
GC28-0627-2
File No. S370-36

Systems

OS/VS2 MVS System
Programming Library:
Job Management

VS2 Release 3.8

Includes Selectable Units:

IBM 3800 Printing Subsystem
MSS Enhancements
3838 Vector Processing Subsystem Support
System Security Support

VS2.03.810
5752-824
5752-829
5752-832

Page of GC28-0627-2
As Updated September 14, 1979
By TNL GN28-4681

Third Edition (October, 1978)

This is a major revision of, and obsoletes, GC28-0627-1 and incorporates changes released in
the following System Library Supplements and Technical Newsletters:

IBM 3800 Printing Subsystem
MSS Enhancements
3838 Vector Processing

Subsystem Support
System Security Support
Service TNLs

VS2.03.810 GN28-2726 (dated May 28, 1976)
5752-824 GC28-0791 (dated February 14, 1977)

5752-829 GC28-0924 (dated August 15, 1977)
5752-832 GC28-0836 (dated May 27, 1977)

GN28-2825 and GN28-2741

This edition, with Technical Newsletter GN28-4681 applies to Release 3.8 of OS/VS2
and to all subsequent releases until otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the information herein; before using this
publication in connection with the operation of IBM Systems, consult the latest IBM
System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming or services which are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such products, programming or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Systems Publications, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1975, 1976, 1978

Page of GC28-0627-2
As Updated September 14, 1979
By TNL GN28-4681

Preface

Since the system must be built for the entire user community, certain parts
of job management might need to be tailored to fit the needs of individual
users. This manual provides the system programmer with information about
the following facilities, so that he can use them in his environment:

• Allocation services, described in Chapter 1. This chapter describes
performance considerations associated with allocation, volume attributes,
details of allocation processing, which information might be needed to
diagnose JCL error messages, and volume demounting information.

• Dynamic allocation (SVC 99) services, described in Chapters 2 and 3.
Chapter 2 described each function provided by SVC 99, features of SVC
99 processing whose applicability depends on whether you are using SVC
99 function in a batch or time-sharing environment, and installation
option with which you can control SVC 99 processing. Chapter 3
provides details on requesting SVC 99 functions, including a description
of the parameter list, the information that can be coded in the parameter
list, and SVC 99 return codes, error codes, and information codes.
Chapter 3 also includes an example of a dynamic allocation request.

• Internal reader, described in Chapter 4. Chapter 4 describes how you
may use the internal reader facility to build jobs and place them directly
in the input stream.

• Job Scheduler Restart Support, described in Chapter 5. This section
describes how scheduler restart allows a failing job to terminate or
resume processing.

• Assigning Special Program Properties, described in Chapter 6. This
chapter shows you how to assign special properties to programs such as:
non-swappable, do not cancel, bypass password protection, privileged,
and no waiting allowed.

• System Log, described in Chapter 7. This chapter explains where and
how the operating system, problem programs, and operator
communications are recorded.

• Updating the Master Job Control Language, described in Chapter 8.
• Updating the Subsystem Name Table, described in Chapter 9.
• External Writers, described in Chapter 10. This chapter describes the

processing of the JES, IBM-supplied and installation written writers. This
chapter also describes the rules for external writers written by
user-installations.

In addition, the documentation on dynamic allocation functions and
internal readers can be used by application programmers.

Note: This publication describes system allocation; however, JES3 main
device scheduling is functionally similar to system allocation. For a detailed
description of JES3 allocation, see OS/VS2 MVS System Programming
Library: JES3.

The following list of manuals should be used with this manual to provide
additional information and details:

Preface iii

Page of GC28-0627-2
As Updated September 14, 1979
By TNL GN28-4681

• OS/VS2 MVS System Programming Library: Initialization and Tuning
Guide, GC28-0681.

• OS/VS2 MVS System Programming Library: System Generation
Reference, GC26-3792.

• OS/VS2 System Logic Library (7 volumes), SY28-0713, SY28-0714,
SY28-0715, SY28-0716, SY28-0717, SY28-0718, and SY28-0719.

• OS/VS2 MVS System Programming Library: System Management
Facilities (SMF), GC28-0706.

• Operator's Library: OS/VS2 MVS System Commands, GC38-0229.
• IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846.
• OS/VS2 MVS JCL, GC28-0692.
• OS/VS2 MVS Data Management Macro Instructions, GC26-3873.
• OS/VS2 MVS Checkpoint/Restart, GC263877.
• OS/VS2 TSO Guide to Writing a Terminal Monitor Program or a

Command Processor, GC28-0648.
• OS/VS2 IBM 3540 Programmer's Reference, GC24-5111.
• OS/VS2 MVS System Programming Library: Service Aids, GC28-0674.
• OS/VS2 MVS System Programming Library: Debugging Handbook (2

volumes), GC28-0708 and GC28-0709.
• OS/VS2 MVS System Programming Library: JES2, GC23-0002.
• OS/VS2 MVS System Programming Library: JES3, GC28-0608.

iv OS/VS2 MVS System Programming library: Job Management

Page of GC28-0627-2
As Updated September 14, 1979
By TNL GN28-4681

Contents

Summary of Amendments ... ix

Chapter 1: Allocation Services ... 1
Performance Considerations Associated With Allocation .. 1

Guidelines for Improving Allocation Response .. 2
TSO Allocation Suggestions 2.1

Multiple Versions of Device Allocation Tables (5752-864) 2.2
Creating Multiple Versions of the Device Allocation Tables (5752-864) 2.2
Using a Version of the Device Allocation Tables (5752-864) 2.2

Eligible Device Table Verification Routine (IEFEB400) (5752-864) 2.2
Assigning Volume Attributes 2.3

Mount and Use Attributes 2.4
The Nonsharable Attribute ... 4

Recovery of Allocation Resources ... 5
Processing of Allocation Requests ... 5

Satisfying Specific Volume Requests ... 6
Satisfying Nonspecific Volume Requests ... 6

Satisfying a Nonspecific Request for an MSS Devices .. 7
Determining Numbers of Volumes/Units per Request .. 8

Volumes per Request ... 8
Units per Request ... 8
Units per Job Step ... 9

Volume Demounting ... 10

Chapter 2: Dynamic Allocation Functions ... 11
Understanding Features of SVC 99 Processing .. 12

Controls Designed for a Time-Sharing Environment .. 12
The Convertible Attribute ... 13

Dynamic Allocation .. 13
Dsname Allocation .. 13
Ddname Allocation ... 15

Dynamic Unallocation ... 16
Unallocation Processing ... 16
Identifying A Resource by Task-Id ... 17

Dynamic Concatenation ... 17
The Permanently Concatenated Attribute .. 18

Dynamic Deconcatenation ... 18
Dynamic Information Retrieval ... 18
Installation Options .. 19

Space and Unit Defaults ... 19
Volume Mounting and Bringing Devices Online .. 20
Installation Input Validation Routines .. 20

Programming Considerations ... 21

Chapter 3: Requesting SVC 99 Functions ... 23
Programming Considerations When Using SVC 99 Functions 23
SVC 99 Parameter List ... 24

Request Block .. 25
Text Pointers .. 26
Text Units .. 26

SVC 99 Return Codes .. 27
Information Reason Codes ... 28
Error Reason Codes .. 28
Details on Dsname Allocation Processing .. 33

Checking for Environmental Conflicts .. 33
Using an Existing Allocation ... 33
Satisfying New Allocations ... 35

Text Units by Function ... 36
Dsname Allocation Text Units ... 38

DCB Attribute Text Units ... 50
Non-JCL Dynamic Allocation Functions .. 60

Dynamic Unallocation Text Units ... 63
Dynamic Concatenation Text Units ... 66
Dynamic Deconcatenation Text Units .. 67

Contents v

September 14, 1979

Text Units for Removing In-Use Attribute Based On Task-Id 68
Ddname Allocation Text Units ... 69
Dynamic Information Retrieval Text Units .. 70

Example of a Dynamic Allocation Request .. 74

Chapter 4: Internal Readers .. 77
Dynamically Allocating an Internal Reader .. 77
Opening the Internal Reader ... 77
Passing JCL Records and Jobs to the Internal Reader .. 77

Chapter 5: Job Scheduler Restarting Support .. 79
Job Journal ... 79

Chapter 6: Assigning Special Program Properties ... 81
Format and Content of the PPT ... 81
Updating the PPT .. 85

Chapter 7: System Log ... 87
Modifying the System Log ... 87

Chapter 8: Updating the Master Job Control Language Data Set 89

Chapter 9: Updating the Subsystem Names Table - IEFJSSNT 91

Chapter 10: External Writers .. 93
Operator Commands to Control External Writer Processing .. 94
The External Writer Cataloged Procedure .. 94

EXEC Statement .. 94
DD Statement .. 95

Writing an Output Writer Routine ... 97
Characteristics of the Standard External Routine .. 97
The Output Writer Routine ... 97

Parameter List ... 98
Programming Conventions ... 98

Processing Performed by the Output Writer .. 99
Output Separation .. 102

Writing an Output Separator Program .. 103
Parameter List .. 104
Programming Conventions ... 104
Output from the Separator Program .. 104
Using the Block Character Routine .. 105

Index .. 107

vi OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
As Updated September 14, 1979
By TNL GN28-4681

Figures
Figure 1. Combinations of Mount and Use Attributes .. 4
Figure 2. Sharable and Nonsharable Volume Requests .. 5
Figure 3. Private and Public Volume Requests .. 6
Figure 4. Non-Supported JCL DD Statements Facilities .. 14
Figure 5. Structure of SVC 99 Parameter List .. 24
Figure 6. Dynamic Allocation Return Codes .. 27
Figure 7. Error Reason Codes (1 of 5) ... 29
Figure 8. Dsname Allocation (Verb Code 01) - Text Unit Keys, Mnemonics, and

Functions .. 37
Figure 9. DCB Attributes (Used with Verb Code 01) - Text Unit Keys, Mnemonics,

and Functions .. 50
Figure 10. Non-JCL Dynamic Allocation Functions (Used with Verb Code 01) - Text

Unit Keys, Mnemonics, and Functions ... 60
Figure 11. Dynamic Unallocation (Verb Code 02) - Text Unit Keys, Mnemonics, and

Functions .. 63
Figure 12. Dynamic Concatenation (Verb Code 03) - Text Unit Keys, Mnemonics, and

Functions .. 66
Figure 13. Dynamic Deconcatenation (Verb Code 04) - Text Unit Keys, Mnemonics,

and Functions .. 67
Figure 14. In-Use Attribute Removal (Verb Code 05) - Text Unit Keys, Mnemonics,

and Functions .. 68
Figure 15. Ddname Allocation (Verb Code 06) - Text Unit Keys, Mnemonics, and

Functions .. 69
Figure 16. Dynamic Information Retrieval (Verb Code 07) - Text Unit Keys,

Mnemonics, and Functions ... 70
Figure 17. Example of a Dynamic Allocation Request .. 75
Figure 18. Resulting Parameter List from Allocation Example 76
Figure 19. MSTRJCL Data Set ... 89
Figure 20. Entry Format for the Subsystem Names Table .. 91
Figure 21. Sample Input for Re-assembling IEFJSSNT .. 92
Figure 22. General Logic of Standard External Writer Routine 100

Contents vii

September 14, 1979

viii OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
As Updated September 14, 1979
By TNL GN28-4681

Summary of Amendments
for GN28-4681
TNL to GC28-0627-2
OS/VS2 Release 3.8

This technical newsletter is being issued in support of a
number of service updates (both technical and editorial) to
OS/VS2 Release 3.7. This edition also contains two sections
("Guidelines for Improving Allocation Response" and
"TSO Allocation Suggestions") which were originally
documented in OS/VS2 MVS System Programming Library:
Initialization and Tuning.

Summary of Amendments
for GC28-0627-2
OS/VS2 Release 3.7

The dynamic allocation function section of this manual has
been rewritten and reorganized into two sections (Chapter 2
and Chapter 3) to improve text clarity and usability.
Changes have been made to distinguish the difference
between the time-sharing and batch users when using this
function.

Summary of Amendments
for GC28-0627-1
OS/VS2 Release 3.7

Changes have been made throughout this publication to
reflect a Service Update to OS/VS2 Release 3.7. In
addition, pertinent technical and editorial changes have
been made in the following areas:

Dynamic Allocation

• Allocation of a data set name and a ddname is clarified.
• Conditions under which the volume serial will be

unavailable at the completion of allocation are discussed.

Internal Readers

Dynamically allocating and using an internal is discussed.

Changes have also been made throughout this publication to
reflect updates to OS/VS MVS Release 3.7 and the
following SUs: 10, 24, 29, and 32. In addition, technical and
editorial changes have been made throughout the manual.

Miscellaneous

• IEALIMIT documentation is removed and now appears
in OS/VS2 System Programming Library: Supervisor.

• Support for the IBM 3344 Direct Access Storage Device
and the IBM 3350 Direct Access Storage is documented.
This information is for planning purposes only.

• The entire JES3 section is removed. JES3 is described in
OS/VS2 System Programming Library: JES3, GC28-0608.

• The entire JES2 section is removed. JES2 is described in
OS/VS2 System Programming Library: JES2, GC23-0001.

Summary of Amendments ix

September 14, 1979

Summary of Amendments
for GN28-2601
TNL to GC28-0627-0
OS/VS2 Release 3

This TNL primarily provides job management information
for the Job Entry Subsystem 3 (JES3). The major topics
include:

• JES3 Configuration
• JES3 Job Management

• JES3 Reliability, Availability, Serviceability
• JES3 User Services

This TNL also provides miscellaneous corrections and
additions unrelated to JES3.

x OS/VS2 MVS System Programming library: Job Management

September 14, 1979

Chapter 1: Allocation Services

The allocation routines assign units, volumes, and data sets in support of job processing. They
allocate resources in response to JCL DD statements at step initiation and permit data set
allocation for jobs in progress (dynamic allocation), a capability formerly available only to
TSO users.

Dynamic allocation is described in detail in chapters 2 and 3 of this book. The
considerations and rules for coding DD statements are in OS/VS2 MVS JCL.

A description of how the design of the allocation routines relates to their performance is in
OS/VS2 System Programming Library: Initialization and Tuning Guide. This Initialization and
Tuning Guide is of particular value to the system programmer interested in suggesting coding
practices and selecting procedures to maximize allocation efficiency.

Performance Considerations Associated With Allocation
One of the biggest concerns associated with performance in allocation is serialization. The
design of the allocation routines in MVS attempts to minimize the following types of
serialization:

• Serialization to ensure that the status of a device is unchanged (that is, static) while the
device is being selected

• Serialization of the use of some devices

The allocation routines process requests in the order listed below. To reduce serialization,
you should allocate data sets, volumes, and devices from categories highest in the list, if
possible. As you move down the list, the degree of serialization and processing time increases.

1. Requests that require no specific units or volumes, for example, DUMMY, VIO, and
subsystem data sets (not serialized).

2. Requests to sharable units, that is, direct access units with permanently resident or
reserved volumes mounted on them (not serialized).

3. Teleprocessing devices (serializes only requested teleprocessing devices).

4. Mounted volumes and devices that do not need volumes (serialized only on the set of
devices eligible to satisfy the request). During this processing, the automatic volume
recognition (AVR) function reads the volume serial number of any volumes that have
been premounted on the serialized devices.

5. Online, non-allocated devices that need volumes mounted by the operator or by MSS
(serialized only on the set of devices eligible to satisfy the request).

6. All remaining requests — for example, requests that need offline devices and/or devices
that are allocated to other jobs and that cannot be shared (serialized only on the set of
devices eligible to satisfy the request).

Note: Allocation treats MSS devices (3330V) as direct access storage devices.

Within steps 4, 5, and 6, the device preference table determines the order in which
allocation selects devices, if a request is eligible for more than one generic device type.

Chapter 1: Allocation Services 1

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

You can define a device preference table for your installation or use the default device
preference table provided by IBM. The default device preference table lists the fastest generic
device types first. If such specification causes heavy contention for the fastest eligible devices,
you can list generics with many devices (and many channels) first in the device preference
table; they will then receive preference. As a secondary consideration, the increased number of
preferred units and channels will give the system resources manager a large selection for its
choices. OS/VS2 MVS System Programming Library: System Generation Reference contains
information on the default device preference table and on how to specify an
installation-defined device preference table.

Guidelines for Improving Allocation Response

The following suggestions should help your installation to make best use of the redesigned
device allocation routines:

• Within the limit of page space availability, encourage the use of VIO data sets. (For
further information, see the topic entitled "VIO Performance".)

• Set up a sufficient number of permanently resident and reserved DASD volumes on line,
to avoid contention for a few volumes of these types. You can check for contention by
running MF/1 to obtain device activity reports. The volumes should be spread across
channels so that the system resource manager (SRM) can balance the channel load.

• Use the UNITNAME sysgen macro to define separate esoteric subgroups within major
generic device types, so that different subsets of users can request separate subgroups of
devices. The purpose is to minimize contention for the same devices among the various
subsets of users. For example, an installation whose batch and time sharing users request
allocation of 3330s could separate the two types of user requests as follows:

UNITNAME UNIT=(330,4),NAME=SYSBATCH
UNITNAME UNIT=(334,4),NAME=SYSTSO

The effect of this specification is that allocations to SYSBATCH serialize only requests
for units 330-333, instead of the entire 3330 generic devices. Similarly, allocation to
SYSTSO serialize only requests for units 334-337.

• Use the DEVPREF keyword of the SCHEDULR sysgen macro to minimize contention
for the fastest devices. The DEVPREF keyword sets up the device preference table. This
table determines the order in which device types will be selected by allocation if a
request is eligible for more than one device type (for example, UNIT=SYSDA). If the
keyword is not specified, the default device preference table lists the fastest generics first.
If such specification causes heavy contention for the fastest eligible devices, you can
specify the DEVPREF list so that generics with many devices (and many channels) are
listed first and are therefore given preference. As a secondary consideration, the
increased number of preferred units and channels gives the SRM a large selection for its
choices.

• Keep all operable devices online if possible. (This is old advice and does not depend on
the redesign of device allocation.)

• Try to avoid the use of specific unit address (for example, UNIT=253) in DD statements
for volumes that are neither permanently resident nor reserved. A specification of specific
unit serializes the request on the entire device type. For example, if unit 253 is a 3330, a
specific unit request (UNIT=253) will be serialized with other request for any 3330.
Instead of using specific unit address, use subsets of the generic device type, as suggested
earlier in this topic.

2 OS/VS2 MVS System Programming library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

• Resolve the question of whether the operator should respond HOLD or NOHOLD when
a job must wait for other jobs to free devices or volumes, and whether a message is to be
issued to the operator. The criteria for resolving the question of whether the operator
should respond HOLD or NOHOLD is:

HOLD This means that the job should wait while holding devices and volumes
already allocated to the job. Select this option if the needed resources are
constantly being freed, and allocation requests for other jobs will probably
not be held up by the requests made for this job. This job can hold up
other requests in either of two ways: it has already allocated units needed
for another job, or its allocation requests are serialized on devices it is
waiting for.

NOHOLD This means that the job waits without holding devices and volumes already
allocated to the job. Select this option if the needed resources may not be
freed for some time, and allocation requests for this job are likely to hold
up requests issued for other jobs.

Note: Requests for dynamic allocation are not held up by requests waiting for batch
allocation, even though the jobs awaiting batch allocation are holding resources.

• Before the end of a job step or TSO session, free data sets, volumes, or devices. The
freed resources can then by used for other jobs or sessions. You can free the resource
when a data set is closed by specifying FREE=CLOSE on the associated DD statement.
(This option is a new facility in MVS.) Note that when subsequent steps of a job require
the same data set, the resource must be reallocated prior to being reaccessed (or else the
OPEN fails). Use discretion when freeing the resources because once a resource is freed,
its continuing availability cannot be guaranteed.

