register 1 by the system. The address is passed to the PUT macro instruction in
register O.

The PUT macro instruction (step B, Figure 33) specifies the address of the record in
register 0. The system then moves the record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of the PUT-move macro
instruction. However, processing will be as described under exchange buffering (see
PUT-substitute).

Simple Buffering—GET-move, PUT-locate: The PUT macro instruction locates the
address of the next available output buffer. Its addressisreturned in register 1 and is
passed to the GET macro instruction in register O.

The GET macro instruction specifies the address of the output buffer into which the
system moves the next input record.

A filled output buffer is not written until the next PUT macro instruction is issued.

Part 2: Data Management Processing Procedures 79

GET

A OUTPUT | OUTPUT
NEXTREC GET - INDCB
LR 0,1
PUT OUTDCE, (O)
B NEXTREC
) OUTPUT | OUTPUT | INDCB DCB MACRF=(GL),---

OUTDCB DCB MACRF=(PM), =~~~

Figure 33. Simple Buffering with MACRF=GL and MACRF=PM

Simple Buffering—GET-move, PUT-move: The GET macro instruction (step A, Figure
34) specifiesthe address of awork area into which the system moves the next record
from the input buffer.

The PUT macro instruction (step B, Figure 34) specifies the address of awork areafrom
which the system moves the record into the next output buffer.

Simple Buffering—GET-locate, PUT-locate: The GET macro instruction (step A, Figure
35) locates the address of the next available input buffer. The addressis returned in
register 1.

The PUT macro instruction (step B, Figure 35) locates the address of the next available
output buffer. Its addressis returned in register 1. Y ou must then move the record from
the input buffer to the output buffer (step C, Figure 35). Processing can be done either
before or after the move operation.

A filled output buffer is not written until the next PUT macro instruction isissued. The
CLOSE and FEOV macro instructions write the last record of your data set by issuing
TRUNC and PUT macro instructions. Be careful not to issue an extra PUT before

OUTPUT | OUTPUT

NEXTREC GET INDCB,WORKAREA

PUT PUT OUTDCB, WORKAREA
B NEXTREC

WORKAREA DS CLSO

INDCB DCB MACRF=(GM),~--

1 ouTPUT | OUTDCB DCB MACRF=(PM),---

Figure 34. Simple Buffering with MACRF=GM and MACRF=PM

80 OS/VS2 MV S Data Management Services Guide

GET

A INPUT OUTPUT | OUTPUT | NEXIREC GET - TNDCS
PUT OUTDCB
LR 6,1
PUT LA 5, INDCB
/ USING IHADCB,5
LH 4,DCBLRECL
B INPUT OUTPUT | OUTPUT SH 4,=H'1
EX 4,MOVEREC
B NEXTREC
MOVEREC MVC 0(1,6),0(7)
c | INPUT INPUT OUTPUT | INDCB DCB MACRF=(GL),
EQDAD=EOF , ———
OUTDCB DCB MACRF=(PL),---
Program DCBD DSORG=(LR)
EQF

Figure 35. Simple Buffering with MACRF=GL and MACRF=PL

issuing CLOSE or FEOV . Otherwise, when the CLOSE or FEOV macro instruction tries
to write your last record, the extra PUT will write a meaningless record or produce a
sequence error.

Note that if records other than format-F records are being moved, the length attribute of
the MV C instruction must be changed as shown by the code beginning with the USING
statement in Figure 35. If the record is more than 256 bytes, you can code a move
routine or use aMV CL instruction to process the complete record.

Simple Buffering-UPDAT Mode: When adata set is opened with UPDAT specified
(Figure 36), only GET-locate and PUT X-update are supported. The GET macro locates
the next input record to be processed and its address is returned in register 1 by the
system. The user may update the record and issue a PUTX macro which will cause the
block to be written back in its original location in the data set after al the logical records
in that block have been processed.

/GET

OPEN

INPUT/ INPUT/ (UPDCB, (UPDAT |)
OUTPUT ouTPUT NEXTREC (.;]::T) UPDCB
PUTX UPDCB
PUTX B NEXTREC
UPDCB DCB MACRF=(GL,PM), ~=-

(No movement of data takes place)

Figure 36. Simple Buffering with MACRF=GL and MACRF=PM-UPDAT Mode

Part 2: Data Management Processing Procedures 81

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Exchange Buffering

Exchange buffering is not supported in MV S. Its request is ignored by the system and
move mode is used instead.

Buffering Techniquesand GET/PUT Processing Modes. Asyou can see from the
previous examples, the most efficient code is achieved by use of automatic buffer pool
construction, and GET-locate and PUTX-output with simple buffering. Figure 37
summarizes the combinations of buffering techniques and processing modes that

can be used.

REL SE—Release an I nput Buffer

When using the queued access technique to process a sequential or indexed sequential
data set, you can direct the system to ignore the remaining records in the input buffer
being processed. The next GET macro instruction retrieves a record from another buffer.
If format-VV spanned records are being used, the next logical record obtained may begin
on any segment in any subsequent block.

If you are using move mode, the buffer is made available for refilling as soon as the
REL SE macro instruction is issued. When you are using locate mode, the system does
not refill the buffer until the next GET macro instruction isissued. If aPUTX macro
instruction has been used, the block is written before the buffer is refilled.

)
Q &) [<3)
HIHEIE
S|E|E[E
Input 55|55 =
Buffering: = a E_ 2} al g
q) [}
Simple % 2| B % 2 §%
AR EIEIERE
Actions mIng R I in=S
[(ON RUR RO NOR RO
Program must move X X
record
System movesrecord | X | X X
System movesrecord X
segment
Work arearequired X
PUTX - output can X
be used

Figure 37. Buffering Technique and GET/PUT Processing Modes

82 OS/VS2 MV S Data Management Services Guide

TRUNC—Truncate an Output Buffer

When using the queued access technique to process a sequential data set, you can direct
the system to write a short block. The first record in the next buffer is the next record
processed by a PUT-output or PUTX-output mode.

If the locate mode is being used, the system assumes that a record has been placed in the
buffer segment pointed to by the last PUT macro instruction.

Thelast block of adata set is truncated by the Close routine. Note that a data set
containing format-F records with truncated blocks cannot be read from direct-access
storage as efficiently as a standard format-F data set.

GETBUF—Get a Buffer from a Pool

The GETBUF macro instruction can be used with the basic access technique to request a
buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN macro
instruction. The address of the buffer is returned by the system in aregister you specify
when you issue the macro instruction. If no buffer is available, the register contains 0
instead of an address.

FREEBUF—Return a Buffer to a Pool

The FREEBUF macro instruction is used with the basic access technique to return a
buffer to the buffer pool from which it was obtained by a GETBUF macro instruction.
Although the buffers need not be returned in the order in which they were obtained, they
must be returned when they are no longer needed.

FREEDBUF—Return a Dynamic Buffer to a Pool

Any buffer obtained through the dynamic buffer option must be released before it can be
used again. When you are processing a direct data set, if you do not update the block in
the buffer and thus free the buffer when the block is written, you must use the
FREEDBUF macro instruction. If there is an uncorrectable input/output error, the
control program releases the buffer. When you are processing an indexed sequential data
set, if you do not update the block in the buffer or if there is an uncorrectable input

error, the control program releases the buffer when the next READ macro instruction is
issued on the same DECB, unless you use the FREEDBUF macro instruction.

To effect the release, you must specify the address of the DECB that was used when the
block was read using the dynamic buffering option, as well as the address of the DCB
associated with the data set being processed.

Processing a Sequential Data Set

Data sets residing on all volumes other than direct-access volumes must be processed
sequentially. In addition, a data set residing on a direct-access volume, regardless of
organization, can be processed sequentially. This includes data sets created using | SAM
or asimilar access method. Since the entire data set (prime, index, and overflow areas)
will be processed, care should be taken to determine the type of records being processed.
Thisfeature of the operating system allows you to write your program with little regard
for the type of device to be used when the program is executed, except for restrictions on
the use of certain device-dependent macro instructions and processing options.

Either the queued or the basic access technique may be used to store and retrieve the
records of a sequential data set. Additionally, atechnique called chained scheduling can
be used to accelerate the input/output operations required for a sequential data set
(residing on nondir ect-access devices for 5740-AM 3).

Part 2: Data Management Processing Procedures 83

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Data Format—Device Type Considerations

Before execution of your program, you must supply the operating system with both the
record format (RECFM) and device-dependent (DEV D) information in a DCB macro
instruction, a DD statement, or a data set label. The DCB subparameters for the DD
statement differ slightly from those described here. A complete description of the DD
statement and a glossary of DCB subparameters are contained in OS/'VS2 JCL..

The record format (RECFM) parameter of the DCB macro instruction specifies the
characteristics of the records in the data set as fixed-length (RECFM=F),
variable-length (RECFM=V or D), or undefined-length (RECFM=U). Fixed-length
blocked records (RECFM=FB) can be specified as standard (RECFM=FBS), which
means there are no truncated (short) blocks or unfilled tracks within the data set, with
the possible exception of the last block or track. Data sets with a fixed-length, standard
format were described previously under "Fixed-Length Records, Standard Format."

As an optional feature, a control character can be contained in each record. This control
character will be recognized and processed if the data set is printed or punched. The
control characters are transmitted on both tapes and direct-access volumes. The presence
of acontrol character isindicated by M or A in the RECFM field of the data control
block. M denotes machine code; A denotes American National Standards Institute
(ANSI) code. If either M or A is specified, the character must be present in every record;
the printer space (PRTSP) or stacker select (STACK) field of the DCB isignored. The
optional control character must be in the first byte of format-F and format-U records
and in the fifth byte of format-V records and format-D records where BUFOFF=L.
Control character codes are listed in "Appendix B: Control Characters." The
device-dependent (DEV D) parameter of the DCB macro instruction specifies the type of
device on which the data set's volume resides:

TA magnetic tape
PT paper tape reader
PR printer
PC card punch
RD card reader
DA direct-access device or
Mass Storage System (M SS) virtual volumes

Magnetic Tape (TA)

Format-F, V, D, and U records are acceptable for magnetic tape. Format-V records are
not acceptable on 7-track tape if the data conversion feature is not available. ASCI|
records are not acceptable on 7-track tape.

When you create a tape data set with variable-length record format (V or D), the control
program pads any data block shorter than 18 bytes. For format-V records, it padsto the
right with binary zeros so that the data block length equals 18 bytes. For format-D
(ASCII) records, the padding consists of ASCII circumflex characters which are
equivalent to X'5E's,

Note that there is no minimum requirement for blocksize; however, if a data check
occurs on a magnetic-tape device, any record shorter than 12 bytesin aread operation or
18 bytesin awrite operation will be treated as a noise record and lost. No check for
noise will be made unless a data check occurs.

Tape density (DEN) specifies the recording density in bits per inch per track, as shown
in Figure 38. If thisinformation is not supplied, the highest applicable density is assumed.

84 OS/VS2 MV S Data Management Services Guide

Recording Density

DEN 7-Track Tape 9-Track Tape
0 200

1 556

2 800 800 (NRZI)

3 1600 (PE)

4 6250 (GCR)

NRZI isfor non-return-to-zero-inverted mode
PE is for phase encoded mode
GCR isfor group coded recording mode

Note: Specifying DEN=0 for a 7-track 3420 tape attached to a 3803-1 will result in 556 bits per
inch recording, but corresponding messages and tape labels will indicate 200 bits per inch
recording density.

Figure 38. Tape Density (DEN) Values

The track recording technique (TRTCH) for 7-track tape can be specified as:

C Dataconversion isto be used. Data conversion makes it possible to write 8 binary
bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit byte are recorded. The
length field of format-V records contains binary data and is not recorded correctly
without data conversion.

E Evenparity isto be used; if E is omitted, odd parity is assumed.
T BCDIC to EBCDIC trandlation is required.

Paper-Tape Reader (PT)

The paper-tape reader accepts format-F and format-U records. If you use QSAM, you
should not specify the records as blocked. Each format-U record is followed by an
end-of-record character. Data read from paper tape may optionally be converted into the
System/370 internal representation of one of six standard paper-tape codes. Any
character found to have a parity error will not be converted when the record is
transferred into the input area. Characters deleted in the conversion process are not
counted in determining the block size.

The following symbols indicate the code in which the data was punched. If this
information is omitted, | is assumed.

IBM BCD perforated tape and transmission code (8 tracks)
Friden (8 tracks)

Burroughs (7 tracks)

National Cash Register (8 tracks)

ASCII (8 tracks)

Teletype' (5 tracks)

No conversion

Z4>»0wmT—

Note that when you are using QSAM, the processing mode must be move mode.

Card Reader and Punch (RD/PC)

Format-F and U records are acceptabl e to both the reader and punch; format-V records
are acceptable to the punch only. The device control character, if specified in the
RECFM parameter, is used to select the stacker; it is not punched. The first 4 bytes
(record descriptor word or segment descriptor word) of format-V records or record
segments are not punched. For format-V records, at least 1 byte of data must follow the
record or segment descriptor word or the carriage control character.

* Trademark of the Teletype Corporation

Part 2: Data Management Processing Procedures 85

Printer (PR)

Each punched card corresponds to one physical record. Therefore, you should restrict the
maximum record size to 80 (EBCDIC mode) or 160 (column binary mode) data bytes.
When mode (C) is used for the card punch, BLKSIZE must be 160 unless you are using
PUT. Then you can specify BLKSIZE as 160 or a multiple of 160, and the system
handles this as described earlier under "PUT—Write a Record" in the section "Queued
Access Techniques." Y ou can specify the read/punch mode of operation (MODE)
parameter as either card image (column binary) mode (C) or EBCDIC mode (E). If this
information is omitted, E is assumed. The stacker selection parameter (STACK) can be
specified as either 1 or 2 to indicate which bin isto receive the card. If it is not specified,
1isassumed.

For all QSAM, RECFM=FB, card punch data sets, the block size in the DCB will be
adjusted by the system to equal the logical record length. This data set will be treated as
RECFM=F. If the system builds the buffers for this data set, the buffer length will be
determined by the BUFL parameter. If the BUFL parameter was not specified, the
adjusted block size is used for the buffer length.

If the DCB isto be reused with ablock size larger than the logical record length, you
must reset DCBBLKSI in the DCB and insure that the buffers are large enough to
contain the largest block size expected. Y ou may insure the buffer size by specifying the
BUFL parameter before the first time the data set is opened or by issuing the
FREEPOOL macro instruction after each CLOSE macro so the system will build a new
buffer pool of the correct size each time the data set is opened.

Note that when QSAM is used, punch error correction on the IBM 2540 Card Read
Punch is automatically performed only for data sets using three or more buffers without
the chained scheduling feature. Punch error correction on the IBM 2540 Card Read
Punch is not performed when using MV S.

The 3525 Card Punch accepts only format-F records for print data sets and for
associated data sets. Other record formats are allowed for the read data set, the punch
data set, and the interpret punch data set. See OS and OSVS Programming Support
for the IBM 3505 Card Reader and IBM 3525 Card Punch for more information
on programming for the 3525 Card Punch.

Records of format-F, VV, and U are acceptable to the printer. The first 4 bytes (record
descriptor word or segment descriptor word) of format-V records or record segments are
not printed. For format-V records, at least 1 byte of data must follow the record or
segment descriptor word or the carriage control character. The carriage control

character, if specified in the RECFM parameter, is not printed. The system- does not
position the printer to channel 1 for the first record unless specified by a carriage control
character.

Because each line of print corresponds to one record, the record length should not
exceed the length of one line on the printer. For variable-length spanned records, each
line corresponds to one record segment, and blocksize should not exceed the length of
one line on the printer.

If carriage control characters are not specified, you can indicate printer spacing (PRTSP)
as0, 1, 2, or 3. If itis not specified, 1 is assumed.

For all QSAM, RECFM=FB, printer data sets, the block size in the DCB wiill be
adjusted by the system to equal the logical record length. This data set will be treated as
RECFM=F. If the system builds the buffers for this data set, the buffer length will be
determined by the BUFL parameter. If the BUFL parameter was not specified, the
adjusted block size is used for the buffer length.

86 OS/VS2 MV S Data Management Services Guide

If the DCB isto be reused with a block size larger than the logical record length, you
must reset DCBBLKSI in the DCB and insure that the buffers are large enough to
contain the largest block size expected. Y ou may insure the buffer size by specifying the
BUFL parameter before the first time the data set is opened or by issuing the
FREEPOOL macro instruction after each CLOSE macro so the system will build a new
buffer pool of the correct size each time the data set is opened.

Direct-Access Device (DA)

Direct-access devices accept records of format-F, V, or U. If the records are to be read
or written with keys, the key length (KEY LEN) must be specified. In addition, the
operating system has a standard track format for all direct access volumes. Each track
contains data information as well as certain control information such as:

* The address of the track

* The address of each record
» Thelength of each record
» Gaps between areas

A complete description of track format is contained in the section "Direct-Access Device
Characteristics." Your only concern in creating a sequential data set isto allow for an
8-byte track descriptor record (capacity record or RO) when requesting space on a
direct-access volume. In addition, device overhead, which varies with the device, must be
allocated for each block on the track.

Device Control

The operating system provides you with six macro instructions for controlling
input/output devices. Each is, to varying degrees, device-dependent. Therefore, you
must exercise some care if you wish to achieve device independence.

When you use the queued access technique, only unit record equipment can be controlled
directly. When using the basic access technique, limited device independence can be
achieved between magnetic-tape and direct-access devices. Y ou must check all read or
write operations before issuing a device control macro instruction.

CNTRL—Control an 1/0 Device
The CNTRL macro instruction performs these device-dependent control functions:
» Card reader stacker selection (SS)
* Printer line spacing (SP)
* Printer carriage control (SK)
» Magnetic-tape backspace (BSR) over a specified number of blocks

* Magnetic-tape backspace (BSM) past a tapemark and forward space over the
tapemark

» Magnetic-tape forward space (FSR) over a specified number of blocks

» Magnetic-tape forward space (FSM) past atapemark and a backspace over the
tapemark

Backspacing moves the tape toward the load point; forward spacing moves the tape away
from the load point.

Note that the CNTRL macro instruction cannot be used with an input data set
containing variable-length records on the card reader.

Part 2: Data Management Processing Procedures 87

Y ou can use the CNTRL macro instruction to position DOS tapes that contain
embedded DOS checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The CNTRL macro instruction cannot be used to backspace
DOS. 7-track tapes that are written in data convert mode and contain embedded
checkpoint records.

PRTOV—Test for Printer Overflow

The PRTOV macro instruction tests for channel 9 or 12 of the printer carriage control
tape or the forms control buffer (FCB). An overflow condition causes either an
automatic skip to channel | or, if specified, transfer of control to your routine for
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to X'00'
before issuing another PRTOV.

If the data set specified in the DCB is not for a printer, no action is taken.

SETPRT—Printer Setup

The SETPRT macro instruction is used to initially set or dynamically change the
specifications of the 3800 Printing Subsystem. The SETPRT macro instruction is also
used to dynamically change the specifications of the 3211 printer or the 1403 printer
with UCS. For additional information on how to use the SETPRT macro with the 3800
printer, see 1BM 3800 Printing Subsystem Programmer's Guide.

For printers that have a universal character set (UCS) buffer or aforms control buffer
(FCB), the SETPRT macro instruction is used to fetch UCS and FCB images from the
image library (SY S1.IMAGELIB) and load them into their respective buffers. Note that
FCB images for the 3211 and 3800 are not compatible. The universal character sets for
the 1403 or 3211 and the character arrangement tables for the 3800 are also
incompatible.

The SETPRT macro allows you to request the operator to verify loading of the buffer.
For the 1403 and 3211 printers, the SETPRT macro allows you to specify the printing of
lowercase EBCDIC characters in uppercase when no uppercase/lowercase print chain or
trainis available.

For a printer that has no carriage control tape, you can use the SETPRT macro
instruction to load the FCB, to request operator verification of buffer loading, and to
allow the operator to align the paper in the printer.

The FCB contents can be fetched from the system library or defined in your program
through the exit list of the DCB macro instruction, as discussed under "Exit List
(EXLST)."

When issued, the SETPRT macro instruction can load the UCS buffer from the system
library. The library contains images of standard IBM character sets and of your own
special character sets. The operator can be requested to verify the loaded image after
mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or unblock printer data checks.
When data checks are blocked, unprintable characters are treated as blanks and do not
cause an error condition.

Except for the 3800, if the specified UCS or FCB image is not found in the image library
(or DCB exit list for an FCB image), the operator is requested to specify adifferent one

(message IEC127D isissued). If the operator is unable to supply avalid name, or the deviceisa
3800, the SETPRT macro will give an error return code.

88 OS/VS2 MV S Data Management Services Guide

BSP—Backspace a Magnetic Tape or Direct-Access Volume

The BSP macro instruction backspaces one block on the magnetic tape or direct-access
volume being processed. The block can then be reread or rewritten. An attempt to
rewrite the block destroys the contents of the remainder of the tape or track.

The direction of movement is toward the load point or beginning of the extent. Y ou may
not use the BSP macro instruction if the track overflow option was specified or if the
CNTRL, NOTE, or POINT macro instruction is used. The BSP macro instruction should
be used only when other device control macro instructions could not be used for
backspacing.

Any attempt to backspace across a file mark will result in areturn code of X'04' and
your tape or direct-access volume will be positioned after the file mark. This means you
cannot issue a successful backspace command once your EODAD routine is entered
unless you first reposition the tape or direct-access volume into your data set. (CLOSE
TYPE=T can get you positioned at the end of your data set.)

Y ou can use the BSP macro instruction to backspace DOS tapes containing embedded
DOS checkpoint records. If you use this means of backspacing, you must test for and
bypass the embedded checkpoint records. Y ou cannot use the BSP macro instruction for
DOS 7-track tapes written in translate mode.

NOTE—Return the Relative Address of a Block

The NOTE macro instruction requests the relative address of the block just read or
written. In a multivolume data set, the address is relative to the beginning of the volume
currently being processed.

The address provided by the operating system isreturned in register 1. The addressisin
the form of a4-byte relative block address for magnetic tape; for a direct-access device,
it isa4-byte relative track address. The amount of unused space available on the track of
the direct-access device is returned in register O.

POINT—Position to a Block

The POINT macro instruction causes repositioning of a magnetic tape or direct-access
volume to a specified block. The next read or write operation begins at this block. In a
multivolume data set, you must ensure that the volume referred to is the volume
currently being processed. If awrite operation follows the POINT macro instruction, all
of the track following the write operation is erased unless the data set is opened for
UPDAT. POINT is not meant to be used before a WRITE macro instruction when a data
set isopened for UPDAT. You can use the POINT macro instruction to position DOS
tapes that contain embedded checkpoint records if you specify OPTCD=H in the DCB
parameter field of the DD statement. The POINT macro instruction cannot be used to
backspace DOS 7-track tapes that are written in data convert mode and contain
embedded checkpoint records.

When using the POINT macro for a direct-access device that is opened for OUTPUT,
OUTIN, or INOUT, and the record format is not standard, the number of blocks per
track may vary dlightly.

Part 2: Data Management Processing Procedures 89

Device | ndependence

The ability to request input/output operations without regard for the physical
characteristics of the I/O devices makes it possible for you to write one program that will
fulfill avariety of needs. Device independence may be useful for:

» Accepting data from anumber of recording devices, such asadisk pack, 7- or 9-track
magnetic tape, or unit-record equipment. This situation could arise when several types
of data-acquisition devices are feeding a centralized complex.

» Observing constraints imposed by the availability of input/output devices (for
example, when devices on order have not been installed).

* Assembling, testing, and debugging on one System/370 configuration and processing
on adifferent configuration. For example, a 2314 drive can be used as a substitute for
several magnetic-tape units.

Device independence is not difficult to achieve, but requires some planning and
forethought. There are two areas of planning necessary to achieve device
independence—system generation considerations and programming considerations.

System Generation Considerations

Y ou can provide for device independence when the system is generated by generating a
system that not only meets the current input/output configuration requirements but
includes anticipated device attachments. Creating such a system entails |looking ahead at
expected delivery of input/output devices and, during system generation, constructing
the necessary control blocks and tables. Thus, when the devices are delivered, they need
only be physically attached. The operating system recognizes the devices without
modification. However, until the devices are physically connected, the operator must
designate them as being offline, using the VARY command, unless
OPTIONS=DEV STAT was specified on the CTRLPROG macro during system
generation. For information on the CTRLPROG macro, see OSVS2 System
Programming Library: System Generation Reference.

When new device attachments cannot be fully anticipated, you can add new devices by
performing an 1/0 device generation. Thisis alimited type of system generation that
enables you to change your /O configuration without regenerating other parts of the
system.

System generation techniques for effecting a smooth transition to new input/output
devices do not include addition of new device types. When support for new devicesis
provided, a new system must be generated. A complete description of system generation
techniquesis contained in OS/VS2 System Programming Library: System Generation
Reference.

90 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Programming Considerations

Each of three data set organizations—partitioned, indexed sequential, and
direct—requires the use of a direct-access device. Device independence is meaningful,
then, only for a sequentially organized data set, that is, a data set where one block of
data follows another, thus alowing input or output to be on a magnetic tape drive, a
direct-access device, a card read/punch, a printer, or a spooled data set.

Y our program will be device-independent if you do two things:

» Omit all device-dependent macro instructions and macro instruction parameters from
your program.

» Defer specifying any required device-dependent parameters until the program is ready

for execution. That is, supply the parameters on your data definition (DD) statement
or during the open exit routine.

In examining the following list of macro instructions, consider only the logical layout of
your data record without regard for the type of device used. Also, consider that any
reference to a direct-access volume isto be treated like a reference to magnetic tape, that
is, you must create a new data set rather than attempt to update.

OPEN

Specify INPUT, OUTPUT, INOUT, OUTIN, OUTINX, or EXTEND. The
parameters RDBACK and UPDAT are device-dependent and cause an
abnormal termination if directed to a device of the wrong type.

READ
Specify forward reading (SF) only.
WRITE
Specify forward writing (SF) only; use only to create new records.
PUTX
Use only output mode.
NOTE/POINT
These macros are valid for both magnetic-tape and direct-access volumes.

BSP
This macro is valid for magnetic-tape or direct-access volumes. However, its use
would be an attempt to perform device-dependent action.

CNTRL/PRTOV
These macros are device-dependent.

DCB Subparameters

MACRF
Specify R/W or G/P. Processing mode can also be indicated.
DEVD

Specify DA if any direct-access device may be used. Magnetic-tape and unit-record
equipment DCBs will fit in the area provided during assembly. Specify unit-record
devices only if you expect never to change to tape or direct-access devices. Key length
(KEYLEN) can be specified on the DD statement if necessary.

RECFM, LRECL, BLKSIZE
These can be specified in the DD statement. However, you must consider maximum
record size for specific devices, and track overflow cannot be specified unless
supported.

DSORG
Specify sequential organization (PS or PSU).

Part 2: Data Management Processing Procedures 91

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915
OPTCD

This subparameter is device-dependent; specify it in the DD statement.

SYNAD

Any device-dependent error checking is automatic. Generalize your routine so that no
device-dependent information is required.

Chained Scheduling for 1/0 Operations (including Nondirect-Access
Devicesfor 5740-AM3 only)

To accelerate the input/output operations required for a data set, the operating system
provides atechnique called chained scheduling. When requested, the system bypasses
the normal 1/0 routines and dynamically chains several input/output operations
together. A series of separate read or write operations, functioning with chained
scheduling, isissued to the computing system as one continuous operation. In a
nonpageabl e partition or address space, the program-controlled interruption (PCI) flag in
the CCWsiis used for synchronization of the I/O operations.

The 1/0O performance isimproved by reduction in both the CPU time and the channel
start/stop time required to transfer data within virtual storage. Some factors that affect
performance improvement are:

» Address space type (real or virtual)

* BUFNO for QSAM

* The number of overlapped requests for BSAM
» Other activity on the CPU and channel

The effects of rotational delay are also reduced, since several successive blocks, requested
separately, can beretrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained scheduling is specified must be
assigned at least two and preferably three buffers with QSAM, or must have a value of at
least two and preferably three for NCP with BSAM or BPAM.

Chained scheduling will be used by MV S whether it is requested or not (except for
printers and format-U input records). Chained scheduling will not be used where it is not
allowed.

For 5740-AM3, the following two paragraphs replace the paragraph above:

The system will default to chained scheduling for nondirect-access devices (other than
printers and format-U records on nondirect-access devices) except for those casesin
which it is not allowed.

A request for exchange buffering in MV Sis not honored, but compatibly defaults to

move mode and therefore has no effect on either arequest for chained scheduling or
adefault to chained scheduling.

92 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

A request for chained scheduling will be ignored and normal scheduling used
if any of the following are encountered when the data set is opened:

» Direct Access Device (5740-AM3 only)
» Search Direct (Thisline is deleted by 5740-AM3)

« BDAM CREATE, that is, MACRF=(WL) (Thislineis deleted by
5740-AM3)

» Track overflow

« UPDAT in the operand of the OPEN macro instruction

» CNTRL macro instruction to be used

» Devicetypeis paper tape reader

» Bypassing of embedded DOS checkpoint records on tape input data sets

» Spooled data sets (SY SIN or SY SOUT)

* A print data set or any associated data set for the 3525 Card Punch. (See OSand

OS/VS Programming Support for the IBM 3505 Card Reader and IBM 3525
Card Punch for more information on programming for the 3525.)