• Invoke dynamic allocation from a batch job by means of respecifying SVC 99. (The
details are described in chapters 2 and 3 of this manual.) The advantage of invoking SVC
99 is that the batch job allocates the resource only when it is needed, and frees the
resource as soon as it is no longer needed. (FREE=CLOSE can also free the resource, if
it is specified on a DD statement.) Resources are thus more readily available to other
requesting jobs. A disadvantage is that the batch job must handle a return code if the
requested resource is not available. (With conventional allocation via DD statements, the
system would cause the job to wait for the requested resource(s) to become available.)
Note that an authorized program need not handle a return code if a requested resource is
not available. The authorized program can request a 'wait for the resource" when it
invokes dynamic allocation. Unfortunately, there is no deadlock detection in this case.

• Premount all private volumes including private catalogs before running the jobs that
request these volumes. Premounting of private volume assumes the user knows the I/O
demands for the new data sets and volumes, as well as current channel utilization. Note
the AVR (Automatic Volume Recognition) is no longer optional.

TSO Allocation Suggestions

The following suggestions should improve TSO allocations during TSO sessions although they
might extend logon time:

• DD statements that a user wants in all his TSO sessions should be placed in a LOGON
procedure. This technique has these advantages:

A. Allows volumes to be mounted.

B. Provides recovery from an offline device condition. Messages tell the operator to
VARY the device online.

C. Saves repeated allocation and freeing of the same data set by successive commands in
the same TSO session.

Chapter 1: Allocation Services 2.1

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

• The DYNAMNBR parameter value in the EXEC statement should be carefully chosen.
The value should be large enough so that it is not readily exceeded by dynamic allocation
requests. Note that the maximum number of concurrently allocated resources for any TSO
session is 1635.

Multiple Versions of Device Allocation Tables

By defining the device groups, you can group devices under various esoteric names (for
example, SYSDA for all 3330s and 2314s). However, the set of device groups you define by
the eligible device tables (EDT) might not be the ideal way to group devices for every
workload mix or processor configuration. By defining multiple versions of the device allocation
tables (DEVNAMET, IEFDEVPT, DEVMASKT, and IEFEDTTB), you can define different
sets of device groups for the different workload environments.

You define multiple versions of the device allocation tables by multiple invocation of the
EDTGEN macro; you may select a specific version of the tables at IPL. Details of creating
and selecting a version of the tables are included in see the following topics.

Creating Multiple Versions of the Devices Allocation Tables

Use the EDTGEN generation process to create a version of the device allocation tables. When
the EDTGEN generation process completes, the newly-defined device allocation tables are
placed in a member of the partitioned data set (PDS) SYS1.MLPALIB or a PDS defined by
the user of the EDTGEN macro. Each invocation of the EDTGEN generation process causes
the assembling and link-edit of the device allocation tables.

For additional details on using the EDTGEN macro, see OS/VS MVS System Programming
Library: System Generation.

Using A Version of the Device Allocation Tables

To use a particular version of the device allocation tables you must specify the parameter
MLPA=nn or SYSP at IPL. nn is two digits to be appended to IEALPAnn thus providing the
member name of the SYS1.PARMLIB partitioned data set that names the library and the
device allocation tables (DEVNAMET, IEFDEVPT, DEVMASKT, and IEFEDTTB) to be
used. For a detailed description on how to use the MLPA or SYSP facility, see OS/VS2 MVS
System Programming Library: Initialization and Tuning Guide .

Note: Refer to OS/VS2 MVS System Programming Library: JES3 for any alterations that
might be needed for the JES3 INISH deck.

Before using any set of device allocation tables, you should validate the tables by executing
the EDT verification routine.

Eligible Device Table Verification Routine (IEFEB400)

The EDT verification routine validates that the entries in the EDT match the device definitions
in the UCBs in the nucleus. There are two environments during which IEFEB400 is invoked:

• In problem program mode by the user during Stage II of SYSGEN. For a detailed
description of how you may request execution of IEFEB400, refer to OS/VS2 MVS
System Programming Library: System Generation.

• In supervisor mode during IPL. The verification routine IEFEB400 is invoked by the
master scheduler initialization routine (IEEVIPL). The EDT that is being loaded by the
system will be the EDT used in the verification process.

2.2 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

The verification processing begins with the EDT-id message (IEF923I) being issued to
the hardcopy log. If no errors are found by the verification program, the successful
verification message (IEF926I) is written to hardcopy. If EDT does not match the
nucleus data, a return code of four is set and the id message is written first to hardcopy
and then to the operator. As a result of this error, the message may be written again to
the hardcopy log and the request for an EDT will be ignored. If the message describes an
unintentional mismatch, the operator should re-IPL using the device allocation tables
from the last system generation or I/O generation.

Warning : If the operator does not re-IPL as a result of an unintentional mismatch, the
error will not be evident until allocation attempts to reference the mismatched UCBs or
an incorrect allocation may occur depending on the type of error.

The verification routine can detect the following type of error conditions:

• A device type defined in the EDT does not match any of the device types in the UCB.
Message IEF924I is isued as a result of this situation.

Note : Teleprocessing device types are not verified; only the device class is checked.

• The EDT defines a device for which there is no pointer in the IOS look-up table.
Message IEF925I is issued as a result of this situation.

When the EDT verification routine is executed in problem program mode and an error is
found the following messages are issued: IEF923I, lEF924I and IEF925I. When no errors are
found a return code of zero is set and message IEF926I is issued.

The following errors are detected by components other than the verification routine:

• An OPEN error. Data management issues an appropriate error message and possibly
terminates the task, depending on the severity of the error. A return code of 8 is set.

• A PUT error, which occurred while writing messages to the SYSPRINT data set. Data
management issues an appropriate error message and possibly terminates the task,
depending on the severity of the error. A return code of I2 is set.

• A LOAD error. Message IEA703I is issued and the task is terminated.

Assigning Volume Attributes
You may assign volume attributes during IPL in the VATLIST member of SYS1.PARMLIB
You can control the following information, depending on the attributes you assign to a volume:

• Eligibility for demounting, determined by the mount attribute

• The types of data sets that are assigned to a volume, determined by the use attribute

You assign mount and use attributes to tape and direct access volumes. In addition, the
system can assign the nonsharable attribute to direct access volumes. The next two topics
describe these attributes.

Chapter 1: Allocation Services 2.3

September 14, 1979

Mount and Use Attributes

Every volume is assigned a mount and use attribute at IPL via a VATLIST entry, as the result
of a MOUNT command, or when first used by a job. The mount attribute controls volume
demounting. The use attribute is one of the factors that controls allocation of mounted
volumes to data set requests. The mount and use attributes are:

• Mount
— Permanently resident
— Reserved
— Removable

• Use
— Public
— Private
— Storage

A public volume is a direct access volume that is eligible for allocation to a temporary data
set when a specific volume is not requested or the PRIVATE volume subparameter is not
specified. It can also be allocated when its volume serial number is specified.

A private volume is one that can only be allocated when its volume serial number is
explicitly or implicitly specified.

A storage volume is a direct access volume that is eligible for allocation to both
non-temporary and temporary data sets when no specific volume is requested and PRIVATE is
not specified. Storage volumes usually contain non-temporary data sets, but temporary ones
will be assigned to storage volumes if they cannot be assigned to public volumes.

2.4 OS/VS2 MVS System Programming Library: Job Management

The following points list the mount attributes and describe how the mount and use
attributes are assigned to a volume:

• Permanently resident volumes cannot be demounted. Only direct access volumes can be
permanently resident. Although the user may designate all direct access volumes as
permanently resident in the "volume attribute list" (VATLSTxx) in SYS1.PARMLIB, the
following volumes are always permanently resident:

— All volumes that cannot be physically demounted, such as drum storage and fixed disk
volumes

— The IPL volume

— The volume containing the system data sets, such as SYS1.LINKLIB.

An installation can assign a permanently resident volume the use attribute of public,
private, or storage in the VATLST member of SYS1.PARMLIB. The default value is
public.

Note: 3344 emulated 3340s and 3350 emulated 3330-1s and 3330-11s must be made
permanently resident by using the VATLST member in SYS1.PARMLIB.

• Reserved volumes remain mounted until the operator issues an UNLOAD command. Both
direct access and tape volumes can be assigned reserved attribute. A tape volume
becomes reserved as a result of a MOUNT command; a direct access volume, as a result
of a MOUNT command or a VATLST entry. A volume is usually designated as a
reserved volume to avoid repeated mounting and demounting of the volume when it is to
be used by many jobs.

An installation can assign a reserved direct access volume the use attribute of public,
private, or storage. The use attribute is assigned to the volume either in the VATLST
member of SYS1.PARMLIB or in the use parameter of the MOUNT command,
depending on how the volume becomes reserved.

A reserved tape volume can be assigned the use attribute of private or public.

• Removable volumes are those that are neither permanently resident nor reserved.
Removable volumes can be demounted either after the end of the job in which they are
last used or when the unit on which the volume is mounted is needed for another
volume.

The use attribute of public or private can be assigned to a removable direct access
volume as follows. The use attribute of public is assigned when the JCL PRIVATE
volume subparameter is not coded. The use attribute of private is assigned when the
PRIVATE volume subparameter is coded.

A removable tape volume can be assigned the use attribute of public or private. The use
attribute of public is assigned when the PRIVATE subparameter is not coded, a
nonspecific volume request is made, and the data set is temporary (a system-generated
data set name or a disposition of DELETE). The use attribute of private is assigned
when the PRIVATE subparameter is coded, a specific volume request is made, or the
data set is nontemporary (a non system-generated data set name or a disposition other
than DELETE).

Figure 1 summarizes the type of volume that can be assigned to satisfy a specific or
nonspecific volume request for a temporary or nontemporary data set; how these attributes are
assigned; and how the volume is demounted.

Chapter 1: Allocation Services 3

Volume
State

Temporary
Data Set

Nontemporary
Data Set How Assigned How Demounted

Type of Volume Request
Public/
Permanently
Resident'

Nonspecific
or Specific

Specific VATLST entry or by default Always2
mounted

Private/
Permanently
Resident'

Specific Specific VATLST entry Always2
mounted

Storage/
Permanently
Resident'

Nonspecific
or Specific

Nonspecific
or Specific

VATLST entry Always2
mounted

Public/
Reserved (Tape
and direct
access)

Nonspecific
or Specific

Specific Direct access: VATLST
entry on MOUNT command
Tape: MOUNT command

UNLOAD or
VARY OFFLINE
commands

Private/
Reserved (Tape
and direct
access)

Specific Specific Direct access: VATLST
entry on MOUNT command
Tape: MOUNT command

UNLOAD or
VARY OFFLINE
commands

Storage/
Reserved'

Nonspecific
or Specific

Nonspecific
or Specific

VATLST entry or MOUNT
command

UNLOAD or
VARY OFFLINE
commands

Public/
Removable
(Tape and
direct access)

Nonspecific
or Specific

Specific VOLUME=PRIVATE is not
coded on the DD statement.
(For tape, nonspecific volume
request and a temporary
data set also causes this
assignment.)

When unit is
required by
another volume;
or by UNLOAD or
VARY OFFLINE
commands.

Private/
Removable
(Tape and
direct access)

Specific Specific VOLUME-PRIVATE is coded
on the DD statement
(For tape, a specific volume
request or a nontemporary
data set also causes this
assignment.)

At job termination
for direct access;
at step termination
or dynamic un-
allocation for tape
(unless VOL=
RETAIN or a
disposition of
PASS was
specified); or when
the unit is required
by another
volume.

'Direct access volumes only.
2 Note: VARY OFFLINE accomplishes demounting without resetting the UCB permanently-resident flag such
that, after a subsequent VARY ONLINE command, the volume on the device will be permanently resident.

Figure 1. Combinations of Mount and Use Attributes

The Nonsharable Attribute

The system assigns the nonsharable attribute to volumes that might require demounting during
step execution. When this attribute is assigned to a volume, the volume cannot be assigned to
any other data set until the nonsharable attribute is removed at the end of step execution.

4 OS/VS2 MVS System Programming Library: Job Management

The following types of volume requests result in the nonsharable attribute:

• Specific volume requests that specify more volumes than devices.
• A nonspecific PRIVATE volume request that has a volume count greater than the device

count. (For MSS, the MSVGP parameter has the same effect as the PRIVATE
parameter.)

• A request for unit affinity to a data set defined earlier in the same job step, when the
requested data set resides on a different volume.

• A request for deferred mounting of a volume on which the requested data set resides.

The system automatically assigns the nonsharable attribute as a result of the preceding
cases. The system will not; however, assign the nonsharable attribute to a permanently resident
or reserved volume. If your request is for three permanently resident volumes and only two
devices the system will allocate the three permanently resident volumes.

Figure 2 shows the system action for sharable and nonsharable requests.

The Request is:
The Volume is Allocated:

Sharable Nonsharable

Sharable allocate the volume wait '

Nonsharable wait ' wait 1

1The operator has the option of failing the request. The request will always fail if waiting is not allowed.

Figure 2. Sharable and Nonsharable Volume Requests

Recovery of Allocation Resources
When an address space abnormally terminates, the allocation routines attempt to unallocate all
unit control blocks (UCBs) allocated to the address space. Unallocation occurs for the
following types of UCBs:

• Tape
• Unit record
• Teleprocessing
• Nonsharable, direct access

The allocation routines cannot unallocate sharable, direct access UCBs because they might
be allocated to more than one address space. Therefore, sharable, direct access UCBs are
unallocated during the next IPL of the system. These units (UCBs) cannot be varied offline or
unloaded until the next IPL of the system.

Processing of Allocation Requests
This topic provides details on how allocation satisfies volume requests, determines the number
of volumes and units to assign to a request, and satisfies requests for volume demounting. This
information might be needed to understand how allocation routines interpret the JCL
parameters you code to request allocation services.

Chapter 1: Allocation Services 5

Satisfying Specific Volume Requests

A specific volume request informs the system of the volume serial number of the volume
required. In the following cases the system can satisfy a request for a specific volume that is
already mounted:

• The volume is permanently resident or reserved. (The volume is assigned regardless of
the requested use attribute, and the use attribute is not changed by the allocation.)

• The direct access volume is a removable volume that does not have the nonsharable
attribute and is being used by a concurrently executing step. (If your request would make
the volume nonsharable, the system will assign you that volume only when all other job
steps using the volume have terminated.)

• The direct access volume is removable but not allocated. The use attribute (private or
public) assigned to the volume when it is allocated is determined by the presence or
absence of the PRIVATE subparameter.

• The tape volume is a scratch volume and is not in use. The use attribute of private is
assigned to the volume if the request is for a permanent data set or if PRIVATE is
coded.

Figure 3 shows the effect of the user's request on use attributes.

The Request is:
The Volume's Use Attribute is:

Private Public Storage

Private stays private changes to private no change

Public stays private stays public no change

Figure 3. Private and Public Volume Requests

Satisfying Nonspecific Volume Requests

A nonspecific volume request allows the system to choose the volume and unit to be assigned
to the data set from the group of units name in the UNIT parameter. This type of request is
used for new data sets.

Listed below are possible types of nonspecific volume requests:

1. A private volume for a temporary or nontemporary data set

2. A non-private volume for a temporary data set

3. A non-private volume for a nontemporary data set

The system satisfies these different types of requests as described below:

1. For a nonspecific volume request for a private direct access or tape volume (temporary
or nontemporary data set), the system requests the operator to mount a volume. The
operator should mount a volume whose space is unused; this gives the user control over
all space on the volume. Once mounted, the volume is assigned the use attribute of
private.

2. For a nonspecific volume request for a non-private direct access volume that is to
contain a temporary data set, the system attempts to assign a public or storage volume
that is already mounted, or, if no space is available, it requests the operator to mount a
removable volume.

6 OS/VS2 MVS System Programming Library: Job Management

If the system selects a mounted volume, its use attribute is not changed. If a removable
volume is mounted, the system assigns it the use attribute of public.

For a nonspecific volume request for a non-private tape volume that is to contain a
temporary data set, the system assigns a scratch volume that is already mounted or it
requests the operator to mount a tape volume. Once mounted, the system assigns the
volume the use attribute of public.

3. For a nonspecific volume request for a non-private direct access volume that is to
contain a nontemporary data set, the system assigns a storage volume if one is mounted
on an eligible device. Otherwise, the system treats the request as a nonspecific volume
request for a private volume, as described in (1) above.

For a nonspecific volume request for a non-private tape volume that is to contain a
nontemporary data set, the system treats the request as a nonspecific volume request for
a private volume, as described in (1) above.

The following section notes the differences in handling nonspecific requests for MSS
volumes.

Satisfying a Nonspecific Request for an MSS Device

An MSS (3330V) nonspecific request has several characteristics possibly different from
non-MSS requests; however, MSS requests are still handled in basically the same manner as
non-MSS requests. Following are several types of MSS nonspecific volume requests:

1. A private volume for a temporary or nontemporary data set

2. A private, MSS group volume for a temporary or nontemporary data set

3. A non-private volume for a temporary data set

4. A non-private volume for a nontemporary data set

The system satisfies these different types of requests as described below. (Coding
MSVGP=grpname implies PRIVATE and identifies to the system an installation-defined group
of MSS volumes.)

1. A request for a private volume (temporary or nontemporary data set) defaults to a
private MSS group request with a default name of SYSGROUP. If the installation has
defined one or more volumes in this group, the system selects one with sufficient space
to satisfy the request and causes the volume to be mounted.

2. For private MSS group volume requests, the system selects and mounts a volume with
sufficient space from the specified group.

3. For a nonspecific request for a non-private 3330V volume that is to contain a temporary
data set, the system attempts to assign a public or storage 3330V volume that is already
mounted. If none is mounted, the request defaults to SYSGROUP and is handled as in
(1) above.

4. For a nonspecific request for a non-private 3330V volume that is to contain a
nontemporary data set, the system assigns an already mounted storage 3330V volume. If
none is mounted, the request defaults to SYSGROUP and is handled as in (1) above.

Chapter 1: Allocation Services 7

Determining Numbers of Volumes/ Units per Request

Before assigning volumes and units for a job step or for a dynamic allocation request, the
allocation routines must determine:

• The maximum number of volumes per request
• The maximum number of units per request
• The number of units per job step

The maximum numbers are calculated because more units than specified might actually be
needed.

Volumes per Request

The maximum number of tape volumes or direct access volumes required to satisfy any request
is the greater of:

• The volume count specified in the VOLUME parameter
• The number of volume serials implicitly or explicitly specified

The number of volume serials available is one of the following:

• The number of volume serials specified.

• The number of volumes obtained through VOL=REF (only if VOL=REF was coded).

• The number of volume serials that the data set resided on when it was passed (only if the
request is for an existing data set that was passed from a prior step and neither volume
serials nor VOL=REF was specified).

• The number of volume serials obtained from the catalog (only if the request is for an
existing data set that was not passed from a prior step and neither volume serials nor
VOL=REF was specified).

• The number of volume serials minus the volume sequence number plus one (only if the
request is for an existing data set in which the volume sequence number specified is not
greater than the number of volume serials). For example, if 8 volume serials are
calculated to be used and a volume sequence number of 4 is specified, then the number
of volume serials to be allocated would be 5 (8 - 4 + 1); in this case, the first three
volume serials will be discarded, and the fourth volume would become the first volume
allocated.

• The unit count specified in the UNIT parameter (only if the unit count specified is
greater than the number of volume serials calculated in the previous statement, or if the
request is for a new nonspecific direct access volume that does not specify
VOLUME=PRIVATE).

When the number of volume serials numbers calculated for a request is greater than the
number of specific volume serial numbers obtained from specified volume serial numbers,
VOL=REF, a passed data set, or the catalog, the system assumes that the volumes are
requests for nonspecific volumes.

Units per Request

The maximum number of tape units or direct access units required to satisfy any request is
equal to the greater of:

• The unit count specified in the UNIT parameter

• The total number of volumes required if parallel mounting is requested

8 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

When UNIT=AFF is specified, the unit requirements are obtained from the referenced
request. The number of units shared with the referenced request is the number of units used
by the referenced request.

The number of units required to satisfy a request specifying a generation data group (GDG)
name depends upon the unit requirements of each member of that GDG. Therefore, each
member is handled as a single request.

The number of units required to satisfy a VSAM data set depends upon the unit/volume
configuration of the data set. If the data set spans multiple device types, the total number of
units required is determined by catalog management. Additional tables will then be generated
to cause the allocation of the required number of units. For VSAM data sets, a specified unit
count or parallel mount may be overridden by the system once the unit requirements for the
data set are determined.

If the unit name specified in a request is eligible to several generic device types, allocation
for all units requested will be processed to the same device type. The following example, where
SYSDA is eligible to 2314s and 3330s, illustrates this point.

|

 //DD1 DD UNIT=(SYSDA,2),DSN=A,SPACE=(TRK,(50,1)),DISP=(,CATLG)

DD1 will be allocated to either two 2314s or two 3330s.

Units per Job Step

The number of units required for a job step is not necessarily the sum of the unit requirements
for each request.

The following rules tend to reduce the total unit requirements for a step:

• A volume can be allocated only to one unit. Therefore, if more than one request asks for
the same volume, all requests are allocated the same unit.

• Storage and/or public direct access requests can be allocated on the same volume.
Therefore, two or more such requests may be satisfied with one unit.

• For tape, if VOL=REF is specified, more than one public request can be allocated on
the same volume. Therefore, two or more public tape requests may be satisfied with one
unit.

The following rules tend to increase the total unit requirements for a step:

• A permanently resident or reserved volume cannot be demounted. Therefore, a volume
which is permanently resident or reserved will be assigned its own unit (where it is
mounted) even if, through JCL specification, it was to share a unit with one or more
other volumes.

• When more than one direct access request within a job step requires the same volume,
that volume must be shared. Therefore, a direct access volume that is required by more
than one request will be assigned its own unit even if, through JCL specification, it was
to share a unit with one or more other volumes.

• A VSAM data set will require additional units if the data set resides on more than one
device type.

• An additional unit is required for a direct access private catalog volume if it is associated
with and/or used to retrieve volume information about a particular data set.

• For direct access, when GDG name is specified, additional units might be required to
satisfy the device type requirements of each individual member of the GDG.

Chapter 1: Allocation Services 9

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

• When conflicting unit assignments are specified for tape volumes, the volume involved in
the conflict will be assigned its own unit. For example, such a conflict would exist for
VOLUM2 in the following DD statements:

//DD1 DD UNIT=2400,VOL=SER=(VOLUM1,VOLUM2)
//DD2 DD UNIT=2400,VOL=SER=(VOLUM2,VOLUM3)

In this case, three units, one for each volume, would be assigned. If the user had
requested via unit affinity that the same tape unit be used for both DD1 and DD2, then
only one unit would have been assigned.

Volume Dem ounting

A demountable, unallocated, private direct access volume is demounted at job unallocation. A
demountable, unallocated, private tape volume is demounted at dynamic or step unallocation,
unless a passed data set is on the volume or RETAIN was specified in the JCL for the volume.
An exception to this occurs when more than one data set is allocated to the same tape volume.
In this situation, the volume will be unloaded whether or not the volume contains a passed
data set or had RETAIN specified for it.

When a volume must be demounted by allocation to mount another volume, the operator
might be told to 'retain' the demounted volume near the system. All private volumes, tape and
direct access, are treated in this manner (retained) when demounted by allocation. Whether or
not a public volume is retained depends, in part, on whether the volume is direct access or
tape. A specification of PASS at any point within a job will cause a public direct access
volume to be retained if it is demounted by allocation.

Notes:

• Whenever a tape or direct access volume is demounted, the effect of specifying PASS or
RETAIN is lost.

• Each time a volume reference is used in a request for public tape volumes, you must
specify whether or not you desire the PASS or RETAIN disposition.

• Coding RETAIN on a DD statement which is setup by JES3 has no effect since the
JES3 Main Device Scheduler (MDS) ignores RETAIN.

10 OS/VS2 MVS System Programming Library: Job Management

Chapter 2: Dynamic Allocation Functions

The allocation performed in response to JCL at step allocation (or at LOGON for time-sharing
users) may be altered prior to step unallocation (or LOGOFF) by invoking dynamic allocation
functions. Because device requirements might not be fully known prior to execution, dynamic
allocation functions provide the facility to acquire resources as the need develops. They also
allow resources to be used more efficiently, because the resources can be acquired just before
use and/or released immediately after use. (The term "resource" means a ddname-data set
combination with its attendant volumes and devices, if any.)

"Dynamic allocation functions" refer to the allocation of I/O resources during program
execution and all of the related functions of resource allocation performed by SVC 99. These
functions include:

• Dynamic allocation — acquire' a resource
• Dynamic unallocation — free a resource
• Dynamic concatenation — associate acquired data sets
• Dynamic deconcatenation — separate associated data sets
• Dynamic information retrieval — obtain certain data set information

To avoid confusion between (1) the specific function of dynamically allocating a resource
and (2) the set of functions provided by the dynamic allocation routines, the first will be called
dynamic allocation and the second, SVC 99 functions, throughout the rest of this book.

A typical use for SVC 99 function is in a program that needs temporary use of a device,
volume, or data set for which there is heavy contention. In such a case, dynamic allocation and
dynamic unallocation provides the means for a program to tie up the 'resource for only as long
as necessary rather than for the total execution time of the program.

Another common use for SVC 99 functions is in a program whose need for allocation
resources varies according to the input. Dynamic allocation and dynamic unallocation permits
such programs to dynamically allocate and free only the files necessary to process the input, so
the specific resources supporting the required files can be in use for the minimum time.

You request SVC 99 functions with the DYNALLOC macro instruction' and the SVC 99
parameter list. You request a specific SVC 99 function via information in the following two
fields of the parameter list:

• Verb code – User-supplied one-byte field that describes the function routine being
requested. (There are seven verb codes.)

• Key – User-supplied two-byte field that describes the processing being requested from
the function routine. (A number of keys are available for each verb code.)

For example, verb code 1 with the key of 2 requests that a new data set be allocated; while
verb code 2 with key 7 requests that a particular data set be unallocated. You use other fields
in the parameter list to supply the information required to process your request, such as data
set disposition or space information.

The functions you request and the information you supply in the SVC 99 parameter list
depend, in part, on whether you are coding a program for a batch or time-sharing
environment. The next topic describes features of SVC 99 processing that are more applicable
to time-sharing environments, but not necessarily to batch environments. You should read the
next topic before trying to use SVC 99 functions in either a batch or time-sharing

1 SVC 99 routines can also be invoked through the dynamic allocation interface routine (DAIR). DAIR;
however, does not support all the SVC 99 options; the DAIR interface remains only to provide compatibility.
All new requests for SVC 99 functions should use DYNALLOC.

Chapter 2: Dynamic Allocation Functions 11

environment. The rest of this chapter describes each of the SVC 99 functions and installation
options you can use to control the processing of all SVC 99 requests.

Chapter 3 describes how to request SVC 99 functions, including details on coding the
parameter list and information on return codes issued by SVC 99 functions. Chapter 3 also
includes an example of a dynamic allocation request.

Understanding Features of SVC 99 Processing
Because of the unpredictable nature of an interactive environment, SVC 99 routines provide
some controls that probably are not needed in a batch environment. In addition, dynamic
allocation's use of a feature called the convertible attribute can be transparent to a batch user.

Controls Designed for a Time-Sharing Environment

Time-sharing command processors use SVC 99 functions to dynamically allocate data sets
required for their own processing (for example, work areas), in addition to the data sets the
user requests via the time-sharing commands. Because the same command processor can be
called again and different command processors might need the same data sets, each command
processor does not unallocate the data sets it allocated for its own use. This saves allocation
processing that would be required when a subsequent command processor requests the same
data sets. However, keeping all data sets allocated until the end of a terminal session can also
tie up resources that might no longer be needed. The following features were implemented to
avoid tying up resources that are not being used:

• An in-use bit for each data set (located in the data set association block (DSAB)). This
in-use bit is turned on when a data set is dynamically allocated. In a time-sharing
environment, the terminal monitor program (TMP) turns off the in-use bits of all data
sets that were dynamically allocated by a command processor when that command
processor completes execution. (Turning off the in-use bit does not unallocate the data
set.) If a subsequent command dynamically requests a previously allocated data set, the
in-use bit is turned on again, until the command processor completes execution and
returns control to the TMP. In this way, the system can keep track of data sets that have
been "not-in-use" for the longest time.

• A control limit, which limits the number of data sets that can be allocated but marked
"not-in-use" (that is, the in-use bit is turned off). This control limit is determined by the
JCL parameter DYNAMNBR on the EXEC statement in the LOGON procedure and the
number of DD statements in the LOGON procedure. If a request for a new allocation
would cause the control limit to be exceeded, SVC 99 routines automatically attempt to
unallocate enough data sets to meet the control limit, starting with eligible data sets that
have not been in use for the longest time. If the control limit is still exceeded after all
eligible resources have been unallocated, the request for a new allocation fails. In this
case, the user must explicitly request unallocation of an existing allocation before the new
allocation can be satisfied.

• A permanently allocated attribute, which prevents the SVC 99 routines from automatically
unallocating a data set to meet the control limit (In effect, this attribute determines a
request's eligibility for automatic unallocation). The permanently allocated attribute is
automatically assigned to data sets allocated through JCL and the ALLOCATE
command. In addition, you can request that a data set be assigned this attribute (via the
SVC 99 parameter list) when you dynamically allocate the data set. For example, the
ATTRIBUTE command processor assigns the permanently allocated attribute to a dummy
data set which is associated with other attributes specified on the ATTRIBUTE
command. The dummy data set must not be automatically unallocated if the control limit
is exceeded; it must remain available, to be referenced by a USING keyword on an
ALLOCATE command, until the user FREEs the data set.

12 OS/VS2 MVS System Programming Library: Job Management

Note: Because permanently allocated resources are not automatically unallocated and all
resources allocated via the ALLOCATE command and JCL are permanently allocated, the
control limit limits the number of resources that a terminal user can have allocated at the same
time. If no control limit is established, the limit is 1635.

Because a batch application is more predictable than a time-sharing terminal session, the
programmer who is using SVC 99 functions in a batch application probably will not need to be
concerned with the in-use bit, the control limit, or the permanently allocated attribute.

The Convertible Attribute

Because a data set requested by a command processor might already be allocated, the dynamic
allocation routines first check for an existing allocation that matches the current request. This
saves redundant allocation processing. In some cases, an existing allocation matches the current
request except for some parameters. The dynamic allocation routines can change certain
unmatching parameters of the existing allocation to meet the current request if the existing
allocation has the convertible attribute. The convertible attribute allows the dynamic allocation
routines to change the following parameters of the existing allocation: ddname, member name,
status, normal and conditional dispositions, space, unallocation at CLOSE, input only, output
only, DCB attributes, password, and the permanently allocated attribute.

The convertible attribute is automatically assigned to all data sets dynamically allocated
without the permanently allocated attribute. You can; however, assign both the convertible
attribute and the permanently allocated attribute to a resource: although you might want to
prevent a data set from being automatically unallocated, you might want to allow some of its
parameters to be changed to satisfy a new allocation.

Because a batch programmer will probably have no reason to assign the permanently
allocated attribute to resources he dynamically allocates, all the resources will have the
convertible attribute. If, for example, the programmer dynamically allocates a data set for input
only and later allocates the same data set for output only, the dynamic allocation routines will
automatically save redundant allocation processing by using the first allocation and changing
"input only" to "output only." The setting and use of the convertible attribute can be
transparent to the batch programmer.

Dynamic Allocation
You can request one of two types of dynamic allocation: allocation by dsname or allocation by
ddname.

Dsname Allocation

Dynamic allocation by dsname is equivalent to data set allocation during job step initiation; the
SVC 99 parameter list is equivalent to a DD statement. In the parameter list, you request the
allocation-by-dsname function by specifying verb code 1. You can request most of the JCL
services that you can code in a DD statement — such as data set disposition, volume label
information, expiration date, and SYSOUT destination — by specifying different text units in
the parameter list. Figure 4 lists JCL DD statement facilities that cannot be used in dynamic
allocation. In addition, you can specify the following, which do not have a JCL equivalent, via
text units:

• Data set password for password-protected data sets. If you specify the password, the
system need not prompt the operator.

• The permanently allocated attribute.

Chapter 2: Dynamic Allocation Functions 13

• The convertible attribute.
• Return of certain information.

Restricted DDnames JOBCAT, STEPCAT, JOBLIB, and STEPLIB

Keyword Parameters AMP, BURST, CHARS, CHKPT, DDNAME, DLM, DSID,
FLASH, and MODIFY

Positional Parameters *, DATA, and DYNAM

Selected Subparameter of
Keywords Keyword

COPIES

DCB

DISP

DSN

SPACE

UNIT

VOLUME

Subparameter Not Supported

group values

reference to ddname of a previous step
CYLOFL
NTM
RKP

PASS specification

reference to ddname ISAM area name

ABSTR specification

DEFER specification
AFF

RETAIN specification
REF = ddname

Figure 4. Non-Supported JCL DD Statement Facilities

Notes: The user is cautioned to consult the detailed description of each text unit key (see
Chapter 3) for the specific capability supported by the key. While a subparameter may be
supported (e.g. DCB=DSORG), not all values of that subparameter may be supported (e.g.
DCB=DSORG=IS).

The following rules apply to dsname allocation:

• A unique ddname is generated if a ddname is not specified. The ddname created consists
of the characters 'SYS' followed by five digits.

• Passwords may be specified as part of a dynamic allocation request to bypass prompting
the operator.

• Any data set allocated with a disposition of MOD and for which you don't specify
volume information that cannot be found in the catalog is treated as a new data set. If
you specify a normal disposition of CATLG, the system catalogs the data set when it is
allocated rather than when it is unallocated. If the data set cannot be cataloged, then no
allocation will be processed. If the data set cannot be allocated, it will not be cataloged.

• Rather than wait for another user to release a data set, volume, or device in order to
obtain use of it, the dynamic allocation routines will fail a request.

• A dynamic allocation request can specify that the ddname, data set name, and volume
serial number that are assigned be returned in the SVC 99 parameter list. A user can also
request the data set organization (DSORG) of the allocated data set. If a DSORG is
specified with the allocation request, that DSORG is returned otherwise, DSORG will be
returned as follows:

 14 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

— If the allocation request is for a terminal as an I/O device or for a SYSOUT data set,
`PS' is returned as a default value.

— If the allocation request is a tape data set, 'PS' is returned as a default value.

— If the allocation request is for a NEW direct access data set, 'PO' will be returned if a
directory space quantity was specified; otherwise, 'PS' will be returned.

— If the allocation request is for an existing direct access data set, the data set
organization obtained from the Data Set Control Block (DSCB) is returned. If the
organization cannot be obtained from the DSCB, the allocation request is failed.

— For other types of allocation requests, zeroes will be returned.

• ISAM data sets cannot be created through dynamic allocation.

• For time-sharing users allocating new data sets, (using the TSO ALLOCATE command),
DSORG is defaulted to partitioned organization if a directory quantity is specified, or to
physical sequential otherwise.

• If the request was eligible to be satisfied by an existing allocation, but no existing
allocation of the specified dsname could be used to satisfy the request, the volume and
unit information associated with an existing allocation of the specified dsname is copied
and associated with the request.

The allocation routines will not use passed data set information to retrieve volume
information.

Ddname Allocation

Dynamic allocation by ddname is requested by specifying verb code 6 and the ddname to be
allocated in the SVC 99 parameter list. This type of request allows the user to reuse, by
specifying only the associated ddname, a previously allocated data set that was marked
not-in-use. Ddname allocation processing sets the in-use bit on.

Ddname allocation is useful in time-sharing command processors for re-allocating a group of
data sets that were allocated and concatenated by an earlier command processor but whose
in-use bits were then turned off by the TMP. Because batch users probably need not be
concerned with the in-use bits (that is, no component such as the TMP turns off the in-use
bits of data sets dynamically allocated by a batch application), batch users need not use
allocation by ddname.

In MVS, the HELP command processor uses ddname allocation to allocate the SYSHELP
data set. As a user, you may allocate, in your LOGON procedure or via the ALLOCATE
command, a group of data sets to be searched for HELP information. These data sets are
concatenated with the ddname of SYSHELP. When the TMP receives control after the
LOGON or ALLOCATE command processor completes execution, it turns off the in-use bits
of all data sets allocated by the command processor. Then, when you issue the HELP
command, the HELP command processor invokes the allocation-by-ddname function,
specifying SYSHELP as the ddname. As a result, all of the data sets concatenated to
SYSHELP will have the in-use bit turned on. (If the system cannot locate the SYSHELP
ddname, the HELP command processor then uses the allocation-by-dsname function to
allocate the SYS1.HELP data set and it will be associated with a system-generated ddname.)
To satisfy a ddname request, an existing allocation with the specified ddname must:

• Not be in use

• Not have the convertible attribute or must be permanently concatenated, that is, must
have properties that ensure that the ddname could not have been disassociated from the
existing allocation. (See "The Permanently Concatenated Attribute" in the topic
"Dynamic Concatenation" for a description of this attribute.)

Chapter 2: Dynamic Allocation Functions 15

September 14, 1979

If the existing allocation with the specified ddname does not meet the above requirements,
or if the ddname is not associated with any existing allocation of the user, the request is failed
and an error return is made to the user. If the existing allocation meets the above
requirements, it is assigned the in-use attribute and the request has been satisfied. If the
existing allocation is a member of a concatenated group, all members of the group are assigned
the in-use attribute, so the entire group has been allocated.

The user may specify that an indication be returned if the existing allocation that satisfies
the request is associated with a DUMMY data set.

Dynamic Unallocation
The dynamic unallocation routines unallocate resources when requested via the appropriate
verb code. Two functions are available through dynamic unallocation:

• Releasing a data set, specified by verb code 2 with key 7 in the SVC 99 parameter list.
This facility involves the following processes:

– Disassociating the ddname from the data set name, which allows the ddname to be
used in subsequent dynamic allocations

– Process the data set disposition

– Releasing the data set for use by other jobs

– Freeing the unit(s) to which the data set was allocated

– Releasing the volume(s) on which the data set was allocated

• Removing the in-use attribute, specified by verb code 2 with key 8 in the SVC 99
parameter list. This function turns off the in-use bit of the data set. When this processing
is completed, the data set is referred to as "not-in-use." You can also request remove
in-use processing based on task-id by specifying verb code 5 -- see the following topic,
"Identifying a Resources by Task-Id."

If you code verb code 2 without specifying key 7 or key 8, the dynamic unallocation routines
will remove the in-use attribute from resources allocated through JCL, through the
time-sharing ALLOCATE command, or dynamically with the permanently allocated option;
the routines release data sets allocated dynamically without the permanently allocated option.
However, a user may explicitly specify the type of processing to be performed by also
specifying key 7 or key 8. The explicit specification will be satisfied in all but one case— the
in-use attribute will not be removed from non-permanently allocated, non-&dsname data sets
with a disposition of DELETE, because such a resource cannot be used to satisfy a subsequent
request. Such a resource will be released.

Either dynamic unallocation function can be performed for a dsname or a ddname.

Unallocation Processing

The following rules apply to all dynamic unallocation requests:

• If a data set is open, is a member of an open concatenated group, or is a private catalog,
it will not be unallocated.

• When a SYSOUT data set is released, it is immediately made available for output (unless
you specify an overriding disposition of DELETE, in which case the data set is deleted).

The following rules apply to unallocation requests that specify dsname:

• If no ddname is specified and the dsname is associated with more than one ddname, all
associations are unallocated. If an error occurs while unallocating one ddname, processing
continues for the others and an error code is returned. If errors occur for more than one
ddname, the error code applies to the last ddname for which there was an error.

16 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

• If a membername is specified with the dsname, only those associations containing both
the membername and dsname are unallocated. (Both the membemame and dsname keys
must be coded for a valid request.)