The number of channel program segments that can be chained is limited to the value
specified in the NCP operand of BSAM and BPAM DCBs, and to the value specified in
the BUFNO operand of QSAM DCBs.

Chained scheduling should not be specified (DCB=0PTCD=C) when channel 9 or
channel 12 isin the carriage control tape.

When chained scheduling is being used, the automatic skip feature of the PRTOV macro
instruction for the printer will not function. Format control must be achieved by ANSI or

Part 2: Data Management Processing Procedures 92.1

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

machine control characters. (Control characters are discussed in more detail in Part 1
under "Control Character," in Part 2 under "Data Format—Device Type
Considerations,” and in "Appendix B: Control Characters.") When you read
undefined-length records with QSAM, the DCBLRECL field is equal to the BLKSIZE
field, not the actual record length. The entire block is moved to your work areain the
move mode. When you are using QSAM under chained scheduling to read
variable-length, blocked, ASCII tape records (format-DB), you must code BUFOFF=L
in the DCB for that data set.

Note also that if you are using BSAM with the chained scheduling option to read
format-DB records and have coded a value for the BUFOFF operand other than
BUFOFF=L, the input buffers will be converted from ASCII to EBCDIC as usual, but
the record length returned to the DCBLRECL field will equal the block size, not the
actual length of the record read in; the record descriptor word (RDW), if present, will
not have been converted from ASCII to binary.

When chained scheduling is used on the 2540 Card Read Punch, error recovery
procedures are not performed.

Chained scheduling is most valuable for programs that require extensive input and output
operations. Because a data set using chained scheduling may monopolize available time
on a channel ina V=R region, separate channels should be assigned, if possible, when

more than one data set is to be processed.

Search Direct for I nput Operations (Except 5740-AM3)

To accelerate the input operations required for a data set on DASD, the operating system
provides atechnique called search direct. Search direct reads in the requested record and
the count field of the second record. This allows the operation to get the next record
directly, along with the count field of the following record. Search direct can be used
with all record formats except format-UT, format-FBT, format-FS, format-FBS, and
spanned. Y ou request search direct by coding OPTCD=Z in the DCB macro instruction.
For FS and FBS records, the access method routines always use aform of search-direct
processing. Search direct cannot be used under the following conditions:

* In conjunction with the NOTE and POINT macro instructions
* When you specify the UPDAT option of the OPEN macro instruction
* For partitioned data sets

Search Direct for Input Operations (5740-AM3 only)

To accelerate the input operations required for a data set on DASD, the
operating system provides atechnique called search direct. Search direct
reads in the requested record and the count field of the second record. This
allows the operation to get the next record directly, along with the count field
of the following record.

The function provided by the search-direct option is supplied whether or not
it isrequested. OPTCD=Z need not be coded and if used isignored.

Part 2: Data Management Processing Procedures 93

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Creating a Sequential Data Set

Asdiscussed earlier, a processing program should be developed using, as much as
possible, factors that are constant, with variable factors specified at execution. For that
reason, the following examples are generalized as much as possible. They are neither
exhaustive nor intended as complete examples. Rather, they are presented as
introductory sequences.

In creating a sequential data set on a magnetic tape or direct-access device, you must do
the following:

» Code DSORG=PS or PSU in the DCB macro instruction

» Code a DD statement to describe the data set (See OSVS2 JCL.)

» Process the data set with an OPEN macro instruction (data set is opened for output or
OUTIN), aseriesof PUT or WRITE and CHECK macros, and then a CLOSE macro

Tape-to-Print, Move Mode—Simple Buffering: In Figure 39, the GET-move and
PUT-move require two movements of the datarecords. If the record length (LRECL)
does not change in processing, only one move is necessary; you can process the record in
the input buffer segment. A GET-locate can be used to provide a pointer to the current
segment.

Tape-to-Print, Locate Mode—Simple Buffering: This example (Figure 40) is similar to
that in Figure 39. However, since there is no change in the record length, the records can
be processed in the input buffer. Only one move of each datarecord is required.

Retrieving a Sequential Data Set

In retrieving a sequential data set on a magnetic tape or direct-access device, you must
do the following:

* Code DSORG=PS or PSU in the DCB macro instruction
* Téell the system where your data set islocated (by coding a DD statement; see

OSVX2 JCL).
OPEN (INDATA, ,OUTDATA, (OUTPUT))
NEXTREC GET INDATA, WORKAREA Move mode
AP NUMBER,=P'1"'
UNPK COUNT ,NUMBER Record count adds 6
PUT OUTDATA, COUNT bytes to each record
B NEXTREC
TAPERROR SYNADAF ACSMETH=QSAM Control program returns message
LA 0,68(0,1) address in register 1.
ST 14 ,SAVE14 . SYNAD routine prints part of
PUT OUTDATA,(0) the message (beginning with
SYNADRLS the unit number) as a 56-byte
L 14,SAVE14 fixed-length record. It then
RETURN returns to the control
ENDJOB CLOSE (INDATA, ,OUTDATA) program.
WORKAREA DS CL50
COUNT DS CL6
NUMBER DC PL4'Q!
SAVE14 DS F
INDATA DCB DDNAME=INPUTDD, DSORG=PS,MACRF=(GM), EROPT=ACC, cC
SYNAD=TAPERROR , EODAD=ENDJOR
OUTDATA DCB DDNAME=OUTPUTDD, DSORG=PS , MACRF=(PM), EROPT=ACC

Figure 39. Creating a Sequential Data Set—Move Mode, Simple Buffering

94 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

» Process the data set with an OPEN macro instruction (data set is opened for input,

INOUT, RDBACK, or UPDAT), aseries of GET or READ macros and then a
CLOSE macro.

Updating a Sequential Data Set

When you update in place, you read records, process them, and write them back to their
original positions without destroying the remaining records on the track. The following
rules apply:

* You must specify the update option (UPDAT) in the OPEN macro instruction. To
perform the update, you can use only the READ, WRITE, CHECK, NOTE, POINT,
GET, and PUTX macro instructions.

* You cannot use chained scheduling.

Part 2: Data Management Processing Procedures 94.1

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

NEXTREC

TAPERROR SYNADAF

MOVERCD
PRINTIT

ENDJOB

NUMBER
INDATA

OUTDATA

OPEN | INDATA, OUTDATA, (OUTPUT) , ERRORDCB, (OUTPUT))
GET INDATA Locate mode
LR 2,1 Save pointer
AP NUMBER,=P' 1'
UNPK 0(6,2),NUMBER Process in input area
PUT OUTDATA Locate mode
MVC 0(50,1),0(2) Move record to output buffer
B NEXTREC

ACSMETH=QSAM Message address in register 1
ST 2,SAVE2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1),50(1) Shift nonblank message fields
MVI 78 (1),C" Blank end of message
MVC 79(49,1),78 (1)
ST 2,128 (1) Save address for debugging
CH 0,=H"'4" Test SYNADAF return code
BE MOVERCD Branch if data read
BL PRINTIT Branch if data not read
CLI 128(1),c' ! See if data read anyway
BE PRINTIT Branch if definitely no data
MVC 78 (50,1),0(2) Add input record to message
LA 0,4(1) Load address of,message
LR 2,14 Save return address
PUT ERRORDCER, (0) Print message (move mode)
SYNADRLS Release message and save area
LR 14,2 Restore return address
L 2,SAVE2 Restore register 2 contents
RETURN Return to control program
CLOSE [INDATA, OUTDATA, ERRORDCR) !
DC PL4'0"
DCB DDNAME=INPUTDD, DSORG=PS, MACRF= (GL) , EROPT=ACC, C

SYNAD=TAPERROR, EODAD=ENDJOB

DCB DDNAME=OUTPUTDD, DSORG=PS, MACRF= (PL)

ERRORDCB DCB

SAVE2

DS

DDNAME=SYSOUTDD, DSORG=PS, MACRF= (PM) , RECFM=V, C
BLKSIZE=128, LRECL=124

Figure 40. Creating a Sequential Data Set—L ocate Mode, Simple Buffering

* You cannot delete any record or change its length; you cannot add new records.
* Thedata set must be on a dir ect-access device.

A record must be retrieved by a READ or GET macro instruction before it can be
updated by aWRITE or PUTX macro instruction. A WRITE or PUTX macro
instruction does not need to be issued after each READ or GET macro instruction, The
READ and WRITE macro instructions must be execute forms that refer to the same
DECB; the DECB must be provided by the list forms of the READ or WRITE macro
instructions. (The execute and list forms of the READ and WRITE macro instructions
are described in OSVS2 MVS Data Management Macro Instructions.)

Updating With Overlapped Operations. To overlap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. Y ou
cannot overlap read with write operations, however, as operations of one type are started
or resumed. Note that each concurrent read or write operation requires a separate
channel program and a separate DECB. If asingle DECB were used for successive read
operations, only the last record read could be updated.

In Figure 50, overlap is achieved by having aread or write request outstanding while
each record is being processed. Note the use of the execute and list forms of the READ
and WRITE macro instructions, identified by the operands MF=E and MF=L.

Part 2: Data Management Processing Procedures 95

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Extending a Sequential Data Set

If you want to add records at the end of your data set, you must open the data set for
output with DISP=MOD specified in the DD statement or specify the EXTEND option
of the OPEN macro. Y ou can then issue PUT or WRITE macros to the data set.

Determining the Length of a Record When Using the BSAM
READ Macro

When you read a sequential data set, you can determine the length of the record in one
of the following four ways, depending upon the record format of the data set:

» For fixed-length, unblocked records, the length of all recordsisthe valuein the
DCBBLKSI field of the DCB.

¢ For variable-length records, the block descriptor word in the record contains the
length of the record.

» For fixed-length blocked or undefined-length records, the following method can be
used to calculate the block length. (This method should not be used when reading
track overflow records on a device with the rotational position sensing (RPS) feature

or when using chained scheduling on any device. The length of arecord cannot be
determined when using chained scheduling.) (For 5740-AM3 only, this method should

not be used for chained scheduling on non-direct access devices. The length of arecord
cannot be determined when using chained scheduling.) After checking the DECB for

the READ request but before issuing any subsequent data management macro instructions
that specify the DCB for the READ request, obtain the |OB address from the DECB. The
OB address can be loaded from the location 16 bytes from the start of the DECB.

Obtain the residual count from the channel status word (CSW) that has been stored in
the input/output block (10B). The residual count isin the halfword 14 bytes from the
start of the IOB. Subtract thisresidual count from the number of data bytes requested
to be read by the READ macro instruction. If "S" was coded as the length parameter
of the READ macro instruction, the number of bytes requested is the value of
DCBBLKSI at the time the READ was issued. If the length was coded in the READ
macro instruction, this value is the number of data bytes and it is contained in the

half word 6 bytes from the beginning of the DECB. The result of the subtraction is the
length of the block read. See Figure 41.

» Except for 5740-AM 3, for undefined-length records, the LRECL operand should be
omitted; the actual length can be supplied dynamically in a READ/WRITE macro
instruction. (This method should not be used when reading track overflow recordson
adevicewith therotational position sensing (RPS) feature or when using chained
scheduling on any device.) When an undefined-length record isread, the actual length
of therecord isreturned by the system in the DCBLRECL field of the data control
block.

» For 5740-AM 3, when an undefined-length record isread, the actual length of the
record isreturned in the DCBLRECL field of the data control block. Because of this
use of DCBLRECL, the LRECL operand should be omitted. Thelength to beread or
written can be supplied dynamically in a READ/WRITE macro instruction using
BSAM. This method cannot be used when using chained scheduling on any non-dir ect
access device.

96 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

Writing a Short Block When Using the BSAM WRITE Macro

When you are writing blocks for a sequential data set, you can change the length of a
block if you have fixed-blocked record format. The DCB block size field (DCBBLKSI)
can be changed to specify a block size that is shorter than what was originally specified
for the data set. The DCBBLKSI field must be changed before issuing the WRITE macro
instruction and must be a multiple of the LRECL parameter in the DCB. Any
subsequent WRITE macro instructions issued.will write records with the new block
length until the block size is changed again. The DCB block size field should not be

changed to specify ablock size that is greater than what was originally specified for the
data set.

Part 2: Data Management Processing Procedures 96.1

DCB

OPEN
LA
USING

READ
READ

CHECK
LH

SH

CHECK
LH

SH

MVC
READ

CHECK
LH

L

SH

DCB
DCBD

(DCB, (INPUT))
DCBR, DCB
IHADCB, DCBR

DECB1, SF, DCB, AREAl, 'S"'
DECB2, SF, DCB, AREA2, 50

DECB1

WORK1, DCBBLKSI
WORK2, DECB1+16
WORK1, 14 (WORK2)

DECB2

WORK1, DECB2+6
WORK2, DECB2+16
WORK1, 14 (WORK2)

DCBBLKSI, LENGTH3
DECB3, SF, DCB, AREA3

DECB3

WORK1, LENGTH3
WORK2, DECB+16
WORK1, 14 (WORK2)

. ..RECFM=U,NCP=2, ...

Block size at time of READ
IOB address
WORK1l has block length

Length requested
IOB address
WORK1l has block length

Length to be read

Block size at time of READ
IOB address
WORK1l has block length

Figure 41. One Method of Determining the Length of the Record When Using BSAM to Read Undefined-L ength Records

Processing a Partitioned Data Set

A partitioned data set can be stored only on a direct-access device. It is divided into
sequentially organized members, €&ch made up of one or more records (see Figure 42).
Each member has a unique name, 1 to 8 characters long, stored in a directory that is part
of the data set. The records of a given member are stored or retrieved sequentially.

Directory
Records

-
!
I
f

Entry for
Member A |

1
f
{ Entry for
Member B

Entry for

T
|
| Member C

L

Entry for
Member K

L -

Space from
+— Deleted
Member

«——~ Available
Area

Figure 42. A Partitioned Data Set

Part 2: Data Management Processing Procedures 97

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

The main advantage of using a partitioned data set is that you can retrieve any individual
member once the data set is opened without searching the entire data set. For example, a
program library can be stored as a partitioned data set, each member of whichisa
separate program or subroutine. The individual members can be added or deleted as
required. When amember is deleted, the member name is removed from the directory,
but the space used by the member cannot be reused until the data set is reorganized.

The directory, a series of records at the beginning of the data set, contains an entry for
each member. Each directory entry contains the member name and the starting location
of the member within the data set, as shown in Figure 42. In addition, you can specify up
to 62 characters of information in the entry. The directory entries are arranged in
alphameric collating sequence by name.

The track address of each member is recorded by the system as arelative track address
within the data set rather than as an absolute track address. Thus, an entire data set can
be moved without changing the relative track addresses in the directory. The data set can

be considered as one continuous set of tracks regardless of how the space was actually
allocated.

If thereis not sufficient space available in the directory for an additional entry, or not
enough space available within the data set for an additional member, no new members
can be stored.

Partitioned Data Set Directory

The directory of a partitioned data set occupies the beginning of the area allocated to the
data set on a direct-access volume. It is searched and maintained by the FIND and
STOW macro instructions. The directory consists of member entries arranged in
ascending order according to the binary value of the member name or alias.

Member entries vary in length and are blocked into 256-byte blocks. Each block
contains as many complete entries as will fit in a maximum of 254 bytes; any remaining
bytes are left unused and are ignored. Each directory block contains a 2-byte count field
that specifies the number of active bytesin ablock (including the count field). As shown
in Figure 43, each block is preceded by a hardware-defined key field containing the
name of the last member entry in the block, that is, the member name with the highest
binary value.

Each member entry contains a member name or aias. Each entry also contains the
relative track address of the member and a count field, as shown in Figure 44. In
addition, it may contain auser datafield. The last entry in the last directory block has a
name field of maximum binary value—all 1s.

NAME

specifies the member name or alias. It contains up to 8 alphameric characters,
left-justified and padded with blanksif necessary.

Key Data
Name of Number of T
I.E_ast (B'%tes Used Member Member Member
ntry in aximum Entry A Entry B
By) ry ve | Entry N
~—— ~— —
Bytes 8 2 254

Figure 43. A Partitioned Data Set Directory Block

98 OS/VS2 MV S Data Management Services Guide

Page of 0C26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Member TTR c Optional User Data
Name TTRN | TTRN | TTRN |
8 3 ~ . -0
T~ 0-31 halfwords

First Record

i
|
|
]
Pointer to : ™
of Member :
!
!

~

~ {(Maximum 62 bytes)
~

~
~
-~ ~
-
~
-
! ‘.f Number of Number of User
Name is an User Data Data Haifwords
Alias TTRNs
Bits 0 1-2 3-7

Figure 44. A Partitioned Data Set Directory Entry

TTR

is apointer to the first block of the member; TT isthe number of the track, relative to
the beginning of the data set, and R is the number of the block, reletive to the
beginning of that track.

Note: This pointer is created by adding 1 to the TTR for the last block of the
previous member (which is an end-of-file mark). If track TT isfull, the next block will
begin at record 1 of track TT + 1, and the pointer will be updated accordingly. The
control program finds the block by searching in multitrack mode using TT(R-1) asa
search argument.

specifies the number of halfwords contained in the user datafield. It may also contain
additional information about the user data field, as shown below:

Bits 0 1-2 37

0 whensetto 1, indicates that the NAME field contains an alias.
1-2 gpecifies the number of pointersto locations within the member.

A maximum of three pointersis allowed in the user data field. Additional pointers
may be contained in arecord referred to as a note list, discussed below. The
pointers can be updated automatically if the data set is moved or copied by a utility
program such as IEHMOVE. The data set must be marked unmovable under the
following conditions:

» Morethan three pointers are used in the user datafield.

» The pointersin the user datafield or note list do not conform to the standard
format.

» The pointers are not placed first in the user datafield.

» Any direct access address (absolute or relative) is embedded in any data blocks
or in another data set that refers to this data set.

3-7 contains a binary value indicating the number of halfwords of user data. This
number must include the space used by pointersin the user data field.

Part 2: Data Management Processing Procedures 99

Y ou can use the user data field to provide variable data as input to the STOW macro
instruction. If pointers to locations within the member are provided, they must be 4 bytes
long and placed first in the user data field. The user datafield format is as follows:

User Data

TTRN | TTRN | TTRN Optional

TT isthe relative track address of the note list or areato which you are pointing.
R isthe relative block number on that track.

N isabinary value that indicates the number of additional pointers contained in a
note list pointed to by the TTR. If the pointer is not to a note list, N=0.

A note list consists of additional pointers to blocks within the same member of a
partitioned data set. Y ou can divide a member into subgroups and store a pointer to the
beginning of each subgroup in the note list. The member may be aload module
containing many control sections (CSECTS), each CSECT being a subgroup pointed to
by an entry in the note list. Y ou get the pointer to the beginning of the subgroup by
using the NOTE macro instruction after you write the first record of the subgroup.
Remember that the pointer to the first record of the member is stored in the directory
entry by the system.

If the existence of anote list was indicated as shown above, the list can be updated
automatically when the data set is moved or copied by a utility program such as
IEHMOVE. Each 4-byte entry in the note list has the following format:

TTRX

TT istherelative track address of the areato which you are pointing.
R isthe relative block number on that track.
X isavailablefor any use.

To place the note list in the partitioned data set, you must use the WRITE macro
instruction. After checking the write operation, use the NOTE macro instruction to
determine the address of the list and place that address in the user data field of the
directory entry.

Processing a Member of a Partitioned Data Set

Because amember of a partitioned data set is sequentially organized, it is processed in
the same manner as a sequential data set. Either the basic or queued access technique
can be used. However, you cannot alter the directory when using the queued technique.

To locate a member or to process the directory, several macro instructions are provided
by the operating system. The BLDL macro instruction can be used to structure a list of
directory entriesin virtual storage; the FIND macro instruction locates a member of the
data set for subsequent processing; the STOW macro instruction adds, del etes, replaces,
or changes a member name in the directory. To use these macro instructions, you must
specify DSORG=PO or POU in the DCB macro instruction. Before issuing a FIND,
BLDL, or STOW macro instruction, you must check all preceding input/output
operations for completion.

100 OS/VS2 MV S Data Management Services Guide

BLDL—Construct a Directory Entry List

The BLDL macro instruction is used to place directory information in virtual storage.
Thedatais placed in abuild list, which you construct before the BLDL macro instruction
isissued. The format of thelist is similar to that of the directory. For each member name
in the list, the system supplies the address of the member and any additional information
contained in the directory entry. Note that if there is more than one member name in the
list, the member names must be in collating sequence regardless of whether the members
are from the same library or from different libraries.

Y ou can optimize retrieval time by directing a subsequent FIND macro instruction to the
build list rather than the directory to locate the member to be processed.

The build list, as shown in Figure 45, must be preceded by a 4-byte list description that
indicates the number of entriesin the list and the length of each entry (12 to 76 bytes).
Thefirst 8 bytes of each entry contain the member name or alias. The next 6 bytes must
be available to contain the starting address of the member plus some control data. If
thereis no user data entry, only the TTR and C fields are required. If additional
information is to be supplied from the directory, up to 62 bytes can be reserved.

FIND—Position to a Member

To determine the starting address of a specific member, you must issue a FIND macro
instruction. The system places the correct address in the data control block so that a
subsequent input or output operation begins processing at that point.

There are two ways you can direct the system to the right member when you use the
FIND macro instruction: specify the address of an area containing the name of the
member or specify the address of the TTR field of the entry in abuild list you have
created by using the BLDL macro instruction. In the first case, the system searches the
directory of the data set for the relative track address; in the second case, no search is
required because the relative track addressisin the build list entry.

(Each entry starts on hailfword boundary)

List Filied in by BLDL
Description FFLL I Y .

Member TIR| K | 2 C Uselrgata
Name (C) B |y m (C Halfwords)
e —

Programmer Supplies:

FF
LL
Member name

BLDL Supplies:

Number of member entries in list.
Even number giving byte length of each entry (minimum of 12).
Eight bytes, left-justified.

TTR Member starting location.

K If only data set = 0. if concatenation = number.
Not required if no user data.

Z Source of directory entry. Private library = 0.
Link library = 1. Job or step library = 2.
Not required if no user data.

C Same C field from directory. Gives number of user data halfwords.

User data As much as will fit in entry,

Figure 45. Build List Format

Part 2: Data Management Processing Procedures 101

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

The system will also search a concatenated series of directorieswhen (1) aDCB is
supplied that is opened for a concatenated partitioned data set or (2) aDCB is not
supplied, in which case either JOBLIB or STEPLIB (themselves perhaps concatenated)
followed by LINKLIB is searched.

If you want to process only one member, you can processit as a sequential data set
(DSORG=PS) using either BSAM or QSAM. Y ou indicate the name of the member you
want to process and the name of the partitioned data set in the DSNAME parameter of
the DD statement. When you open the data set, the system places the starting addressin
the data control block so that a subsequent GET or READ macro instruction begins
processing at that point. Y ou cannot use the FIND, BLDL, or STOW macro instructions
when you are processing one member as a sequential data set.

STOW—Update the Directory

When you add several members to a partitioned data set, you must issue a STOW macro
instruction after writing each member so that an entry for each one will be added to the
directory. To use the STOW macro instruction, DSORG=PO or POU must be specified
in the DCB macro instruction.

Y ou can also use the STOW macro instruction to delete, replace, or change a member
name in the directory, as well asto store additional information with the directory entry.
Since an alias can also be stored in the directory the same way, you should be consistent
in altering all names associated with a given member. For example, if you replace a
member, you must delete related alias entries or change them so that they point to the
new member.

If you add only one member to a partitioned data set and indicate the member name in
the DSNAME parameter of the DD statement, it is not necessary for you to use BPAM
and a STOW macro instruction in your program. If you wish to do so, you may use
BPAM and STOW, or BSAM or QSAM. If you use a sequential access method, or if you
use BPAM and issue a CL OSE macro instruction without issuing a STOW macro
instruction, the system will issue a STOW macro instruction using the member name you
have specified on the DD statement. When the system issues the STOW, the directory
entry that is added is the minimum length (12 bytes). This automatic STOW macro
instruction will not be issued if the CLOSE macro instructionisa TYPE=T or if the
TCB indicates the task is being abnormally terminated when the DCB is being closed.
The DISP parameter on the DD statement determines what directory action parameter
will be chosen by the system for the STOW macro instruction.

If DISP=NEW or MOD was specified, a STOW macro instruction with the add option
will be issued. If the member name on the DD statement is not present in the data set
directory, it will be added. If the member name is already present in the directory, the
task will be abnormally terminated.

If DISP=OLD was specified, a STOW macro instruction with the replace option will be
issued. The member name will be inserted into the directory, either as an addition if the
name is not already present or as areplacement if the name is present.

Thus, with an existing data set, you should use DISP=OLD to force a member into the
data set; you should use DISP=MOD to add members with protection against the
accidental destruction of an existing member.

102 OS/VS2 MV 'S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

Creating a Partitioned Data Set

If you have no need to add entries to the directory, that is, the STOW and BLDL macro
instructions will not be used, you can create a new data set and write the first member as
follows (see Figure 46):

* Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

e Indicate in the DD statement that the datais to be stored as amember of anew
partitioned data set, that is, DSNAME=name (membername) and DISP=NEW.

» Request space for the member and the directory in the DD statement.

Part 2: Data Management Processing Procedures 102.1

* Process the member with an OPEN macro instruction, a series of PUT or WRITE
macro instructions, and then a CLOSE macro instruction. A STOW macro instruction
isissued automatically when the data set is closed.

As aresult of these steps, the data set and its directory are created, the records of the
member are written, and a 12-byte entry is made in the directory.

To add additional members to the data set, follow the same procedure. However, a
separate DD statement (with the space request omitted) is required for each member.
The disposition should be specified as modify, DISP=MOD. The data set must be closed
and reopened each time a new member is specified.

To take full advantage of the STOW macro instruction, and thus the BLDL and FIND
macro instructions in future processing, you can provide additional information with each
directory entry. Y ou do this by using the basic access technique, which also allows you to
process more than one member without closing and reopening the data set, as follows
(see Figure 47):

* Request space in the DD statement for the members and the directory.
* Define DSORG=PO or DSORG=POU in the DCB macro instruction.
» Use WRITE and CHECK to write and check the member records.

* Use NOTE to note the location of any note list written within the member, if thereis
anotelist.

//PDSDD

OUTDCB

DD

DCB
OPEN
PUT

CLOSE

—-—--5DSNAME=MASTFILE (MEMBERK)
DI SP= (NEW,KEEP)

, SPACE= (TRK, (100 ,5,7))

I3

—-—, DSORG=PS, DDNAME=PDSDD, ———

(OUTDCB, (OUTPUT))

[or WRITE]

(OUTDCB) Automatic Stow

Figure 46. Creating One Member of a Partitioned Data Set

Part 2: Data Management Processing Procedures 103

//PDSDD DD -—-, DSNAME=MASTFILE, SPACE=(TRK, (100,5, 7)), DISP=MOD

OUTDCB DCB -—-, DSORG=PO, DDNAME=PDSDD, ——

OPEN (OUTDCB, (OUTPUT))

WRITE o Write and check first record of member.

CHECK The system will supply the relative
track address for the directory entry.

WRITE Write and check remaining records of

CHECK member.

NOTE If you are dividing the member into

ST subgroups, note the location of the first
record in subgroup, storing pointer
in note list.

WRITE Write note list at end of member.

CHECK

NOTE Note location of note list, storing

ST pointer in 1list for STOW.

STOW Enter information in directory for

this member after all records and note
lists are written.

Repeat from ** for each additional member

CLOSE (OUTDCB)

Figure 47. Creating Members of a Partitioned Data Set Using STOW

* When al the member records have been written, issue a STOW macro instruction to
enter the member name, its location pointer, and any additional datain the directory.

» Continue to write, check, note, and stow until all the members of the data set and the
directory entries have been written.

Retrieving a Member of a Partitioned Data Set

To retrieve a specific member from a partitioned data set, either the basic or queued
access technique can be used as follows (see Figure 48):

e Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

* Indicatein the DD statement that the datais a member of an existing partitioned data
set by coding DSNAM E=name(membername) and DISP=OLD.

* Process the member with an OPEN macro instruction, a series of GET and READ
macro instructions, and then a CLOSE macro instruction.

//PDSDD

INDCB

DD -—-, DSNAME=MASTFILE (MEMBERK) , DISP=0OLD
DCB -—-, DSORG=PS, DDNAME=PDSDD, ——
OPEN (INDCRB) Automatic Find

GET (or READ)
CLOSE (INDCB)

Figure 48. Retrieving One Member of a Partitioned Data Set

When your program is executed, the directory is searched automatically and the location
of the member is placed in the DCB.

To process several members without closing and reopening, or to take advantage of
additional datain the directory, this technique should be used (see Figure 49):

* Code DSORG=PO or POU in the DCB macro instruction.

104 OS/VS2 MV 'S Data Management Services Guide

« Buildalist (BLDL) of needed member entries from the directory.

 Indicatein the DD statement the data set name of the partitioned data set by coding
DSNAME=name and DISP=0OLD.

» Usethe FIND or POINT macro instruction to prepare for reading the member
records.