The following rules apply to unallocation requests that specify a ddname:

• Only the occurrence of the data set associated with the specified ddname is unallocated,
even if that data set is associated with other ddnames.

• If a dsname or dsname and membemame are specified in addition to the ddname, they
must be associated with that ddname or the request fails.

Concatenated Groups: If the specified resource is associated with a permanently concatenated
group, the in-use attribute is removed from all members of the group, and the count of the
number of resources held for reuse is increased by the number of members in the group. (An
exception is when the concatenated group was generated by the system, that is, VSAM data
sets spanning device types and GDG ALL groups. In these cases, the group is treated as a
single resource.)

If the concatenated group does not have the permanently concatenated attribute, the group
is deconcatenated and the member associated with the specified dsname is released. (The first
member is released if the group's ddname is specified.)

If a concatenated group has the permanently concatenated attribute and you specify a
ddname with a dsname, a VSAM dsname, or GDG ALL the entire group is released. If you
specify a dsname with a VSAM dsname or GDG ALL, the request for unallocation fails.

Changing the Parameters at Dynamic Unallocation: If a request for remove in-use processing
also includes text units to change the following, the remove in-use processing will be honored
but the changes will not be made until the resource is released (verb code 2 with key 7):

• Output class
• HOLD/NOHOLD parameters
• Remote work station destination
• Disposition

Allocation disposition cannot be overridden for passed data sets, VSAM data sets, and
system-named data sets. The disposition for all other types of data set during unallocation
processing.

Members of partitioned data sets cannot be deleted with a disposition of DELETE; the
entire data set is deleted. An overriding disposition of DELETE for data sets allocated as
shared is invalid; the overriding disposition request is failed.

Identifying a Resource by Task-Id

In addition to specifying a ddname or dsname, the user may specify via verb code 5, that the
in-use attribute be removed based on task-id. The attribute may be removed from all resources
associated with a specified task, or all resources except those associated with the current task,
its higher-level tasks, and the initiator. This function is used by the time-sharing terminal
monitor program (TMP) to remove the in-use attribute from any data sets allocated by a
command processor when a command processor completes execution.

Dynamic Concatenation
Dynamic concatenation logically connects allocated data sets into a concatenated group. You
request this facility by specifying verb code 3 in the SVC 99 parameter list. You can identify
data sets to be concatenated only by their associated ddnames. These data sets must not be
open or the request for dynamic concatenation will fail.

Chapter 2: Dynamic Allocation Functions 17

September 14, 1979

The order of the data sets in the concatenated group will be the order in which the
associated ddnames are specified. The name associated with the concatenated group will be the
ddname that was specified first. The other ddnames are no longer associated with any data set.
If a specified ddname is already associated with a concatenated group, that group will be
included in the new concatenation.

After the request for dynamic concatenation is satisfied, all members of the dynamically
concatenated group are assigned the in-use attribute.

The Permanently Concatenated Attribute

The permanently concatenated attribute may be assigned when concatenation is requested. In
addition, a concatenated group defined via JCL is automatically assigned the permanently
concatenated attribute. Step and dynamic allocation requests that result in a concatenated
group defined by the system are also automatically assigned this attribute. A GDG ALL
request and a request for a VSAM data set that spans device types are examples of such
requests.

A group having the permanently concatenated attribute has the following characteristics:

• To dynamically release a non-system-defined permanently concatenated group, you must
specify the ddname, not the dsname, in the unallocation request.

• The group cannot be dynamically deconcatenated into its member data sets.

• If a permanently concatenated group is dynamically concatenated with other data sets to
form a new non-permanently concatenated group, the permanently concatenated group
remains intact if the new group is dynamically deconcatenated.

• If the group is not a system-defined permanently concatenated group, the group is
automatically assigned the permanently allocated attribute.

Dynamic Deconcatenation
Dynamic deconcatenation logically disconnects the members of a concatenated group. You
request dynamic deconcatenation by specifying verb code 4 in the SVC 99 parameter list. You
identify the concatenated group to be deconcatenated by specifying the ddname of the group.

The request for dynamic deconcatenation fails if the concatenated group is open. A
permanently concatenated group, or members of a concatenated group that are permanently
concatenated, remain concatenated.

When a concatenated group is dynamically deconcatenated, the ddnames that were
associated with the data sets before they were concatenated are restored unless this would
result in duplicate ddnames. This situation could arise if a dynamic allocation with the ddname
to be restored occurred after a dynamic concatenation. In this case the deconcatenation
request fails.

Dynamic deconcatenation has no effect on the in-use attributes associated with the members
of the group.

Dynamic Information Retrieval
Dynamic information retrieval provides you with information about your current allocation
environment. You request this facility by specifying verb code 7 in the SVC 99 parameter list.
You can request information about ddnames or dsnames. In addition, you may ask for
information about any or all of your currently allocated requests by specifying a relative
request number.

18 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

For example, information about all requests can be obtained by successively asking for
information about the 1st, 2nd, ...nth allocation request. A unique return code is provided
when information is requested for a nonexistent relative entry.

The following information can be requested:

• Data set name

• Ddname

• Member name

• Data set organization

• Status

• Normal disposition

• Conditional disposition

• Attribute status, including the permanently allocated, in-use, permanently concatenated,
convertible, or dynamically allocated attributes

• Data set types, including dummy, SYSIN, SYSOUT, and allocation of the user's terminal
as an I/O device

• The number of resources held in anticipation of reuse that exceeds the control value, that
is, the number of existing allocations that must be unallocated before a request for a new
allocation can be satisfied

• Whether or not the allocation is the last relative request (that is, by specifying successive
relative request numbers (1st, 2nd, 3rd, etc.), a unique return code is provided when the
relative request given is the last.)

Installation Options
This section describes the values and options your installation might desire to modify in order
to control SVC 99 processing. The values and options being described in the following topics
are: default values for space and unit information, volume mounting and bringing devices
online, and the writing of installation validation routines.

Space and Unit Defaults

This section describes how to change the allocation default values for space and unit. It also
describes the remote user work station defaulting.

If space information is not specified in a request for a new direct access data set and the
request is eligible to MSS exclusively, with the MSVGP specified, the MSVGP space defaults
are used. If the request if not eligible to MSS exclusively or MSVGP is not specified, a default
of 1000 block length, 10 primary blocks, and 50 secondary blocks with the release unused
space (RLSE) is used. These space defaults are contained in the allocation default CSECT,
IEFAB445 (a member of load module IEFW21SD), so the installation may modify them. The
contents of the module are (beginning at offset zero; the parenthesized numbers show the bit
setting supplied by IBM):

• Three bytes for the binary value of primary quantity (X'00000A ')

• Three bytes for the binary value of secondary quantity (X'000003')

• Three bytes for the binary value of the average block length (X'0003E8')

• Three bytes for the binary value of the number of directory blocks (X'000000')

• One byte of flags with the following bit meanings:

— bit 0 TRK (0)

— bit 1 CYL (0)

Chapter 2: Dynamic Allocation Functions 19

September 14, 1979

— bit 2 blocklength (1)

— bit 3 RLSE (1)

19.0 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

Chapter 2: Dynamic Allocation Functions 19.1

September 14, 1979

— bit 4 CONTIG (0)

— bit 5 MXIG (0)
— bit 6 ALX (0)

— bit 7 ROUND (0)

If unit information is not specified, a unit description is obtained from a time-sharing user's
UADS entry. If the user is not a time-sharing user, or if the UADS entry does not contain a
unit description, a default of 'SYSALLDA', that is, all direct access devices, is used. This
default is contained in the allocation default CSECT IEFAB445, in the eight bytes beginning
at offset 13 (decimal). The unit description supplied is eligible to override the unit type for a
cataloged data set; however, the default unit description for the UADS is not eligible for unit
override.

If the remote user workstation (or destination) is not specified by time-sharing users
allocating a SYSOUT data set, this value is defaulted from the time-sharing user's UADS
entry.

Volume Mounting and Bring Devices Online

Dynamic allocation can bring devices online and have volumes mounted. Because this is a
time-consuming operation and requires operator communication, and therefore is not always
desirable in an interactive environment, this function is an option for time-sharing users. This
option is assigned via the UADS entries. Non-time-sharing users always have volume mounting
ability and the ability to have devices brought online. However, any user may indicate in the
SVC 99 parameter list that volumes are not to be mounted and that devices are not to be
brought online for a request.

The operator may inform the dynamic allocation routines that a volume is not to be
mounted or that a device is not to be brought online. In this case, the request is failed. In
order to support this operator communication, dynamic allocation must wait for tape volumes
to be mounted. (Step allocation does not wait for tape volumes to be mounted.) When the
volume is mounted, OPEN verifies that the correct volume has been mounted.

If the option to have volumes mounted and devices brought online is not in effect, tape and
direct access devices that have an outstanding mount request or that are not ready are not
eligible for use by dynamic allocation.

Installation Input Validation Routine

An exit (IEFDB401) from the allocation control routine provides for a user-written routine to
validate or alter any request to SVC 99. The routine is entered for all system and user SVC 99
requests. The routine must be coded so as not to interfere with system requests.

The validation routine may test and modify the SVC 99 input request, and it may indicate
through a return code whether processing of the request is to continue. For example, the
routine may perform the following functions:

• Control the amount of direct access space requested
• Check for authorization to use specified units
• Check for authorization to use certain data sets
• Check for authorization to hold certain resources for reuse

20 OS/VS2 MVS System Programming Library: Job Management

Programming Considerations

The input validation routine must observe the following programming conventions and must
receive the following input:

• Its CSECT name must be IEFDB401 and it must reside in load module IEFW21SD.

• The routine must use register 15 to return to SVC 99 a code of zero if processing of the
request is to continue, or any other code if processing is to terminate.

• It receives control in supervisor state under the scheduler's protection key (key 1). At
entry, register 1 points to a list of addresses for the following parameters:

— A copy of the SVC 99 input request block, text unit pointers, and text units in
scheduler-key fetch-protected storage.

— The address of a work area for the use of the routine. This area is contiguous with the
text unit pointer list so that it can be used to extend the list and provide additional
text units.

— A fullword that contains the length of the work area (500 bytes).

— The eight-character job name

— The twenty-byte programmer name

— An area that contains accounting information from the JOB statement. The first byte
of this area contains the number of accounting fields; the accounting fields follow this
byte. Each entry for an accounting field contains the length of the field (one byte,
binary), followed by the field itself. The entry for a null field contains a length of
zero.

— The eight-character step name

— The eight character program name

— An area containing accounting information from the EXEC statement. The first byte
of this area contains the number of accounting fields (0 for no fields); the accounting
fields follow this byte. Each entry for an accounting field contains the length of the
field (one byte, binary), followed by the field itself. The entry for a null field contains
a length of zero.

The IBM-supplied routine that your routine may replace allows all requests to continue
processing.

Chapter 2: Dynamic Allocation Functions 21

22 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Chapter 3: Requesting SVC 99 Functions

To request an SVC 99 function, you must code the DYNALLOC macro instruction (it has no
operands) and supply the SVC 99 parameter list. This chapter describes the programming
considerations for using SVC 99 functions, the SVC 99 parameter list, and SVC 99 return
codes. It also includes an example of a request for dynamic allocation.

Programming Considerations When Using SVC 99 Functions
Before deciding to use any of the SVC 99 functions, you should consider the environment of
the program that is going to invoke SVC 99. For example:

• Consider the fact that your program might serialize the same resources as SVC 99. For
example, the following resources are serialized, depending on the path taken in SVC 99
processing.

Major Name Minor Name

SYSDSN data set name
SYSIEFSD CHNGDEVS
SYSIEFSD DDRDA
SYSIEFSD DDRTPUR
SYSIEFSD Q4
SYSZOPEN data set name
SYSZPCCB PCCB
SYSZTIOT address of the DSAB QCB.asid
SYSZVMV ucbaddr
SYSZVOLS volume serial number

• System routines invoked by various paths of SVC 99 processing might also serialize a
system resource. Some of the system functions invoked by SVC 99 processing are
LOCATE, OBTAIN, CATALOG, SCRATCH, DADSM, and allocate (SVC 126).

• Avoid use of SVC 99 functions in routines that run under the control of an interruption
request block (IRB), especially when that program might be interrupted issues OPEN,
OPENJ, CLOSE, EOV, or FEOV. An SVC 99 request issued in such an environment
can cause a 138 ABEND when SVC 99 tries to enqueue on the SYSZTIOT resource.

• The program that issues SVC 99 functions must not receive control when the job entry
subsystem is being started or an unending wait could result, causing the system to crash.

• The program that issues SVC 99 must not have an STIMER macro outstanding, because
certain paths in SVC 99 issue another STIMER, which causes an overlay of the first
STIMER. This situation causes the program that issued the SVC 99 request never to
receive control because of the expiration of the timer.

• The system routines that invoke SVC 99 functions should be aware that a non-zero
return code might be returned. System routines cannot always diagnose non-zero return
codes. To aid serviceability, it is suggested that the system routine print an error message
including the error code (S99ERROR) and information code (S99INFO) fields in the
SVC 99 request block (S99RB).

• Routines should not allocate data sets that are cataloged in OS CVOLs or VSAM private
catalogs to long-running tasks, since the private catalog or CVOL will be allocated and
will remain allocated until the step terminates. This is especially important in installation
exits for system tasks since the private catalog or CVOL might be allocated to an
initiator or subsystem such as JES2 or JES3.

• Volumes that contain a CVOL or VSAM private catalog for data sets allocated to
long-running steps should be assigned the permanently resident attribute.

Chapter 3: Requesting SVC 99 Functions 23

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

SVC 99 Parameter List
When you code DYNALLOC, you must supply a parameter list, which includes a request
block, text pointers, and text units. Figure 5 illustrates the structure of the SVC 99 parameter
list. IBM supplies two macros IEFZB4D0 and IEFZB4D2 to aid in constructing the SVC 99
parameter list. IEFZB4D0 provides symbolic names (dummy sections) for the positional
information in the structure; IEFZB4D2 provides mnemonics for the text unit keyword values.
The names in Figure 5 are those assigned by the macro IEFZB4D0 .

Register 1 must point to a pointer to the request block. The text pointers in the request

I block and the text units must be created in real storage (storage obtained via the GETMAIN
macro instruction). Upon entry to SVC 99, these fields are copied into the SVC's workarea
and, before exit from SVC 99, these fields are restored into the real storage area. This copy
and restore function is always performed. An 0C4 ABEND will occur if the parameter list
pointer, the request block pointer, or the text unit pointers contain addresses of real storage
not owned by the caller.

Figure 5. Structure of the SVC 99 Parameter List

24 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Request Block

The request block must begin on a fullword boundary. It contains the following fields (the
names in parentheses are those assigned by the mapping macro IEFZB4D0):

• LENGTH (S99RBLN) This field is a one-byte field that contains the length of the
request block. The length is always 20 bytes.

• VERB CODE (S99VERB) The verb code is a one-byte field that identifies the SVC 99
function to be performed. The following codes may be specified:

Verb Code Name Meaning
01 S99VRBAL Request for dsname allocation
02 S99VRBUN Request for unallocation (based on dsname or ddname)
03 S99VRBCC Request for concatenation
04 S99VRBDC Request for deconcatenation
05 S99VRBRI Request for removing the in-use attribute based on task-id
06 S99VRBDN Request for ddname allocation
07 S99VRBIN Request for information retrieval

• FLAGS1 (S99FLAG1)The FLAGS1 field is a two-byte field that instructs the system on
how to satisfy dsname allocation requests. The meaning of the bits in the field are as
follows:

Bit Bit Name Meaning When On
0 S99ONCVN Do not use an existing allocation that does not have the convertible

attribute to satisfy the request.
1 S99NOCNV Do not use an existing allocation to satisfy this request.
2 S99NOMNT Do not mount volumes or consider offline units. (This bit overrides

S99MOUNT and S99OFFLN in FLAGS2.) If this bit is one and the
request causes a private catalog to be allocated, mounting will not be
allowed for that catalog.

3 S99JBSYS Treat the data set as part of the job's normal output. The data set is not
expected to be dynamically unallocated (spun off). This flag is used for
SYSOUT data sets. If the data set is dynamically unallocated the data set
will be printed immediately but paging space will not be released until the
job ends.

4 S99CNENQ Issue a conditional ENQ on the TIOT resource. If not available, an error
code is returned to user.

5-16 Reserved; must be zero

Note: The FLAG2 indicators are used only for dsname allocation requests.

• ERROR CODE (S99ERROR) This field is a two-byte field that SVC 99 uses to return
error reason codes. See the topic "SVC 99 Return Codes."

• INFO CODE (S99INFO) This two-byte field is used by SVC 99 to return information
reason codes. See the topic "SVC 99 Return Codes."

• TEXT POINTERS ADDRESS (S99TXTPP) This fullword field contains the address of a
list of pointers to the text units.

• RESERVED An area, one fullword in length, that contains zeros.

• FLAGS2 (S99FLAG2) The FLAGS2 field is a four-byte field of indicators. These
indicators may be set only by authorized programs. To be authorized, the requesting
program must meet at least one of the following criteria:

— It must have a system storage protection key (0-7).

— It must be in supervisor state.

— It must be in APF authorized.

Chapter 3: Requesting SVC 99 Functions 25

September 14, 1979

The meanings of the bits are:

Bit Bit Name Meaning When On
0 S99WTVOL Wait for volumes.
1 S99WTDSN Wait for dsname.
2 S99NORES Do not reserve data sets.
3 S99WTUNT Wait for units.
4* S99OFFLN Consider offline devices. If S99NOMNT in FLAGS1 is off and this bit is

on for a background job or if a time-sharing user does not have the
mount attribute in his UADS entry, the system will consider offline
devices. This bit is ignored if S99NOMNT is on or if the time-sharing user
hs the mount attribute in his UADS entry.

5 S99TIONQ TIOT ENQ already performed.
6 S99CATLG Set special catalog data set indicators.
7* S99MOUNT Volumes may be mounted. If S99NOMNT in FLAGS1 is off and this bit

is on for a background job or if a time-sharing user does not have the
mount attribute in his UADS entry, the system will allow volumes to be
mounted. This bit is ignored if S99NOMNT is on or if the time-sharing
user has the mount attribute in his UADS entry.

8 S99UDEVT Unitname parameter is a device type.
9 S99PCINT Allocate a private catalog on behalf of the initiator.
10-31 Reserved. Must be zero.

*These fields override the NOMOUNT option from the user attribute data set (UADS)
for TSO users.

Text Pointers

The text pointer part of the parameter list is a variable-length list of fullword pointers to text
units. The end of the list is indicated by setting on the high-order bit of the last pointer. A
fullword of zeros is ignored. Mapping macro IEF2B4DO assigns the label S99TUPL to the list,
the label S99TUPTR to each pointer in the list, an label S99TUPLN to an equate that allows
you to turn on the end-of-list indicator.

Text Units

Each text unit is a variable-length field (labeled S99UNIT by macro IEFZB4D0) that contains
the following subfields:

• KEY (S99KEY) A two-byte field that contains a unique binary number that identifies
the type of information to be found in the PARM subfield. For example, a key of '0004'
for a dsname allocation request indicates that the value of the PARM subfield specifies
data set status. SVC 99 ignores a KEY field of zero. Each SVC 99 function has an
associated set of text units, and each set is independent of any other. For example, the
functions of both allocation and unallocation may use a KEY value of '0007' but that
value does not necessarily have the same meaning for each function. See the topic "Text
Units by Function" for a description of the text units that can be coded for each SVC 99
function.

• NUMBER (S99TUNUM) A two-byte binary number that specifies the number of length
and parameter combinations in the text unit. If a key of zero is specified, S99TUNUM
must also be zero.

• COMBINATION (S99UENT) The label for a length an parameter combination.
IEFZB4D0 provides the following DSECT for use when specifying multiple parameters in
a single text unit. This DSECT places the length field at zero displacement for the second
an subsequent combinations:

S99TUFLD Label for the DSECT
S99TULEN Label for the length field
S99TUPRM Label for the parameter

26 OS/VS2 MVS System Programming Library: Job Management

LENGTH (S99TULNG) A two-byte binary number that specifies the length of the
following parameter field.