« The records may be read from the beginning of the member, or anote list may be read
first, to obtain additional locations that point to subcategories within the member.

» Read (and check) the records until all those required have been processed.
» Point to additional categories, if required, and read the records.
» Repeat this procedure for each member to be retrieved.

//PDSDD DD -—-, DSNAME=MASTFILE, DISP=0OLD
INDCB DCB --, DSORG=PO, DDNAME=PDSDD, ——
OPEN [INDCRB)
BLDL Build a list of selected member names

in virtual storage.
FIND (or POINT)
**Read note list.

READ

CHECK

POINT Locate subgroup by using note list.
READ

CHECK Read member records.

Repeat from ** for each additional member.

CLOSE [INDCB)

Figure 49. Retrieving Several Members of a Partitioned Data Set Using BLDL, FIND, and POINT

Updating a Member of a Partitioned Data Set

Updating in Place

A member of a partitioned data set can be updated in place, or can be deleted and
rewritten as a new member.

When you update in place, you read records, process them, and write them back to their
original positions without destroying the remaining records on the track. The following

rules apply:

» You must specify the update option (UPDAT) in the OPEN macro instruction. To
perform the update, you can use only the READ, WRITE, CHECK, NOTE, POINT,
FIND, and BLDL macro instructions.

* You cannot update concatenated partitioned data sets.
* You cannot use chained scheduling.
» You cannot delete any record or change its length; you cannot add new records.

A record must be retrieved by a READ macro instruction before it can be updated by a
WRITE macro instruction. Both macro instructions must be execute forms that refer to
the same DECB; the DECB must be provided by alist form. (The execute and list forms
of the READ and WRITE macro instructions are described in OSVS2 MVS Data
Management Macro Instructions.)

Part 2: Data Management Processing Procedures 105

Updating With QSAM: Y ou can update a member of a partitioned data set using the
locate mode of QSAM (DCB specifies MACRF=PL) and using the PUTX macro
instruction. The DD statement must specify the data set and member name in the
DSNAME parameter. This method allows only the updating of the member specified in
the DD statement.

Updating With Overlapped Operations. To overlap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. Y ou
cannot overlap read and write operations, however, as operations of one type must be
checked for completion before operations of the other type are started or resumed. Note
that each concurrent read or write operation requires a separate channel program and a
separate DECB. If asingle DECB were used for successive read operations, only the last
record read could be updated.

In Figure 50, overlap is achieved by having aread or write request outstanding while
each record is being processed. Note the use of the execute and list forms of the READ
and WRITE macro instructions, identified by the operands MF=E and MF=L.

Rewriting a Member

Thereis no actual update option that can be used to add or extend recordsin a
partitioned data set. If you want to extend or add a record within a member, you must
rewrite the complete member in another area of the data set. Since spaceis allocated
when the data set is created, there is no need to request additional space. Note, however,
that a partitioned data set must be contained on one volume. If sufficient space has not

//PDSDD DD DSNAME=MASTFILE (MEMBERK) , DISP=0OLD, ——-—
UPDATDCB DCB DSORG=PS, DDNAME=PDSDD, MACRF= (R, W) , NCP=2, EODAD=FINISH
READ DECBA, SF, UPDATDCB, AREAA, MF=L Define DECBA
READ DECBB, SF, UPDATDCB, AREAB, MF=L Define DECBB
AREAA DS Define buffers
AREAB DS
OPEN (UPDATDCB, UPDAT) Open for update
LA 2, DECBA Load DECB addresses
LA 3, DECBB
READRECD READ (2),SF,MF=E Read a record
NEXTRECD READ (3),SF,MF=E Read the next record
CHECK (2) Check previous read operation

(If update is required, branch to R2UPDATE)

LR 4,3 If no update is required,
LR 3,2 switch DECB addresses in
LR 2,4 registers 2 and 3

B NEXTRECD and loop

In the following statements, "R2" and "R3" refer to the records that were read using the DECBs whose addresses are in
registers 2 and 3, respectively. Either register may point to either DECBA or DECBB.

R2UPDATE CALL UPDATE, ((2)) Call routine to update R2
CHECK (3) Check read for next record (R3)
WRITE (2),SF,MF=E Write updated R2
(If R3 requires an update, branch to R3UPDATE)
CHECK (2) If R3 requires no update, check
B READRECD write for R2 and loop

R3UPDATE CALL UPDATE, ((3)) Call routine to update R3
WRITE (3),SF,MF=E Write updated R3
CHECK (2) Check write for R2
CHECK (3) Check write for R3
B READRECD Loop

FINISH CLOSE (UPDATDCB) End-of-Data exit routine

Figure 50. Updating a Member of a Partitioned Data Set

106 OS/VS2 MV 'S Data Management Services Guide

been allocated, the data set must be reorganized by the IEBCOPY utility program.

When you rewrite the member, you must provide two DCBSs, one for input and one for
output. Both DCB macro instructions can refer to the same data set, that is, only one DD
statement is required.

Y ou can reflect the change in location of the member either automatically, by indicating
adisposition of OLD, or by using the STOW macro instruction. Although the old
member is, in effect, deleted, its space cannot be reused until the data set is reorganized.

If an out-of-space condition occurs when updating a PDS member, the error recovery
procedure will STOW the PDS member as ' TEMPNAME'. The original member will
remain intact.

Processing an I ndexed Sequential Data Set

The organization of an indexed sequential data set allows you a great deal of flexibility in
the operations you can perform. The data set can be read or written sequentially,
individual records can be processed in any order, records can be deleted, and new
records can be added. The system automeatically locates the proper position in the data
set for new records and makes any necessary adjustments when records are del eted.

The queued access technique must be used to create an indexed sequential data set. It
can also be used to sequentially process or update the data set and to add records to the
end of the data set. The basic access technique can be used to insert new records
between records already in the data set and to update the data set directly.

I ndexed Sequential Data Set Organization

Therecords in an indexed sequential data set are arranged according to collating
sequence by a key field in each record. Each block of recordsis preceded by a key field
that corresponds to the key of the last record in the block.

An indexed sequential data set resides on direct-access storage devices and can occupy
up to three different areas:

» Prime Area—This area, also called the prime data area, contains data records and
related track indexes. It exists for al indexed sequential data sets.

» Overflow Area—This area contains records that overflow from the prime area when
new data records are added. It is optional.

* Index Area—This area contains master and cylinder indexes associated with the data
set. It exists for a data set that has a prime area occupying more than one cylinder.

Theindexes of an indexed sequential data set are analogous to the card catalog in a
library. For example, if the library user knows the name of the book or the author, he
can look in the card catalog and obtain a catalog humber that will enable him to locate
the book in the book files. He would then go to the shelves and proceed through rows
until he found the shelf containing the book. Usually each row contains a sign to indicate
the beginning and ending numbers of all books in that particular row. Thus, as he
proceeded through the rows, he would compare the catalog number obtained from the
index with the numbers posted on each row. Upon locating the proper row, he would
then search that row for the shelf that contained the book. Then he would look at the
individual book numbers on that shelf until he found the particular book.

ISAM uses the indexes in much the same way to locate records in an indexed sequential
data set.

Astherecords are written in the prime area of the data set, the system accounts for the
records contained on each track in a track index area. Each entry in the track index

Part 2: Data Management Processing Procedures 107

PrimeArea

Index Areas

identifies the key of the last record on each track. Thereis atrack index for each cylinder
in the data set. If more than one cylinder is used, the system devel ops a higher-level
index called a cylinder index. Each entry in the cylinder index identifies the key of the
last record in the cylinder. To increase the speed of searching the cylinder index, you can
request that a master index be developed for a specified number of cylinders, as shown
in Figure 51.

Rather than reorganize the whole data set when records are added, you can request that
space be allocated for additional records in an overflow area.

Records are written in the prime area when the data set is created or updated. The last
track of prime datais reserved for an end-of-file mark. The portion of Figure 51 labeled
Cylinder 1illustrates the initial structure of the prime area. Although the prime area can
extend across several noncontiguous areas of the volume, all the records are writtenin
key sequence. Each record must contain a key; the system automatically writes the key
of the highest record before each block.

When the ABSTR option of the SPACE parameter of the DD statement is used to
generate a multivolume prime area, the VTOC of the second volume and on all
succeeding volumes must be contained within cylinder O of the volume.

The operating system generates track and cylinder indexes automatically. Up to three
levels of master indexes are created if requested.

Track Index: Thisisthe lowest level of index and is always present. Thereis one track
index for each cylinder in the prime area; it is written on the first track(s) of the cylinder
that it indexes.

Master Index
450 | 900 | 2000

Cylinder Index

FaYa¥al 200, o2 4L 0 P

rAavivy UV L _Tod - -

[Nalal 800 200 Q00

4,

TO00 [1200 | T550 | 2000 [+

Cylinder 1 Cylinder 11 Cylinder 12

faYaYal

FaYaYal

if\f\
"~y

o

[v vy

Data
10

Data
20

Data
40

Data
100

Data
150

Data
175

Data
190

Data
200

Figure 51. Indexed Sequential Data Set Organization

Track
Index

Prime
Data

Prime
Data

Overflow

1500

v

2000

108 OS/VS2 MV S Data Management Services Guide

Theindex consists of a series of paired entries, that is, of anormal entry and an overflow
entry for each prime track. For fixed-length records, each normal entry (and also
DCBFIRSH) pointsto either record O or the first prime record on a shared track. For
variable-length records, the normal entry contains the key of the highest record on the
track and the address of the last record on the track. The overflow entry isoriginally the
same as the normal entry. (Thisiswhy 100 appears twice on the track index for

cylinder 1 in Figure 51.) The overflow entry is changed when records are added to the
data set. Then the overflow entry contains the key of the highest overflow record and the
address of the lowest overflow record logically associated with the track. Figure 52
shows the format of atrack index.

If al the tracks allocated for the prime data area are not used, the index entries for the
unused ones are flagged as inactive. The last entry of each track index isadummy entry
indicating the end of the index. When fixed-length record format has been specified, the
remainder of the last track of each cylinder used for atrack index contains prime data
recordsif there is room for them.

Each index entry has the same format. It is an unblocked, fixed-length record consisting
of acount, akey, and adata area. The length of the key corresponds to the length of the
key areain the record to which it points. The data areais always 10 bytes long. It
contains the full address of the track or record to which the index points, aswell asthe
level of the index and the entry type.

Cylinder Index: For every track index created, the system generates a cylinder index
entry. Thereisone cylinder index for a data set, each entry of which points to atrack
index. Since there is one track index per cylinder, there is one cylinder index entry for
each cylinder in the prime data area, except in the case of a 1-cylinder prime area. As
with track indexes, inactive entries are created for any unused cylinders in the prime data
area.

Master Index: Asan optional feature, the operating system creates, at your request, a
master index. The presence of thisindex makeslong, serial searches through alarge,
cylinder index unnecessary.

Normal/Overflow Normal/Overflow
Pair Pair

r a nYs 8 3

Normal Qverfiow Normal Overflow

Entry Entry Entry Entry
£ ~ N A N » N\ - -

Key1 Data2 Key3 Data4 Key1 Data? Key3 Data4 g

1Normal key = key of the highest record on the prime data track

2Normal data

]

address of the prime data track

i

3Overﬂow key key of the highest overflow record logically associated with the prime data track

4Overf|ow data = address of the lowest overflow record logically associated with the prime data track

Notes:

e |f there are no overflow records, overflow key and data entries are the same as normal key and data entries.
® This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

Figure 52. Format of Track Index. Entries

Part 2: Data Management Processing Procedures 109

Y ou can specify the conditions under which you want a master index created. For
example, if you have specified NTM=3 and OPTCD=M in your DCB macro instruction,
amaster index is created when the cylinder index exceeds 3 tracks. The master index
consists of one entry for each track of cylinder index. If your data set is extremely large,
a higher-level master index is created when the first-level master index exceeds three
tracks. This higher-level master index consists of one entry for each track of the
first-level master index. This procedure can be repeated for as many as three levels of
master index.

Overflow Areas

Asrecords are added to an indexed sequential data set, spaceis required to contain those
records that will not fit on the prime data track on which they belong. Y ou can request
that a number of tracks be set aside asa cylinder overflow area to contain overflows
from prime tracks in each cylinder. An advantage of using cylinder overflow areasisa
reduction of search time required to locate overflow records. A disadvantage is that there
will be unused space if the additions are unevenly distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can request an independent
overflow area. Overflow from anywhere in the prime data areais placed in a specified
number of cylinders 'reserved solely for overflow records. An advantage of having an
independent overflow areais areduction in unused space reserved for overflow. A
disadvantage is the increased search time required to locate overflow recordsin an
independent area.

If you request both cylinder overflow and independent overflow, the cylinder overflow
areaisused first. It isagood practice to request cylinder overflow areas large enough to
contain areasonable number of additional records and an independent overflow areato
be used as the cylinder overflow areas are filled.

Adding Recordsto an Indexed Sequential Data Set

Either the queued access technique or the basic access technique may be used to add
records to an indexed sequential data set. A record to be inserted between records
already in the data set must be inserted by the basic access method using WRITE KN
(key new). Records added to the end of a data set, that is, records with successively
higher keys, may be added to the prime data area or the overflow area by the basic
access method using WRITE KN, or they may be added to the prime data area by the
queued access technique using the PUT macro instruction.

Inserting New Recordsinto an Existing Indexed Sequential Data Set

Asyou add records to an indexed sequential data set, the system inserts each record in its
proper sequence according to the record key. The remaining records on the track are
then moved up one position each. If the last record does not fit on the track, it iswritten
in the first available location in the overflow area. A 10-byte link field is added to the
record put in the overflow areato connect it logically to the correct track. The proper
adjustments are made to the track index entries. This procedureisillustrated in

Figure 53.

Subsequent additions are written either on the prime track or as part of the overflow
chain from that track. If the addition belongs after the last prime record on atrack but
before a previous overflow record from that track, it iswritten in the first available
location in the overflow area. Itslink field contains the address of the next record in the
chain.

110 OS/VS2 MV 'S Data Management Services Guide

Normal Entry

Overflow Entry

[T T |
.. Track 1 Track Track Track | Track
Initial Format 100 ; 1 100 | 1 200 E 9 200 i 2 Index
10 20 40 100
Prime
Data
150 175 190 200
Overflow
T T T T
Track Track 3 Track Track 3
Add Records a0 | 100 ! 190 ! 200 ! Track
25 and 101 : 1 | Record 1 ! 2 ! Record 2 | |ndex
10 20 25 40
Prime
Data
101 150 175 180
T T
T
100 Tr1a ok 200 r2ack Overflow
| 1
T T T I
Track | Track 3 » Track . Track 3 Track
Add Records 26 100 190 200 |
26 and 199 1 | Record 3 L2 | Record 4 | Index
10 20 25 26
Prime
Data
101 150 175 190
‘//'/i;r:;k ﬁack : Track;ﬁg_\ | Track 3
100 | 1 200 L2 40 | Record 1 199 | Record 2 Overflow

Figure 53. Adding Records to an Indexed Sequential Data Set

Adding New Recordsto the End of an Indexed Sequential Data Set

Records added to the end of adata set, that is, records with successively higher keys,
may be added by the basic access method using WRITE KN (key new), or by the queued
access method using the PUT macro instruction (resume load). In either case records
may be added to the prime data area.

When you use the WRITE KN macro instruction, the record being added is placed in the
prime data area only if thereisroom for it on the prime data track containing the record
with the highest key currently in the data set. If there is not sufficient room on that track,
the record is placed in the overflow area and linked to that prime track even though
additional prime data tracks originally allocated have not been filled.

When you use the PUT macro instruction (resume load), records are added to the prime
data area until the space originally allocated is filled. Once this alocated prime areais
filled, you can add records to the data set using WRITE KN, in which case they will be

Part 2: Data Management Processing Procedures| | |

placed in the overflow area. Resume load is discussed in more detail later under
"Creating an Indexed Sequential Data Set."

In order to add records with successively higher keys using the PUT macro instruction
(resume load):

» Thekey of any record to be added must be higher than the highest key currently in
the data set.

* The DD statement must specify DISP=MOD (or, for VS2.03.808, the EXTEND
option is specified in the OPEN macro).

» Thedata set must have been successfully closed when it was created or when records
were previousy added using the PUT macro instruction.

Y ou may continue to add fixed-length records in this manner until the original space
alocated for prime datais exhausted.

When you add records to an indexed sequential data set using the PUT macro instruction
(resume load), new entries are also made in the indexes. During resume load on a data
set with a partialy filled track and/or a partially filled cylinder, the track index entry
and/or the cylinder index entry is overlaid when the track or cylinder isfilled. If resume
load abnormally terminates ,after these index entries have been overlaid, a subsequent
resume load will get a sequence check when adding a key that is higher than the highest
key at the last successful CLOSE but lower than the key in the overlaid index entry.
When the SYNAD exit is taken for a sequence check, register O contains the address of
the highest key of the data set.

Maintaining an I ndexed Sequential Data Set
An indexed sequential data set must be reorganized occasionally for two reasons:
» Theoverflow areawill eventually be filled.
« Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data set and on your
timing and storage requirements. There are two ways you can accomplish reorganization:

* You can reorganize the data set in two passes by writing it sequentially into another
area of direct-access storage or magnetic tape and then recreating it in the original
area.

» You can reorganize the data set in one pass by writing it directly into another area of
direct-access storage. In this case, the area occupied by the original data set cannot be
used by the reorganized data set.

The operating system maintains statistics that are pertinent to reorganization. The
statistics, written on the direct-access volume and available in the DCB for checking,
include the number of cylinder overflow areas, the number of unused tracksin the
independent overflow area, and the number of references to overflow records other than
the first. They appear in the RORG1, RORG2, and RORGS3 fields of the DCB.

If you indicate when creating or updating the data set that you want to be able to flag
records for deletion during updating, you can set the delete code (the first byte of a
fixed-length record or the fifth byte of avariable-length record) to X'FF'. If aflagged
record is forced off its prime track during a subsequent update, it will not be rewritten in
the overflow area, as shown in Figure 54, unless it has the highest key on that cylinder.
Similarly, when you process sequentially, flagged records are not retrieved for processing.
During direct processing, flagged records are retrieved like any other records, and you
should check them for the delete code.

112 OS/VS2 MV S Data Management Services Guide

Note that aWRITE KN (key new) to a data set containing variable-length records
removes al of the deleted records from that prime data track.

Note that to use the delete option, RKP must be greater than O for fixed-length records
and greater than 4 for variable-length records.

Key Data
1
Fixed Length X‘FF, ?
I
Delete Code
BDW RDW
Key U, A G Data
. | T :
Variable LLOO zaoo : X:FF:I MOO E {
Length 1 I !
Delete Code
! T T i
Initial Format 100 | Track 1 100 ! Track 1 200 | Track 2 200 | Track 2
| I 1 I
10 20 40 100
150 175 190 200

. T T I !
Record 100 is . 40 | Track 1 40 ! Track 1 200 | Track 2 200 | Track 2
marked for deletion A ! | |
and record 25 is
added to the
data set 10 20 % 40
150 175 190 200

Figure 54. Deleting Records From an Indexed Sequential Data Set

Part 2: Data Management Processing Procedures 113

I ndexed Sequential Buffer and Work Area Requirements

The only case in which you will ever have to compute the buffer length (BUFL)
requirements for your program is when you use the BUILD or GETPOOL macro
instruction to construct the buffer area. If you are creating an indexed sequential data set
(using the PUT macro instruction), each buffer must be 8 bytes longer than the blocksize
to allow for the hardware count field, that is:

Buffer length = 8 + Blocksize

Data
© (BLKSIZE)

Buffer

One exception to this formula arises when you are dealing with an unblocked format-F
record whose key field precedes the data field; its relative key positionis 0 (RKP=0). In
that case the key length must also be added, that is:

Buffer length = 8 + Key length + Record length

Key Data

®) (KEYLEN) (LRECL)

Buffer

The buffer requirements for using the queued access technique to read or update (using
the GET or PUTX macro instruction) an indexed sequential data set are discussed
below.

For fixed-length unblocked records when both the key and data are to be read and for
variable-length unblocked records, padding is added so that the data will be on a
doubleword boundary, that is:

Buffer length = Key length + Padding + 10 + Blocksize

(KEYLEN) (10) (BLKSIZE)
Buffer

For fixed-length unblocked records when only dataisto be read:

Buffer length = 16 + LRECL

Padding Link Data
(6) (10) (LRECL)

Buffer

114 OS/VS2 MV S Data Management Services Guide

For fixed-length blocked records:

Buffer length = 16 + Blocksize

Padding Link Data
(6) (10) (BLKSIZE)

Buffer

For variable-length blocked records, padding is 2 if the buffer starts on a fullword
boundary that is not also a doubleword boundary or 6 if the buffer startson a
doubleword boundary, that is:

Buffer length = 12 or 16 + Blocksize

i Link Data
Padding (10) (BLKSIZE)

Buffer

If you are using the input data set with fixed-length, unblocked records as a basis for
creating a new data set, awork areais required.

The size of the work areais given by:

Work area= Key length + Record length

Data
Key (LRECL)

Work Area

If you are reading only the data portion of fixed-length unblocked records or
variable-length records, the work areais the same size as the record, that is:

Work area = Record length

Data
(LRECL)

Work Area

Buffer length = 16 + Blocksize

When you use the basic access technique to update records in an indexed sequential data
set, the key length field need not be considered in determining your buffer requirements.
The areafor fixed-length records must be:

Padding Link Data
(6) (10) (BLKSIZE)

Buffer

Part 2: Data Management Processing Procedures 115

For variable-length records, padding is 2 if the buffer starts on a fullword boundary that
is not also a doubleword boundary or 6 if a buffer starts on a doubleword boundary.
Thus, the area must be;

Buffer length = 12 or 16 + Blocksize

Link Data

Padding (10) (BLKSIZE)

Buffer

Y ou can speed up the process of adding fixed-length or variable-length records to a data
set by using the MSWA parameter of the DCB macro instruction to provide a specia
work areafor the operating system. The size of the work area (SMSW parameter in the
DCB) must be large enough to contain afull track of data, the count fields of each block,
and the work space for inserting the new record.

The size of the work area needed varies according to the record format and the device
type. You can calculate it during execution using device-dependent information obtained
with the DEV TY PE macro instruction and data set information from the DSCB obtained
with the OBTAIN macro instruction. The DEVTY PE and OBTAIN macro instructions
arediscussed in OS/'VX2 System Programming Library: Data Management.

Note that you can use the DEVTY PE macro instruction only if the index and prime areas
are on devices of the same type or if the index areaiis on adevice with alarger track
capacity than that of the device containing the prime area. If you are not trying to
maintain device independence, you may precalculate the size of the work area needed

and specify it in the SMSW field of the DCB macro instruction. The maximum value for
SMSW is 65,535.

For calculating the size of the work area, refer to the storage device capacities shown in
Figure 62 under "Estimating Space Requirements' and the device overhead formulas
given in the same section.

For fixed-length blocked records, SMSW is calculated as follows:
SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN

The formulafor fixed-length unblocked recordsis

SMSW = HIRPD(KEYLEN + LRECL + 8) + 2

The value for HIRPD isin the index (format-2) DSCB. OSVS2 System Programming
Library: Debugging Handkook shows the exact location of thisfield in theindex DSCB.
If you don't use the MSWA and SMSW parameters, the control program supplies awork
areausing the formulaBLKSIZE + LRECL + KEYLEN.

For variable-length records, SM SW may be calculated by one of two methods. The first
method may lead to faster processing although it may require more storage than the
second method.

Thefirst method is as follows:
SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN + 10

The second method is as follows:

SMSW= (Track Capacity-Bn+1) (BLK SIZE)+8(HIRPD)+L RECL +K EY LEN+10+(REM-N-KEY LEN)
Bi

In all of the above formulas, theterms BLKSIZE, LRECL, KEYLEN, and SMSW are
the same as the parameters in the DCB macro instruction. REM is the remainder of the

116 OS/VS2 MV S Data Management Services Guide

division operation in the formulaand N is the first constant in the Bi formulas described
in Figure 63. (REM-N-KEYLEN) isadded only if it is positive. The second method
yields aminimum value for SMSW. Therefore, the first method isvalid only if its
application resultsin a value higher than the value that would be derived from the second
method. If neither MSWA nor SMSW is specified, the control program supplies the work
area for variable-length records, using the second method to calculate the size.

Another technique to increase the speed of processing isto provide spacein virtual
storage for the highest-level index. To specify the address of this area, use the MSHI
operand of the DCB. When the address of this areais specified, you must also specify its
size, which you can do by using the SMSI operand of the DCB. The maximum value for
SMSI is 65,535. If you do not use this technique, the index on the volume must be
searched.

The size of the storage area (SM S| parameter) varies. To alocate that space during
execution, you can find the size of the high-level index in the DCBNCRHI field of the
DCB during your DCB exit routine or after the data set is open. Use the DCBD macro
instruction to gain access to the DCBNCRHI field (see "Modifying the Data Control
Block" in Part 1). You can also find the size of the high-level index in the DS2NOBY T
field of theindex (format 2) DSCB, but you must use the utility program IEHLIST to
print the information in the DSCB. Y ou can calculate the size of the storage area
required for the high-level index by using the formula

SMSI = Number of Tracks Number of Entries (Key Length + 10)
in High-Level Index/ \ per Track

The formulafor calculating the number of tracksin the high-level index isin the section
"Calculating Space Requirements for an Indexed Sequential Data Set" in Part 3. When a
data set is shared and has the DCB integrity feature (DISP=SHR), the high-level index
in storage is not updated when DCB fields are changed.

Controlling an Indexed Sequential Data Set Device

An indexed sequential data set is processed sequentially or directly. Direct processing is
accomplished by the basic access technique. Because you provide the key for the record
you want read or written, al device control is handled automatically by the system. If
you are processing the data set sequentialy, using the queued access technique, the
deviceis automatically positioned at the beginning of the data set.

In some cases, you may wish to process only a section or several separate sections of the
data set. You do this by using the SETL macro instruction, which directs the system to
begin sequential retrieval at the record having a specific key. The processing of
succeeding recordsis the same as for normal sequential processing, except that you must
recognize when the last desired record has been processed. At this point, issue the
ESETL macro instruction to terminate sequential processing. Y ou can then begin
processing at another point in the data set.

SETL—Specify Start of Sequential Retrieval

The SETL macro instruction enables you to retrieve records starting at the beginning of
an indexed sequential data set or at any point in the data set. Processing that isto start at
apoint other than the beginning can be requested in the form of arecord key, akey class
(key prefix), or an actual address of a prime data record.

The key class concept is useful because you do not have to know the whole key of the
first record to be processed. A key class comprises all of the keys that begin with
identical characters. The key classis defined by specifying the desired characters of the
key class at the address specified in the lower-limit operand of the SETL macro and
setting the remaining characters to the right of the key class to binary zeros.

Part 2: Data Management Processing Procedures 117

To use actual addresses, you must keep an account of where the records were written
when the data set was created. The device address of the block containing the record just
processed by a PUT-move macro instruction is available in the 8-byte data control block
field DCBLPDA. For blocked records the address is the same for each record in the
block.

Normally, when a data set is created with the del ete option specified, deleted records
cannot be retrieved using the QISAM retrieval mode. When the delete option is not
specified in the DCB, the SETL macro options function as follows:

SETL B — Start at first record in the data set

SETL K — Start with record having the specified key

SETL KH — Start with record whose key is equal to or higher than the specified key
SETL KC — Start with first record having a key that falls into the specified key class

SETL | — Start with the record found at the specified direct-access address in the
prime area of the data set

Because the DCBOPTCD field in the DCB can be changed after the data set is created
(by respecifying the OPTCD in the DCB or DD card), it is possible to retrieve deleted
records. In this case, SETL functions as noted above.

When the delete option is specified in the DCB, the SETL macro options function as
follows:

SETL B — Start retrieval at first nondel eted record in the data set

SETL K — Start retrieval at record matching the specified key if that record is not
deleted. If the record is deleted, an NRF (no record found) indication is set
in the DCBEXCD field of the DCB, and SYNAD is given control

SETL KH — Start with first nondeleted record whose key is equal to or higher than the
specified key

SETL KC — Start with first nondeleted record having a key that falls into the specified
key class or follows the specified key class

SETL | — Start with first nondeleted record following the specified direct-access
address

With the delete option not specified, QISAM retrieves and handles records marked for
deletion like nondel eted records.

Note: Regardless of the SETL or delete option specified, the NRF condition will be
posted in the DCBEXCD field of the DCB, and SYNAD is given control if the key or
key class:

* Ishigher than any key or key class in the data set
» Does not have a matching key or key classin the data set

ESETL—End Sequential Retrieval

The ESETL macro instruction directs the system to stop retrieving records from an
indexed sequential data set. A new scan limit can then be set, or processing terminated.
An end-of-data-set indication automatically terminates retrieval, An ESETL macro
instruction must be executed before another SETL macro instruction (described above)
using the same DCB is executed.

Note: An ESETL macro instruction should be executed before another SETL macro
instruction if the previous SETL macro instruction completed with an error,

118 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Creating an Indexed Sequential Data Set

Y ou can create an indexed sequential data set in one step or in several steps. Y ou can
create the data set either by writing all recordsin a single step or by writing one group of
records in one step and writing additional groups of records in subsequent steps. Writing
records in subsequent stepsis resume loading. When using either one step or several
steps, you must present the records for writing in ascending order by key.