• PARM (S99TUPAR) This field contains a value that provides the parameter information
identified by the KEY field. See "Text Units by Function" for a description of the values
that can be coded for each key.

SVC 99 Return Codes

Note: The labels used in this topic are assigned by macros IEFZB4D0 and IEFZB4D2.

When the SVC 99 routines return control to the requesting program, register 15 contains a
return code. Depending on the return code, the S99ERROR and S99INFO fields in the input
request block (S99RB) may additionally contain error and information reason codes
respectively. The return codes that can be returned in register 15 are shown in Figure 6.

Code Meaning
0 Successful completion; there will also be an information reason code if a non-terminating error

occurred during request processing.
4 An error resulted from the current environment, the unavailability of a system resource, or a

system routine failure; there will also be an error reason code.
8 The installation validation routine denied this request. (See "Installation Input Validation Routine"

for additional information.)
12 The error is due to an invalid parameter list; there will also be an error reason code from class

3. (Class 3 reason codes are listed in Figure 7.)

Figure 6. SVC 99 Return Codes

The DAIRFAIL TSO service routine can be used to issue write-to-programmer of TSO
PUTLINE failure messages for both DAIR and SVC 99 error codes. Refer to "OS/VS2 TSO
Guide to Writing a Terminal Monitor Program or a Command Processor" for information on
using DAIR and DAIRFAIL.

The next two topics describe the information and error reason codes that can be returned in
the SVC 99 request block. The last topic in this chapter describes dsname allocation processing
in detail; you might need this information to understand the error and information codes
returned by dsname allocation.

Chapter 3: Requesting SVC 99 Functions 27

Information Reason Codes

The codes below are returned in the two-byte field (S99INFO) in the request block.

Code Meaning
0004 Reserved

0008 Overriding disposition ignored for one of the following reasons:
Data set was originally allocated with a disposition of PASS
Data set is a non-subsystem data set that has a system-generated name; you cannot override
disposition on this type of data set

• Data set is a VSAM data set
In these cases, the data set is unallocated using the disposition specified when the request was
allocated.

000C-001C Reserved

002n The data set was successfully unallocated but processing of the requested CATLG or
UNCATLG disposition was unsuccessful. The digit "n" is a code representing the reason for the
failure. Below is a list of the possible codes and meanings.

Code Meaning
1 A control volume was required and a utility program must be used to catalog the data set.
2 The data set to be cataloged had previously been cataloged, or the data set to be

uncataloged could not be located, or no change was made to the volume serial list of a data
set with a disposition of CATLG.

3 The specified index did not exist.
4 The data set could not be cataloged because the space was not available in the catalog.
5 Not enough storage was available to perform the specified cataloging.
6 The data set to be cataloged in a generation index is improperly named.
7 The data set to be cataloged had not been opened and no density information was provided

(for dual density tape requests only).
8 Reserved
9 An uncorrectable I/O error occurred in reading or writing the catalog.

003n The data set was successfully unallocated but processing of requested DELETE disposition was
unsuccessful. The digit "n" code represents the reason for the failure. Following is a list of the
possible codes and their meanings.

Code Meaning
1 The expiration date had not occurred.
2 Reserved
3 Reserved
4 No device was available for mounting for the volume during deletion.
5 Not enough storage was available to perform the specified deletion.
6 Either no volumes were mounted or volumes that were mounted could not be demounted to

permit the remaining volumes to be mounted.
8 The SCRATCH routine returned an error code. If the user's JOB statement requested

allocation/termination messages, message IEF283I will appear in the SYSOUT listing. This
message will list the volume serial numbers of the data sets that were not deleted; following
each number will be a code that explains why each data set was not deleted.

Error Reason Codes

Error reason codes are divided into the following classes:

Class Description
1 Reserved
2 Unavailable system resource
3 Invalid parameter list
4 Environmental error
5 Reserved
6 Reserved
7 System routine error

The error reason codes are contains the codes shown in Figure 7. The second hexadecimal
digit will be one of the class designations above. The error code field in the SVC 99 request
block is labeled S99ERROR.

Note: The explanations of the codes in Figure 7 are followed by an indication of the kind of
request associated with the code.

28 OS/VS2 MVS System Programming Library: Job Management

•
•

Page of GC28-0627-2
Revised September 14,1979
By TNL GN28-4681

CLASS 2 CODES

Code Meaning
0204 Real storage unavailable (dsname allocation).
0208 Reserved.
020C Request for exclusive use of a shared data set cannot be honored (dsname allocation)
0210 Requested data set unavailable. The data set is allocated to another job and its usage attribute

conflicts with this request. (dsname allocation)
0214 Unit(s) not available (dsname allocation)
0218 Specified volume or an acceptable volume is not mounted and user does not have volume

mounting authorization. (dsname allocation)
021C Unit name specified is undefined. (dsname allocation)
0220 Requested volume not available. (dsname allocation) 3
0224 Eligible device types do not contain enough units. (dsname allocation)
0228 Specified volume or unit in use by system. (dsname allocation)
022C Volume mounted on ineligible permanently resident or reserved unit. (dsname allocation)
0230 Permanently resident or reserved volume on required unit. (dsname allocation)
0234 More than one device required for a request specifying a specific unit. (dsname allocation)
0238 Space unavailable in Task Input Output Table (TIOT). (dsname allocation concatenation)
023C Required catalog not mounted and user does not have volume mounting authorization. (dsname

allocation)
0240 Requested device is a console. (dsname allocation)

0244 Telecommunication device not accessible. (dsname allocation)
0248 MSS virtual volume unable to be mounted. (dsname allocation)
024C Operating system managed resource was unavailable to the subsystem. (dsname allocation) 8

0250 Subsystem resource not available. (dsname allocation 8
0254 The TIOT resource is currently unavailable and the user requested conditional ENQ on the

resource. (all SVC 99 functions)

Note: The failing system routine returns the code represented by "zz".
1 The informational reason code field contains 0004 if the requested function was performed, although an

error occurred as the error reason code indicates.
2 The informational reason code contains the value of the key that caused the error.

3 For MSS requests, the MSSC reason code for this failing job step is contained in message IEF710I on the
hardcopy log. An explanation of the MSSC reason code is contained in OS/VS Message Library: Mass
Storage System (MSS) Messages . For non-MSS request this code will be accompanied by IEF485I, or it may
result from a JES3 failure because of a busy or unavailable situation.

4 The MSSC reason code for this failing job step is contained in message IEF710I on the hardcopy log. An
explanation of the MSSC reason code is contained in OS/VS Message Library: Mass Storage System (MSS)
Messages .

5 This code corresponds to MSSC reason code X'007', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

6 This code corresponds to MSSC reason code X'207', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

7 The informational reason code field contains the MSSC reason code. An explanation of the MSSC reason
code is contained in OS/VS Message Library: Mass Storage System (MSS) Messages .

8 The information reason code contains a subsystem defined value to further describe the error. This value
is documented in publications associated with the particular subsystem.

Figure 7. Error Reason Codes (Part 1 of 5)

Chapter 3: Requesting SVC 99 Functions 29

Page of GC28-0627-2
Revised September 14,1979
By TNL GN28-4681

CLASS 3 CODES

Code Meaning
0304-0338 Assigned by DAIR. (See OS/VS2 TSO Guide to Writing a Terminal Monitor Program or a

Command Processor .)
033C-0354 Reserved.
0358 Overriding disposition of DELETE invalid for data set allocated as SHR. (unallocation)1

035C Invalid PARM specified in text unit. (all SVC 99 functions) 2

0360 Invalid KEY specified in text unit. (all SVC 99 functions) 2

0364 JOBLIB/STEPLIB/JOBCAT/STEPCAT specified as ddname, or associated with specified
dsname; dsname allocation, ddname allocation, unallocation, concatenation,

deconcatenation 1
0368 Authorized function requested by unauthorized user. (all SVC 99 functions)
036C Invalid parameter list format. (all SVC 99 functions)
0370 Reserved.
0374 Invalid # specified in text unit. (all SVC 99 functions) 2

0378 Duplicate KEY specified in text unit. (all SVC 99 functions) 2

037C Invalid LEN specified in text unit. (all SVC 99 functions) 2

0380 Mutually exclusive KEY specified. Two keys that cannot be used together were used in the
text unit. (dsname allocation, unallocation, information retrieval, remove in-processing) 2

0384 Mutually inclusive KEY not specified. One key was used; two should have been used.

(unallocation, dsname allocation) 2
0388 Required key not specified. (ddname allocation, nformation retrieval, concatenation,

deconcatenation, remove in-processing, unallocation)
038C Duplicate ddnames specified. (concatenation)
0390 GDG group name specified with relative generation number exceeds 35 characters. (dsname

allocation)
0394 Status and relative generation number are incompatible. (dsname allocation)
0398 Volume sequence number exceeds the number of volumes. (dsname allocation)
039C Device type and volume are incompatible. (dsname allocation)

03A0 Subsystem detected an invalid parameter. (dsname allocation) 8
03A4 Unable to PROTECT data set/volume because of conflicting keyword specification.

Note: The failing system routine returns the code represented by "zz".
1 The informational reason code field contains 0004 if the requested function was performed, although an

error occurred as the error reason code indicates.
2 The informational reason code contains the value of the key that caused the error.

3 For MSS requests, the MSSC reason code for this failing job step is contained in message IEF710I on the
hardcopy log. An explanation of the MSSC reason code is contained in OS/VS Message Library: Mass
Storage System (MSS) Messages . For non-MSS request this code will be accompanied by IEF485I, or it may
result from a JES3 failure because of a busy or unavailable situation.

4 The MSSC reason code for this failing job step is contained in message IEF710I on the hardcopy log. An
explanation of the MSSC reason code is contained in OS/VS Message Library: Mass Storage System (MSS)
Messages .

5 This code corresponds to MSSC reason code X'007', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

6 This code corresponds to MSSC reason code X'207', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

7 The informational reason code field contains the MSSC reason code. An explanation of the MSSC reason
code is contained in OS/VS Message Library: Mass Storage System (MSS) Messages .

8 The information reason code contains a subsystem defined value to further describe the error. This value
is documented in publications associated with the particular subsystem.

Figure 7. Error Reason Codes (Part 2 of 5)

30 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14,1979
By TNL GN28-4681

CLASS 4 CODES

Code Meaning
0404-040C Reserved.
0410 Specified ddname unavailable. (dsname allocation, ddname allocation)
0414-041C Reserved.
0420 Specified ddname or dsname associated with an OPEN data set. (ddname allocation,

concatenation, deconcatenation, unallocation, dsname allocation) 1

0424 Deconcatenation would result in duplicate ddnames (deconcatenation). 1

0428-0430 Reserved.
0434 Ddname specified in ddname allocation request is associated with a convertible or non-

permanently allocated resource. (ddname allocation)

0438 Specified ddname not found. (information retrieval, ddname allocation, concatenation,
deconcatenation, unallocation)

043C Resources could not be unallocated to decrease the number of resources held in anticipation or
reuse to meet the limit of the control value. (dsname allocation)

0440 Specified dsname not found. (information retrieval, unallocation)
0444 Relative entry number specified in information retrieval request not found. (information retrieval
0448 Request for a new data set failed; the data set already exists. (dsname allocation)
044C Request was made for a data set that has a disposition of delete; this request cannot be honored

because the data set may be deleted at any time. (dsname allocation)
0450 Request would cause the limit of 1635 concurrent allocations to be exceeded. (dsname allocation)
0454 Ddname in DCB reference not found. (dsname allocation)
0458 Dsname in DCB reference or volume reference is a GDG group name. (dsname allocation)
045C Specified dsname to be unallocated is a member of permanently concatenated group.

(unallocation) 1
0460 Specified dsname or member to be unallocated is not associated with specified ddname.

unallocation)

Note: The failing system routine returns the code represented by "zz".
1 The informational reason code field contains 0004 if the requested function was performed, although an

error occurred as the error reason code indicates.
2 The informational reason code contains the value of the key that caused the error.

3 For MSS requests, the MSSC reason code for this failing job step is contained in message IEF710I on the
hardcopy log. An explanation of the MSSC reason code is contained in OS/VS Message Library: Mass
Storage System (MSS) Messages . For non-MSS request this code will be accompanied by IEF485I, or it may
result from a JES3 failure because of a busy or unavailable situation.

4 The MSSC reason code for this failing job step is contained in message IEF710I on the hardcopy log. An
explanation of the MSSC reason code is contained in OS/VS Message Library: Mass Storage System (MSS)
Messages .

5 This code corresponds to MSSC reason code X'007', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

6 This code corresponds to MSSC reason code X'207', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

7 The informational reason code field contains the MSSC reason code. An explanation of the MSSC reason
code is contained in OS/VS Message Library: Mass Storage System (MSS) Messages .

8 The information reason code contains a subsystem defined value to further describe the error. This value
is documented in publications associated with the particular subsystem.

Figure 7. Error Reason Codes (Part 3 of 5)

Chapter 3: Requesting SVC 99 Functions 31

Page of GC28-0627-2
Revised September 14,1979
By TNL GN28-4681

CLASS 4 CODES

Code Meaning
0464 Specified dsname to be unallocated is a private catalog. (unallocation)1

0468 Error while allocating or opening a private catalog. (allocation)
046C Remote workstation not defined to Job Entry Subsystem. (dsname allocation, unallocation)
0470 User unauthorized for Job Entry Subsystem request. (dsname allocation)

0474 Error while attempting to select optimum device. (dsname allocation)
0478 Unable to process Job Entry Subsystem request. (dsname allocation, unallocation)
047C Unable to establish ESTAE environment. (all SVC 99 functions)
0480 The number of units to satisfy the request exceeds the limit. (dsname allocation)
0484 Request denied by operator. (dsname allocation)
0488 GDG pattern DSC8 not mounted. (dsname allocation)
048C GDG pattern DSC8 not found. (dsname allocation)
0490 Error changing allocation assignments. (dsname allocation)

0494 Error processing OS CVOL. (dsname allocation)
0498 MSS virtual volume not accessible. (dsname allocation)4

049C MSS virtual volume not defined. (dsname allocation)5

04A0 Specified MSVGP name not defined. (dsname allocation)6
04A4 Subsystem request in error. (dsname allocation)8
04A8 Subsystem does not support allocation via key DALSSNM. (dsname allocation)
04AC Subsystem is not operational.
04B0 Subsystem does not exist.
04B4 PROTECT not processed; RACF not in system or not active.

04B8 MSS not initialized for allocation. (dsname allocation)

04BC MSS volume select error. (dsname allocation)7
04C4 The last request was for a VOL = REF to a dsname or DC8 = dsname which exceeded the

maximum allowable dsname referbacks. (A maximum of 972 referbacks are allowed if the data
set names are 44 characters in length.)

Note: The failing system routine returns the code represented by "zz".
1 The informational reason code field contains 0004 if the requested function was performed, although an

error occurred as the error reason code indicates.
2 The informational reason code contains the value of the key that caused the error.

3 For MSS requests, the MSSC reason code for this failing job step is contained in message IEF710I on the
hardcopy log. An explanation of the MSSC reason code is contained in OS/VS Message Library: Mass
Storage System (MSS) Messages . For non-MSS request this code will be accompanied by IEF485I, or it may
result from a JES3 failure because of a busy or unavailable situation.

4 The MSSC reason code for this failing job step is contained in message IEF710I on the hardcopy log. An
explanation of the MSSC reason code is contained in OS/VS Message Library: Mass Storage System (MSS)
Messages .

5 This code corresponds to MSSC reason code X'007', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

6 This code corresponds to MSSC reason code X'207', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

7 The informational reason code field contains the MSSC reason code. An explanation of the MSSC reason
code is contained in OS/VS Message Library: Mass Storage System (MSS) Messages .

8 The information reason code contains a subsystem defined value to further describe the error. This value
is documented in publications associated with the particular subsystem.

Figure 7. Error Reason Codes (Part 4 of 5)

31.0 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

Chapter 3: Requesting SVC 99 Functions 31.1

Page of GC28-0627-2
Revised September 14,1979
By TNL GN28-4681

CLASS 7 CODES

Code Meaning
17zz LOCATE error; dsname allocation. (Note: Hexadecimal '08', '18', and '2C' are the only expected

LOCATE return codes. 'FF' is returned as the value of zz if an unexpected return code is
returned by LOCATE)9

27zz Reserved
37zz Reserved
47zz DADSM error. (dsname allocation)9
57zz CATALOG error. (dsname allocation)9
67zz OBTAIN error. (dsname allocation, information retrieval)9
7700 Subsystem error. (dsname allocation)8
7704 A subsystem interface system error occurred while processing key DALSSNM

Note: The failing system routine returns the code represented by "zz".
1 The informational reason code field contains 0004 if the requested function was performed, although an

error occurred as the error reason code indicates.
2 The informational reason code contains the value of the key that caused the error.

3 For MSS requests, the MSSC reason code for this failing job step is contained in message IEF710I on the
hardcopy log. An explanation of the MSSC reason code is contained in OS/VS Message Library: Mass
Storage System (MSS) Messages . For non-MSS request this code will be accompanied by IEF485I, or it may
result from a JES3 failure because of a busy or unavailable situation.

4 The MSSC reason code for this failing job step is contained in message IEF710I on the hardcopy log. An
explanation of the MSSC reason code is contained in OS/VS Message Library: Mass Storage System (MSS)
Messages .

5 This code corresponds to MSSC reason code X'007', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

6 This code corresponds to MSSC reason code X'207', which is explained in OS/VS Message Library: Mass
Storage System (MSS) Messages .

7 The informational reason code field contains the MSSC reason code. An explanation of the MSSC reason
code is contained in OS/VS Message Library: Mass Storage System (MSS) Messages .

8 The information reason code contains a subsystem defined value to further describe the error. This value
is documented in publications associated with the particular subsystem.

9 For LOCATE, DADSM, CATALOG, and OBTAIN return code detailed description see OS/VS2 MVS System
Programming Library: Data Management .

Figure 7. Error Reason Codes (Part 5 of 5)

32 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

Details on DSNAME Allocation Processing

When the dynamic allocation function is invoked for dsname allocation, an "allocation
environment" already exists for the user. This allocation environment consists of the user's step.
and dynamic allocation requests that have not been dynamically unallocated. SVC 99 considers
these allocations "existing allocations."

For dsname allocation, the dynamic allocation routines first check for environmental
conflicts by noting the types of resources that are currently available to the task, then try to
satisfy the request with an existing allocation that matches or can be made to match the
request using the flexibility of the convertible attribute. If the routines are not able to make
the match, a new allocation is processed. However, if an existing allocation can be used, much
allocation processing is avoided.

Checking for Environmental Conflicts

If a dsname allocation request is not valid with respect to the user's existing allocation
environment, the request is failed. The following is a list of environmental conflicts that cause
a request to be failed:

• The specified ddname is associated with an existing allocation that is in use.

• The specified ddname is associated with one of a group of concatenated data sets that
the user defined as permanently concatenated. (For a definition of permanently
concatenated, see "The Permanently Concatenated Attribute."

• The specified ddname is associated with an existing allocation that does not have the
convertible attribute or that does not fulfil the conditions listed under "Using an Existing
Allocation."

• The request specifies a new non-temporary data set with the same data set name as an
existing allocation, unless a different volume serial number(s) is specified.

• A status of OLD or SHR is specified for a dsname that is associated with an existing
allocation that is not permanently allocated, not in-use, and has a disposition of
DELETE, unless specified volume serial numbers are different from those associated with
the existing allocation.

Using an Existing Allocation

When successive processes require the same resource, the overhead of releasing and
reobtaining the resource can be avoided. For example, time-sharing command processors often
use the same data sets. Therefore, the data sets are not dynamically released at the end of the
command process, but are designated "not-in-use," thus avoiding unallocation and reallocation
processing.