To create an indexed sequential data set by the one-step method, you should proceed as
follows:

* Code DSORG=IS or DSORG=ISU and MACRF=PM or MACRF=PL inthe DCB
macro instruction.

» Specify in the DD statement the DCB attributes DSORG=1S or DSORG=ISU, record
length (LRECL), blocksize (BLKSIZE), record format (RECFM), key length
(KEYLEN), relative key position (RKP), options required (OPTCD), cylinder
overflow (CYLOFL), and the number of tracks for amaster index (NTM). Specify
space requirements with the SPACE parameter. To reuse previously allocated space,
omit the SPACE parameter and code DISP= (OLD, KEEP).

* Open the data set for output.

» Usethe PUT macro instruction to place all the records or blocks on the direct-access
volume.

» Closethe data set.

The records that compose a newly created data set must be presented for writing in
ascending order by key. Y ou can merge two or more input data sets. If you want a data
set with no records (anull data set), you must write at least one record when you create
the data set. Y ou can subsequently delete this record to achieve the null data set.

If the records are blocked, you should not write arecord with a hexadecimal value of FF
and akey of hexadecimal value FF. Thisvalueis used for padding. If it occurs as the
last record of a block, the record cannot be retrieved. If the record is moved to the
overflow area, it islost.

When creating an indexed sequential data set, a procedure called loading, you can
improve performance by using the full-track-index-write option. Y ou do this by
specifying OPTCD=U in the DCB. This causes the operating system to accumulate
track-index entriesin virtual storage. Note that the full-track-index-write option can be
used only for fixed-length records.

If you do not specify this option, the operating system writes each normal-overflow pair
of entries for the track index after the associated prime data track has been written. If
you specify this option, the operating system accumulates track-index entriesin virtual
storage until either there are enough entriesto fill atrack or end-of-data or
end-of-cylinder is reached. Then the operating system writes these entries as a group,
writing one group for each track of track index. This option requires alocation of more
storage space (the space in which the track-index entries are gathered), but the number
of 1/0O operations required to write the index can be significantly decreased.

When you specify the full-track-index-write option, the track index entries are written as
fixed-length unblocked records. If alarge enough area of virtual storage is not available,
the entries are written as they are created, that is, in normal-overflow pairs.

Once an indexed sequential data set has been created, its characteristics cannot be
changed. However, for added flexibility, the system allows you to retrieve records using
either the queued access technique with simple buffering, or the basic access technique
with dynamic buffering.

Part 2: Data Management Processing Procedures 119

Tapeto Disk—Indexed Sequential Data Set: The example in Figure 55 shows the
creation of an indexed sequential data set from an input tape containing 60-character
records. The key by which the data set is organized is in positions 20-29. The output
records will be an exact image of the input, except that the records will be blocked. One
track per cylinder isto be reserved for cylinder overflow. Master indexes are to be built
when the cylinder index exceeds six tracks. Reorganization information about the status
of the cylinder overflow areasisto be maintained by the system. The delete option will
be used during any future updating.

To create an indexed sequential data set in more than one step, create the first group of
records using the one step method described above. Thisfirst section must contain at
least one data record. The remaining records can then be added to the end of the data set
in subsequent steps using resume load. Each group to be added must contain records
with successively higher keys. This method allows you to create the indexed sequential
data set in several short time periods rather than in asingle long one.

This method also allows you to provide limited recovery from uncorrectabl e output
errors. When an uncorrectable output error is detected, do not attempt to continue
processing or to close the data set. If you have provided a SYNAD routine, it should
issue the ABEND macro instruction to terminate processing. If no SYNAD routineis
provided, the control program will terminate your processing. If the error shows that
space in which to add the record was not found, you must close the data set; issuing
subsequent PUT macro instructions can cause unpredictable results. Y ou should begin
recovery at the record following the end of the data as of the last successful close. The
rerun time is limited to that necessary to add the new records, rather than to that
necessary to recreate the whole data set.

When you extend an indexed sequential data set with resume load, the disposition
parameter of the DD statement must specify MOD. To ensure that the necessary control
information isin the DSCB before attempting to add records, you should at least open

//INDEXDD DD
//

//INPUTDD DD

ISLOAD START

DCBD
ISLOAD CSECT

OPEN
NEXTREC GET

LR

PUT

B

CHECKERR L
USING
™
BO
™
BO
™
BO

DSNAME=SLATE.DICT (PRIME) , DCB= (BLKSIZE=240, CYLOFL=1, C
DSORG=IS, OPTCD=MYLR, RECFM=FB, LRECL=60, NTM=6, RKP=19, C
KEYLEN=10) ,UNIT=3330, SPACE=(CYL, 25, CONTIG) , ———

0
DSORG=IS

(IPDATA, ISDATA, (OUTPUT))

IPDATA Locate mode

0,1 Address of record in register 1
ISDATA, (0) Move mode

NEXTREC

3,=A(ISDATA) Initialize base for errors
IHADCB, 3

DCBEXCD1,X'04"

OPERR Uncorrectable error
DCBEXCD1,X'20"

NOSPACE Space not found
DCBEXCD2,X'80"

SEQCHK Record out of sequence

Rest of error checking

Error routine

End of job routine
IPDATA DCB
ISDATA DCB

(EODAD FOR IPDATA)

DDNAME=INDEXDD, DSORG=IS ,MACRF=(PM) , SYNAD=CHECKERR

Figure 55. Creating an Indexed Sequential Data Set

120 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

and close the data set successfully on aversion of the system that includes resume load.
This need be done only if the data set was created on a previous version of the system.
Records may be added to the data set by resume load until the space allocated for prime
datain thefirst step has been filled.

During resume load on a data set with a partially filled track and/or a partialy filled
cylinder, the track index entry and/or the cylinder index entry is overlaid when the track
or cylinder isfilled. Resume load for variable-length records begins at the next sequential
track of the prime data set. If resume load abnormally terminates after these index
entries have been overlaid, a subsequent resume load will result in a sequence check
when it adds a key that is higher than the highest at the last successful CLOSE but lower
than the key in the overlaid index entry. When the SYNAD exit is taken for a sequence
check, register O contains the address of the high key of the data set. However, if the
SYNAD exit istaken during CLOSE, register O will contain the |OB address.

Retrieving and Updating an I ndexed Sequential Data Set

Sequential Retrieval and Update
To sequentially retrieve and update records in an indexed sequential data set:

+ Code DSORG=IS or DSORG=ISU to agree with what you specified when you
created the data set, and MACRF=GL, MACRF=SK, or MACRF=PU in the DCB
macro instruction.

» Code a DD statement for retrieving the data set. The data set characteristics and
options are as defined when the data set was created.

* Open the data set.

» Set the beginning of sequential retrieval (SETL).

» Retrieve records and process as required, marking records for deletion as required.
* Return records to the data set.

* Use ESETL to end sequential retrieval as required and reset the starting point.

» Closethe data set to end all retrieval.

Sequential Updates—Indexed Sequential Data Set: Assume that, using the data set
created in the previous example, you are to retrieve all records beginning with 915.
Those records with a date (positions 13-16) before today's date are to be deleted. The
dateisin the standard form as returned by the system in response to the TIME macro
instruction, that is, packed decimal 00yyddds. Overflow records can be logically deleted
even though they cannot be physically deleted from the data set.

One way to solve this problem is shown in Figure 56.

Direct Retrieval and Update

By using the basic indexed sequential access method (BISAM) to process an indexed
sequential data set, you can make direct references to the records in the data set for the
purpose of:

» Direct retrieval of arecord by its key
 Direct update of arecord
» Direct insertion of new records

Because the operations are direct, there can be no anticipatory buffering. However, the
system provides dynamic buffering each time aread request is made, if specified.

Part 2: Data Management Processing Procedures 121

//INDEXDD DD

ISRETR

ISRETR

NEXTREC

TODAY
KEYADDR

LIMIT

CHECKERR

START
DCBD
CSECT
USING
LA
OPEN
SETL
TIME
ST
GET
CLC
BNL
CPp
BNL
MVI
PUTX
B

DS

DC
DC

DC

DC

DSNAME=SLATE.DICT, --~

0

DSORG=IS

IHADCB, 3

3,ISDATA

(ISDATA)

ISDATA,KC,KEYADDR Set scan limit
Today's date in register 1

1, TODAY

ISDATA Locate mode

19(10,1),LIMIT

ENDJOB

12(4,1),TODAY Compare for old date

NEXTREC

0(1),X'FF' Flag old record for deletion

ISDATA Return delete record

NEXTREC

F

Cc'915" Key prefix

XL7'0" Key padding

C'916"

XL7'0!

Test DCBEXCD1 and DCBEXDE?2 for error indication

Error Routines

ENDJOB

ISDATA

CLOSE

DCB

(ISDATA)
DDNAME=INDEXDD,DSORG=IS,MACRF=(GL, SK,PU), C

SYNAD=CHECKRR

Figure 56. Sequentially Updating an Indexed Sequential Data Set

To ensure that the requested record isin virtual storage before you start processing, you
must issue aWAIT or CHECK macro instruction. If you issue a WAIT macro
instruction, you must test the exception code field of the DECB. If you issue a CHECK
macro instruction, the system tests the exception code field in the DECB. If an error
analysis routine has not been specified and a CHECK isissued, the program is
abnormally terminated with a system completion code X'001'. In either case, if you wish
to determine whether the record is an overflow record, you should test the exception
code field of the DECB.

After you test the exception code field of the DECB, you need not set it to 0. If you have
used aREAD KU macro instruction and if you plan to use the same DECB again to
rewrite the updated record using a WRITE K macro instruction, you should not set the
field to O. If you do, your record may not be rewritten properly.

To update existing records, you must use the READ KU and WRITE K combination.
Because READ KU implies that the record will be rewritten in the data set, the system
retains the DECB and the buffer used in the READ KU and uses them when the record
iswritten. If you decide not to write the record, you should use the same DECB in
another read or write macro instruction or issue a FREEDBUF macro instruction if
dynamic buffering was used. If you issue several READ KU or WRITE K macro
instructions before checking the first one, you may destroy some of your updated records
unless the records are from different blocks.

If there is the possibility that your task and another task will be simultaneously accessing
the same data set, or the same task has two or more DCBs opened for the same data set,

122 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

you should use the DCB integrity feature. Y ou specify the DCB integrity feature by
coding DISP=SHR in your DD statement. In this way you ensure that the DCB fields are
maintained for your program to process the data set correctly. If you do not use
DISP=SHR and more than one DCB is open for updating the data set, the results are
unpredicatable.

If you specify DISP=SHR, you must also issue an ENQ for the data set before each

i nput/output request and a DEQ upon completion of the request. All users of the data
set must use the same gname and rname operands for ENQ. For example, the users
might use the data set name asthe gname operand. For more information about using
ENQ and DEQ, see OSV2 Supervisor Services and Macro Instructions.

When you are using scan mode with QISAM and you want to issue PUTX, issue an ENQ
on the data set before processing it and a DEQ after processing is complete. ENQ must
be issued before the SETL macro instruction, and DEQ must be issued after the ESETL
macro instruction. When you are using BISAM to update the data set, do not modify any
DCB fields or issue a DEQ until you have issued CHECK or WAIT.

Sharing a BISAM DCB between Related Tasks: When atask using BISAM processes a
data set whose DCB is defined and opened by arelated task, the task must issue an ENO
on the DCB before an input/output request is issued and must issue a DEQ after the
WAIT or CHECK for the input/output request is issued. If the task does not enqueue
the DCB and any of its related tasks terminates abnormally, the task may enter a wait
state or a program check may occur. See OS/'VS2 Supervisor Services and Macro
Instructions for more information on the ENQ and DEQ macro instructions and on
multitasking.

For subtasking, 1/0 requests should be issued by the task which owns the DCB or atask
which will remain active aslong as the DCB is open. If the taks that issued the I/O request
terminates, the storage used by its data areas (such as |0OBs) may be freed or queuing switches
in the DCB work area may be left set on, causing another task issuing an I/0 request to the
DCB to program check or to enter the wait state. For example, if a subtask issues and
completesa READ KU /0 request, the IOB which was created by the subtask is attached
to the DCB update queue. If that subtask terminates, and subpool zero is not shared with
the subtask owning the DCB, the |OB storage areais freed and the integrity of the ISAM
update queue is destroyed. A request from another subtask, attempting to use that queue,
may cause unpredictable abends. As another example, if aWRITE KEY NEW isin process
when the subtask terminates, the "WRITE-KEY -NEW-IN-PROCESS" bit is |eft set on. If
another 1/0 request is issued to the DCB, the request is queued but cannot proceed.

Direct Update With Exclusive Control—Indexed Sequential Data Set: In the example
shown in Figure 57, the previously described data set is to be updated directly with
transaction records on tape. The input tape records are 30 characters long, the key isin
positions 1-10, and the update information isin positions 11-30. The update information
replaces data in positions 31-50 of the indexed sequential data record.

Exclusive control of the data set is requested since more than one task may be referring
to the data set at the same time. Notice that exclusive control is released after each block
iswritten to avoid tying up the data set until the update is completed.

Note the use of the FREEDBUF macro instruction in Figure 57. Usually the
FREEDBUF macro instruction has two functions:

* Toindicate to the ISAM routines that arecord that has been read for update will not
be written back

» Tofree adynamically obtained buffer

In Figure 57, since the read operation was unsuccessful, the FREEDBUF macro
instruction frees only the dynamically obtained buffer.

Part 2: Data Management Processing Procedures 123

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

//INDEXDD DD
//TAPEDD DD

ISUPDATE START

DSNAME=SLATE.DICT, DCB= (DSORG=IS,BUFNO=1, ...),———

NEXTREC GET TPDATA, TPRECORD

ENQ | RESOURCE, ELEMENT, E,,SYSTEM)

READ DECBRW, KU,,'S"', MF=E Read into dynamically

obtained buffer

WAIT ECB=DECBRW

™ DECBRW+24,X'FD" Test for any condition

BM RDCHECK but overflow

L 3, DECBRW+16 Pick up pointer to record

MVC ISUPDATE-ISRECORD Update record

| L'UPDATE, 3) , UPDATE

WRITE DECBRW, K, MF=E

WATT ECB=DECBRW

™™ DECBRW-1-24,X'FD' Any errors?

BM WRCHECK

DEQ | RESOURCE, ELEMENT,,SYSTEM)

B NEXTREC
RDCHECK ™ DECBRW+24,X'80" No record found’

BZ ERROR If not, go to error routine

FREEDBUF DECBRW, K, ISDATA Otherwise, free buffer

MVC ISKEY, KEY Key placed in ISRECORD

MVC ISUPDATE, UPDATE Updated information placed

in ISRECORD

WRITE DECBRW, KN, , WKNAREA, 'S',MF=E Add record to data set

WATT ECB=DECBRW

™ DECBRW+24,X'FD"' Test for errors

BM ERROR

DEQ | RESOURCE, ELEMENT ,,SYSTEM) Release exclusive control

B NEXTREC
WKNAREA DS 4F BISAM WRITE KN work field
ISRECORD DS OCL50 50-byte record from ISDATA DCB

DS CL19 First part of ISRECORD
ISKEY DS CL10 Key field of ISRECORD

DS CL1 Part of ISRECORD
ISUPDATE DS CL20 Update area of ISRECORD

ORG ISUPDATE Overlay ISUPDATE with TPRECORD
TPRECORD DS 0CL30 30-byte record from TPDATA DCB
KEY DS CL10 Key for locating ISDATA record
UPDATE DS CL20 Update information or new data
RESOURCE DC CL8'SLATE'
ELEMENT DC C'DICT'

READ DECBRW, KU, ISDATA, 'S','5"',KEY, MF=L
ISDATA DCB DDNAME=INDEXDD, DSORG=IS, MACRE= (RUS, WUA) ,

MSHI=INDEX, SMSI=2000

TPDATA DCB
INDEX DS 2000C

Figure 57. Directly Updating an Indexed Sequential Data Set

The first function of FREEDBUF allows you to read arecord for update and then decide
not to update it without performing a WRITE for update. Y ou can use this function even
when your READ macro instruction does not specify dynamic buffering, provided that
you have included S (for dynamic buffering) in the MACRF field of your READ DCB.

Y ou can effect an automatic FREEDBUF simply by reusing the DECB, that “is, by
issuing another READ or aWRITE KN to the same DECB. Y ou should use this feature
whenever possible, sinceit is more efficient than FREEDBUF. For example, in

Figure 57, the FREEDBUF macro instruction could be eliminated, since the WRITE KN
addressed the same DECB as the READ KU.

124 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNT, GN26-0915

For an indexed sequential data set with variable-length records, you may make three
types of updates by using the basic access technique. Y ou may read a record and write it
back with no change in its length, simply updating some part of the record. Y ou do this
with a READ KU followed by aWRITE K, the same way you update fixed-length
records. Two other methods for updating variable-length records use the WRITE KN
macro instruction and allow you to change the record length.

In one method, arecord read for update (by a READ KU) may be updated in a manner
that will change the record length and then be written back with its new length by a
WRITE KN. In the second method, you may replace a record with another record having
the same key and possibly a different length using the WRITE KN macro instruction. To
replace arecord, it is not necessary to have first read the record.

In either method, when changing the record length, you must place the new length in the
DECBLGTH field of the DECB before issuing the WRITE KN macro instruction. If you
use aWRITE KN macro instruction to update a variable-length record that has been
marked for deletion, the first bit (no record found) of the exceptional condition code
field (DECBEXCL) of the DECB is set on. If this condition is found, the record must be
written using aWRITE KN with nothing specified in the DECBLGTH field.

Part 2: Data Management Processing Procedures 124.1

Do not try to use the DECBLGTH field to determine the length of arecord read,
because DECBLGTH isfor use with writing records, not reading them. If you are
reading fixed-length records, the length of the record read isin DCBLRECL, and if you
are reading variable-length records, the length is in the record descriptor word (RDW).

Direct Update—Indexed Sequential Data Set with Variable-L ength Records: In Figure 58,
an indexed sequential data set with variable-length records is updated directly with
transaction records on tape. The transaction records are of variable length and each
contains a code identifying the type of transaction. Transaction code 1 indicates that an
existing record is to be replaced by one with the same key; 2 indicates that the record is
to be updated by appending additional information, thus changing the record length; 3 or
greater indicates that the record is to be updated with no change to its length. For this
example, the maximum record length of both data setsis 256 bytes. The key isin
positions 6-15 of the records in both data sets. The transaction code isin position 5 of
records on the transaction tape. The work area (REPLAREA) sizeis equal to the
maximum record length plus 16 bytes.

Part 2: Data Management Processing Procedures 125

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

//INDEXDD DD DSNAME=SLATE.DICT, DCB= (DSORG=IS,BUFNO=1,...),———
//TAPEDD DD

ISUPDVLR START 0

NEXTREC GET TPDATA, TRANAREA
CLI TRANCODE, 2 Determine if replacement or

other transaction

BL REPLACE Branch if replacement
READ DECBRW, KU, 'S', 'S',MF=E Read record for update
CHECK DECBRW, DSORG=IS Check exceptional conditions
CLI TRANCODE, 2 Determine if change or append
BH CHANGE Branch if change

* CODE TO MOVE RECORD INTO REPLACEA+16 AND APPEND DATA FROM TRANSACTION
* RECORD

MVC DECBRW+6 (2) , REPLAREA+16 Move new length from RDW
into DECBLGTH (DECB+6)

WRITE DECBRW, KN, REPLAREA, MF=E Rewrite record with changed
length

CHECK DECBRW, DSORG=IS

B NEXTREC

CHANGE

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

WRITE DECBRW, K, MF=E Rewrite record with no
change of length
CHECK DECBRW, DSORG=IS
B NEXTREC
REPLACE MVC DECBRW+6 (2) , TRANAREA Move new length from RDW
* into DECBLGTH (DECB+6)
WRITE DECBRW, KN,, TRANAREA-16, MF=E Write transaction record
as replacement for record
* with the same key
CHECK DECBRW, DSORG=IS
B NEXTREC
CHECKERR SYNAD routine
REPLAREA DS CL272
TRANAREA DS CL4
TRANCODE DS CL1
KEY DS CL10
TRANDATA DS CL241
READ DECBRW, KU, ISDATA, 'S','S',KEY, MF=L
ISDATA DCB DDNAME=INDEXDD, DSORG=IS, MACRF= (RUSC, WUAC) , SYNAD=CHECKERR
TPDATA DCB

Figure 58. Directly Updating an Indexed Sequential Data Set with Variable-Length Records

126 0S/VS2 MVS Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Processing a Direct Data Set

In adirect data set, there is arelationship between a control number or identification of
each record and its location on the direct-access volume. This relationship allows you to
gain access to arecord without an index search. Y ou determine the actual organization of
the data set. If the data set has been carefully organized, location of a particular record
takes less time than with an indexed sequential data set.

The DSORG parameter of the DCB macro specifies the type of processing to be
performed, while DSORG in the DD statement specifies the organization of the data set.

Although you can process a direct data set sequentially using either the queued access
technique or the basic access technique, you cannot read record keys using the queued
access technique. When you use the basic access technique, each unit of data transmitted
between virtual storage and an I/O deviceisregarded by the system as arecord. If, in
fact, it isablock, you must perform any blocking or deblocking required. For that
reason, the LRECL field is not used when processing a direct data set. Only BLKSIZE
must be specified when you add or update records on a direct data set.

If dynamic buffering is specified for your direct data set, the system will provide a buffer
for your records. If dynamic buffering is not specified, you must provide a buffer for the
system to use.

Asindicated in the discussion of direct-access devices, record keys are optional. If they
are specified, they must be used for every record and must be of afixed length.

Organizing a Direct Data Set

In developing the organization of your data set, you can use direct addressing. When
direct addresses are used, the location of each record in the data set is known.

If format-F records with keys are being written, the key of each record can be used to
identify the record. For example, a data set with keys ranging from 0 to 4999 should be
allocated space for 5000 records. Each key relates directly to alocation that you can
refer to as arelative record number. Therefore, each record should be assigned a unique
key. If identical keys are used it is possible, during periods of high CPU and channel
activity, to skip the desired record and retrieve the next record on the track. The main
disadvantage of this type of organization isthat records may not exist for many of the
keys even though space has been reserved for them.

Space could be allocated on the basis of the number of records in the data set rather than
on the range of keys. This type of organization requires the use of a cross-reference

table. When arecord is written in the data set, you must note the physical location either
as an actual address or as arelative track and record number. The addresses must then be
stored in atable that is searched when arecord is to be retrieved. Disadvantages are that
cross-referencing can be used efficiently only with a small data set, storage is required
for the table, and processing timeis required for searching and updating the table.

A more common, but somewhat complex, technique for organizing the data set involves
the use of indirect addressing. In indirect addressing, the address of each record in the
data set is determined by a mathematical manipulation of the key. This manipulation is
referred to as randomizing or conversion. Since a number of randomizing procedures
could be used, no attempt is made here to describe or explain those that might be most
appropriate for your data set.

Part 2: Data Management Processing Procedures 127

Referring to a Record in a Direct Data Set

Once you have determined how your data set is to be organized, you must consider how
the individual records will be referred to when the data set is updated or new records are
added. Thisisimportant for determining whether areturn address will be required when
the datais created and, if so, in what form the return address will be used. The record
identification can be represented in any of the following forms:

Relative Block Address: Y ou specify the relative location of the record (block) within the
data set as a 3-byte binary number. This type of reference can be used only with
format-F records. The system computes the actual track and record number. The relative
block address of thefirst block is O.

Relative Track Address. Y ou specify the relative track as a 2-byte binary number and the
actual record number on that track as a 1-byte binary number. The relative track address
of thefirst track isO.

Relative Track or Block Addressand Actual Key: In addition to the relative track or block
address, you specify the address of a virtual-storage location containing the record key.
The system computes the actual track address and searches for the record with the
correct key.

Actual Address. Y ou supply the actual address in the standard 8-byte
form—MBBCCHHR. Remember that the use of an actual address may force you to
indicate that the data set is unmovable.

Extended Search: Y ou request that the system begin its search with a specified starting
location and continue for a certain number of records or tracks. This same option can be
used to request a search for unused space in which arecord can be added.

To use the extended search option, you must indicate in the DCB the number of tracks
(including the starting track) or records (including the starting record) that are to be
searched. If you indicate a number of records, the system may actually examine more
than this number. In searching a track, the system searches the whole track (starting with
the first record); it therefore may examine records that precede the starting record or
follow the ending record.

Exclusive Control for Updating: When more than one task is referring to the same data
set, exclusive control of the block being updated is required to prevent simultaneous
reference to the same record. Rather than issuing an ENQ macro instruction each time
you update a block, you can request exclusive control through the MACREF field of the
DCB and the type operand of the READ macro. The coding example in Figure 61
illustrates the use of exclusive control. After the READ macro instruction is executed,
your task has exclusive control of the block being updated. No other task in the system
requesting access to the block is given access until the operation started by your WRITE
macro is complete. If, however, the block is not to be written, you can release exclusive
control using the RELEX macro instruction.

128 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Feedback Option: This option specifies that the system provide the address of the record
requested by a READ or WRITE macro instruction. This address may be in the same
form that was presented to the system in the READ or WRITE macro instruction, or as
an 8-byte actual address. This option can be specified in the OPTCD parameter of the
DCB and in the READ or WRITE macro instruction. If this option is omitted from the
DCB but is requested in a READ or WRITE macro instruction, an 8-byte actual address
isreturned to the user.

The feedback option is automatically provided for a READ macro instruction requesting
exclusive control for updating. This feedback will be in the form of an actual address
(MBBCCHHR) unless feedback was specified in the OPTCD field of the DCB. In this
case, feedback is returned in the format of the addressing scheme used in the problem
program (an actual or arelative address). When aWRITE or RELEX macro instruction
isissued (which releases the exclusive control that was gotten for the READ request),
the system will assume that the addressing scheme used for the WRITE or RELEX
macro instruction isin the same format as the addressing scheme used for feedback in
the READ macro instruction.

Creating a Direct Data Set

Once the organization of a direct data set has been determined, the process of creating it
isamost identical to that of creating a sequential data set. The BSAM DCB macro
instruction should be used with the WRITE macro instruction (the form used to create a
direct data set). The following parameters must be specified in the DCB macro
instruction:

« DSORG=PS or PSU
« DEVD=DA or omitted
 MACRF=WL

The DD statement must indicate direct-access (DSORG=DA or DAU). If keys are used,
akey length (KEY LEN) must also be specified. Record length (LRECL) need not be
specified but may be used to provide compatibility with sequential access method
processing of this data set.

It is possible to create a direct data set using QSAM (no keys alowed) or BSAM (with
or without keys and the DCB specifies MACRF=W). However, this method is not
recommended because when you access this direct data set, you cannot request a
function which requires the information in the capacity record (RO) datafield. For
example, the following restrictions would apply:

» Variable-length, undefined-length, or variable-length spanned record processing is not
allowed.

* The WRITE add function with extended search for fixed-length records (with or
without track overflow) is not allowed.

If aVIO data set is opened for processing with the extended search option, the
DEBENDCC and DEBENDHH fields of the DEB will reflect the real address of the last
record written during the BDAM create step. Thisis necessary to prevent BDAM from
searching unused tracks. The information needed to determine the data set size is written
in the DSCB during the close of the DCB used in the create step. Therefore, if this data
set isbeing created and processed by the same program, and the DCB used for creating
the data set has not been closed before opening the DCB to be used for processing, the
resultant beginning and ending CCHH will be equal.

If adirect data set is created and updated or read within the same job step, and the
OPTCD parameter is used in the creation, updating, or reading of the data set, different
DCBs and DD statements should be used:

Part 2: Data Management Processing Procedures 129

If you are using direct addressing with keys, you can reserve space for future format-F
records by writing a dummy record. To reserve or truncate atrack for format-U or
format-V records, write a capacity record. The capacity record (RO) contains a 7-byte
datafield (CCHHRLL) where CCHHR isthe ID of the last record on the track, and LL
isthe number of unused bytes on the track. If aWRITE SZ macro isissued for atrack
with no records, R is zero and LL isthe entire length of the track.

Format-F records are written sequentially as they are presented. When atrack isfilled,
the system automatically writes the capacity record and advances to the next track.
Because of the form in which relative track addresses are recorded, direct data sets
whose records are to be identified by means other than actual address must be limited in
size to no more than 65,536 tracks for the entire data set.