An existing allocation can be used to satisfy only a request for the allocation of an explicitly
specified dsname, a request for the allocation of the user's terminal as an I/O device, or a
request for the allocation of a DUMMY data set. In addition, if any of the following are
specified, the request is not eligible to be satisfied by an existing allocation: data set sequence
number, label type, unit description (unless the dsname is an & dsname, in which case the unit
description is ignored), unit count or parallel mounting, volume sequence number, volume
count, volume reference, private volume, or DCB reference. If MSVGP is specified, it will be
ignored if an existing allocation is used to satisfy the request.

An existing allocation of the specified dsname, terminal, or DUMMY allocation must have
the following properties to satisfy an eligible request:

• It must not be in use.

• It must not be a member of a concatenated group.

Chapter 3: Requesting SVC 99 Functions 33

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN2S-4681

• It must have the same volume serial number as any that are explicitly specified in the
request.

• It must be permanently allocated if it has a disposition of DELETE and the request
specified a status of MOD.

• It must not be a generation data group data set.

• It must have the convertible attribute or, if not, all of the following must be true (only
the first requirement must be true for requests specifying an & dsname):

— The request does not specify a ddname or the specified ddname matches the ddname
associated with the existing allocation. A terminal request that does not specify a
ddname cannot be satisfied by an existing allocation that does not have the convertible
attribute.

— For partitioned data sets, the member name specified in the request is the same as the
member name associated with the existing allocation or a member name is not
specified in the request and no member name is associated with the existing allocation.

— DCB parameters, input only, or output only are not specified in the request.

— A status of MOD is either specified in the request and associated with the existing
allocation, or is not specified and not associated with the existing allocation.

— The request does not specify that the convertible attribute be assigned to the
allocation.

The request does not specify that only convertible existing allocations may be used to
satisfy the request.

If more than one existing allocation can satisfy the request, dynamic allocation selects: The
existing allocation that is associated with the specified ddname. If no ddname was specified,
dynamic allocation selects the existing allocation for which the in-use attribute has been most
recently removed. (Data sets allocated via JCL are considered to have had their in-use
attribute removed at step allocation.)

If the specified ddname is associated with an existing allocation that was not selected to
satisfy the request, a ddname that is unique within the step is generated and associated with
that existing allocation. This ddname consists of the characters 'SYS' followed by five digits.
The association of a system-generated ddname with an existing allocation cannot occur in the
following cases:

— The existing allocation is in use.

— The existing allocation is open.

— The existing allocation does not have the convertible attribute.

— The existing allocation is associated with a permanently concatenated group that does not
represent an entire generation data set group or a multi-device type VSAM data set.

Changing the Parameters of an Existing Allocation When dynamic allocation uses an existing
allocation to satisfy a dsname allocation request, some of the parameters of the existing
allocation might have to be changed to reflect the parameters specified in the request. The
only existing allocations that can have parameters changed are those allocated dynamically with
the convertible attribute. Resources allocated via JCL or the TSO ALLOCATE command
cannot have their parameters changed (with the exception of status and disposition specified
via JCL), but they may be used if no changes are necessary.

34 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Notes:

• Allocation requests that do not specify the permanently allocated attribute are
automatically assigned the convertible attribute.

• Allocation requests may specify both the permanently allocated and the convertible
attributes in their parameter list.

The following parameters are eligible for change:

• Ddname
• Membername
• Status
• Normal disposition
• Conditional disposition
• Space
• Unallocation at CLOSE
• Input only
• Output only
• DCB attributes
• Password
• Permanently allocated attribute

No other parameters are eligible to be changed.

Satisfying New Allocations

A new allocation is attempted when existing allocations cannot be used to satisfy a request.
New allocations are not processed by the dynamic allocation routines while a job step holds
(for possible reuse) more dynamically allocated resources than permitted. The number of
allocated resources permitted is determined in two ways:

• The maximum number of allocation requests allowed per job step or time-sharing
terminal session is 1635. This includes both dynamic requests and requests made via JCL.

• The control limit set by the DYNAMNBR parameter on the EXEC statement plus the
number of DD statements limit the number of resources that can be held for reuse (that
is, resources that are allocated but whose in-use bits are off).

When the maximum number of resources have been allocated and the user requests
additional allocations, the dynamic allocation routines automatically attempt to unallocate
enough resources to meet the control value limit.

Automatic Unallocation of Resources Held for Re-use: The only resources that are eligible for
automatic unallocation are those that were allocated dynamically without the permanently
allocated attribute and whose in-use bit has been turned off. (Resources allocated through JCL
and through the time-sharing ALLOCATE command are not eligible because they
automatically have the permanently allocated attribute.)

When many resources are eligible for automatic unallocation, the dynamic allocation
routines choose those that have been designated as not-in-use for the longest time. These are
unallocated and the new allocation is processed.

If the control value is still exceeded after all eligible resources have been unallocated, the
request for a new allocation fails.

In this case the user must explicitly request unallocation of an existing allocation before the
new allocation can be performed.

Chapter 3: Requesting SVC 99 Functions 35

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Text Units by Function
Following are topics for each of the SVC 99 functions; each topic describes the key that you
can specify for that function. The topics are ordered according to the order of the functions'
verb codes, as follows:

• Dsname allocation (verb code X'01')
• Unallocation (verb code X'02')
• Concatenation (verb code X'03')
• Deconcatenation (verb code X'04')
• Remove-in-use processing based on task-id (verb code X'05')
• Ddname allocation (verb code X'06')
• Information retrieval (verb code X'07')

36 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

Hex Text IEFZB4D2
Unit Key Mnemonic Dsname Allocation Function

0001 DALDDNAM Associates a ddname with an allocation request.
0002 DALDSNAM Names the data set to be allocated.
0003 DALMEMBR Allocates only a particular data set member.
0004 DALSTATS Specifies the data set status.
0005 DALNDISP Specifies the data set's normal disposition.
0006 DALCDISP Specifies the data set's conditional disposition.
0007 DALTRK Specifies the space allocation in tracks.
0008 DALCYL Specifies the space allocation in cylinders.
0009 DALBLKLN Specifies the average data block length.
000A DALPRIME Specifies a primary space quantity.
000B DALSECND Specifies a secondary space quantity.
000C DALDIR Specifies the number of PDS directory blocks.
000D DALRLSE Deletes unused space at data set closure.
000E DALSPFRM Ensures a specific allocated space format.
000F DALROUND Specifies space allocation in whole cylinders.
0010 DALVLSER Specifies volume serial numbers.
0011 DALPRIVT Specifies the private volume use attribute.
0012 DALVLSEQ Specifies the volume sequence number processing.
0013 DALVLCNT Specifies the data set's volume count.
0014 DALVLRDS Specifies volume reference to a cataloged data set.
0015 DALUNIT Describes the unit specification.
0016 DALUNCNT Specifies the number of devices to be allocated.
0017 DALPARAL Specifies parallel mounting for a data set's volumes.
0018 DALSYSOU Specifies the SYSOUT data set and defines its class.
0019 DALSPGNM Specifies the SYSOUT program name.
001A DALSFMNO Specifies the SYSOUT form number.
001B DALOUTLM Limits the SYSOUT data set's logical record count.
001C DALCLOSE Frees a data set at closure.
001D DALCOPYS Specifies the SYSOUT listing copies count.
001E DALLABEL Specifies the type of volume label.
001F DALDSSEQ Specifies a tape data set's relative position.
0020 DALPASPR Password protects the created data set.
0021 DALINOUT Specifies "input only" or "output only" data set processing.
0022 DALEXPDT Specifies the data set's expiration date.
0023 DALPRETPD Specifies the data set's retention period.
0024 DALDUMMY Allocates a dummy data set.
0025 DALFCBIM Identifies the forms control buffer image.
0026 DALFCBAV Requests operator verification of the image display or forms alignment.
0027 DALQNAME Names a TPROCESS macro.
0028 DALTERM Specifies a time sharing terminal as an I/O device.
0029 DALUCS Specifies a universal character set.
002A DALUFOLD Specifies "fold mode" for loading the requested print chain or train.
002B DALUVRFY Requests operator verification of the correct print chain or train mounting.
002C DALDCBDS Specifies the retrieval of DCB information from a cataloged data set's label.
002D DALDCBDD Specifies the retrieval of DCB information from a ddname-related,

currently allocated data set.
0058 DALSUSER Specifies remote workstation routing for the SYSOUT data set.
0059 DALSHOLD Specifies hold queue routing for the SYSOUT data set.
005E DALMSVGP Specifies a group of MSS virtual volumes.
005F DALSSNM Requests allocation of a subsystem data set.
0060 DALSSPRM Specifies subsystem defined parameters for use with key DALSSNM.
0061 DALPROT Requests that the direct access data set or the tape volume be .

RACF-protected.

Figure 8. Dsname Allocation (Verb Code 01) - Text Unit Keys, Mnemonics, and Functions

Chapter 3: Requesting SVC 99 Functions 37

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Dsname Allocation Text Units

Most of the information that can be specified on a JCL DD card may be specified in text units
for the dsname allocation function (VERB code X'01'). These text units are described below
and listed in Figure 8. The text units that represent DCB attributes are described under "DCB
Attribute Text Units" and listed in Figure 9. The meaning of the parameters is the same as
when specified on a DD statement as described in OS/VS2 MVS JCL. For dsname allocation
text units that do not have a JCL equivalent, see Figure 10 and the topic "Non-JCL Dsname
Allocation Functions."

Ddname specification - Key = X'0001'

DALDDNAM specifies a ddname to be associated with an allocation request. When this key is
specified, # must be one, LEN is the length of the ddname field, and PARM contains the
ddname.

Example: to specify the ddname DD1, code

KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Dsname specification - Key = X'0002'

DALDSNAM specifies the name of the data set to be allocated. The user cannot refer to a
previously defined dsname. The QNAME and IPLTXTID keys are mutually exclusive with this
key. When this key is specified, # must be one, LEN is the length of the dsname field, and
PARM contains the dsname.

Example: to specify the dsname MYDATA, code

KEY # LEN PARM
0002 0001 0006 D4 E8 C4 C1 E3 C1

Example: to specify the temporary dsname &LOAD, code

KEY # LEN PARM
0002 0001 0005 50 D3 D6 C1 C4

Example: to specify the dsname A.B, code

KEY # LEN PARM
0002 0001 0003 C1 4B C2

Member name specification - Key = X'0003'

DALMEMBR specifies that a particular member of a data set is to be allocated, rather than
the entire data set. A relative generation group number may be specified as the member name.
The dsname verb code (X'01) should be specified in confunction with this key. The QNAME
and IPLTXTID keys are mutually exclusive with this key. When this key is specified, # must
be one, LEN is the actual length of the member name, and PARM contains the member name.

Example: to specify the membername MEM1, code

KEY # LEN PARM
0003 0001 0004 D4 C5 D4 F1

38 OS/VS2 MVS System Programming Library: Job Management

| Example: to specify the relative generation number +1, code

KEY # LEN PARM
0003 0001 0002 4E F1

Data Set Status specification - Key = X'0004'

DALSTATS specifies the data set status. It is mutually exclusive with the SYSOUT key. When
this key is specified, # and LEN must be one, and PARM contains the value:

X'01' if OLD is desired
X'02' if MOD is desired
X'04' if NEW is desired
X'08' if SHR is desired

Example: to specify a status of NEW, code

Key # LEN PARM
0004 0001 0001 04

Data Set Normal Disposition specification - Key = X'0005'

DALNDISP specifies the data set normal disposition. This key is mutually exclusive with a
SYSOUT key. When this key is specified, # and LEN must be one, and PARM contains the
value:

X'01' if UNCATLG is desired
X'02' if CATLG is desired
X'04' if DELETE is desired
X'08' if KEEP is desired

Example: to specify a normal disposition of DELETE, code

KEY # LEN PARM
0005 0001 0001 04

Data Set Conditional Disposition specification - Key = X'0006'

DALCDISP specifies the conditional data set disposition. The values for #, LEN, and PARM
are the same as for normal disposition. This key is mutually exclusive with the SYSOUT key.

Example: to specify a conditional disposition of DELETE, code

KEY # LEN PARM
0006 0001 0001 04

Track Space Type (TRK) specification - Key = X'0007'

DALTRK specifies that space is to be allocated in tracks. The primary quantity space key or
the secondary quantity space key (see below) must also be specified when this key is specified.
The cylinder and block space type keys are mutually exclusive with this key. When this key is
specified, # must be zero. LEN and PARM are not specified.

Example: to specify Track Space Type, code

KEY # LEN PARM
0007 0000 — —

Chapter 3: Requesting SVC 99 Functions 39

Cylinder Space Type (CYL) specification - Key = X' 0008'
DALCYL specifies that space is to be allocated in cylinders. The primary quantity space key
or secondary quantity space key must also be specified when this key is specified. The track
and block space type keys are mutually exclusive with this key. When this key is specified, #
must be zero. LEN and PARM are not specified.

Example: to specify Cylinder Space Type, code

KEY LEN PARM
0008 0000 -

Block Space Type specification - Key = X'0009'

DALBLKLN specifies the average data block length to be used by the system in computing
the amount of space to allocate. The primary quantity space key or the secondary quantity
space key must also be specified when this is specified. The track and cylinder space type keys
are mutually exclusive with this key. When this key is specified, # must be one, LEN must be
three, and PARM contains the average data block length. The maximum PARM value is
X'FFFF' (65,535).

Example: to specify an average data block length of 80, code

KEY # LEN PARM
0009 0001 0003 00 00 50

Primary Space Quantity specification - Key = X'000A'

DALPRIME specifies a primary space quantity. A space type key must also be specified when
this key is specified. When this key is specified, # must be one, LEN must be three, and
PARM contains the primary quantity value.

Example: to specify a primary quantity of 20, code

KEY # LEN PARM
000A 0001 0003 00 00 14

Secondary Space Quantity specification - Key = X'000B '

DALSECND specifies a secondary space quantity. When this key is specified, # must be one,
LEN must be three, and PARM contains the secondary quantity value.

Example: to specify a secondary space quantity of 10, code

KEY # LEN PARM
000B 0001 0003 00 00 0A

Directory Block specification - Key = X'000C'

DALDIR specifies the number of blocks to be contained in the directory of a partitioned data
set. A space type key and the primary space quantity key must also be specified when this key
is specified. When this key is specified, # must be one, LEN must be three, and PARM
contains the number of directory blocks.

Example: to specify two directory blocks, code

KEY # LEN PARM
000C 0001 0003 00 00 02

40 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

Unused Space Release (RLSE) specification - Key = X'000D'

DALRLSE specifies that unused space is to be deleted when the data set is closed. When this
key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify the release of unused space, code

KEY # LEN PARM
000D 0000 — —

Format of Allocated Space specification - Key = X' 000E'

DALSPFRM specifies a particular format of allocated space. When this key is specified, # and
LEN must be one, and PARM contains:

X'02' if different areas of contiguous space are to be allocated (ALX)
X'04' if maximum contiguous space is required (MXIG)
X'08' if space must be contiguous (CONTIG)

Example: to specify contiguous space format, code

KEY # LEN PARM
000E 0001 0001 08

Whole Cylinder Allocation (ROUND) specification - Key = X'000F '

DALROUND specifies that allocated space be equal to one or more whole cylinders when
space is requested in units of blocks. When this key is specified, # must be zero. LEN and
PARM are not specified.

Example: to specify allocation of whole cylinders, code

KEY # LEN PARM
000F 0000 — —

Volume Serial specification - Key = X' 0010'

DALVLSER specifies volume serial numbers. It is mutually exclusive with the SYSOUT key
and volume reference key (see below). When this key is specified, # contains the number of
volume serials being specified, LEN contains the length of the immediately following volume
serial, and PARM contains the volume serial.

Example: to specify the volume serials 231400 and 231401, code

KEY # LEN PARM LEN PARM
0010 0002 0006 F2 F3 F1 F4 F0 F0 00 06 F2 F3 F1 F4 F0 F1

Private Volume specification - Key = X'0011'

DALPRIVT specifies that the volume(s) allocated be assigned the PRIVATE volume use
attribute. This key is mutually exclusive with a SYSOUT key. When this key is specified, #
must be zero. LEN and PARM are not specified.

Example: to specify the PRIVATE volume attribute, code

KEY # LEN PARM
0011 0000 — —

Chapter 3: Requesting SVC 99 Functions 41

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Volume Sequence Number specification - Key = X'0012'

DALVLSEQ specifies which volume, of a multi-volume data set, processing is to begin with.
This key is mutually exclusive with the SYSOUT key. When this key is specified, # must be
one, LEN must be two, and PARM contains the volume sequence number. The maximum
PARM value is X'FF' (255).

Example: to specify a volume sequence number of two, code

KEY # LEN PARM
0012 0001 0002 0002

Volume Count specification - Key = X'0013'

DALVLCNT specifies the maximum number of volumes an output data set may require. This
key is mutually exclusive with the SYSOUT key. When this key is specified, # and LEN must
be one, and PARM contains the volume count.

Example: to specify a volume count of 10, code

KEY # LEN PARM
0013 0001 0001 0A

Volume Reference to a Dsname specification - Key = X'0014'

DALVLRDS specifies that the system is to obtain volume serial information from the specified
cataloged data set. This key is mutually exclusive with the SYSOUT key and volume serial key.
(Volume reference to a ddname can not be done through dynamic allocation.) When this key
is specified, # must be one, LEN is the actual length of the dsname, and PARM contains the
non-blank dsname.

Example: to specify volume reference to the data set DSN1, code

KEY # LEN PARM
0014 0001 0004 C4 E2 D5 F1

Unit Description specification - Key = X'0015'

DALUNIT specifies a unit group (esoteric) name, device type, or specific unit address (in
EBCDIC). When this key is specified, # must be one, LEN is the actual length of the unit
description, and PARM contains the unit description.

Example: to specify the unit group name SYSDA, code

KEY # LEN PARM
0015 0001 0005 E2 E8 E2 C4 C1

Example: to specify the device type 3330, code

KEY # LEN PARM
0015 0001 0004 F3 F3 F3 F0

Example: to specify the unit address 230, code

KEY # LEN PARM
0015 0001 0003 F2 F3 F0

42 OS/VS2 MVS System Programming Library: Job Management

Unit Count specification - Key X600167

DALUNCNT specifies the number of devices to be allocated. It is mutually exclusive with the
parallel mount key (see below). When this key is specified, # and LEN must be one, and

|

 PARM contains the unit count. The maximum PARM value is X'3B' (59).

Example: to specify a unit count of ten, code

KEY # LEN PARM
0016 0001 0001 0A

Parallel Mount specification - Key = X'0017'

DALPARAL specifies that each volume of a data set is to be assigned a device. It is mutually
exclusive with the unit count key. When this key is specified, # must be zero. LEN and PARM
are not specified.

Example: to specify parallel mount, code

KEY # LEN PARM
0017 0000 - -

SYSOUT specification - Key = X'0018'

DALSYSOU specifies that a system output data set is to be allocated and defines the output
class of the data set. When this key is specified and a class other than the default of the
message class is desired, # and LEN must be one, and PARM contains the output class. To
obtain the default of the message class, # must be zero. LEN and PARM are not specified.
Volume, QNAME, status, disposition, subsystem name request and subsystem parameter key
are mutually exclusive with the SYSOUT key.

Example: to specify a SYSOUT data set in class A, code

KEY # LEN PARM
0018 0001 0001 C1

Example: to specify a SYSOUT data set and to default the class, code

KEY # LEN PARM
0018 0000 - -

SYSOUT Program Name specification - Key = X'0019'

DALSPGNM specifies the SYSOUT program name. The SYSOUT key must also be specified
when this key is specified. When this key is specified, # must be one, LEN is the actual length
of the name, and PARM contains the program name. The subsystem name request and
subsystem parameter keys are mutually exclusive with the SYSOUT program name key.

Example: to specify the program name MYWRITER, code

KEY # LEN PARM
0019 0001 0008 D4 E8 E6 D9 C9 E3 C5 D9

SYSOUT Form Number specification - Key = X'001A'

DALSFMNO specifies the SYSOUT form number. The SYSOUT key must also be specified
when this key is specified. When this key is specified, # must be one, LEN is the actual length
of the form number, and PARM contains the form number. The subsystem name request and
subsystem parameter keys are mutually exclusive with the SYSOUT form number key.