Tape-to-Disk—Direct Data Set: In the example problem in Figure 59, a tape containing
204-byte records arranged in key sequence is used to create a direct data set. A 4-byte
binary key for each record ranges from 1000 to 8999, so space for 8000 recordsis

requested.
//DAOUTPUT DD DSNAME=SLATE.INDEX.WORDS, DCB= (DSORG=DA, C
// BLKSIZE=200, KEYLEN=4, RECFM=F) , SPACE= (204, 8000) , ———
//TAPINPUT DD -
DIRECT START
L 9,=F'1000"
OPEN | DALOAD, (OUTPUT) , TAPEDCB)
LA 1 0, COMPARE
NEXTREC GET TAPEDCB
LR 2,1
COMPARE C 9,0(2) Compare key of input against
control number
BNE DUMMY
WRITE DECB1, SF, DALOAD, (2) Write data record
CHECK DECB1
AH 9,=H 1~
B NEXTREC
DUMMY C 9,=F'8999" Have 8000 records been written?
BH ENDJOB
WRITE DECB2, SD, DALOAD, DUMAREA Write dummy
CHECK DECB2
AH 9,=H'1"
BR 10
INPUTEND LA 1 0, DUMMY
BR 10
ENDJOB CLOSE | TAPEDCR,, DALOAD)
DUMAREA DS 8F"'
DALOAD DCB DSORG=PS, MACRF= (WL) , DDNAME=DAOUTPUT,
DEVD=DA, SYNAD=CHECKER, ———
TAPEDCB DCB EODAD=INPUTEND, MACRF=(GL) ,

Figure 59. Creating a Direct Data Set

130 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

Adding or Updating Records on a Direct Data Set

The techniques for adding records to a direct data set depend on the format of the
records and the organization used.

Format-F With Keys: Adding arecord amounts to essentially an update by record
identification. The reference to the record can be made by either arelative block address
or arelative track address.

If you attempt to add arecord by relative block address, the system converts the address
to arelative track address. That track is searched and the new record written in place of
the first dummy record on the track. If there is no dummy record on the track, you are
informed that the write operation did not take place. If you request the extended search
option, the new record will be written in place of the first dummy record found within
the search limits you specify. If noneisfound, you are notified that the write operation
could not take place. In the same way, areference by relative track address causes the
record to be written in place of the first dummy record found on that track or the first within
the search limits, if requested. If extended search is used, the search begins with the first record
on the track. Without extended search, the search may start at any record on the track. There-
fore, records which were added to atrack are not necessarily located on that track in the same
sequence in which they were written.

Format-F Without Keys. Heretoo, adding arecord is really updating a dummy record
already in the data set. The main difference is that dummy records cannot be written
automatically when the data set is created. Y ou will have to use your own method for
flagging dummy records. The update form of the WRITE macro instruction
(MACRF=W) must be used rather than the add form (MACRF=WA).

Y ou will have to retrieve the record first (using a READ macro instruction), test for a
dummy record, update, and write.

Format-V or Format-U With Keys: The technique used to add records in this case
depends on whether records are located by indirect addressing or a cross-reference table.
If indirect addressing is used, you must at least initialize each track (write a capacity
record) even if no datais actually written. That way the capacity record indicates how
much space is available on the track. If a cross-reference table is used, you should
exhaust the input and then initialize enough succeeding tracks to contain any additions
that might be required.

To add anew record, use arelative track address. The system examines the capacity
record to see if there isroom on the track. If thereis, the new record is written. Under
the extended search option, the record is written in the first available area within the
search limit.

Format-V or Format-U Without Keys: Because arecord of this type does not have akey,
you can refer to the record only by itsrelative track or actual address (direct addressing
only). When you add a record to this data set, you must retain the relative track or actual
address data (for example, by updating your cross-reference table). The extended search
option is not allowed because this option requires keys.

Tape-to-Disk Add—Direct Data Set: The example in Figure 60 involves adding records
to the data set created in the last example. Notice that the write operation adds the key
and the data record to the data set. If the existing record is not a dummy record, an
indication is returned in the exception code of the DECB. For that reason, it is better to
use the WAIT macro instruction instead of the CHECK macro instruction to test for
errors or exceptional conditions.

Part 2: Data Management Processing Procedures 131

//DIRADD DD
//TAPEDD DD

DIRECTAD START

OPEN
NEXTREC GET

L

SH

ST

WRITE

WATIT

CLC

BE

DSNAME=SLATE . INDEX.WORDS, ———

[DIRECT, (OUTPUT) , TAPEIN)

TAPEIN, KEY

4,KEY Set up relative record number
4,=H'1000"

4,REF

DECB, DA, DIRECT, DATA, 'S',KEY, REF+1

ECB=DECB

DECB+1 (2) ,=X'0000" Check for any errors

NEXTREC

Check error bits and take required action

DIRECT DCB
TAPEIN DCB
KEY DS
DATA DS
REF DS

DDNAME=DIRADD, DSORG=DA, RECFM=F, KEYLEN=4, BLKSIZE=200,
MACRF= (WA)

CL200

Figure 60. Adding Records to a Direct Data Set

//DIRECTDD DD
//TAPINPUT DD

DIRUPDAT START

OPEN
NEXTREC GET
PACK
CVB
SH
ST
READ
CHECK

MVC
ST
WRITE
CHECK
B

KEYFIELD DS

DC
KEY DS
DATA DS
REF DS
DIRECT DCB
TAPEDCB DCB

DSNAME=SLATE . INDEX.WORDS, - ——

[DIRECT, (UPDAT) , TAPEDCB)
TAPEDCB, KEY

KEY, KEY

3,KEYFIELD

3,=H'1"'

3,REF

DECBRD, DIX, DIRECT, 'S','S',0,REF+1
DECBRD

3, DECBRD+12

0(30,3),DATA

3, DECBWR+12

DECBWR, DIX, DIRECT, 'S','5',0,REF+1
DECBWR

NEXTREC

OD
XL3'0"
CL5
CL30

DSORG=DA, DDNAME=DIRECTDD, MACRF= (RISXC,WIC),
OPTCD=RF, BUFNO=1, BUFL=100

Figure 61. Updating a Direct Data Set

Tape-to-Disk Update—Direct Data Set: The examplein Figure 61 is similar to that in
Figure 60, but involves updating rather than adding. There is no check for dummy
records. The existing direct data set contains 25,000 records whose 5-byte keys range
from 00001 to 25000. Each datarecord is 100 bytes long. The first 30 characters are to
be updated. Each input tape record consists of a 5-byte key and a 30-byte data area.
Notice that only datais brought into virtual storage for updating.

132 OS/VS2 MV'S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

Consideration for User Labels: User labels, if desired, must be created when the data set
is created. They may be updated, but not added or deleted, during processing of a direct
data set. When creating a multivolume direct data set using BEAM, you should turn off
the header exit entry after OPEN and turn on the trailer label exit entry just before
issuing the CLOSE. This eliminates the end-of-volume exits. The first volume, containing
the user label track, must be mounted when the data set is closed. If you have requested

Part 2: Data Management Processing Procedures 132.1

exclusive control, OPEN and CLOSE will ENQ and DEQ to prevent simultaneous
reference to user labels.

Consideration for using the 2305 Fixed Head Storage: When a data set on a 2305 device
isto be used by several tasks simultaneously, or when overlapping 1/O (successive
WRITEs issued without an intervening CHECK or WAIT) is used, the following
combination may produce overlaying of records:

* WRITE-add processing

» Fixed records with or without track overflow

Part 2: Data Management Processing Procedures 133

PART 3: DATA SET DISPOSITION AND SPACE
ALLOCATION

Allocating Space on Direct-Access Volumes

When direct-access storage space is required for a data set, you specify the amount of
space needed and the device type, and the operating system selects the device and
allocates the space accordingly. This arrangement provides for flexible and efficient use
of devices and available storage space, and relieves you of considering the details
involved in efficient space control.

Before a direct-access volume can be used for data storage, it must be initialized by
either of the utility programs IBCDASDI or IEHDASDR. The utilities functions include
in part:

» Creating the standard 80-byte volume label and writing it on cylinder O, track O, of
the volume.

« Initializing the volume table of contents (VTOC). The location of the VTOC depends
on the conventions your installation uses in initializing the volume.

» Writing the home address (HA) and capacity record (RO) for each track.
» Checking tracks and making alternate track assignments if necessary.

When the data set is to be stored on a direct-access volume, you must supply, in the DD
statement, control information designating the amount of space to be allocated and the
manner in which it isto be allocated.

Note: IEHDASDR and IBCDASDI cannot be used for an MSS 3330 virtual volume.
The Access Method Services utility, CREATEV, must be used. See OSVSMass
Sorage System (MSS) Services for Space Management for a description of the
CREATEV command.

Specifying Space Requirements

The amount of space required can be specified in blocks, tracks, or cylinders. If you want
to maintain device independence, specify your space requirements in blocks. If your
request isin tracks or cylinders, you must be aware of such device considerations as
cylinder and track capacity.

Cylinder alocation allows faster input/output of sequential data sets than does track
allocation. Track allocation stops input/output at the end of every track to prevent
references on the same cylinder outside of the data set. The time difference occurs when
you use the sequential access method or the partitioned access method to read a data set
whose record format is not fixed standard (FS). If the data set is partitioned, the time
difference occurs during both loading of a module from the data set and reading of the
data set's directory.

Allocation by Blocks: When the amount of space required is expressed in-blocks, you
must specify the number and average length of the blocks within the data set, asin this
example:

// DD SPACE=(300, (5000, 100)), . .

300 = average block length in bytes
5000 = primary quantity (number of blocks)
100 = secondary quantity, to be allocated if the primary quantity is not
sufficient (in blocks)

Part 3: Data Set Disposition and Space Allocation 135

Note that when average block length and secondary space allocation are being used, the
BLKSIZE parameter specified must be equal to the maximum block length.

From thisinformation, the operating system estimates and all ocates the number of tracks
required. Space is awaysin whole tracks. Y ou may also request that the space allocated
for a specific number of blocks begin and end on cylinder boundaries.

Y ou must be certain that both the quantity and the increment are large enough to contain
the largest block to be written. Otherwise, al of the space requested is alocated but
erased as the system tries to find a space large enough for the record.

Allocation by Tracksor Cylinders: The amount of space required can be expressed in
tracks or cylinders, asin these examples:

// DD SPACE=(TRK,(100,5)), . . .
// DD SPACE=(CYL,(3,1)), . ..

Allocation by Absolute Address: If the data set contains | ocation-dependent information
in the form of an absolute track address (MBBCCHHR), space should be regquested with
respect to the number of tracks and the beginning address, asin this example:

// DD SPACE=(ABSTR,(500,20)),UNIT=2314,
where 500 tracks are required, beginning at relative track 20, which is cylinder 1, track O.

Allocation of Mass Storage System (M SS) Virtual Volumes: When the data set is to be
stored on an MSS virtual volume, avolume group (MSV GP) parameter may be specified
instead of using the SPACE parameter on the DD card. Before the M SV GP parameter
can be used, the volume group must be identified to M SS by the utility program
IDCAMS.

Allocation of MSS virtual volume space should be in multiples of cylinders with
secondary allocation amultiple of the primary to insure maximum space usage and
minimum fragmentation.

Additional Space Allocation Options: The DD statement provides you with a great deal of
flexibility in specifying space requirements. These options are described in detail in
OSV2 JCL.

Estimating Space Requirements

To determine how much space your data set requires, you must consider these variables
for the device type:

» Track capacity

» Tracks per cylinder

» Cylinders per volume

» Datalength (blocksize)

* Key length

» Device overhead

Figure 62 lists the physical characteristics of a number of direct-access storage devices.

Theterm device overhead refers to the space required on each track for hardware data,
that is, address markers, count areas, gaps between records, record O, etc. Device
overhead varies with each device and depends aso on whether the blocks are written
with keys. To compute the actual space required for each block including device
overhead, you can use the formulas in Figure 63. Note that any fraction of a byte must
be ignored. For example, if the formula gives 15.644 bytes, you must allocate 15 bytes.

136 OS/VS2 MV 'S Data Management Services Guide

Maximum Number

Volume Block size Tracks per of Total

Device Type per Track ' Cylinder Cylinders? Capacity 1.2
2305-1 Drum 14136 8 48 5,428,224
2305-2 Drum 14660 8 96 11,258,880
2314/2319 Disk 7294 20 200 29,176,000
3330/33333
(Model 1) Disk 13030 19 404 100,018,280
3330/3333
(Model 11) Disk 13030 19 808 200,036,560
3340/3344% Disk 8368 12 696

(70-megabytes) 69,889,536

348

(35-megabytes) 34,944,768

3350 Disk 19069 30 555 317,498,850

! Capacity indicated in bytes (when RO is used by the IBM programming system).

2 Excluding alternate cylinders.

2 The Mass Storage System (M SS) virtual volumes assume the characteristics of the 3330/3333. Model 1.
“The 3344 is functionally equivalent to the 3340 Model 70.

Figure 62. Direct-Access Storage Device Capacities

Bytes Required by Each Data Block

Track
Device Capacity Blocks With Keys Blocks Without Keys
2305-1 14568* 634+KL+DL 432+DL
2305-2 14858* 289+KL+DL 198+DL
2314/2319 7294 146+(KL+DL)534/5127 101+(DL)534/5123
3330/3333*
(Model 1 13165 191+KL+DL 135+DL
or 11)
3340/3344 8535! 242+KL+DL 167+DL
3350 19254 267+KL+DL 185+DL
DL isdatalength.
KL iskey length.

| This value is different from the maximum block size per track because the formulafor the last block on the track includes
an overhead for this device.

2 The formulafor the last block on the track is 45+K L+DL.

3 The formulafor the last block on the track is DL.

4 The Mass Storage System (M SS) virtual volumes assume the characteristics of the 3330/3333, Model .

Figure 63. Direct-Access Device Overhead Formulas

The formulas can be combined in the following way:

If you intend to specify your space requirementsin tracks (TRK) or cylinders (CYL),
your estimate should be made as shown above. If you request absolute tracks (ABSTR),
remember that you cannot allocate track O, cylinder 0. The amount of space required for
the VTOC will reduce the space available on the rest of the volume.

If you specify your space requirements in average block length, the system performs the
computations for you.

Because a sequential data set and a direct data set are created in the same way, the
estimate and specification of space requirements are identical. If you usethe WRITE SZ
macro instruction, your secondary allocation for a direct data set should be at least 2
tracks. Space allocation for a partitioned data set requires that you also consider the
space used for the directory. Similarly, allocation for an indexed sequential data set

Part 3: Data Set Disposition and Space Allocation 137

requires that you consider the space needed for the prime area, index areas, and overflow
aress.

Allocating Space for a Partitioned Data Set

What is the average size of the members to be stored on your direct-access volume? How
many members will fit on the volume? Will you need directory entries for the member
names only or will aliases be used? How many? Will members be added or replaced
frequently? All of these questions must be answered if you are to estimate your space
requirements accurately and use the space efficiently. Note, too, that a partitioned data
set cannot extend beyond one volume.

If your data set will be quite large, or you expect to do alot of updating, it might be best
to allocate a full volume. If it will be small or seldom subject to change, you should make
your estimate as accurate as possible to avoid wasted space or wasted time used for
recreating the data set.

If the average member length is close to or less than the track Iength, the most efficient
use of the direct-access storage space may be made with ablock size of 1/3 or /2 the
track length. For load modules, the linkage editor ignores the specified maximum block
size and uses the maximum block size for the device. Program fetch always ignores
BLKSIZE. It may be agood practice to indicate a block length equal to track capacity,
for example, BLKSIZE=7294 for a 2314 disk. Y ou might then ask for either 100 tracks,
or 5 cylinders, thus allowing for 729,400 bytes of data.

Assuming an average length of 70,000 bytes for each member, you need space for at
least 10 directory entries. If each member aso has an average of three aliases, space for
an additional 30 directory entriesis required.

Space for the directory is expressed in 256-byte blocks. Each block contains from 3 to
20 entries, depending on the length of the user datafield. If you expect 40 directory
entries, request at least 8 blocks. Any unused space on the last track of the directory is
wasted unless there is enough space left to contain ablock of the first member.
Therefore, the most advisable request in this case would be for 17 blocks.

Any of the following space specifications would cause the same size alocation for a 2314
disk:

SPACE=(7294,(100, 10))

SPACE=(CYL,(5,10))

SPACE=(TRK,(100, 10))

Although a secondary allocation increment has been omitted in these examples, it could
have been supplied to provide for extension of the member area. The directory size,
however, cannot be extended.

Allocating Space for an I ndexed Sequential Data Set

An indexed sequential data set has three areas. prime, index, and overflow. Space for
these areas can be subdivided and allocated as follows:

» Prime area—If you request a prime area only, the system automatically uses a portion
of that space for indexes, taking one cylinder at atime as needed. Any unused space
in the last cylinder used for index will be allocated as an independent overflow area.
More than one volume can be used in most cases, but all volumes must be for devices
of the same device type.

» Index area—Y ou can request that a separate area be allocated to contain your
cylinder and master indexes. The index area must be contained within one volume, but

138 OS/VS2 MV 'S Data Management Services Guide

this volume can be on a device of adifferent type than the one that contains the prime
areavolume. If a separate index areais requested, you cannot catalog the data set with
aDD statement.

If the total space occupied by the prime area and index area does not exceed one
volume, you can request that the separate index area be embedded in the prime area
(to reduce access arm movement) by indicating an index size in the SPACE parameter
of the DD statement defining the prime area.

If you request space for prime and index areas only, the system automatically uses any
space remaining on the last cylinder used for master and cylinder indexes for overflow,
provided the index areais on a device of the same type as the prime area.

Overflow area—Although you can request an independent overflow area, it must be
contained within one volume. If no specific request for index areais made, then it will
be allocated from the specified independent overflow area.

To request that a designated number of tracks on each cylinder be used for cylinder
overflow records, you must use the CY LOFL parameter of the DCB macro
instruction. The number of tracks that you can use on each cylinder equals the total
number of tracks on the cylinder minus the number of tracks needed for track index
and for prime data, thet is:

Usable tracks = total tracks - (track index tracks + prime data tracks)

Note that when you create a 1-cylinder data set, ISAM reserves 1 track on the last
cylinder for the end-of-file filemark.

When you request space for an indexed sequential data set, the DD statement must
follow a number of conventions, as shown below and summarized in Figure 68.

Space can be requested only in cylinders, SPACE=(CYL,(...)), or absolute tracks,
SPACE=(ABSTR/(...)). If the absolute track technique is used, the designated tracks
must make up awhole number of cylinders.

Data set organization (DSORG) must be specified as indexed sequential (1S or 1SU)
in both the DCB macro instruction and the DCB parameter of the DD statement.

All required volumes must be mounted when the data set is opened; that is, volume
mounting cannot be deferred.

If your prime area extends beyond one volume, you must indicate the number of units
and volumes to be spanned, for example, UNIT=(2314,3),VOLUME=(,,,3).

Y ou can catalog the data set using the DD statement parameter DISP=(,CATLG)
only if the entire data set is defined by one DD statement; that is, if you did not
request a separate index or independent overflow area.

Part 3: Data Set Disposition and Space Allocation 139

Criteria Restrictionson Resulting

Unit Typesand Arrangement
1. Number 2. Types 3. Index Number of Units of Areas
of DD of DD Size Requested
Statements Statements Coded?
3 INDEX None Separate index, prime,
PRIME and overflow areas.
OVFLOW
2 INDEX None Separate index and prime
PRIME areas. Any partially used
index cylinder is used for
independent overflow if the
index and prime areas are
on the same type of device.

2 PRIME No None Prime area and overflow

OVFLOW areawith an index at its
end.

2 PRIME Yes The statement Prime area and embedded

OVFLOW defining the prime index, and overflow area.
area cannot request
more than one unit.
1 PRIME No None Prime area with indexat

itsend. Any partialy
used index cylinder
is used for independent
overflow.

1 PRIME Yes Statement cannot Prime area with embedded
request more than index area; independent
one unit. overflow in remainder of

partially used index
cylinder

Figure 64. Requests for Indexed Sequential Data Sets

Asyour data set is created, the operating system builds the track indexes in the prime
data area. Unless you request a separate index area or an embedded index area, the
cylinder and master indexes are built in the independent overflow area. If you did not
request an independent overflow area, the cylinder and master indexes are built in the
prime area.

If an error is encountered during allocation of a multivolume data set, the IEHPROGM
utility program should be used to scratch the DSCBs of the data sets that were
successfully alocated. The IEHLIST utility program can be used to determine whether or
not part of the data set has been allocated. The IEHLIST utility program is also useful to
determine whether space is available or whether identically named data sets exist before
space allocation is attempted for indexed sequential data sets. These utility programs are
described in OSVS Utilities.

Specifying a Prime Data Area

To request that the system allocate space and subdivide it as required, you should code:

//[ddname DD DSNAM E=dsname,DCB=DSORG=IS,
// SPACE=(CYL,quantity, CONTIG),UNIT=unitname,
/Il DISP=(,KEEP), ---

Y ou can accomplish the same type of allocation by qualifying your dsname with the
element indication (PRIME). This element is assumed if omitted. It isrequired only if
you request an independent index or overflow area. To request an embedded index area

140 OS/VS2 MV S Data Management Services Guide

when an independent overflow areais specified, you must indicate
DSNAME=dsname (PRIME). To indicate the size of the embedded index,
you specify SPACE=(CYL,(quantity , index size)).

Specifying a Separate I ndex Area

To request a separate index area, other than an embedded area as described above, you
must use a separate DD statement. The element name is specified as (INDEX). The
space and unit designations are as required. Notice that only the first DD statement can
have a data definition name. The data set name (dsname) must be the same.

//ddname DD DSNAM E=dsname(INDEX),---
7/ DD DSNAME=dsname(PRIME),

Specifying an Independent Overflow Area

A request for an independent overflow areais essentially the same as for a separate index
area. Only the element name, OVFLOW, is changed. If you do not request a separate
index area, only two DD statements are required.

//ddname DD DSNAM E=dsname(INDEX),---

1/ DD DSNAME=dsname(PRIME),
1/ DD DSNAME=dsname(OVFLOW) ,

Calculating Space Requirementsfor an Indexed Sequential Data Set

To determine the number of cylinders required for an indexed sequential data set, you
must consider the number of blocks that will fit on a cylinder, the number of blocks that
will be processed, and the amount of space required for indexes and overflow areas.
When you make the computations, consider how much additional space is required for
device overhead. Figures 62 and 63 show device capacities and overhead formulas. In the
formulas that follow, the length of the last block (or only block) must include device
overhead as given in Figure 63 as Bn.

Blocks =1+ ((Track capacity - Length of the last block)/(Length of other blocks))
per track

Bt =1+ ((Ct-Bn)/Bi)

The following eight steps summarize calculation of space requirements for an indexed
sequential data set.

Step 1

Once you know how many records will fit on atrack and the maximum number of
records you expect to create, you can determine how many tracks you will need for your
data.

Number of tracks required = (Maximum number of blocks/Blocks per track) + 1
ISAM load mode reserves the last prime data track for the filemark.

Example: Assume that a 200,000 record part-of-speech dictionary is stored on an IBM
3330 Disk Storage, using the 3336 disk pack, as an indexed sequential data set. Each
record in the dictionary has a 12-byte key (the word itself) and an 8-byte data area
containing a part-of-speech code' and control information. Each block contains 50
records;, LRECL=20 and BLKSIZE=1000. Using the formulafrom Figure 63, we find
that each track will contain 10 blocks or 500 records. A total of 401 tracks will be
required for the dictionary.

Bt=1+ 13,165 - (191 + 12 + 1000) =1+ 11,962=1+9=10
191 + 12 + 1000 1203

Records per track = (10 blocks)(50 records per block) = 500

Prime data tracks required (T) = 200,000 records +1 =401
500 records per track

Part 3: Data Set Disposition and Space Allocation 141

Step 2

Y ou will want to anticipate the number of tracks required for cylinder overflow areas.
The computation is the same as for prime data tracks, but you must remember that
overflow records are unblocked and a 10-byte link field is added. Remember, if you
exceed the space allocated for any cylinder overflow area, an independent overflow area
isrequired. Those records are not placed in another cylinder overflow area.

Overflow records = 1 + Track capacity - Length of last overflow record
per track (Ot) Length of other overflow records

Ot = 1 + ((Ct-RN)/Ri)

Example: Approximately 5000 overflow records are expected for the data set described
in step 1. Since 56 overflow records will fit on atrack, 90 overflow tracks are required.
Thisis 90 overflow tracks for 401 prime data tracks, or approximately 1 overflow track
for every 4 prime data tracks. Since the 3336 disk pack has 19 tracks per cylinder, it
would probably be best to allocate 4 tracks per cylinder for overflow.

Ot=+ 13165-(191+12+20+10) =1+ 12932=1+55=56
191+ 12+20+ 10 233
Overflow tracksrequired = 5000 records =90

56 records per track

Overflow tracks per cylinder (Oc) = 4
Step 3

Y ou will have to set aside space in the prime areafor track index entries. There will be
two entries (normal and overflow) for each track on a cylinder that contains prime data
records. The datafield of each index entry is always 10 bytes long. The key length
corresponds to the key length for the prime data records. How many index entries will fit
on atrack?

Index entries = 1 + Track capacity - Length of last index entry
per track (It) Length of other index entries

It =1+ ((Ct-En)/Ei)

Example: Again assuming use of a 3336 disk pack and records with 12-byte keys, we
find that 61 index entries will fit on atrack.

t=1+ 13,165 -(191 + 12 + 10) =1+ 12952=1+60=61
191 + (12 + 10) 213
Step 4

The number of tracks required for track index entries will depend on the number of
tracks per cylinder and the number of track index entries per track. Any unused space on
the last track of the track index can be used for any prime data records that will fit.

Number of track index = 2(Tracks per cylinder-overflow tracks per cylinder) + 1
tracks per cylinder (Ic) Index entries per track + 2

lc = (2(Tc-Oc)+1)/(1t+2)

Note that for variable-length records or when a prime data record will not fit on the last
track of the track index, the last track of the track index is not shared with prime data
records. In such a case, if the remainder of the division isless than or equal to 2, drop the
remainder. In all other cases, round the quotient up to the next integer.

Example: The 3336 disk pack has 19 tracks per cylinder. Y ou can fit 61 track index
entries per track. Therefore, you need less than 1 track for each cylinder:

Ic= 2019-4+1 = 3l
61+2 63

The space remaining on the track is (1-31/63) (13,165) = 6686 bytes.

142 OS/VS2 MV S Data Management Services Guide

Thisis enough for 6 blocks of prime data records. Since the normal number of blocks per
track is 10, the blocks use 6/10 of the track, and the effective value of Ic is therefore
1-6/10 = 2/5.

Note that space is required on the last track of the track index for adummy entry to
indicate the end of the track index. The dummy entry consists of an 8-byte count field, a
key field the same size as the key field in the preceding entries, and a 10-byte data field.

Step 5

Next you have to compute the number of tracks available on each cylinder for prime data
records. Y ou cannot include tracks set aside for cylinder overflow records.

Prime data (Tracks > (Ovcrﬂow lracks> (lndcx lracks)

tracks per per cylinder per cvlinder per cylinder
cylinder

Pc=Tc-Oc-lc

Example: If you set aside 4 cylinder overflow tracks, and you require 2/5 of atrack for
the track index, 14 3/5 tracks are available on each cylinder for prime data records.

Pc=19-4-2/5=143/5
Step 6

The number of cylinders required to allocate prime space is determined by the number of
prime data tracks required divided by the number of prime data tracks available on each
cylinder. This area includes space for the prime data records, track indexes, and cylinder
overflow records.

Number of
cylinders = Prime data tracks required/Prime data tracks per cylinder
required

C =T/Pc

Example: Y ou need 401 tracks for prime data records. Y ou can use 14-3/5 tracks per
cylinder. Therefore, 28 cylinders are required for your prime area and cylinder overflow
areas.

C=400/(143/5) =27+ ~ 28
Step 7
Y ou will need space for a cylinder index as well astrack indexes. There is acylinder
index entry for each track index (for each cylinder allocated for the data set). The size of
each entry is the same as the size of the track index entries; therefore, the number of

entries that will fit on atrack is the same as the number of track index entries. Unused
space on acylinder index track is not shared.

Number of tracks

requiredfor = (Track indexes + 1)/Index entries per track
cylinder index
Ci = (C+DHt

Example: You have 28 track indexes (from Step 6). Since 61 index entriesfit on atrack
(from Step 3), you need 1 track for your cylinder index. The remaining space on the last
track is unused.

Ci = (28 + 1)/61 = 29/61 = 0.475 < |

Note that every time a cylinder index crosses a cylinder boundary, ISAM writes a dummy
index entry that lets ISAM chain the index levels together. The addition of dummy
entries can increase the number of tracks required for a given index level. To determine
how many dummy entries will be required, divide the total number of tracks required by
the number of tracks on acylinder. If the remainder is O, subtract 1 from the quotient. If

Part 3: Data Set Disposition and Space Allocation 143

the corrected quotient is not O, calculate the number of tracks these dummy entries
require. Also consider any additional cylinder boundaries crossed by the addition of these
tracks and by any track indexes starting and stopping within a cylinder.

Step 8

If you have a data set large enough to require master indexes, you will want to calculate
the space required according to the number of tracks for master indexes (NTM
parameter) you specified in the DCB macro instruction or the DD statement.

If the cylinder index exceeds the NTM specification, an entry is made in the master index
for each track of the cylinder index. If the master index itself exceedsthe NTM
specification, a second-level master index is started. Up to three levels of master indexes
are created if required.

The space requirements for the master index are computed in the same way as those for
the cylinder index.

Number of tracks
required for =(Number of cylinder index tracks + 1)/Index entries per track
master indexes

M; = (Ci+1)/It when Ci2NTM
M, = (Mj+1)/It when M;>NTM
M3 = (Ma+1)/1t when Mp;>NTM

Example: Assume that your cylinder index will require 22 tracks. Since large keys are
used, only 10 entries will fit on atrack. Assuming that NTM was specified as 2, 3 tracks
will be required for amaster index, and two levels of master index will be created.

M= (22+1)/20=2.3

Note that every time a master index crosses a cylinder boundary, ISAM writes a dummy
index entry that lets ISAM chain the index levelstogether. The addition of dummy
entries can increase the number of tracks required for a given index level. To determine
how many dummy entries will be required, divide the total number of tracks required by
the number of tracks on acylinder. If the remainder is O, subtract 1 from the quotient. If
the corrected quotient is not O, cal culate the number of tracks these dummy entries
require. Also consider any additional cylinder boundaries crossed by the addition of these
tracks and by any track indexes starting and stopping within a cylinder.

Summary: Indexed Sequential Space Requirement Calculations
1. How many blocks will fit on atrack?
Bt = { + ((Ct-Bn)/Bi)
2. How many overflow records will fit on atrack?
Ot =1 + ((Ct-Rn)/Ri)
3. How many index entries will fit on atrack?
It=1+ ((Ct-En)/ED
4. How many track index tracks are needed per cylinder?
Ic = (2(Tc—Oc)+1)/(1t+2)
5. How many tracks on each cylinder can be used for prime data records?
Pc = Tc-Oc-Ic
6. How many cylinders are needed for the prime data area?

C=T/Pc

144 OS/V S2 MV S Data Management Services Guide

7. How many tracks are required for the cylinder index?
Ci = (C+1)/It

8. How many tracks are required for master indexes?
M = (Ci+1)/It

Control and Disposition of Data Sets

Y ou specify two kinds of status and disposition information for the data sets you use for
your processing by coding DI SP=(status,disposition) in the disposition field of the DD
statement. The first kind deals with the status of the data set when you begin processing
and the relationship of the data set to other job stepsin your job or other jobs. The
second deals with what is to be done with the data set when you have completed
processing. In the latter case, you can take advantage of the catalog of the operating
system.

A data set that is being used for input has a status of OLD. If it can be used by more
than one job, the status should be specified as SHR. If you are going to add to the input
data set, specify MOD. The system automatically positions the access mechanism after
the last record when the data set is opened. A new output data set should be indicated as
NEW.

Having identified the status of the data set at the beginning of your job step, you should
specify how you want it disposed of at the end of processing. If the disposition isto be
unchanged, you need not specify anything. 'the status of an existing data set remains
unchanged; a new data set is deleted. The requested disposition is performed at the end
of the job step. A data set to be used in alater job can be kept (KEEP) until a
subsequent request is made to deleteit. If the data set isto be used by more than one job
step in the same job, you can specify that it isto be passed (PASS).

If you specify the CATL G disposition, the data set name is recorded in the catalog by
the system and its volume is noted. An old data set can subsequently be removed from
the catalog if you specify UNCATLG.

If you wish, you can specify one disposition to be performed if the job step terminates
normally, and a different disposition to be performed if the job step terminates
abnormally. For example, you can specify DISP=(OLD,DELETE,KEEP) if you wish to
delete a data set under normal conditions, but wish to keep it if processing is abnormally
terminated. For normal termination, you can specify any disposition—PASS, KEEP,
DELETE, CATLG, or UNCATLG,; for abnormal termination, you can specify any
disposition except PASS.

Routing Data Through the System I nput and Output Streams

The job entry subsystem is a system facility that provides spooling and scheduling of
input and output data streams.

Spooling includes two basic functions:

 Input streams are read from the input device and stored on an intermediate storage
devicein aformat convenient for later processing by the system and by the user's
program.

» Output streams are similarly stored on an intermediate device until a convenient time
for printing or punching.

Scheduling provides the highest degree of system availability through the orderly use of
system resources that are the objects of contention.

Part 3: Data Set Disposition and Space Allocation 145

With spooling, unit record devices are used at full rated speed if enough buffers are
available, and they are used only for the time needed to read, print, or punch the data.
Without spooling, the device is occupied for the entire time that ajob is doing other
processing. Also, because datais stored instead of being transmitted directly, output can
be queued in any order and scheduled by class and by priority within each class.

Y ou enter datainto the system input stream by preceding it withaDD * or DD DATA
JCL statement. Thisisa SY SIN data set.

Y our output data can be printed or punched from a SY SOUT data set, which is called the
output stream. Y ou code the SY SOUT keyword parameter in your DD statement and
designate the appropriate output class. For example, SY SOUT=A requests output class
A. The class-device relationship is established for each installation, and alist of devices
assigned to each output class will enable you to select the appropriate one. Refer to
OS2 JCL for further information on SY SIN and SY SOUT parameters.

SYSIN and SY SOUT must be BSAM or QSAM data sets and you open and close them in
the same manner as any other data set processed on a unit record device (except when
multiple DCBs are used to write to the same output class, the records are not
interspersed.) The DCB exit routine will be entered in the usual manner if you specify it
in an exit list.

When you use QSAM with fixed-length blocked records or BSAM, the DCB block size
parameter does not have to be a multiple of logical record length (LRECL) if the block
sizeis specified through the SY SOUT DD statement. Under these conditions, if block
sizeisgreater than LRECL but not a multiple of LRECL, block size is reduced to the
nearest lower multiple of LRECL when the data set is opened. This feature allows a
cataloged procedure to specify blocking for SY SOUT data sets, even though your
LRECL isnot known to the system until execution.

Therefore, the SYSOUT DD statement of the go step of a compile-load-go procedure
can specify block size without block size being a multiple of LRECL. For further
information, refer to OSVS2 JCL..

Because a SY SOUT data set is written on a direct-access device, you should omit the
DEVD operand in the DCB macro instruction, or should code DEVD=DA. Because
SYSIN and SY SOUT data sets are spooled on intermediate devices, you should also
avoid using device dependent macro instructions (such as FEOV, CNTRL, PRTOV,
BSP, or SETPRT) in processing these data sets. (See the sections, "Device Control" and
"Device Independence.")

The job entry subsystem controls all blocking and deblocking of your data to optimize
system operation and ignores the number of channel programs (NCP) you specify. The
block size (BLKSIZE) and number of buffers (BUFNO) specified in your program have
no correlation with what is actually used by the job entry subsystem. Therefore, you can
select the blocking factor that best fits your application program with no effect on the
spooling efficiency of the system. For QSAM applications, move mode is as efficient as
locate mode.

All record formats are allowed, except that spanned records (RECFM=V S or VBS)
cannot be specified for SY SIN. A record format of FIXED is supplied if it is not
specified for SY SIN.

The logical record length value (JFCLRECL field in the JFCB) isfilled in with the
logical record length value of the input data set. This value isincreased by four if the
record format is variable (RECFM=V or VB). Thelogical record length may be asize
other than the size of the input device, if the SY SIN input stream is supplied by an
internal reader. The job entry subsystem will supply avalue in the JFCLRECL field of
the JFCB if that field is found to be zero.

146 OS/VS2 MV S Data Management. Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

The blocksize value (JFCBLKSI field in the JFCB) isfilled in with the blocksize value of
the input data set. Thisvalueisincreased by four greater than the value calculated for
thelogical record value (that is, input data set logical record length +4) if the record
format is variable (RECFM=V or VB). Thejob entry subsystem will supply avaluein
the JFCBLKSI field of the JFCB if that field is found to be zero.

Y our program is responsible for printing format, pagination, and header control. Y ou can
supply control charactersfor SY SOUT data setsin the normal manner by specifying
ANSI or machine characters in the DCB. Standard controls are provided by default if
they are not specified. The length of output records must not exceed the allowable
maximum length for the ultimate device. Cards can be punched in EBCDIC mode only.

Your SYNAD routine will be entered if an error occurs during data transmission to or
from an intermediate storage device. Again, because the specific device is indeterminate,
your SYNAD routine code should be device independent.

Concatenating Sequential and Partitioned Data Sets

Two or more sequential or partitioned data sets can be automatically retrieved by the
system and processed successively as a single data set. This reading technique is known
as concatenation. A maximum of 255 data sets (16, if partitioned) can be concatenated,
but they must be used only for input.

To save time when processing two consecutive data sets on a single volume, you specify
LEAVE in your OPEN macro instruction. Concatenated data sets cannot be read
backward.

When data sets are concatenated, the system treats the group as a single data set and
only one data extent block (DEB) is constructed. Thus, it isimportant to consider the
characteristics of the individual data sets being concatenated. Data sets with like
characteristics are those that may be processed correctly using the same data control
block (DCB), input/output block (IOB), and channel program. Any exception makes
them unlike. Concatenated partitioned data sets are always treated as like and use the
attributes of the first data set only. Y ou must inform the system by modifying the
DCBOFLGSfield of the DCB if unlike data sets are concatenated (thisis not required
for spool data sets, because EOV automatically treates them as unlike data sets). The
indication must be made before the end of the current data set is reached. Y ou must set
bit 4 to 1 by using the instruction Ol DCBOFLGS,X'08" as described in "Modifying the
Data Control Block." If bit 4 of the DCBOFLGSfield is 1, end-of-volume processing for
each data set will issue a CLOSE for the data set just read and an OPEN for the next
concatenated data set. This opening and closing procedure updates the fields in the DCB
and, if necessary, builds anew 0B and a new channel program. If the buffer pool was
obtained automatically by the open routine, the procedure also frees the buffer pool and
obtains a new one for the next concatenated data set. The procedure does not issue a
FREEPOOL for the last concatenated data set. Unless you have some way of
determining the characteristics of the next data set before it is opened, you should not
reset the DCBOFL GSfield to indicate like characteristics during processing. When you
concatenate data sets with unlike attributes, no EQV exits are taken.

When unlike data sets have been concatenated, you should not issue multiple input
requests, that is, a series of READ or GET macro instructions, in your program. If you
do, you will have to arrange some way to determine which requests have been completed
and which must be reissued. In any case, the GET or READ macro instruction that
detected the end of data set will have to be reissued. Figure 65 illustrates a possible
routine for determining when a GET or READ must be reissued. This restriction does
not apply to like data sets since no open or close operation is necessary between data
sets.

Part 3: Data Set Disposition and Space Allocation 147

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

PROBPROG

DCBEXIT

Set First-
Yes Time-in
DCBEXIT Switch Off
Read #
Set Set Bit 4
e
f
Reread Switch of OFLGS
On to 1
Check
Return
Check via Open*®

Set

Reread Switch
off *Returns are to control

program address in register 14

- Process

Figure 65. Reissuing a READ for Unlike Concatenated Data Sets

When the change from one data set to another is made, label exits are taken as required;
automatic volume switching is also performed for multiple-volume data sets unless they
are partitioned. Y our end-of-data-set (EODAD) routine is not entered until the last data
set has been processed, except that for partitioned data sets, your EODAD routine
receives control at the end of each member. At that time, you can process the next
member or close the data set.

Y ou process a concatenation of partitioned data sets the same way you process asingle
partitioned data set with one exception. Y ou must use the FIND macro instruction to
begin processing a member; you cannot use the POINT (or NOTE) macro instruction
until after the FIND macro instruction has been issued. Figure 49 shows how to process
asingle partitioned data set using FIND. |f two members of different data setsin the
concatenation have the same name, the FIND macro instruction determines the address
of the first one in the concatenation. Y ou would not be able to process the second onein
the concatenation. The BLDL macro instruction provides the concatenation number of
the data set to which the member belongsin the K field of the build list. See the section
"BLDL—Construct a Directory Entry List" in Part 2 of this book.

If issuing an RDJFCB macro, see the RDJFCB macro instruction inthe OSVS2 System
Programming Library: Data Management.

Rotational Position Sensing Consider ations

Direct-access storage devices with the rotational position sensing (RPS) feature (for
example, the 3330) usually employ channel programs that are not compatible with
direct-access storage devices that lack the RPS feature. Therefore, if you concatenate
otherwise "like" data sets residing on devices both with and without the RPS feature,
standard (nonRPS) channel programs will be used, with aresultant loss of the I/O

148 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

overlap efficiency of rotational position sensing. Concatenated partitioned data sets are
always treated as "like" data sets, regardless of how the DCBOFLGSfield isset in the

Part 3: Data Set Disposition and Space Allocation 148.1

Page of GC26-3875-0
Revised August 31, 19713
By TNL GN26-0915

DCB. Data sets with undefined length records and track overflow (RECFM=UT
specified in the DCB) are not processed with the RPS feature.

On the other hand, if you concatenate sequential data sets with "unlike" attributes, you'll
get RPS channel programs for the data sets residing on RPS devices, unless any following
direct-access concatenations are nonRPS devices.

Further discussion and examples of concatenated data sets are contained in OSV2
JCL.

Cataloging Data Sets

The MV S operating system has a catalog structure consisting of aVSAM master catal og,
VSAM user catalogs, and, optionally, control volumes (CVOLS). Figure 66 shows the
MV S catal og structure.

Master Catalog

| USERID 5

:|SYSCTLG.V1111111 .
| UCAT |____ User Catalog Control Volume

Data Set
Data Set A Data Set UCAT.B) USERID.B >
Data Set A
Data Set Data Set
UCAT-B USERID.B

1111111 isthe volume seria of the control volume.
Figure 66. MV S Catalog Structure

There is one master catalog on each system. It isrequired and contains entries for system
data sets. It is also the VSAM master catalog and does not have to be on the system
residence volume. The master catalog contains a pointer to each user catalog, Both
VSAM and nonV SAM data sets can be cataloged in a user catal og.

NonV SAM data sets can be cataloged on control volumes (SY SCTLG data sets). The
master catalog contains a pointer to each control volume. Data sets can be catal oged,
uncatal oged, or recataloged. For more information on using CVOLsin an MV S system,
see OSVS2 Using OS Catalog Management with the Master Catalog: CVOL
Processor (for OS/VS2 MV S Data Management Selectable Unit V S2.03.808, see
OSVX2 MVS CVOL Processor). |If adataset is not cataloged in the master catal og,
the first name of a qualified data set name indicates the user catalog or control volumein
which it is cataloged. A user catalog can also be connected to the VS2 system as ajob
catalog or a step catal og.

Permanent Mass Storage System (M SS) data sets should be cataloged to allow efficient
use of the Mass Storage V olume Control (MSV C) functions. For information on MSVC,
see OSVS Mass Sorage System (MSS) Services: General Information.

Part 3: Data Set Disposition and Space Allocation 149

Entering a Data Set Name in the Catalog

The data set name of anonVSAM data set can be entered in a master or user catalog
through (1) job control language (DISP parameter), (2) Access Method Services
(DEFINE command), or (3) catalog management macro instructions (CATALOG and
CAMLST). A nonVSAM data set name can be entered in a control volume through JCL
or the catalog management macros. VSAM data sets can only be cataloged by using
Access Method Services.

Access Method Servicesis also used to establish aliases for data set names and to
connect user catalogs and control volumes to the master catalog. See OSVS2 Access
Method Services for information on how to use the Access Method Services commands.
See OSVS2 System Programming Library: Data Management for information on
how to use the catalog management macro instructions.

Generation Data Groups

A generation data group is a group of related cataloged data sets. The manner in which
these data sets are cataloged is what makes them a generation data group. Within a
generation data group, the generations can have like or unlike DCB attributes and data
set organizations. If the attributes and organizations of all generationsin agroup are
identical, the generations can be retrieved together as a single data set. Each data set
within a generation data group is called a generation data set. Generation data sets are
sometimes called generations.

There are advantages to grouping related data sets. Because the catalog management
routines can refer to the information in a special index—called a generation index—in
the catalog:

» All of the data sets in the group can be referred to by a common name.
* The operating system is able to keep the generations in chronological order.

» Outdated or obsplete generations can be automatically deleted by the operating
system.

The management of a generation data group depends upon the fact that generation data
sets have sequentially ordered names—absolute and relative names—that represent their
age. The absolute generation name is the representation used by the catalog management
routines in the catalog. Older data sets have smaller absolute numbers. The relative name
isasigned integer used to refer to the latest (0), next to the latest (-1), etc. generation.
The relative number can also be used to catalog a new generation (+1).

In MVS, ageneration data group base is created in aVSAM catalog before the
generation data sets are cataloged. A generation data group is represented in the VSAM
catalog by a generation data group base entry. The Access Method Services DEFINE
command is used to creste the generation data group base. See OSV2 Access Method
Services for information on how to define and/or catalog generation data sets.

Absolute Generation and Version Numbers

An absolute generation and version number is used to identify a specific generation of a
generation data group. The generation and version numbers are in the form GxxxxVyy,

where xxxx is an unsigned four-digit decimal generation number (0001-9999) and yy is
an unsigned two-digit decimal version number (00-99). For example:

» A.B.C.G0001VO0O0 is generation data set one, version zero, in generation data group
A.B.C.

150 OS/VS2 MV 'S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

* A.B.C.GO009VO01 is generation data set nine, version one, in generation data group
A.B.C.

The number of generations and versionsis limited by the number of digitsin the absolute
generation name, that is, 9999 for generations and 100 for versions.

The generation number is automatically maintained by the system. The number of
generations kept depends on the size of the generation index. For example, if the size of
the generation index allows ten entries, the ten latest generations may be maintained in
the generation data group.

The version number allows you to perform normal data set operations without disrupting
the management of the generation data group. For example, if you want to update the
second generation in athree-generation group, replace generation two, version zero, with
generation two, version one. Only one version is kept per generation.

A generation can be cataloged using either absolute or relative numbers. When a
generation is cataloged, a generation and version number is placed as alow level entry in
the generation data group. In order to catalog a version number other than V0O, you
must use an absol ute generation and version number.

Relative Generation Number

As an alternative to using absol ute generation and version numbers when catal oging or
referring to a generation, you can use a relative generation number. To specify arelative
number, use the generation data group name followed by a negative integer, a positive
integer, or a zero, enclosed in parentheses. For example, A.B.C(-1). A.B.C(+1), or
A.B.C(0).

The value of the specified integer tells the operating system what generation number to
assign to a new generation, or it tells the system the location (in the generation index) of
an entry representing a previously cataloged generation.

When you use arelative generation number to catal og a generation, the operating system
assigns an absol ute generation number and a version number of V00 to represent that
generation. The absolute generation number assigned depends on the number last
assigned and the value of the relative generation number that you are now specifying.
For exampleif, in a previous job generation, A.B.C.G0005V 00 was the last generation
cataloged, and you specify A.B.C(+ 1), the generation now cataloged is assigned the
number GO0O06V 00. Though any positive relative generation number can be used, a
number greater than 1 may cause absol ute generation numbers to be skipped. For
example, if you have a single-step job, and the generation being cataloged is a+2, one
generation number is skipped. However, in amultiple-step job, one step may have a

+ land a second step a+2, and no numbers are skipped in this case.

When you use arelative generation' number to refer to a generation that was cataloged in
aprevious job, the relative number has the following meaning:

* A.B.C(0) refersto the latest existing cataloged entry.
* A.B.C(-1) refersto the next-to-the-latest entry, etc.

When cataloging is requested via JCL, al actual cataloging occurs at step termination, but the
relative generation number remains the same throughout the job. Because thisis so:

« A relative number used in the JCL refers to the same generation throughout ajob.

» A job step that terminates abnormally may be deferred for alater step restart. If the
step cataloged a generation data set via JCL, you must change all relative generation
numbers in the succeeding steps via JCL before resubmitting the job.

Part 3: Data Set Disposition and Space Allocation 151

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

For example, if the succeeding steps contained the relative generation numbers:
+ A.B.C(+1), which refersto the entry cataloged in the terminated job step.

« A.B.C(0), which refers to the next to the latest entry.

* A.B.C(-1), which refersto the latest entry, prior to A.B.C(0).

Y ou must change them as follows before the step can be restarted: A.B.C(0), A.B.C(-1),
A.B.C(-2), etc.

Note: If you do not specify avolumein the JCL for anew generation data set, and the data set
is not opened, that data set is not catal oged.

Building a Generation Index in a CVOL

A generation data group is managed via the information found in a generation index.
(Note that an alias name cannot be assigned to the highest level of a generation index.)
The BLDG function builds the index. The BLDG function also indicates how older or
obsolete generations are to be handled when the index is full. For example, when the
index isfull, you may wish to empty it, scratch existing generations, and begin cataloging
anew series of generations.

After the index is built, a generation can be cataloged by its generation data group name
and either an absolute generation and version number or arelative generation number.

Examples on how to build a generation-data-group index are found in OSVS Utilities.

Creating a New Generation

To create a new generation data set you must first allocate space for the generation, then
catal og the generation.

Allocating a Generation

To take full advantage of the facilities of the system, the allocation can be patterned
after a previoudly allocated generation in the same group. Thisis accomplished by the
specification of DCB attributes for the new generation as described below.

If you are using absolute generation and version numbers, DCB attributes for a
generation can be supplied directly in the DCB parameter of the DD statement defining
the generation to be created and catal oged.

If you are using relative generation numbers to catalog generations, DCB attributes can
be supplied either: (1) by creating a model DSCB on the volume on which the index
resides (the volume containing the catalog) or (2) by referring to a cataloged data set for
the use of its attributes. Attributes can be supplied before you catalog a generation, when
you catalog it, or at both times, as follows:

1. Create amodel DSCB on the volume on which your index resides. Y ou can provide
initial DCB attributes when you create your model; however, you need not provide
any attributes at this time. Since only the attributes in the data set 1abel are used, the
model data set should be allocated with SPACE= (TRK,0) to conserve direct-access
space. Initial or overriding attributes can be supplied when you create and catalog a
generation.t To create amodel DSCB, include the following DD statement in the job

attributes when you create the moOalglorévineel) 8CBshsespagrithayneabeanidiestal ag. # gensaatoase dnglodeote;essatgfpyBCB
attributes in the DD statement referring to the generation. In this manner, any number of generation data groups can refer
to the same model. Note that the catalog and model data set label are always located on a direct-access volume, even for a
magnetic tape generation data group.

152 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

step that builds the index or in any other job step that precedes the step in which you
create and catalog your generation.

//name DD DSNAME=datagrpname, DISP=(,KEEP) , SPACE=(TRK, (0)),

// UNIT=yyyy, VOLUME=SER=XXXXXX,
// DCB= (applicable subparameters)

Part 3: Data Set Disposition and Space Allocation 152.1

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

The DSNAME is the common name by which each generation isidentified; xxxxxx is
the serial number of the volume containing the catalog. If no DCB subparameters are
desired initially, you need not code the DCB parameter.

2. You do not need to create a model DSCB if you can refer to a cataloged data set
whose attributes are identical to those you desire or to an existing model DSCB for
which you can supply overriding attributes. A cataloged data set referred to in this
manner must reside on the same volume as your index. To refer to a cataloged data set
for the use of its attributes, specify DCB= (dsname) on the DD statement that creates
and catalogs your generation. To refer to an existing model, specify
DCB= (modeldscbname, your attributes) on the DD statement that creates and
catalogs your generation.

Passing a Generation

A new generation may be passed when created. That generation may then be cataloged
in asucceeding job step or deleted at the end of the job asin normal disposition
processing when DISP= (,PASS) is specified on the DD statement.

However, once a generation has been created with DISP=(NEW,PASS) specified on the
DD statement, another new generation for that data group must not be cataloged until
the passed version has been deleted or cataloged. To do so would cause the wrong
generation to be used when referencing the passed generation data set. If that data set
was later cataloged, a bad generation would be cataloged and a good one lost.

For example, if A.B.C(+ 1) was created with DISP=(NEW,PASS) specified on the DD
statement, then A.B.C.(+2) must not be created with DISP=(NEW,CATLG) until
A.B.C(+1) has been cataloged or deleted.

By using the proper JCL, the advantages to this support are;
» JCL will not have to be changed in order to rerun the job.

» Thelowest generation version will not be deleted from the index until avalid version
is catal oged.

Creating an | SAM Data Set as Part of a Generation Data Group

To create an indexed-sequential data set as part of a generation data group, you must:
(1) create the indexed-sequential data set separately from the generation group and
(2) use IEHPROGM to put the indexed-sequential data set into the generation group.

Use the RENAME function to rename the data set. Then use the CATLG function to
catalog the data set. For instance, if MASTER is the name of the generation data group,
and GggggV vv is the absol ute generation name, you would code the following:

RENAME DSNAME=ISAM,VOL =2314=SCRTCH,NEWNAME=MASTER.GggggV vv
CATLG DSNAME=MASTER.GggggVvv,VOL=2314=SCRTCH

Retrieving a Generation

A generation may be retrieved through the use of job control language procedures. Any
operation that can be applied to a non-generation data set can be applied to a generation.
For example, a generation can be updated and reentered in the catalog, or it can be
copied, printed, punched, or used in the creation of new generation or non-generation
data sets.

Y ou can retrieve a generation by using either relative generation numbers or absolute
generation and version numbers.

Part 3: Data Set Disposition and Space Allocation 153

Because two or more jobs can compete for the same resource, generation data groups
should be updated with care, as follows:

» No two jobs running concurrently should refer to the same generation data group. As
apartial safeguard against this situation, use absol ute generation and version numbers
when cataloging or retrieving a generation in a multiprogramming environment. If you
use relative numbers, ajob running concurrently may update the generation data
group index, perhaps cataloging a new generation which you will then retrieve in place
of the one you wanted.

» Even when using absolute generation and version numbers, ajob running concurrently
might catalog a new version of a generation or perhaps delete the generation you
wished to retrieve. For this reason, some degree of control should be maintained over
the execution of job steps referring to generation data groups.

Controlling Confidential Data

Password Protection for Non VSAM Data Sets

Password protection as described here applies to nonVSAM data sets only. For
information on password protection for VSAM data sets, see OSVS2 Access Method
Services.

In addition to the usual label protection that prevents opening of a data set without the
correct data set name, the operating system provides data set security options that
prevent unauthorized access to confidential data. Two levels of protection options are
available. Y ou specify these optionsin the LABEL field of aDD statement with the
parameter PASSWORD or NOPWREAD.

» Password protection (specified by the PASSWORD parameter) makes a data set
unavailable for all types of processing until a correct password is entered by the
system operator, or for aTSO job on MVS, the TSO user.

» No-password-read protection (specified by the NOPWREAD parameter) makes a
data set available for input without a password, but requires that the password be
entered for output or delete operations.

If an incorrect password is entered twice, the job is terminated by the systemif it isbeing
requested by the open or EOV routine. For a scratch or rename request, areturn code is
given.

Y ou can request password protection when you create the data set by using the LABEL
field of the DD statement in your JCL. The system sets the data set security byte either
in the standard header label 1 asshownin OSVSTape Labels or intheidentifier data
set control block (DSCB) as shown in OSVS2 System Programming Library:
Debugging Handbook. Once you have requested security protection for magnetic tapes,
you cannot remove it with JCL unless you recreate the data set and scratch the protected
data set.

In addition to requesting password protection in your JCL, you must enter at least one
record for each protected data set in a data set named PASSWORD that must be created
on the system-residence volume. Y ou should also request password protection for the
PASSWORD data set itself to prevent both reading and writing without knowledge of
the password.

For a data set on a direct-access device, you can place the data set under protection at
the same time that you enter its password in the PASSWORD data set. Y ou can use the
PROTECT macro instruction or the IEHPROGM utility program to add, change, or
delete an entry in the PASSWORD data set; with either of these methods, the system

154 OS/VS2 MV S Data Management Services Guide

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

updates the DSCB of the data set to reflect its protected status. This provision eliminates
the need for you to use JCL whenever you add, change, or remove security protection

for adata set on a direct-access device. OSVS2 System Programming Library: Data
Management describes how to maintain the PASSWORD data set, including the
PROTECT macro instruction;, OSVS2 MVSUtilities describesthe IEHPROGM tility
program.

RACEF Protection for NonVSAM DASD Data Sets and
Tape Volumes

RACF (Resource Access Control Facility) protection as described here
applies to nonV SAM data sets and tape volumes. For information on RACF
protection for VSAM data sets, see OSVS2 MVS Resour ce Access Control
Facility (RACF): General Information Manual.

RACF isaprogram product that provides for access control by identifying
and verifying users and authorizing access to DASD data sets, and tape
volumes with either standard or ANS! labels, which are defined to RACF.

Y ou may define a data set to RACF automatically or explicitly. The
automatic definition occurs when space is allocated for the data set, if the user
has the automatic data set protection attribute or if PROTECT=YESis
coded on the DD statement. The explicit definition of adata set to RACF is
by use of the RACF command language.

A tape volume is defined to RACF explicitly by use of the RACF command
language or automatically. This automatic definition occurs when the first
data set on the first (or only) private volume is opened for OUTPUT or
OUTIN and PROTECT=Y ES has been coded in the DD statement. RACF
protection of tape data setsis provided on a volume basis and not on a data
set basis. All data sets on atape volume are RACF-protected if the volumeis
RACF-protected.

There are five levels of access authority which you may haveto a
RA CF-defined DASD data set or tape volume.

ALTER
Y ou have total control over the data set. If you define the DASD data set
or tape volume to RACF, you have ALTER access authority. With
ALTER authority, you can read and write the data set or tape volume,
rename the data set, and scratch the data set, and you may authorize other
users access to the tape volume or data set.

CONTROL
For nonV SAM data sets, CONTROL authority is equivalent to UPDATE
authority.