Chapter 3: Requesting SVC 99 Functions 43

Example; to specify the form number 1234. code

KEY # LEN PARM
001A 0001 0004 F1 F2 F3 F4

SYSOUT Output Limit specification - Key = X'001B '

DALOUTLM specifies the number of logical records in a SYSOUT data set. The SYSOUT
key must also be specified when this key is specified. When this key is specified, # must be
one, LEN must be three, and PARM contains the output limit

Example: to specify an Output Limit of 1000, code

KEY # LEN PARM
001B 0001 0003 00 03 E8

Unallocation at CLOSE specification - Key X'001C'

DALCLOSE specifies that unallocation is to occur when a DCB is closed rather than at step
unallocation. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify unallocation at CLOSE, code

KEY # LEN PARM
001C 0000 — —

SYSOUT Copies specification - Key = X'001D'

DALCOPYS specifies up to 255 hardcopy listings of a particular SYSOUT data set. The
SYSOUT key must also be specified when this key is specified. When this key is specified, #
and LEN must be one, and PARM contains the number of copies being requested.

Example: to specify a request for 25 copies, code

KEY # LEN PARM
001D 0001 0001 19

Label Type specification - Key = X'001E'

DALLABEL specifies the type of label associated with a volume. This key is mutually
exclusive with the SYSOUT key. When this key is specified, # and LEN must be one, and
PARM contains:

X'01' if the volume has no label (NL)
X'02' if the volume has an IBM standard label (SL)
X'04' if the volume has a non-standard label (NSL)
X'0A' if the volume has both an IBM standard label and a user label (SUL)
X'10' if label processing is to be bypassed (BLP)
X'21' if the system is to check for and bypass a leading tape mark on DOS unlabeled tape (LTM)
X'40' if the volume has an American National Standard label (AL)
X'48' if the volume has an American National Standard label and an American National Standard user

label (AUL)

Example: to specify no labels, code

KEY # LEN PARM
001E 0001 0001 01

44 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Data Set Sequence Number specification - Key = X`001F'

DALDSSEQ specifies the relative position of a data set on a tape volume (data set sequence
number). This key is mutually exclusive with the SYSOUT key. When this key is specified, #
must be one, LEN must be two, and PARM contains the sequence number. The maximum
PARM value is X`270F' (9999).

Example: to specify a data set sequence number of 2, code

KEY # LEN PARM
001F 0001 0002 00 02

Password Protection specification - Key = X'0020'

DALPASPR specifies that the data set being created is to be password protected. This key is
mutually exclusive with the SYSOUT key. When this key is specified, # and LEN must be one,
and PARM contains:

X'10' if the data set should not be read, changed, extended, or deleted without the password.
X'30' if the data set should not be changed, extended, or deleted without the password. Reading is
permitted.

Example: to specify complete password protection, code

KEY # LEN PARM
0020 0001 0001 10

Input Only or Output Only specifications - Key = X'0021'

DALINOUT specifies that the data set is to be processed for input only or output only. This
key is mutually exclusive with the SYSOUT key. When this key is specified, # and LEN must
be one, and PARM contains:

X'40' if output only is to be requested.
X'80' if input only is to be requested.

Example: to specify processing for input only, code

KEY # LEN PARM
0021 0001 0001 80

Expiration Date specification - Key = X'0022'

DALEXPDT specifies the date when the data set can be deleted or overwritten by another
data set. This key is mutually exclusive with the retention period and SYSOUT key. When this
key is specified, # must be one, LEN must be five, and PARM contains five digits, a two-digit
year number and .a three-digit day number (YYDDD).

Example: to specify an expiration date of January 1, 1976 (76001), code

KEY # LEN PARM
0022 0001 0005 F7 F6 F0 F0 F1

Retention Period specification - Key = X'0023'

DALPRETPD specifies the number of days that must pass before the data set can be deleted
or overwritten by another data set. This key is mutually exclusive with the expiration date and
SYSOUT keys. When this key is specified, # must be one, LEN must be two, and PARM
contains the retention period. The maximum PARM value is X'270F ' (9999).

Chapter 3: Requesting SVC 99 Functions 45

September 14, 1979

Example: to specify a retention period of 10 days, code

KEY # LEN PARM
0023 0001 0002 000A

DUMMY Data Set specification - Key = X'0024'

DALDUMMY specifies that a DUMMY data set is to be allocated. When this key is specified,
must be zero. LEN and PARM are not specified.

Example: to specify a DUMMY data set is to be allocated, code

KEY # LEN PARM
0024 0000

Forms Control Buffer (FCB) Image Identification specification - Key = X'0025'

DALFCBIM specifies the code that identifies the image to be loaded into the FCB. This keys
is mutually exclusive with the DCB INTVL and FRID keys (see below). When this key is
specified, # must be one, LEN contains the length of the image-id (maximum of 4), and
PARM contains the image-id.

Example: to specify the image-id STD1, code

KEY # LEN PARM
0025 0001 0004 E2 E3 C4 F1

Form Alignment and Image Verification specification - Key = X'0026'

DALFCBAV specifies that the operator check the alignment of the printer forms before the
data set is printed or that he visually verify the image displayed on the printer as the desired
one. The FCB image-id key must also be coded when this key is specified. When this key is
specified, # and LEN must be one, and PARM contains:

X'04' if verification is requested (VERIFY).
X'08' if alignment is requested (ALIGN).

Example: to specify verification, code

KEY # LEN PARM
0026 0001 0001 04

QNAME specification - Key = X'0027'

DALQNAME specifies the name of a TPROCESS macro. The dsname, member name,
IPLTXTID, and SYSOUT keys are mutually exclusive with this key. The DCB BLKSIZE,
BUFL, LRECL, OPTCD and RECFM keys (see "DCB Attribute Text Units") are meaningful
with this key. When this key is specified, # must be one, LEN is the length of the process
name, and PARM contains the process name.

Example: to specify the process name TP1, code

KEY # LEN PARM
0027 0001 0003 E3 D7 F1

Terminal specification - Key = X'0028'

DALTERM is used to specify that a time-sharing terminal is to be used as an I/O device. In a
batch environment, the specification is not used, but is checked for syntax. In a time-sharing
environment, all other specifications except DCB specifications are ignored. When this key is
specified, # must be zero. LEN and PARM are not specified.

46 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Example: to specify a terminal allocation, code

KEY # LEN PARM
0028 0000 — —

Universal Character Set (UCS) specification - Key = X'0029'

DALUCS identifies a special character set to be used for printing a data set. The DCB INTVL
and RESERVE keys (see "DCB Attribute Text Units") are mutually exclusive with this key.
When this key is specified, # must be one, LEN is the length of the character set code name
(maximum is four) and PARM contains the character set code.

Example: to specify the character set code AN, code

KEY # LEN PARM
0029 0001 0002 C1 D5

Fold Mode specification - Key = X'002A'

DALUFOLD specifies that the chain or train corresponding to the desired character set be
loaded in the fold mode. The universal character set key must also be specified when this key
is coded. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify fold mode, code

KEY # LEN PARM
002A 0000 — —

Character Set Image Verification specification - Key = X`002B'

DALUVRFY specifies that the operator is to verify that the correct chain or train is mounted
before the data set is printed. The universal character set key must also be specified when this
key is coded. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify character set image verification, code

KEY # LEN PARM
002B 0000 — —

DCB Reference to a Dsname specification - Key = X`002C'

DALDCBDS specifies that DCB information is to be retrieved from the data set label of a
cataloged data set. This data set must reside on a direct access volume and the volume must
currently be mounted. The DSORG, RECFM, OPTCD, BLKSIZE, LRECL, RKP, and
KEYLEN DCB attributes, and the volume sequence number and expiration date are copied
from the data set label. If text units for these parameters are specified in addition to this key,
that specification overrides the corresponding parameter that was copied. This key is mutually
exclusive with a DCB reference to a ddname (see below). When this key is specified, # must
be one, LEN is the length of the dsname, and PARM contains the non-blank dsname.

Example: to specify DCB reference to the dsname ABC, code

KEY # LEN PARM
002C 0001 0003 C1 C2 C3

Chapter 3: Requesting SVC 99 Functions 47

September 14, 1979

DCB Reference to a Ddname specification - Key = X`002D'

DALDCBDD specifies that DCB information is to be retrieved from the currently allocated
data set associated with the specified ddname. For time sharing users, the expiration date and
INPUT/OUTPUT ONLY specifications are also retrieved. This key is mutually exclusive with
a DCB reference to a dsname specification. Any DCB attributes, expiration date, and
INPUT/OUTPUT ONLY keys specified in addition to this key override the corresponding
keys associated with the ddname. When this key is specified, # must be one, LEN is the length
of the ddname, and PARM contains the ddname.

Example: to specify DCB reference to the ddname DD1, code

KEY # LEN PARM
002D 0001 0003 C4 C4 F1

SYSOUT Remote Workstation specification - Key = X'0058'

DALSUSER specifies that the SYSOUT data set being allocated is to be routed to a remote
workstation when it is unallocated. The SYSOUT key must also be specified when this key is
specified. When this key is coded, # must be one, LEN is the length of the remote workstation
name (maximum of 8), and PARM contains the remote user name.

Example: to specify the remote work station USER01, code

KEY # LEN PARM
0058 0001 0006 E4 E2 C5 D9 F0 F1

SYSOUT Hold Queue specification - Key = X'0059'

DALSHOLD specifies that the SYSOUT data set being allocated is to be placed on the Hold
Queue when it is unallocated. The SYSOUT key must also be specified when this key is
specified. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify hold, code

KEY # LEN PARM
0059 0000 - -

MSVGP specification - Key = X`005E'

DALMSVGP specifies a group of MSS virtual volumes. This key is mutually exclusive with
SYSOUT, QNAME, and volume serial keys. When this key is specified, # must be one, LEN
is the actual length of the MSVGP name, and PARM contains the group name.

Example: to specify a MSS volume group of SYSGROUP, code

KEY # LEN PARM
005E 0001 0008 E2 E8 E2 C7 D9 D6 E4 D7

Subsystem Name Request specification - Key = X`005F'

DALSSNM specifies a subsystem data set. You must specify the name of the subsystem that is
to process the request for allocation unless you want the request processed by the default
subsystem.

48 OS/VS2 MVS System Programming Library: Job Management

• When you request a subsystem other than the default subsystem, # must be one, LEN
specifies the length of the subsystem name and must contain a number ranging in value
from 1 to 4, and PARM must contain a 1- to -4 character subsystem name.

The first character of the subsystem name must be either alphabetic or national and the
remaining characters must be either alphameric or national. See OS/VS MVS JCL for a
list of the alphameric and national character sets.

• When you request the default subsystem, # must be zero, and LEN and PARM must not
be specified.

This key is mutually exclusive with the SYSOUT, SYSOUT program name, and SYSOUT
form number keys.

The system programming staff at your installation can identify the subsystems at your
installation that support DALSSMN requests.

Example 1: to request subsystem SUB1, code

KEY # LEN PARM
005F 0001 0004 E2 E4 C2 F1

Example 2: to request the default subsystem, code

KEY # LEN PARM
0005F 0000 — —

Subsystem Parameter specification - Key = X'0060'

DALSSPRM specifies parameters that will be processed by a subsystem. When you specify
DALSSPRM, you must also specify the subsystem name request keys. When you specify this
key, # represents the number of LEN and PARM combinations that are present and must
contain a number ranging in value from 1 to 254. LEN specifies the length of the parameter
that follows it and must contain a number ranging in value from 0 to 67. When LEN is zero,
do not specify PARM.

This key is mutually exclusive with the SYSOUT, SYSOUT program name, and SYSOUT
form number keys.

Example: to specify two parameters, PARM1 and PARM2 code

KEY # LEN PARM
0060 0002 0005 D7 C1 D9 D4 F1

000A D7 C1 D9 C1 D4 C5 E3 C5 D9 F2

Note: For additional information about subsystem data sets and subsystem parameters, refer
to the documentation for the particular subsystem.

PROTECT specification - Key = X'0061'

DALPROT specifies that the direct access data set or the tape volume be RACF-protected
when the direct access data set is defined or the tape volume used. This key is mutually
exclusive with the SYSOUT, FCB, QNAME, TERM, and UCS keys. When this key is
specified, # must be zero, and LEN and PARM must not be specified. See OS/VS2 MVS JCL
for additional information about specifying the PROTECT function.

Example: to specify PROTECT, code

KEY # LEN PARM
0061 0000 — —

Chapter 3: Requesting SVC 99 Functions 49

Hex Text IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

002E DALBFALN Specifies buffer alignment.
002F DALBFTEK Specifies the buffering technique.
0030 DALBLKSZ Specifies blocksize.
0031 DALBUFIN Specifies the receiving buffer count.
0032 DALBUFL Specifies the buffer length.
0033 DALBUFMX Specifies the buffer count per line.
0034 DALBUFNO Specifies the buffer count per DCB.
0035 DALBUFOF Specifies the buffer offset.
0036 DALBUFOU Specifies the sending buffer count.
0037 DALBUFRQ Specifies the buffer count per GET macro instruction.
0038 DALBUFSZ Specifies the line group buffer size.
0039 DALCODE Specifies the data's paper tape code.
003A DALCPRI Specifies the relative sending and receiving priority.
003B DALDEN Specifies the magnetic tape density.
003C DALDSORG Specifies the data set organization.
003D DALEROPT Specifies reading and writing error options.
003E DALGNCP Specifies the GAM-I/O count per WAIT macro instruction.
003F DALINTVL Specifies the line polling interval per group.
0040 DALKYLEN Specifies the data set key lengths.
0041 DALLIMCT Specifies the search limit.
0042 DALLRECL Specifies the logical record length.
0043 DALMODE Specifies card punch/reader operational mode.
0044 DALNCP Specifies the READ/WRITE count per CHECK.
0045 DALOPTCD Specifies the control program's operational services.
0046 DALPCIR Specifies the relationship of the receiving PCI to the allocation and freeing

of buffers.
0047 DALPCIS Specifies the relationship of the sending PCI to the allocation and freeing of

buffers.
0048 DALPRTSP Specifies printer line spacing.
0049 DALRECFM Specifies the record format.
004A DALRSRVF Specifies the first buffer's reserve byte count for insertion of data.
004B DALRSRVS Specifies the secondary buffer's reserve byte count for insertion of data.
004C DALSOWA Specifies the user's telecommunications input work areas size.
004D DALSTACK Specifies the card punch's stacker bin.
004E DALTHRSH Specifies the use percentage of nonreusable direct access message queue

records per flush closedown.
004F DALTRTCH Specifies the 7-track tape recording technique.
0051 DALIPLTX Specifies a TCAM network control program name.
0054 DALDIAGN Requests OPEN/CLOSE/EOV diagnostic trace option.
005A DALFUNC Specifies the type of data set to be opened for the 3525

Card-Read-Punch-Print.
005B DALFRID Specifies a SYS1.IMAGELIB member for 3886 input.

Figure 9. DCB Attributes (Used with Verb Code 01) — Text Unit Keys, Mnemonics, and Functions

DCB Attribute Text Units

The following keys are used to specify DCB attributes. These attributes are described in
OS/VS2 MVS JCL under the DCB keyword subparameter specification and in OS/VS2
MVS Data Management Macro Instructions.

BFALN specification - Key = X`002E'

DALBFALN specifies buffer alignment. The GNCP specification is mutually exclusive with
this key. When this key is specified, # and LEN must be one, and PARM contains:

X'01' for fullword not a doubleword boundary (F)
X'02' for doubleword boundary (D)

50 OS/VS2 MVS System Programming Library: Job Management

Example: to specify doubleword boundary, code

KEY # LEN PARM
002E 0001 0001 02

BFTEK specification - Key = X`002F'

DALBFTEK specifies the buffering technique. The GNCP key is mutually exclusive with this
key. When this key is specified, # and LEN must be one, and PARM contains:

X'08' for dynamic buffering (D)
X'10' for exchange buffering (E)
X'20' for record buffering (R)
X'40' for simple buffering (S)
X'60' for record area buffering (A)

Example: to specify exchange buffering, code

KEY # LEN PARM
002F 0001 0001 10

BLKSIZE specification - Key = X'0030'

DALBLKSZ specifies the block size. The BUFSIZE key is mutually exclusive with this key.

|

 When this key is specified, # must be one, LEN must be two, and PARM contains the block
 size. The maximum PARM value is X'7FF8' (32,760).

Example: to specify a block size of 80, code

KEY # LEN PARM
0030 0001 0002 00 50

BUFIN specification - Key = X'0031'

DALBUFIN specifies the number of buffers to be initially assigned for receiving operations for
each line in the line group. The BUFNO and BUFRQ keys are mutually exclusive with this

|

 key. When this key is specified, # and LEN must be one, and PARM contains the number of
 buffers. The maximum PARM value is X'0F ' (15).

Example: to specify 2 buffers, code

KEY # LEN PARM
0031 0001 0001 02

BUFL specification - Key = X'0032'

DALBUFL specifies the buffer length. When this key is specified, # must be one, LEN must
be two, and PARM contains the buffer length. The maximum PARM value is X'7FF8 '
(32,760).

Example: to specify a buffer length of 80, code

KEY # LEN PARM
0032 0001 0002 00 50

BUFMAX specification - Key = X'0033'

DALBUFMX specifies the maximum number of buffers to be allocated to a line at one time.
The NCP key is mutually exclusive with this key. When this key is specified, # and LEN must
be one, and PARM contains the number of buffers. The maximum PARM value is X'0F' (15).

Chapter 3: Requesting SVC 99 Functions 51

Example: to specify 4 buffers, code

KEY # LEN PARM
0033 0001 0001 04

BUFNO specification - Key = X'0034'

DALBUFNO specifies the number of buffers to be assigned to the data control block. The
BUFIN, BUFOUT, and BUFRQ keys are mutually exclusive with this key. When this key is
specified, # and LEN must be one, and PARM contains the number of buffers.

Example: to specify 2 buffers, code

KEY # LEN PARM
0034 0001 0001 02

BUFFOFF specification - Key = X'0035'

DALBUFOF specifies the buffer offset. When this key is specified, # and LEN must be one,
and PARM contains one of the following:

X'80' the block prefix is four bytes long and contains the block length (L)
X'nn' the length of the block prefix (maximum of X'63') (99))

Example: to specify offset of 16, code

KEY # LEN PARM
0035 0001 0001 10

BUFOUT specification - Key = X'0036'

DALBUFOU specifies the number of buffers to be assigned initially for sending operations for
each line in the line group. The BUFNO and BUFRQ keys are mutually exclusive with this
key. When this key is specified, # and LEN must be one, and PARM contains the number of
buffers. The maximum PARM value is X'0F ' (15).

Example: to specify 4 buffers, code

KEY # LEN PARM
0036 0001 0001 04

BUFRQ specification - Key = X'0037'

DALBUFRQ specifies the number of buffers to be requested in advance for the GET macro
instruction. The BUFNO, BUFIN, and BUFOUT keys are mutually exclusive with this key.
When this key is specified, # and LEN must be one, and PARM contains the number of
buffers.

Example: to specify 4 buffers, code

KEY # LEN PARM
0037 0001 0001 04

BUFSZ specification - Key = X'0038'

DALBUFSZ specifies the length in bytes of each of the buffers to be used for all lines in a
particular line group. The BLKSIZE key is mutually exclusive with this key. When this key is
specified, # must be one, LEN must be two, and PARM contains the buffer length.

52 OS/VS2 MVS System Programming Library: Job Management

Example: to specify a buffer length of 80, code

KEY # LEN PARM
0038 0001 0002 00 50

CODE specification - Key = X'0039'

DALCODE specifies the paper tape code in which the data is punched. The KEYLEN,
MODE, PRTSP, STACK, and TRTCH keys are mutually exclusive with this key. When this
key is specified, # and LEN must be one, and PARM contains:

X'02' for Teletype 5-track (T)
X'04' for USASCII 8-track (A)
X'08' for National Cash Register 8-track (C)
X'10' for Burroughs 7-track (B)
X'20' for Friden 8-track (F)
X'40' for IBM BCD 8-track (I)
X'80' for no conversion (N)

Example: to specify USASCII, code

KEY # LEN PARM
0039 0001 0001 04

CPRI specification - Key = X'003A'

DALCPRI specifies the relative priority to be given to sending and receiving operations. The
THRESH key is mutually exclusive with this key. When this key is specified, # and LEN must
be one, and PARM contains:

X'01' for send priority (S)
X'02' for equal priority (E)
X'04' for receiving priority (R)

Example: to specify equal priority, code

KEY # LEN PARM
003A 0001 0001 02

DEN specification - Key = X'003B'

DALDEN specifies the magnetic tape density. When this key is specified, # and LEN must be
one, and PARM contains:

X'03' for 200 bpi 7 - track (0)
X'43' for 556 bpi 7 - track (1)
X'83' for 800 bpi 7 - track, 800 bpi 9 - track (2)
X'C3' for 1600 bpi 9 - track (3)
X'D3' for 6250 bpi 9 - track (4)

Example: to specify 1600 bpi 9 - track, code

KEY # LEN PARM
003B 0001 0001 C3

DSORG specifications - Key = X'003C'

DALDSORG specifies the data set organization. When this key is specified, # must be one,
LEN must be two, and PARM contains:

X'0004' for TCAM 3705
X'0008' for VSAM
X'0020' for TCAM message queue (TQ)
X'0040' for TCAM line group (TX)
X'0080' for graphics (GS)

Chapter 3: Requesting SVC 99 Functions 53

X'0200' for partitioned organization (PO)
X'0300' for partitioned organization unmovable (POU)
X'0400' for government of message transfer to or from a telecommunications message processing queue (MQ)
X'0800' for direct access message queue (CQ)
X'1000' for communication line group (CX)
X'2000' for direct access (DA)
X'2100' for direct access unmovable (DAU)
X'4000' for physical sequential (PS)
X'4100' for physical sequential unmovable (PSU)

Example: to specify Partitioned Organization, code

KEY # LEN PARM
003C 0001 0002 02 00

EROPT specification - Key = X'003D'

DALEROPT specifies the option to be executed if an error occurs in writing or reading a
record. When this key is specified, # and LEN must be one, and PARM contains:

X'10' for online BSAM testing (T)
X'20' to cause abnormal end of task (ABE)
X'40' to skip the block causing the error (SKP)
X'80' to accept the block causing the error (ACC)

Example: to specify the SKP error option, code

KEY # LEN PARM
003D 0001 0001 40

GNCP specification - Key = X'003E'

DALGNCP specifies the maximum number of GAM input/output macro instructions that will
be issued before a WAIT macro instruction is issued. This key is mutually exclusive with the

|

BFTEK and BFALN keys. When this key is specified, # and LEN must be one, and PARM
 contains the GNCP value. The maximum PARM value is X`63' (99).

Example: to specify a GNCP value of four, code

KEY # LEN PARM
003E 0001 0001 04

INTVL specification - Key = 30003F'

DALINTVL specifies the polling interval for the lines in the line group. This key is mutually
exclusive with UCS and FCB keys. When this key is specified, # and LEN must be one, and
PARM contains the INTVL value.

Example: to specify an INTVL value of 10, code

KEY # LEN PARM
003F 0001 0001 0A

KEYLEN specification - Key = X'0040'

DALKYLEN specifies the length, in bytes, of the keys used in the data set. The CODE,
MODE, PRTSP, STACK, and TRTCH keys are mutually exclusive with this key. When this
key is specified, # and LEN must be one, and PARM contains the key length.

Example: to specify a key length of eight, code

KEY # LEN PARM
0040 0001 0001 08

54 OS/VS2 MVS System Programming Library: Job Management

LIMCT specification - Key = X'0041'

DALLIMCT specifies the search limit. When this key is specified, # must be one, LEN must
be three, and PARM contains the search limit value. The maximum PARM value is X'007FF8'
(32,760).

Example: to specify a search limit of 1000, code

KEY # LEN PARM
0041 0001 0003 0003E8

LRECL specification - Key = X'0042'

DALLRECL specifies the actual or maximum length, in bytes, of a logical record. When this
key is specified, # must be one, LEN must be two, and PARM contains one of the following:

X'8000' for variable length spanned records processed under QSAM and BSAM, the logical records exceed
32,756 bytes (X)

|

X'7FF8' the logical record length. The maximum PARM value is X'7FF8' (32,760).

Example: to specify a logical record length of 80, code

KEY # LEN PARM
0042 0001 0002 0050

MODE specification - Key = X'0043'

DALMODE specifies the mode of operation for a card reader or punch. This key is mutually
exclusive with the CODE, KEYLEN, PRTSP, and TRTCH keys. When this key is specified, #
and LEN must be one, and PARM contains:

X'40 for EBCDIC mode (E)
X'50' for EBCDIC, read column eliminate mode (ER)
X'60' for EBCDIC, optical mark read mode (EO)
X'80' for card image mode (C)
X'90' for card image, read column eliminate mode (CR)
X'A0' for card image, optical mark read mode (CO)

Example: to specify EBCDIC mode, code

KEY # LEN PARM
0043 0001 0001 40

NCP specification - Key = X'0044'

DALNCP specifies the maximum number of READ or WRITE macro instructions issued
before a CHECK macro instruction is issued. This key is mutually exclusive with the
BUFMAX key. When this key is specified, # and LEN must be one, and PARM contains the
NCP value. The maximum PARM value is X'63' (99).

Example: to specify an NCP value of two, code

KEY # LEN PARM
0044 0001 0001 02

OPTCD specification - Key = X'0045'

DALOPTCD specifies optional services to be performed by the control program. When this
key is specified, # and LEN must be one, and PARM contains:

X'01' for relative block addressing (R)
X'02' for user totaling facility (T)
X'04' for reduced tape error recovery or direct access search direct (Z)

Chapter 3: Requesting SVC 99 Functions 55

X'08' for direct addressing (A) or for translation of ASCII to or from EBCDIC (Q)
X'10' for feedback (F), or for hopper empty exit (H), or for online correction for Optical Readers (0)
X'20' for chained scheduling or TCAM segment identification (C), or for extended search (E)
X'40' for end-of-file recognition to be disregarded for tapes (B), or for allowance of data checks caused by

an invalid character, or TCAM work unit is to be handled as a message (U)
X'80' for write validity check (W)

Note: When more than one OPTCD value is to be specified, PARM contains the sum of the
values.

Examples : to specify OPTCD value U, code

KEY # LEN PARM
0045 0001 0001 40

Example: to specify OPTCD values U and C, code

KEY # LEN PARM
0045 0001 0001 60

Receiving PCI specification - Key = X'0046'

DALPCIR specifies the relationship of program-controlled interrupts (PCI) during receiving
operations to the allocation and freeing of buffers. When this key is specified, # and LEN
must be one, and PARM contains:

X'02' for a PCI and no new buffer allocated (R)
X'08' for no PCIs (N)
X'20' for a PCI and new buffer allocated (A)
X'80' for a PCI, new buffer allocated, and the first buffer remains allocated (X)

Example: to specify no PCI's during receiving operations, code

KEY # LEN PARM
0046 0001 0001 08

Sending PCI specification - Key = X'0047'

DALPCIS specifies the relationship of PCI's during sending operations to the allocation and
freeing of buffers. When this key is specified, # and LEN contain one, and PARM contains:

X'01' for a PCI and no new buffer allocated (R)
X'04' for no PCIs (N)
X'10' for a PCI and a new buffer allocated (A)
X'40' for a PCI, new buffer allocated, and first buffer remains allocated (X)

Example: to specify no PCI's during sending operations, code

KEY # LEN PARM
0047 0001 0001 04

PRTSP specification - Key = X'0048'

DALPRTSP specifies printer line spacing. The CODE, KEYLEN, MODE, STACK, and
TRTCH keys are mutually exclusive with this key. When this key is specified, # and LEN must
be one, and PARM contains:

X'01' for no spacing (0)
X'09' for one-line spacing (1)
X'11' for two-line spacing (2)
X'19' for three-line spacing (3)

56 OS/VS2 MVS System Programming Library: Job Management

Example: to specify no spacing, code

KEY # LEN PARM
0048 0001 0001 01

RECFM specification - Key = X'0049'

DALRECFM specifies the record format. When this key is specified, # and LEN must be one,
and PARM contains:

X'02' for machine code printer control characters in record (M), or for complete QTAM record (R)
X'04' for ASA printer control characters in record (A), or for complete QTAM message (G)
X'08' for standard fixed records, spanned variable records, or segment of QTAM message (S)
X'10' for blocked records (B)
X'20' for variable ASCII records (D), or for track overflow (T)
X'40' for variable records (V)
X'80' for fixed records (F)
X'C0' for undefined records (U)

Notes: When more than one RECFM value is to be specified in combination, PARM contains
the sum of the values.

Example: to specify fixed records, code

KEY # LEN PARM
0041 0001 0001 80

First Buffer Reserve specification - Key = X'004A'

DALRSRVF specifies the number of bytes to be reserved in the first buffer for insertion of
data by the DATETIME and SEQUENCE macros. The UCS key is mutually exclusive with
this key. When this key is specified, # and LEN must be one, and PARM contains the number
of bytes to reserve.

Example: to reserve 8 bytes in the first buffer, code

KEY # LEN PARM
004A 0001 0001 08

Secondary Buffer Reserve specification - Key = X'004B'

DALRSRVS specifies the number of bytes to be reserved in other than the first buffer for
insertion of data by the DATETIME and SEQUENCE macro instructions. The UCS key is
mutually exclusive with this key. When this key is specified, # and LEN must be one, and
PARM contains the number of bytes to reserve.

Example: to reserve 8 bytes in secondary buffers, code

KEY # LEN PARM
004B 0001 0001 08

SOWA specification - Key = X'004C'

DALSOWA specifies the size, in bytes, of the user-provided input work areas for

| telecommunication jobs. When this key is specified, # must be one, LEN must be two, and
PARM contains the number of bytes. The maximum PARM value is X'7FF8' (32,760).

Example: to specify a 256-byte work area, code

KEY # LEN PARM
004C 0001 0002 0100

Chapter 3: Requesting SVC 99 Functions 57

STACK specification - Key = X'004D'

DALSTACK specifies the stacker bin to receive cards. The CODE, KEYLEN, PRTSP, and
TRTCH keys are mutually exclusive with this key. When this key specified, # and LEN are
one, and PARM contains:
X'01' for bin 1 (1)
X'02' for bin 2 (2)

Example: to specify stacker 2, code

KEY # LEN PARM
004D 0001 0001 02

THRESH specification - Key = X'004E'

DALTHRSH specifies the percentage of nonreusable disk message queue records to be used
before a flush closedown occurs. This key is mutually exclusive with the CPRI key. When this
key is specified, # and LEN must be one, and PARM contains the percentage. The maximum
PARM value is '64' (100).

Example: to specify a THRESH percentage of 99, code

KEY # LEN PARM
004E 0001 0001 63

TRTCH specification - Key = X'004F'

DALTRTCH specifies the recording technique for 7-track tape. The KEYLEN, MODE,
CODE, STACK, and PRTSP keys are mutually exclusive with this key. When this key is
specified, # and LEN must be one, and PARM contains:

X'13' for data conversion (C)
X'23' for even parity (E)
X'2B' for even parity and BCD/EBCDIC translation (ET)
X'3B' for BCD/EBCDIC translation (T)

Example: to specify even parity, code

KEY # LEN PARM
004F 0001 0001 23

IPLTXTID specification - Key = X'0051'

DALIPLTX specifies the name of a TCAM network control program. This key is mutually
exclusive with the DSNAME, MEMBER NAME, and QNAME keys. When this key is
specified, # must be one, LEN is the length of the name (maximum of 8), and PARM contains
the name.

Example: to specify an IPLTXTID value of PGM, code

KEY # LEN PARM
0051 0001 0003 D7 C7 D4

Diagnostic Trace specification (DIAGNS = TRACE) - Key = X'0054'

DALDIAGN requests the OPEN/CLOSE/EOV trace option which gives a module-by-module
trace of OPEN/CLOSE/EOV's workarea and the user's DCB. When this key is specified, #
must be zero. LEN and PARM must not be specified. (GTF must be active in the system
while the job that requested the trace is running.)

58 OS/VS2 MVS System Programming Library: Job Management

Example: to specify the diagnostic trace specification, code

KEY # LEN PARM
0054 0000 - -

FUNC = specification - Key = X'005A'

DALFUNC can be used with BSAM and QSAM and specifies the type of data set to be
opened for the 3525 Card Read-Punch-Print. When this key is specified, # and LEN must be
one, and PARM must be one of the following values:

X'10' for W
X'12' for WT
X'14' for WX
X'16' for WXT
X'20' for P
X'30' for PW
X'34' for PWX
X'36' for PWXT
X'40' for R
X'50' for RW
X'52' for RWT
X'54' for PWX
X'56' for PWXT
X'60' for RP
X'68' for RPD
X'70' for RPW
X'74' for RPWX
X'76' for RPWXT
X'78' for RPWD
X'80' for I

Where:
is data protection for a punch data set

I is interpret punch data set
is punch
is read
is two line printer
is print
is printer

Notes: If this information is not supplied by any source, the system assumes P.

• D, X, and T cannot be coded alone.
• If D is specified as part of a value, the FCB image-id key must also be specified giving

the image identifier for the data protection image.

Example: to specify FUNC=RPWD, code

KEY # LEN PARM
005A 0001 0001 78

FRID = specification - Key = X'005B'

DALFRID specifies the last four characters of a SYS1.IMAGELIB member to be used in the
interpretation of documents for input to the IBM 3886 optical character reader. The characters
must be alphanumeric or national, and if the member has a name with a length less than four,
the entire name must be specified. This key is mutually exclusive with the FCB key. When this
key is specified, # must be one, LEN is the number of characters specified, and PARM
contains the characters of the member name.

Example: to specify the last four characters of member name SHARK1, code

KEY # LEN PARM
005B 0001 0004 C1 D9 D2 F1

Chapter 3: Requesting SVC 99 Functions 59

D

P
R
T
W
X

Hex Test IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

0050 DALPASSW Specifies the password for a protected data set.
0052 DALPERMA Specifies the permanently allocated attribute.
0053 DALCNVRT Specifies the convertible attribute.
0055 DALRTDDN Requests the return of the associated ddname.
0056 DALRTDSN Requests the return of the allocated data set's name.
0057 DALRTORG Requests the return of data set organization.
005D DALRTVOL Requests the return of the volume serial number.

|

 Figure 10. Non-JCL Dsname Functions (Used with Verb Code 01) — Text Unit Keys, Mnemonics, and Functions

Non-JCL Dynamic Allocation Functions

The keys described below and listed in Figure 10 do not have JCL equivalents, rather they
have meaning only to dsname allocation.

Password specification - Key = X'0050'

DALPASSW specifies the password of a password-protected data set. The dsname key must
also be specified when this key is specified. When this key is specified, # must be one, LEN
contains the length of password, and PARM contains the password.

Example: to specify the password, MYKEY, code

KEY # LEN PARM
0050 0001 0005 D4 E8 D2 C5 E8

Permanently Allocated Attribute specification - Key = X'0052'

DALPERMA specifies that the permanently allocated attribute is to be assigned to this
allocation. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify assignment of the permanently allocated attribute, code

KEY # LEN PARM
0052 0000 — —

Convertible Attribute specification - Key = X'0053'

DALCNVRT specifies that the convertible attribute is to be assigned to this allocation. (Note:
this specification is defaulted if the permanently allocated attribute text unit is not specified.)
When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify assignment of the convertible attribute, code

KEY # LEN PARM
0053 0000 — —

Ddname Return specification - Key = X'0055'

DALRTDDN specifies that the ddname that is associated with the allocation be returned to
the dynamic allocation caller. When this key is specified, # must be one, LEN must be eight,
and PARM is an eight byte field. Dynamic allocation will place the allocated ddname in
PARM and update LEN to the length of this ddname.

60 OS/VS2 MVS System Programming Library: Job Management

Example: to specify that the allocated ddname be returned, code

KEY # LEN PARM
0055 0001 0008

This specification would be updated for the allocation of the ddname DD1 as follows:

KEY # LEN PARM
0055 0001 0003 C4 C4 F1

Dsname Return specification - Key = X'0056'

DALRTDSN specifies that the dsname that is allocated be returned to the dynamic allocation
caller. When this key is specified, # must be one, LEN must be forty-four, and PARM is a
forty-four byte field. Dynamic allocation will place the allocated dsname in PARM and update
LEN to the length of this dsname.

Example: to specify that the allocated dsname be returned, code

KEY # LEN PARM
0056 0001 002C

This specification would be updated for the allocation of the dsname ABC as follows:

KEY # LEN PARM
0056 0001 0003 C1 C2 C3

DSORG Return specification - Key = X'0057'

DALRTORG specifies that the data set organization be returned to the dynamic allocation
caller. When this key is specified, # must be one, LEN must be two, and PARM is a two-byte
field. Dynamic allocation will set PARM as follows:

X'0000' if DSORG cannot be determined by dynamic allocation
X'0004' if TR
X'0008' if VSAM
X'0020' if TQ
X'0040' if TX
X'0080' if GS
X'0200' if PO
X'0300' if POU
X'0400' if MQ
X'0800' if CQ
X'1000' if CX
X'2000' if DA
X'2100' if DAU
X'4000' if PS
X'4100' if PSU
X'8000' if IS
X'8100' if ISU

Example: to specify that the DSORG be returned, code

KEY # LEN PARM
0057 0001 0002 -

This specification would be updated for a DSORG of PS as follows:

KEY # LEN PARM
0057 0001 0002 4000

Chapter 3:, Requesting SVC 99 Functions 61

. . .

. . .

Volume Serial Return specification - Key = X'005D'

DALRTVOL specifies that the volume serial associated with the data set being allocated be
returned. Only the first volume serial of the multiple-volume data set is returned, and volume
sequence number, if any, is ignored. When this key is specified, # must be one, LEN must be
six, and PARM is a six-byte field. Dynamic allocation will place the allocated volume serial in
PARM if it is available at the completion of allocation. If the volume serial is not available at
the completion of the allocation, LEN will be zero.

The volume serial will not be available at the completion of allocation if either of the
following is true:

• No volume serial is allocated to the data set (a VIO or job entry subsystem data set)

• The request results in the allocation of a new data set on magnetic tape without a
specific volume serial having been assigned.

Example: to specify that the allocated volume serial be returned, code

KEY # LEN PARM
005D 0001 0006

Note: This specification would be updated for the allocation of data set ABC on volume
123456 as follows:

KEY # LEN PARM
005D 0001 0006 F1 F2 F3 F4 F5 F6

62 OS/VS2 MVS System Programming Library: Job Management

Dynamic Allocation Function
Specifies the ddname of the resource to be unallocated.
Specifies the data set to be unallocated.
Specifies the PDS member to be unallocated.
Specifies an overriding disposition.
Specifies unallocation even if the resource has the permanently allocated
attributed.
Specifies removal of the "in-use" attribute, even if the resource does have
the permanently allocated attribute.
Specifies "nohold" status for an unallocated SYSOUT data set.
Specifies an overriding SYSOUT class.
Specifies an overriding remote workstation.
Puts the SYSOUT data set on the hold queue and overrides previous
"nohold" specifications.

Hex Text IEFZB4D2

Unit Key Mnemonic
0001 DUNDDNAM
0002 DUNDSNAM
0003 DUNMEMBR
0005 DUNOVDSP
0007 DUNUNALC

0008 DUNREMOV

000A DUMOVSNH
0018 DUNOVCLS
0058 DUNOVSUS
0059 DUMOVSHQ

Figure 11. Dynamic