UPDATE
Y ou are authorized to open the data set or tape volume for OUTPUT and
all other open options.

READ
Y ou are authorized to open the data set or tape volume for INPUT only.

NONE
Y ou are not authorized to open the data set or tape volume.

Part 3: Data Set Disposition and Space Allocation 155

Page of GC26-3875-0
Added August 31, 1978
By TNL GN26-0915

If aDASD data set is both defined to RACF and password-protected, access
to the data set is authorized only through RACF authorization checking. If a
tape volume is defined to RACF and the data set(s) on the tape volumeis
password-protected, access to any of the data sets is authorized only through
RA CF authorization checking of the volume. Data set password protection is
bypassed.

To protect multivolume nonV SAM DASD and tape data sets, you must define
each volume of the data set to RACF as part of the same volume set. When a
RA CF-protected data set is opened for output and extended to a new volume,
the new volume will be automatically defined to RACF as part of the same
volume set. When a multivolume physical sequentially organized data set is
opened for output and the first volume opened is RACF-protected, each
subsequent volume must either be! RACF-protected as part of the same volume
set, or the data set must not yet exist on the volume. When a multivolume tape
data set is opened for output and the first volume opened is RA CF-protected,
each subsequent volume must be either RACF-protected as part of the same
volume set, or the tape volume must not yet be defined to RACF. If the first
volume opened is not RACF-protected, no subsequent volume may be

RA CF-protected. If a multivolume data set is opened for input (or a
nonphysical sequentially organized data set is opened for output), no such
consistency check is performed when subsequent volumes are accessed.

156 OS/VS2 MV S Data Management Services Guide

APPENDIX A: DIRECT-ACCESSLABELS

Only standard label formats are used on direct-access volumes. VVolume, data set, and
optional user labels are used (see Figure 67). In the case of direct-access volumes, the
data set l1abel isthe data set control block (DSCB).

.
Cylinder IPL Records
Cylinder 0 Volume Label
Tracks Additional Labels
Track O | (Optional) ____ |
a—
I r—‘—""‘"—\-*]
.
prrreetp
- -
— VTOC DSCB
Free Space DSCB
DSCB . vTOC
DSCB
DCSB]
-
All Remaining

Tracks of Volume
Unused Storage
Area for Data Sets

Figure 67. Direct-Access Labeling

Volume-Labe Group

The volume-label group immediately follows the first two initial program loading (1PL)
records on track O of cylinder O of the volume. It consists of the initial volume label at
record 3 plus a maximum of seven additional volume labels. Theinitial volume label
identifies avolume and its owner, and is used to verify that the correct volumeis
mounted. It can also be used to prevent use of the volume by unauthorized programs.
The additional labels can be processed by an installation routine that is incorporated into
the system.

The format of the direct-access volume label group is shown in Figure 68.

Appendix A: Direct-Access Labels 157

Page of GC26-3875-0
Revised August 31, 1978
By TNL GN26-0915

{Up to 7 Additional Volume Labels)
80-Byte Physical Record

Fieid 1 (3) Voiume Label Identifier (VOL)
2 {1) Volume Label Number (1)
3 {6) Volume Serial Number
4 (1) Volume Security
5 (5) VTOC Pointer
6 (25) Reserved (Blank)
7 (10) Owner Name and Address Code
8 - {29) -~ Blank

Figure 68. Initial Volume Label

Initial. Volume Label Format
The 80-byteinitial volume label is preceded by afour-byte key containing VOL1 .
Volume Label Identifier (VOL): Field 1 identifies avolume label.

VolumeLabel Number (1): Field 2 identifies the relative position of the volume label in a
volume label group. It must bewrittenas C'1'

The operating system identifies an initial volume label when, in reading the initial record,
it finds that the first 4 characters of the record are VOL 1.

Volume Serial Number: Field 3 contains a unique identification code assigned when the
volume enters the system. Y ou can place the code on the external surface of the volume
for visual identification. The code is normally numeric (000001-999999), but may be
any 1 to 6 alphameric or national (#, $, @) characters, or a hyphen (X'60"). If thisfield
islessthan 6 characters, it is padded on the right with blanks.

Volume Security: Field 4 isreserved for use by installations that wish to provide security
for volumes. Make thisfield a C'0" unless you have your own security processing
routines.

VTOC Pointer: Field 5 of direct-access volume label 1 contains the address of the
VTOC in the form of CCHHR.

Reserved: Field 6 isreserved for future developmental purposes. Leave it blank.

158 OS/VS2 MV S Data Management Services Guide

Owner Name and Address Code: Field 7 contains a unique identification of the owner of
the volume.

All the bytesin Field 8 are |eft blank.

Data Set Control Block (DSCB)

The system automatically constructs a DSCB when space is requested for a data set on a
direct-access volume. Each data set on a direct-access volume has one or more DSCBsto
describe its characteristics. The DSCB appears in the VTOC and contains
operating-system data, device-dependent information, and data set characteristics, in
addition to space allocation and other control information. There are seven kinds of
DSCBs, each with adifferent purpose and a different format number. For an explanation
of the seven kinds of DSCBs, see OSVX2 System Programming Library: Debugging
Handbook.

User Label Groups

User header and trailer label groups can be included with data sets of physically
sequential or direct organization. The labels in each group have the format shown in

Figure 69.
80-Byte Physical Record {Maximum of 8)
Field 1 (3) Label Identifier (UHL if Header, UTL if Trailer)
2 (1) Label Number (1 - 8)
3 = (786) = User-Specified

Figure 69. User Header and Trailer Labels

Appendix A: Direct-Access Labels 159

Each group can include up to eight labels, but the space required for both groups must
not be more than 1 track on a direct-access device. The current minimum track size
allows a maximum of eight labels, including both header and trailer labels. Consequently,
a program becomes device-dependent (among direct-access devices) when it creates
more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an additional track is
normally allocated when the data set is created. No additional track is allocated when
specific tracks are requested (SPACE=(ABSTR,...)), or when tracks allocated to
another data set are requested (SUBALLOC-=...). In either case, labels are written on
thefirst track that is allocated.

User Header Label Group: The operating system writes these labels as directed by the
processing program recording the data set. The first 4 characters of the user header label
must be UHL1,..., UHL8; you can specify the remaining 76 characters. When the data
set isread, the operating system makes the user header labels available to the problem
program for processing.

User Trailer Label Group: These labels are recorded (and processed) as explained in the
preceding text for user header |abels, except that the first 4 characters must be UTL1,....,
UTLS8.

User Header and Trailer Label Format

Label Identifier: Field 1 indicates the kind of user header label. UHL indicates a user
header label; UTL indicates a user trailer label.

Label Number: Field 2 identifies the relative position (1-8) of the label within the user
label group.

User-Specified: Field 3 (76 bytes).

160 OS/VS2 MV 'S Data Management Services Guide

APPENDIX B: CONTROL CHARACTERS

Machine Code

As an optional feature, each logical record, in any record format, may include a control
character. This control character is recognized and processed if a data set is being written
to a printer or punch.

For format-F and format-U records, this character is the first byte of the logical record.

For format-V records, it must be the fifth byte of the logical record, immediately
following the record descriptor word.

Two options are available. If either option is specified in the DCB, the character must
appear in every record and other line spacing or stacker selection options also specified
in the DCB are ignored.

Y ou can specify in the DCB that the machine code control character has been placed in
each logical record. If the record is to be written, the appropriate byte must contain the
command code bit configuration specifying both the write and the desired carriage or
stacker select operation.

The machine code control characters for a printer are as follows:

Print and Then Act Act Immediately (No Printing)
Codein Hexadecimal Action Codein Hexadecimal

01 Print only (no space)

09 Space 1 line 0B
11 Space 2 lines 13
19 Space 3 lines 1B
89 Skip to channel 1 8B
91 Skip to channel 2 93
99 Skip to channel 3 9B
Al Skip to channel 4 A3
A9 Skip to channel 5 AB
Bl Skip to channel 6 B3
B9 Skip to channel 7 BB
Cl Skip to channel 8 C3
c9 Skip to Clannel 9 CB
DL Skip to channel 10 D3
D9 Skipto hannel 11 DB
EL Skip to channel 12 E3

Appendix B Control Characters 161

The machine code control characters for a card read punch device are as follows:

Code in Hexadecimal Action
01 Select stacker |
41 Select stacker 2
81 Select stacker 3

Other command codes for specific devices are contained in publications describing the
control units and devices.

Extended American National StandardsInstitute Code

In place of machine code, you can specify control characters defined by the American
National Standards Ingtitute, Inc. (ANSI). Whenever IBM publications refer to ANSI
code, they are asfollows:

Code Action Before PrintingaLine

Space one line (blank code)
Space two lines
Space three lines
Suppress space
Skip to channel |
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to channel 5
Skip to channel 6
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12

Code Action After Punching a Card

\Y Select punch pocket |
W Select punch pocket 2

These control charactersinclude those defined by ANSI FORTRAN. If any other
character is specified, it isinterpreted as'b’ or V, depending on whether it isfor a printer
or apunch; no error indication is returned.

Om>PO0Wo~Noad~MwNpR+ | OoOT

162 OS/VS2 MV S Data Management Services Guide

GLOSSARY OF ACRONYMSAND
ABBREVIATIONS

The following terms are defined as they are used in this book. If you do not find the term
you are looking for, refer to the index or to the IBM Data Processing Glossary,

GC20-1699.

A ANSI control code (value of RECFM)

ABE abnormal end (value of EROPT)

ABEND abnormal end (macro instruction)

ABSTR absolute track (value of SPACE)

ACC accept erroneous block (value of EROPT)

AFF affinity (channel separation parameter of DD statement or unit affinity
value of UNIT)

AL American National Standard Labels

ANS American National Standards Institute

ASCII American National Standard Code for Information Interchange

AUL American National Standard User labels (value of LABEL)

B blocked records (value of RECFM)

BCDIC binary coded decimal interchange code

BDAM basic direct access method

BDW block descriptor word

BFALN buffer alignment (operand of DCB)

BFTEK buffer technique (operand of DCB)

BISAM basic indexed sequential access method

BLDL build list (macro instruction)

BLKSIZE blocksize (operand of DCB)

BPAM basic partitioned access method

BPI bits per inch

BSAM basic sequential access method

BSM backspace past tapemark and forward space over tapemark (operand of
CNTRL)

BSP backspace one block (macro instruction)

BSR backspace over a specified number of blocks (records)
(operand of CNTRL)

BUFCB buffer pool control block (operand of DCB)

BUFL buffer length (operand of DCB)

BUFNO buffer number (operand of DCB)

BUFOFF buffer offset (length of ASCII block prefix by which the buffer
is offset; operand of DCB)

CCw channel command word

CONTIG contiguous space allocation (value of SPACE)

CNTRL control (macro instruction)

CPU central processing unit

csw channel status word

CYLOFL number of tracks for cylinder overflow records (operand of DCB)
D format-D (ASCII variable-length) records (value of RECFM)
DA direct-access (value of DEVD or DSORG)

DAU direct-access unmovable data set (value of DSORG)

DCB data control block (control block name or macro instruction)
DCBD data control block dummy section macro instruction

DD data definition

DEB data extent block

Glossary of Acronyms and Abbreviations 163

DECB
DEN
DEVD
DISP
DSCB
DSORG

EBCDIC
EODAD
EOF
EQV
EROPT
ESETL
EXCP
EXLST

F
FB

FBS
FBT

FCB
FEOV
FS
FSM

FSR

GCR
GL
GM

HA

1/0
INOUT
10B
IPL
IRG

IS
ISAM
I1SU

JCL
JFCB
JFCBE

KEYLEN

LPA
LPALIB
LRECL

M
MACRF
MOD
MSHI
MSS

data event control block

magnetic tape density (operand of DCB)
device-dependent (operand of DCB)

data set disposition (parameter of DD statement)
data set control block

data set organization (operand of DCB)

extended binary coded decimal interchange code
end-of-data set exit routine address (operand of DCB)
end-of-file

end-of-volume

error options (operand of DCB)

end sequential retrieval (QISAM macro instruction)
execute channel program (macro instruction)

exit list (operand of DCB)

fixed-length records (value of RECFM)

fixed-length, blocked records (value of RECFM)

fixed-length, blocked, standard records (value of RECFM)
fixed-length, blocked records with track overflow option (value of
RECFM)

forms control buffer

force end-of-volume (macro instruction)

fixed-length, standard records (value of RECFM)

forward space past tapemark and backspace over tapemark (operand of
CNTRL)

forward space over a specified number of blocks (records) (operand of
CNTRL)

group coded recording
GET macro, locate mode (value of MACRF)
GET macro, move mode (value of MACRF)

home address

i nput/output

input then output (operand of OPEN)
input/output block

initial program load

interrecord gap

indexed sequentia (value of DSORG)

indexed sequential access method

indexed sequential unmovable (value of DSORG)

job control language
job file control block
job file control block extension for 3800 printer

key length (operand of DCB)

link pack area
link pack arealibrary
logical record length (operand of DCB)

machine control code (value of RECFM)

macro instruction form (operand of DCB)

modify data set (value of DISP)

main storage for highest-level index (operand of DCB)
Mass Storage System

164 OS/VS2 MV 'S Data Management Services Guide

MSVC Mass Storage V olume Control

MSWA main storage for work area (operand of DCB)

NCP number of channel programs (operand of DCB)

NOPWREAD no password to read a data set (value of LABEL)

NRZI non-return-to-zero-inverted (tape recording mode)

NSL nonstandard label (value of LABEL)

NTM number of tracksin cylinder index for each entry in lowest level of
master index (operand of DCB)

OMR optical mark read

OPTCD optional services code (operand of DCB)

OSs/VS operating system/virtual storage

OUTIN output then input (operand of OPEN)

PCI program-controlled interruption

PDAB parallel data access block

PDS partitioned data set

PE phase encoding (tape recording mode)

PL PUT macro, locate mode (value of MACRF)

PM PUT macro, move mode (value of MACRF)

PO partitioned organization (value of DSORG)

POU partitioned organization unmovable (value of DSORG)

PRECL physical record length (field of DCB)

PRTSP printer line spacing (operand of DCB)

PS physical sequential (value of DSORG)

PSU physical sequential unmovable (value of DSORG)

QISAM queued indexed sequential access methods

QSAM queued sequential access method

RCE read column eliminate

RDBACK read backward (operand of OPEN)

RDW record descriptor word

RECFM record format (operand of DCB)

RKP relative key position (operand of DCB)

RLSE rel ease unused space (DD statement)

RPS rotational position sensing

S standard format records (value of RECFM)

SDW segment descriptor word

SEP separation (channel separation parameter of DD statement or
unit separation value of UNIT)

SER volume serial number (value of VOLUME)

SETL set lower limit of sequentia retrieval (QISAM macro instruction)

SF sequential forward (operand of READ or WRITE)

SK skip to a printer channel (operand of CNTRL)

SKP skip erroneous block (value of EROPT)

SL IBM standard labels (value of LABEL)

SMSI size of main-storage area for highest-level index (operand of DCB)

SMSW size of main-storage work area (operand of DCB)

SP space lines on a printer (operand of CNTRL)

SS select stacker on card reader (operand of CNTRL)

SUL IBM standard and user labels (value of LABEL)

SvC supervisor call

SVCLIB supervisor cal library

SYNAD synchronous error routine address (operand of DCB)

Glossary of Acronyms and Abbreviations 165

SYSIN
SYSOUT

TIOT
TRC
TRTCH

ucs
UHL
UTL

VB
VBS
VS
VTOC

system input stream
system output stream

track overflow option (value of RECFM)
task 1/0 table

table reference character

track recording technique (operand of DCB)

undefined length records (value of RECFM)
universal character set

user header label

user trailer l1abel

format-V (variable-length) records (value of RECFM)
variable-length, blocked records (value of RECFM)
variable-length, blocked, spanned records (value of RECFM)
virtual storage or variable-length, spanned records

volume table of contents

166 OS/VS2 MV 'S Data Management Services Guide

INDEX

A

abbreviations 163-166
ABE error option 40
ABEND exit 49-53
abnormal termination during open, close, EOV processing
ESTAE exit 56
STAE exit 56
STAI exit 56
absolute actual address 33
allocating space for data sets containing 136
use with direct data sets 128
absolute generation name 150
ACC error option 40
access method 18
basic 62-65
queued 18,59-62
selecting 66,67
Access Method Services
DEFINE command 150
program use of 150
access techniques
basic 18,62-65
queued 18,59-62
acronyms 163-166
actual track address
(MBBCCHHR) 33
allocating space for data sets containing 136
use with direct data sets 128,130
use with feedback option 129
address, direct-access storage device
absolute actual 33
allocating space for data set containing 136
use with direct data sets 128
direct 127
indirect 127
relative 33
in directories 99-100
use with direct data sets 128
AFF affinity, channel 37
alias entry in directory
effect of changing directory entry 102
specifying 98
alignment
buffer 75
data control block 53
allocation (see space allocation)
American National Standard Code
for Information Interchange
(see ASCII block prefix; ASCII format)
American National Standard labels 21
American National Standard Institute (see ANSI control
character; American National Standard labels)
ANSI control character
described 162
device-type considerations 84
used with chained scheduling 92-93
with format-D records 28
with format-F ASCI|I tape records 23
anticipatory buffering
omitted with basic access technique 62
with queued access technique 59

ASCII block prefix
restriction 23,24,28
with format-D records 28
with format-F records 23-24
with format-U records 30
ASCII format
restriction for 7-track tape 84
translating data from 17,21,59,93
translating datato 17,21,59,63
ASCII tape
buffer alignment 75
fixed-length records 23
undefined-length records 30
variable-length records 28,29
associated data set
restriction with chained scheduling 92
ATLAS macro 66
automatic blocking/deblocking with queued
access techniques 59
automatic cataloging of data sets 19
automatic error options (EROPT) operand of
DCB macro 40
automatic volume switching 59,72,74,147
auxiliary storage (see data set storage; direct-access storage;
magnetic tape volumes)

B

backspace
by BSP macro 89
by CNTRL macro 87
basic access technique
(seealso BDAM, BISAM, BPAM, and BSAM)
blocking 62
buffer acquisition and control 74-75,76,78,79
deblocking 62
definition of 62-65
overlapped 1/0O 62
using BDW 24
BCDIC translation to EBCDIC 85
BDAM (basic direct-access method) data set
(see also basic access technique)
access technique 127
adding records 131-133
CHECK macro 64
creating 129-130
dynamic buffering 79,127
exclusive control for updating 128
extended search option 128
feedback option 129
organization 127
processing 127-133

Index 167

READ macro 64
record format 131
restriction with chained scheduling 92
selecting an access method 66,67
sharing data set 55,56
spanned variable-length records 25-28
SYNAD routine 40
updating records 131-133
user labels 42,132
WAIT macro 64,65
when sharing a data set 55,56
WRITE macro 63,64
BDW (block descriptor word) 24
BFTEK operand of DCB macro
BFTEK=A 26,78
BFTEK=R spanned records 63
BISAM (basic indexed sequential access method) data set
(see also indexed sequential data set)
dynamic buffering 79
retrieving 121-123
sharing aDCB 56,123
updating 121-125
when sharing a data set 55,56
BLDL macro instruction
build list format 101
coding example 105
description 101
updating a partitioned data set 105
BLKSIZE operand of DCB macro
description 36
effect of data check on 22,84
for writing a short block 96
for card reader and punch 86
for undefined-length records with QSAM 93
including block prefix 29
requirement for direct data set 127
specifying 91,135,136
when ignored 138,146
block count exit routine 47-48
block, data 21
block descriptor word (BDW) 24
block prefix (ASCII) records
buffer alignment 75
with format-D records 28-29
with format-F records 23-24
with format-U records 30
block sizefield (see BLKSIZE field)
blocking
automatic 59
defined 21
with basic access technique 62
with fixed-length records 22-24
with spanned records 25-26
with variable-length records 24-25
with undefined-length records 30
boundary alignment
buffer 75
data control block 53
BPAM (basic partitioned access method) data set
concatenation 147-148
creating 103-104
defined 18,97-98
EODAD routine 38
processing 97-107

168 OS/VS2 MV S Data Management Services Guide

restriction with
chained scheduling 105
DCB ABEND exit routine 49
fixed-length records, standard format 23
search direct operation 93
retrieving member 104,105
space alocation for 138
updating member 105,106
when sharing a data set 55,56
BSAM (basic sequential access method) data set
as SY SIN/SY SOUT data sets 146
creating 93,94
creating a BDAM data set 129
determining the length of arecord 96
EODAD routine 38,39
extending 96
how EODAD routineis entered 38
overlap of 1/0 62,92
retrieving 94
to update the directory 102
updating 94-95
user labels 42
user totaling 45-46
when sharing a data set 55,56
writing a short block 96
BSP macro instruction
description 89
restriction in EODAD routine 38
BUFCB operand in DCB macro 75
buffer

(seealso FREEBUF; FREEDBUF; GETBUF; REL SE)

acquisiton and control 74-83
alignment 75
automatic for ISAM 79
direct 75,79
dynamic 75,79
control 77-79
for basic access technique 75,76
length (BUFL operand of DCB macro) 75,114
number (BUFNO operand of DCB macro) 75,76,92
pool 75-77
(see also buffer pool)
releasing 82
segment 74,77
truncating 83
buffer pool
(seealso BUILD; GETPOOL ; FREEPOOL)
automatic construction 75,76
building 75-76
coding examples 77,78
description 74-75
explicit 75
freeing 77
getting 76
getting a buffer from 83
returning a buffer to 83
returning a dynamic buffer to 83
segment 74
static 75

buffering 67
anticipatory
for queued access technique 59
omitted for basic access technique 62
direct control of 78
dynamic 75
exchange 75,82
|ook-ahead 59
simple 74,75,79-81
BUFL operand in DCB macro
for card punch 86
for constructing a buffer pool 75
for ISAM 114
for printer 86
BUFNO operand in DCB macro
affecting chained scheduling 92
affecting performance 92
when constructing a buffer pool 75,76
when ignored 146
BUFOFF operand of DCB macro
with format-DB records 93
with QSAM or BSAM 23
with variable-length records 28-29
build list format 101
(seealso BLDL)
BUILD macro instruction
description 75
with ISAM data set 114
BUILDRCD macro instruction
description 76
restriction 27
usage 26,27

C

CAMLST macro, use of 150
capacity for direct-access

cylinder 20,137

record 32,130,135

track 137
card pundi record format with 85
card reader

record format with 85

relationship with CNTRL macro 87

restriction with CNTRL macro 87
carriage control characters

defined 31,161,162

specification of in RECFM field 84
CATALOG macro, use of 150
catalog, system 149 -

control volumes 149

entering a data set name 150
cataloging data sets

automatic 19

defined 17

for a generation data group 149-150
CCW (see channel command word)

chained scheduling
description 83,92,93
restriction with
BDAM 92
calculating record length 96
CNTRL macro 92
DOS checkpoint records, embedded on tape 92
format-D records 29
paper-tape reader 92
partitioned data set 105
SKP option 40
spooled data sets 92
track overflow 92
UPDAT operand 92
updating a sequential data set 94
2540 Card Read Punch 93
3525 Card Punch 92
changing an address in the data control block 53,54
channel command word (CCW)
creation by OPEN 67
PCI flagin 92
use in simple buffering 79
channel program
execute (EXCP) 18,66
number of (NCP) 62,92,146
channel separation and affinity field of DD statement 37
character set, changing 88
CHECK macro instruction
description 64
to enter EODAD routine 38
to update a partitioned data set 105
to update a sequential data set 94
use with BDAM 56
use with SYNAD routine 40,62
using WAIT instead (see WAIT macro instruction)
when sharing a data set 55,56
with basic access technique 62
check routine, examining DECB 65
checkpoint/restart
check of JFCBFLAG 47
restriction for LPALIB 47
CHKPT macro instruction
use in end-of-volume exit routine 47
CLOSE macro instruction
description 70-72
for multiple data sets 71
for parallel input processing 60-62
in EODAD routine 38
restriction with SYNAD 39,70
temporary close option 70-72
TYPE=T 70-72
volume positioning 68,70,71,72
with partitioned data set 102-104
with STOW macro 102
closing adata set 67-72
CNTRL macro instruction
device dependence 87
restrictions
with BSP macro instruction 89
with chained scheduling 92
with DOS checkpoint records

Index 169

concatenation
defined 147
of data sets on RPS devices 148
of partitioned data sets 147-148
of sequential data sets 147,148
of unlike data sets 147
restriction with partitioned data sets 105
control buffer (see forms control buffer)
control character
(seealso CNTRL, PRTOV)
ANSI 23,28,84,92
carriage 22,25,31,161,162
code 161,162
explained 31
format-D 28
format-F 23
format-U 30
format-V 25
machine 84,93,161,162
specifying 84,161,162
with fixed-length records 23
with undefined-length records 30
with variable-length records 25
control section, dummy (DSECT) 53
control volume 149
count area 32
count-data format 32
count-key-data format 32
in device overhead 136
in ISAM index entry format 109
CREATEV command, use of 135
cross reference table with direct data sets 127
CSECT statement, use of with DCBD macro 53
cylinder
alocation by 136
capacity 20,137
index
calculating space requirements for 138-139
definition 107,109
overflow
calculating space for 139,141
defined 107,110
specifying size
viaCYLOFL parameter 139
CYLOFL (cylinder overflow) operand of DCB macro
when allocating |SAM data set 139
when creating ISAM data set 119

D

D-format records (see format-D records)
data access techniques (see access techniques)
data check
effect on BLKSIZE 22,84
with SETPRT macro 88
data control block (DCB)
ABEND exit
description 49-51
when available 38
where specified 38
attributes of,. determining 35-37,53
changing an address in 53,54
creation by DCB macro instruction 19,34
description 34-35
dummy control section 53
exit
description 46

170 OS/VS2 MV S Data Management Services Guide

when available 38
when used by SY SIN/SY SOUT 146
where specified 38
fields 35-37
initial setting of 54
modifying 34,53-54
operand of DD statement 37
primary sources of information 35
sequence of completion 36
use 19
when sharing a data set 54

data definition name (ddname) field of DD statement 37
data definition (DD) statement

fields 37

relationship to DCB 35
relationship to JFCB 35
use 19

data errors 40-41

(seealso SYNAD routine)

data event control block (DECB)

description of 65
use of 95

data management, introduction to 17-57
data mode processing

relationship with buffers 78

data set

characteristics 17-30
description 35-37
disposition (DISP) operand
cataloging 145
description 37
overridden by OPEN macro 73
identification 19
label (DSCB) 19,20,157-160
(see also magnetic tape volumes; data set control
block; labels, direct-access)
label (LABEL) field of DD statement 37
like characteristics 147
name 19
name (DSNAME) field 37
organization 18
(seealso BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM data sets)
organization (DSORG) operand of DCB macro 36
record formats 21-30
routing through the input/output stream 145-147
security 17,154
sharing
space allocation on direct-access volumes 135-145
estimation 136-138
for adirect data set 127
for indexed sequential data sets 138-145
for MSS volume 136
for partitioned data sets 138
specifying 135-136
storage 19-21
direct-access 20
magnetic-tape 20-21
SYSIN 145-147
SYSOUT 145-147
unlike characteristics 147
unmovable
direct organization 127
resulting from use of MMBBCCHHR 33
specification in DSORG operand of DCB 36
(seealso BDAM, BISAM, BPAM, BSAM, QISAM,

and QSAM data sets)
data set control block (DSCB)
contents of 157-160
data set label 157-160
data set security byte 154
described 19,20,159
index (format-2) HIRPD field of 116
DCB (see data control block)
DCB ABEND exit 49-51
DCB macro instruction 34-35
(see also data control block)
DCBBLKSI field in DCB 86,87,96
DCBD macro instruction
restriction on use 53
use 53,54
DCBLPDA field of DCB 118
DCBLRECL field of DCB 96
DCBNCRHI field of DCB 117
DCBPRECL field of DCB 25
DCBSYNAD field of DCB 54
DD statement fields 35-37
DDNAME (see data definition name field)
deblocking, automatic 59
DECB (see data event control block)
defer nonstandard input trailer label exit 48
DEFINE command, use of 150
defining an FCB image 48
delete option
restriction when updating a sequential data set 95
restriction with RKP 113
use with SETL 118
deletion
of indexed sequential data set records 112-113
of member name using STOW macro 102
DEN (tape density) 84-85
density, tape 84-85
DEQ macro, use of 55,56,123
descriptor word (see block descriptor word; record descriptor
word; segment descriptor word)
determinate errors 68
DEVD operand of DCB
device-class independence considerations 91
restriction with SY SOUT data sets 146
specifying 84
with BDAM 129
with SYSOUT data sets
device control for sequential data sets 87-89
device-dependent macro instructions 87-89
device independence 90-92
device-type considerations for dataformat
sequential organization 83-87
DEVTY PE macro, use of 116
direct-access device characterisitics 31-34
direct-access volume 20
access mechanism 31
device characteristics 31-34
devices (see 2305 Fixed Head Storage; 2314 Direct Access
Storage Facility; 2319 Disk Storage; 3330 Disk Drive;
3333 Disk Storage; 3340 Disk Storage; 3350 Disk
Storage)
labels 19
record format 21-30,84,87
track, defined 31
track addressing 33
track format 32
track overflow 34

write validity check 34
direct addressing 127
direct data set (see BDAM data set)
direct organization (see BDAM data set)
directory (sce BPAM data set)
disk drive (see 2305 Fixed Head Storage; 2314 Dirct Access
Storage Facility; 2319 Disk Storage; 3330 Disk Drive;
3333 Disk Storage; 3340 Disk Storage; 3350 Disk
Storage)
Disk Operating System (see DOS tapes with embedded
checkpoint records)
DISP operand
description 37,73
for extending sequential data set 96
for indexed sequential data set 112
for partitioned data set 102,103
for tape 35,44
specifying 145
when DISP=SHR for sharing data sets 55,123
when passing a generation 153
when updating the directory 102
DOS (Disk Operating System) tapes with embedded
checkpoint records
restriction with BSP 89
restriction with chained scheduling 92
restriction with CNTRL 88
restriction with POINT 89
drum storage (see 2305 Fixed Head Storage)
DSCB (see data set control block)
DSECT statement 53
DSNAME operand of DD statement 37,102,105
DSORG operand of DCB macro
described 36
for direct data set 129
for sequential data set 93,94
with CLOSE TYPE=T 71
with indexed sequential data set 119
with partitioned data set 102,103,104
dummy control section for DCB 53,54
dummy data set, restriction with parallel input processing 60
dummy record
with direct data set 130,131
dynamic buffering
buffer control 75,127
for direct data set 127
for ISAM data set 119,121
release of using FREEDBUF 83
(seealso READ; RELEX; WRITE)
specifying 75

E

EBCDIC (extended binary coded decimal interchange code)
trandlation to and from ASCI| 17,21,59,63,93
for magnetic-tape volumes 21
record-format dependencies 21-22
embedded index area 139,140
end-of-data indicator 72
end-of-data routine (EODAD) 38-39
changing address of in DCB 53-54
register contents 39
with basic access technique 62
with BSP macro 89
with concatenated data sets 147-148
with GET macro 59
with queued access technique 59

Index 171

end-of-volume

exit routine 47

forcing 74

processing 72-73

routines, relationship with DCB ABEND exit 49,51

when EODAD routine entered 38-39
ENQ macro, use of

when sharing a data set 55,56,123
EODAD routine 38-39

changing address of in DCB 53-54

register contents 39

with basic access technique 62

with BSP macro 89

with concatenated data sets 147-148

with GET macro 59

with queued access technique 59
EROPT operand of DCB macro 40
error

analysisroutine (SYNAD) 39-41

determinate 68

handling 65

indeterminate 68

options, automatic 40

uncorrectable 39
error routine (see SYNAD routing)
ESETL macro instruction

description 118

in EODAD routine 39

when sharing a data set 56
ESTAE exit, abnormal termination 56
exceptional condition code (see condition, exceptional)
exchange buffering 82
exclusive control

updating direct data sets 128

when sharing direct data sets 56
EXCP macro instruction 66
execute channel program (EXCP) 18
exit list 41-42
exit routine

block count 47-48

conventions 41-42

data control block (DCB) 46

DCB ABEND 49-53

defer nonstandard input trailer label 48

end-of-data 38-39,

end-of-volume 47

FCB image 48

JFCBE 47

list 41-42

QSAM parallel input 46

register contents on entry 41

standard user label 42-45

synchronous error (SYNAD) 39-41

user totaling 45-46
exit routines identified by DCB 38
EXLST operand of DCB macro 41
EXTEND option, OPEN macro (VS2.03.808)

device independence 91

extending sequential data set 96

indexed sequential data set 112

QISAM use 69

specifying 35

use with SY SIN/SY SOUT 69

172 OS/VS2 MV S Data Management Services Guide

extended binary coded decimal interchange code (EBCDIC)

translation to and from ASCII 17,21,59,63,93
for magnetic-tape volumes 21
record-format dependencies 21-22
extended American National Standards Institute
(ANSI) code 162
(seealso ANSI control character)
extended search option for direct data sets 128

F

F-format records (see format-F records)
FCB image

exit 48

identification in JFCBE 47

relationship with SETPRT 88
feedback

option 129

with BDAM READ macro 63

with BDAM WRITE macro 64
FEOV macro instruction

description 76

ignored for SY SIN/SY SOUT data sets 74

restriction with spanned records 26,74

restriction with trailer label exit 44

to enter EODAD routine 38
file mark, restriction 89
FIND macro instruction

description 101-102

in EODAD routine 39

updating a partitioned data set 105

when sharing a data set 56
fixed-length records 22-24

with parallel input processing 60
force end-of-volume (see FEOV macro instruction) 74
format-D records 28-29

restriction with chained scheduling 29
format-F records 22-24

ASCII tapes 23-24

standard format 22-23

with card reader and punch 85

with parallel input processing 60
format-FBS records, restriction with search direct 93
format-FBT records, restriction with search direct 93
format-FS records, restriction with search direct 93
format-U records 30

calculating record length 96

restriction with chained scheduling 92

with card reader and punch 85

with parallel input processing 60
format-UT records, restriction with search direct 93
format-V records 24-29

block descriptor word 24

record descriptor word 25

segment descriptor word 26

segment control codes 26

spanned 25-27

with card punch 85

with parallel input processing 60

with user totaling 46
forms control buffer

image exit list 48
FREE operand 72
FREEBUF macro instruction

description 83

to control buffers 75

FREEDBUF macro instruction
description 83
example 124
for ISAM 122
when sharing data sets 56
FREEPOOL macro instruction 77
when issued for card punch data set 86
when issued for printer data set 87
full track-index write option 119

G

generation
data set 150
index 150
numbers, relative 150-152
generation data groups
absolute generation name 150
building an index 152
creating a new 152
defined 20,150
entering in the catalog 150,151
relative generation name 150
retrieving
GET macro instruction
description 59
in EODAD routine 38,39
restriction with spanned records
to enter EODAD routine 38
updating a sequential data set 94,95
when sharing a data set 55
with format-U records 30
with parallel input processing 60,61
GETBUF macro instruction
description 83
to control buffers
GETPOOL macro instruction
description 76
with ISAM data set 114
glossary 163-166
grouping related control blocks 62

H

header |abel, user 42-45,159,160

IBCDASDI utility program
restriction 135

IDCAMS, MSS utility program
use of 136

IEBCOPY utility program
use of 106,107

IEHATLAS utility program
use of 66

IEHDASDR utility program
restriction 135

IEHLIST utility program
use of 117,140

IEHMOVE utility program
use of 99,100

IEHPROGM utility program
use of 140,153

IHADCB macro instruction label 54

independent overflow area
description 110
specifying 141
indeterminate errors 68
index
area 107
calculating space for 138-139
catalog 19-20
cylinder 109,121
calculating space for 138,139
master 109,110
calculating space for 138,139
track 108,109,121
calculating space for 139
indexed sequential data set
(seealso BISAM and QISAM)
adding records 110-112
inserting new records 110
new records at theend 111,112
areas 107-110
allocating space for 114-117,138-145
prime 108
index 108-110
overflow 110
buffer requirements 114-117
creation 119-121
deleting records 112,113
device control 117-118
full track-index write option 119
retrieving 121-123
SYNAD routine 41
updating 121-126
indexes of the catalog 19-20
indirect addressing 127
INOUT option
OPEN macro 69
opening magnetic tape volume 35
when using POINT macro 89
INPUT option
OPEN macro instruction 69
opening magnetic tape volume 35
input/output device generation 90
input/output devices for use with sequential data sets
card reader and punch 85-86
direct access 87
magnetic tape 84
paper tape reader 85
printer 86
input/output errors, recovering from 66
interrecord gaps (IRGs) 21
! , relationship with SYNAD routine for BDAM 40
IRG (interrecord gap) 21
ISAM (see indexed sequential data set; BISAM; QISAM)

J

JES (job entry subsystem) 145-147

JFCB (job file control block) 35,68

JFCBE (job file control block extension) exit 47
JFCBFLAG 47

job file control block (JFCB) 35,68

job file control block extension (JFCBE) exit 47

Index 173

key

class 117

for direct-access devices 32

for indexed sequential data sets 107-109

protection 107,147

relative key position (RKP) for indexed sequential data
set 113,114,119

use of when adding records to indexed sequential data
set 110-112

use of when maintaining an indexed sequential data
set 112

use of when retrieving records from an indexed sequential

data set 121-124
KEYLEN operand of DCB macro
description 36
for direct-access device 87
for direct data set 129
KN see WRITE KN)
KU (see READ KU)

L

label exits 42-45
labels, data set 19-20,35,37
(see also magnetic-tape volumes; labels, direct-access)
labels, direct-access
data set control block 157-160
format 157-160
user label groups 159,160
volume label group 157-159
LABEL parameter of DD statement
description 37
specifying password protection 154
specifying standard labels 44
LEAVE option
for close processing 70,71
for concatendated data sets 147
for end-of-volume processing 73,74
for forced end-of-volume processing 74
length checking 22
link field 114,115
link pack arealibrary, restriction for checkpoint 47
load mode for QISAM
in SYNAD routine 41
when sharing a DCB 56
load mode for BDAM when sharing data sets 56
loading an indexed sequential data set 119
locate mode processing
defined for buffering 78
example with simple buffering 80,81
relationship with buffers 78
to process records that exceed 32,760 bytes 27
to update a member with QSAM 106
with GET macro instruction
creating a sequential data set, coding example 94,95
simple buffering 79-81,94,95
with parallel input processing 60
with PUT macro instruction
creating a sequential data set, coding example 95
simple buffering 79-81,94,95
|ook-ahead buffering 59
LPALIB, restriction for checkpoint 47

174 OS/VS2 MV S Data Management Services Guide

LRECL operand of DCB macro
described 36
device dependence 91
restriction when calculating record length 96
to process records that exceed 32,760 bytes 27
with BDAM 129
with BSAM 96
with ISAM
buffer requirements 116,117
data set creation 119
with PUT macro 59,60
with SYSOUT data set 146

M

machine code control character 84,93,161,162
MACRF (macro instruction form) operand of DCB macro
described 37
device independence 91'
dynamic buffering 123
for BDAM 129
processing mode 78
relationship with WAIT macro 64,67
to update a member using QSAM 106
when sharing a data set 55,56
magnetic-tape volumes
defined 20-21
density 84-85
labels
American Nationa Standard 20,21
none 20
nonstandard 20
standard 20
user 42-45
organization 20-21
positioning 20
during close processing 70-72
during end-of-volume processing 72,73,74
record format 21-31,84
serial number 20-21
tapemarks 21
master catalog 149
master index 109,110
MBBCCHHR (see actual address)
modes, .processing (see data mode; locate mode; move mode;
substitute mode)
modifying the data control block 35,$3-54
move mode processing
relationship with buffers 78
use instead of exchange buffering 82
with GET macro instruction
creating a sequential data set 93
simple buffering 79.80,94
with parallel input processing 60
with PUT macro instruction
creating a sequential data set 94
simple buffering 79-81,94
M SV GP parameter on JCL statemnt 136
MSWA operand of the DCB macro 117
multiple data sets
closing 68
opening 68
processing for QISAM 75
multitasking mode, sharing data sets 56,68
multivolume data set
with NOTE macro 89

N

names
data set 19
generation data group 20,150,151
NCP (number of channel programs) operand of the DCB
macro 62,92,146
nonstandard tape labels 20
note list 100
NOTE macro instruction
description 89
restriction with
BSP macro 89
multivolume data sets 89
search direct operation 93
updating a sequential data set 94
use with partitioned data set
updating 105
NTM operand 110
null segment 27

o

offset reading 63
OMR (see optical mark read)
OPEN macro instruction
considerations for 68
description 69-70
for parallel input processing 60-62
for simultaneous opening of multiple data sets 68
for updating a sequential data set 94
functions 35,69-70
restriction with search direct 93
used for more than one data set 68
volume positioning for EOV 73
opening a data set 67-70
OPTCD operand of the DCB macro
device dependence 92
with ASCII tapes (OPTCD=Q) 59
with BDAM 129
with ISAM 119
request user totaling (OPTCD=T) 45
OPTCD=H (embedded checkpoints, DOS tapes) 88
OPTCD=M (master index) 110
OPTCD=T (user totaling) 45
OPTCD=Z (search direct option)
OUTIN option
OPEN macro 69
when opening data set 35
when using POINT macro 89
OUTINX option, OPEN macro (VS2.03.808)35,69,91
output mode
defined 78
OUTPUT option
OPEN macro 69
when opening data set 35
when using POINT macro 89
output stream 145-147
overflow
area 107,110
chain 110

cylinder (see cylinder overflow)

independent area 110

PROTYV macro 88

records 110

track
description 34
effect on chained scheduling 92
restriction on BSP macro instruction 89
restriction with parallel input processing 60
restriction with RPS feature 96

overlap of input/output

performance improvement 92

with basic access technique 62

with partitioned data sets 106

with sequential data sets 95

with queued access technique 59

P

paging environment, related control block group 62
paper-tape reader
described 85
effect on chained scheduling 92
record format with 85
with a SYNAD routine 40
parallel
data access block (PDAB) 46,60,61
input processing 46,60-62
parameter list
contents of 50
use of by DCB ABEND exit routine 50-51
partitioned data set (see BPAM data set)
PASSWORD data set 154
password protection 154
PC (card punch) record format 85
PCI flag 92
PDABD DSECT 61
PDAB (parallel data access block) 46,60,61
PDS (see BPAM data set)
performance improvement 92
POINT macro instruction
description 89
in EODAD routine 39
restriction with
BSP macro 89
multivolume data sets 89
search direct operation 93
updating a partitioned data set 105
updating a sequential data set 94
prefix, block (see block prefix)
prefix, key 117
prime data area
description 107,108
space allocation for 138,140,141
printer
overflow (PRTOV macro) 88
record format with 86
restriction with chained scheduling 92
program, describing the processing 37-53
PRTOV macro instruction
description 88
device dependent 91
when macro will not function 88
PT (see paper-tape reader)

Index 175

PUT macro instruction

description 59-60

locate mode 78-81

used to create a sequential data set, coding
example 94,95

with format-U records 30

with indexed sequential data set 110-112

with simple buffering 79-81

with spanned records 27
(seealso data mode processing; locate mode

processing; move mode processing; substitite mode

processing)
PUTX macro instruction
description 60
device independence 91
for QISAM 129
UPDAT mode 81
updating a sequential data set 94,95
when sharing a data set 55
with format-U records 30
with simple buffering 79-81
with spanned records 27
(see also output mode; update mode)

Q

QISAM data set
(seealso indexed sequential data set)
EODAD routine 39
scan mode 123
sharing 55,56
SYNAD routine 40-41
using common buffer pool 76
QSAM
(see also queued access technique)
creating a BDAM data set 129
parallel input processing 60-62
performance improvement 92
restriction with
spanned records 26
spanned variable-length records 25-27
SYSIN/SY SOUT data sets 146
to update a directory 102
to update a member 106
user labels 42
user totaling 45-46
when sharing a data set 55,56
with card punch 86
with printer 86
queued access technique
buffer control 74,76
defined 59
introduced 18

processing modes (see data mode processing; locate mode
processing; move mode processing; substitute mode

processing)

R

RACF protection (VS2.03.808) 155
RD (card reader) 85-86
RDBACK option 45
opening magnetic tape volume 35
restriction for variable-length records 69
restriction with SY SIN/SY SOUT data sets 69
RDW (see record descriptor word)
read backward (SB operand of READ macro) 63

176 OS/VS2 MV S Data Management Services Guide

READ macro instruction
description 63
device independence 91
in SYNAD routine 40
restriction in EODAD routine 38
supplying record length 96
to enter EODAD routine 38
to update existing records 122
updating a partitioned data set 105
updating a sequential data set 94,95
when sharing a data set 55,56
with basic access technique 62
with format-U records 30
with KU (key, update)
in coding example 124
RECFM operand of DCB macro
description 36
for sequential data sets 84
selecting 21-23
with card punch 85,86
with card reader 85,86
with control character 84
with direct-access storage device 87
with magnetic tape 84-85
with paper tape reader 85
with printer 86
with sequential organization 84
record blocking (see blocking)
record descriptor word (RDW) 25
data mode exception for spanned records 25
variable-length records format-D 27,28,29
when replaced by segment descriptor word 27
record format 21-30
fixed-length 22-24
fixed-length for ASCII 23-24
fixed-length standard 23
spanned variable-length 25-27
undefined-length 30
variable-length 24-29
record length (LRECL) operand of the DCB macro 36,91
relative block address
defined 33
with direct data set 128
with feedback option 129
relative generation name 150-152
relative key position operand of the DCB macro 113,114,119
relative track address
defined 33
with direct access 128
with feedback option 129
releasing data sets and volumes 72
RELEX macro instruction
exclusive control 56
when sharing data sets 56
REL SE macro instruction
defined 82
to terminate buffer processing 74
reorganization of indexed sequential data set 112
REREAD option 73,74
restart end-of-volume exit routine 47

restrictions
on ASCII records
block prefix 23,24,28,29
on 7-track tape 84
on chained scheduling with
BDAM 92
calculating record length 96
CNTRL macro 92
DOS checkpoint records 92
format-D records 29
paper-tape reader 92
partitioned data set 105
SKP option 40
spooled data sets 92
track overflow 92,96
UPDAT operand 92
updating a sequential data set 94,95
2540 Card Read Punch 93
3525 Card Punch 92
on CNTRL macro
with BSP macro 89
with chained scheduling 92
with DOS checkpoint records 88
on DCB usage 68-69
on DCBD macro usage 53,54
on DOS checkpoint records 88-89,92
on format-D records with chained scheduling 29
on high-level index in storage 117
on NOTE macro with
BSP macro 89
multivolume data sets 89
search direct operation 93
on POINT macro with
BSP macro 89
multivolume data sets 89
search direct operation 93
on reading concatenated data sets backward 147
on user label exit routines 42-45
with search direct 93
resume load 112,119,120,121
retrieving a generation 153
return code
with block count exit 48
with user labels 44
RETURN macro
relationship in SYNAD routine 39
REWIND option
for CLOSE macro 70
for FEOV macro 74
RKP (relative key position 113,114,119
RL SE parameter of DD statement 70
RORG I, RORG2, RORGS3 fields of the DCB 112

routing data sets through the input/output stream 145-147

RPS (rotational position sensing) feature
concatenating data sets on nonRPS devices 148
restriction with track overflow records

variable-length records 24
when calculating record length 96
RO record 32,130,135

S

save area, user totaling 45-46
scan mode for QISAM

in SYNAD routine 41

issuing PUTX 123
scheduling of input/output streams 145
SDW (see segment descriptor word)
search direct for input 93
search option, extended 128

secondary storage (see data set storage; direct-access storage;

magneti c-tape volumes)
security, data set 17,154
segment
buffer 74,77
control code 26
descriptor word
for spanned records 26-27
indicating a null segment 27
null 27
selecting an access method 66-67
SEP (separation, channel) 37
sequential data set
(see also BPAM, BSAM, and QSAM data sets)
creation 93-94
concatenation 147-148
extending 96
retrieving 94
updating 94-95
sequential organization
defined 18
device control 87-89
device independence 90-92
SETL macro instruction 117-118
in EODAD routine 39
when sharing a data set 56
SETPRT macro instruction 88
SETPRT routine 48
sharing data sets 54-57
sharing DASDs
simple buffering
description 79-81
with parallel input processing 60,61
SKP error option 40
SMSI operand of the DCB macro 117
SMSW operand of the DCB macro 116,117
Sort/merge program
record restriction 22
space allocation
estimating requirements 136-138
for adirect data set 127
for an indexed sequential data set 138-145
for an MSS volume 136
for a partitioned data set 138
specifying 135-136
SPACE parameter 37
spanned records
basic direct access method 27
considerations for 26-27
restriction with parallel input processing 60
restriction with search direct 98
restriction with SY SIN data sets 27,147
sequential access method 25
variable-length 25

Index 177

spooling of SY SIN and SY SOUT data sets 145-147
restriction 92
stacker selection
control characters for 22,31,162
STACK operand 86
using CNTRL macro 87
STAE exit 56
STAI exit 56
standard format for fixed-length records 23
standard labels
direct-access volumes 20,157
magneti c-tape volumes 20,21

storage (see direct-access storage; magnetic-tape volumes)

STOW macro instruction
description 102
restriction with DCB ABEND exit 49
when sharing a data set 56
subpool 0, when shared 56
substitute mode processing 78
defined for buffering 78
switching, volume
automatic
with end-of-volume 72
with FEOV macro 74
with GET macro 59
restriction with concatenated data sets 147
initiated by CHECK 64
SYNAD field
programming consideration 92
SYNAD routine
changing addressin DCB 53
description 39-41
macros used in 65,66
programming consideration 92
relationship with SETL option 118
relationship with DECB 65
relationship with SY SIN/SY SOUT data sets 147
temporary close restriction 70
when adding records to | SAM data set 112
when sharing a data set 56
with basic access technique 62
with queued access technique 59
SYNADAF macro instruction
description 65
examples 94,95
usein SYNAD routine 39,40
SYNADRLS macro instruction
description 66
examples 94,95
usein SYNAD routine 40
synchronous error routine exit (see SYNAD routine)
SYSIN data set
FEOV macro ignored for 74
restriction with
chained scheduling 92
parallel input processing 60
spanned variable-length records 27
user totaling 45
routing data through input stream 145-147

178 OS/VS2 MV S Data Management Services Guide

SYSOUT data set
FEOV macro ignored for 74
restriction with
chained scheduling 92
label exits 44
spanned variable-length records 27
user totaling 45
routing data through output stream 145-147
system generation device independence
considerations 90
system input stream 145-147
system output stream 145-147
system output writer 145-147
SYS1, IMAGELIB
fetching images from 88
search of 48
SYS1.LPALIB and checkpoint/restart 47

T

table reference character (3800) (V S2.03.810) 22,25,31
tape (see magnetic-tape volumes; paper-tape reader)
tapemark 21
temporary close 70-71
totaling area, user totaling exit routine 45-46
track
addressing 33
defined 31
format
count-data format 32
count-key-data format 32
index 107-109,121
overflow option
description 34
effect on chained scheduling 92
restriction of BSP macro instruction 89
restriction with BDAM 133
restriction with parallel input processing 60
restriction with RPS feature 96
restriction with variable-length records 24
trailer label, user 42-45
TRC (see table reference character)
TRTCH 85
TRUNC macro instruction
description 83
to terminate buffer processing 74
truncated blocks, format-F records 23
truncated format-U record 30
TTR (see address, direct-access storage device, relative)
TYPE=T operand 70-72

U

U-format records (see format-U records)
UCSimage
relationship with SETPRT 88
UHL (user header label) 42-45
undefined length records (see format-U records)
UNIT operand of the DD statement 37
unlabeled magnetic tape 20-21
UPDAT option
(see also update mode)
EODAD routine entered for BSAM 38
for updating a sequential data set 94
restriction with
chained scheduling 92
search direct operation 93
SY SIN/SY SOUT data sets 69
opening a data set 35
updating a sequential data set 94
with spanned records 26
update mode
(see also UPDAT option)
with format-U records 30
with PUTX 78
with simple buffering 81
user catalog 149,150
user header label (UHL) 42-45
user label exit routine
description 42-45
exit list entry 43

restriction for data sets on volumes without standard

labels 44

restriction for SY SOUT data sets 44

with read backward 44,45
user totaling exit routine

control totals

description 45-46

exit list entry 45

how specified

image area address 46

rel ationship with end-of -volume exit 46,47

restricted to BSAM, QSAM 45

save area 45

totaling area 45-46

variable-length and spanned records 46
user trailer label (UTL) 42-45
utility programs, use of

IBCDASDI 135

IDCAMS 136

IEBCOPY 107

IEHATLAS 66

IEHDASDR 135

IEHLIST 117,140

IEHMOVE 99,160

IEHPROGM 140,153

initializing direct-access volume 20,135
UTL (user trailer label) 42-45

\4

variable-length record (format-V) 24-27
segments 24,25,26
spanned 25-28

restrictions with SY SIN and SY SOUT data sets 27

special considerations, with user totaling 46

with parallel input processing 60
variable-length record (format-D) 28-29
version increment of generation data group 151
VIO (virtual 1/0) 67
virtual 1/0 (VIO) 67
V-format records (see format-V records)
volume

control 149

defined 19

direct-access 20

(see also direct-access volume)

disposition (see DISP operand)

identification operand of DD statement 37

index (see index)

initializing 20

labels (see labels, direct access)

magnetic-tape (see magnetic tape volumes)

positioning 70-74

serial number 37

switching 59,72,74,147

table of contents (see VTOC)
VSAM catalog

for VS2 149,150

generation data group base created in 150
VS2 systems

abnormal termination during open, close, or EOV

processing 68

action of DISP option 73

cataloging data sets 149-150

generation data group base 150

releasing data sets and volumes 86

restriction with 2540 86

use of V10O (virtual 1/0) 67
VTOC (volume table of contents 19,20

DSCB 157

for ISAM data set 108

initializing 135

pointer 158

w

WAIT macro instruction

description 64-65

example 124

when sharing a data set 56

with basic access technique 62,64
BISAM 64,122
BDAM 56,64,133

with QSAM parallel input processing 60

Index 179

WRITE macro instruction
add form 129,133
description 63,64
for format-U records 30
in EODAD routine 38
in SYNAD routine 39,40
programming consideration 91
supplying record length 96
update form 131
updating a partitioned data set 105,106
updating a sequential data set 94,95
used with BDAM 128,129,130
used with note list 100
when sharing a data set 55,56
with basic access technique 62
with K (key) 122,124
with KN (key, new) 111,113,123,124
writing a short block 96
write validity check option 34

123

1403 Printer

SETPRT macro for 88
1600 BPI 85
2305 Fixed Head Storage

capacity 137

overhead formula 137

programming considerations 133
2314 Direct Access Storage Facility

capacity 137

overhead formula 137
2319 Disk Storage

capacity 137

overhead formula 137
2400 Magnetic Tape Units

recording density 85
2540 Card Read Punch

chained scheduling restriction 93

punch error correction 86
3211 Printer

SETPRT macro for 88
3330 Disk Drive

capacity 137

overhead formula 137
3333 Disk Storage

capacity 137

overhead formula 137
3340 Disk Storage

capacity 137

overhead formula 137
3350 Disk Storage

capacity 137

overhead formula 137
3400 Magnetic Tape Units

recording density 85
3525 Card Punch

chained scheduling ignored 92

record format 84
3800 Printer

JFCBE exit for 47

SETPRT macro for 88

table reference character
7-track tapes 85
800 BPI 85
O-track tapes 85

180 OS/VS2 MV S Data Management Services Guide

OSVS2 MV'S Data Management Services Guide Reader's

Form

Y our comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requeststo your local IBM representative.

If you would like areply, please provide your name and address
(including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any |1BM representative will be happy to forward your comments.) Thank you for your
cooperation.

Fold and Staple

© 0000006600000 00 #0 I8 C0D00000600000G0096 0000000 DODIEs000000000BO@00009E000CCDOE 000 0D0POe0TeC 000000000000 0000400800006 040 80008000 0® 0TS

First Class Permit
Number 6090
San Jose, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation

P.0O. Box 50020
Programming Publishing
San Jose, California 95150

PP 000 a0 0000000 00000400000t 0e06 080008000080 00400C0C0 4000008040800 0000DE006e6000 00008008 00E0DO0O0000000000000C0000000000C000402080C

Fold and Staple

JIBINML

®

International Business Machines-Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

{BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International}

#6488 40N e ON I G0 Es et e N oY EAses0s P U A 0E S0 60000 a0 a0 A0 Es EOE LS E0ReU 0N B0 S0 80800000 Ee a0 Nes e S0 00008 a0ER 0000800 0080008 0me008 6600066000000 eas 0 asa0caeton It PO O0NEO S0 AN OO0 S IBEOO A0 E0a0N0000 00 a8

0-G/8€-9209 "V'S'N Ul pajuld (0€-0LES ON 3|l4) dpIn9 s8dIAIeg Juswabeue|y ered SAIN ZSA/SO

Technical Newdletter ThisNewdetter No. GN26.0915

Date August 31, 1978

Base Publication No. GC26 3875 0
FileNo. S370.30

Prerequisite Newsletters ~ None

0OS/VS2 MVS Data Management Services Guide
© Copyright IBM Corporation 1976

This technical newsletter, a part of Release 3.7 of OS/VS2 MV'S, incorporates and replaces all previous
SU information in this publication. Please replace all identically numbered pages. These replacement

pages remain in effect for subsequent OS/V S2 MV S rel eases unless specifically atered. Pagesto be
inserted and removed are:

cover, edition notice

7-15

35-48 (36.1, 40.1, 42.1, 44.1, 46.1 added)

69-84 (70.1, 78.1 added)

91-102.1 (92.1, 94.1, 96.1, 102.1 added)

119-132.1 (124.1, 132.1, added)

147-158 (148.1, 152.1 added)

Each technical change is marked by avertical line to the left of the change.

Summary of Amendments

Changes are summarized under " Summary of Amendments' following the list of figures.

Note: Please file this cover |etter at the back of the publication to provide arecord of changes.

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150

Printed in U.S.A.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215

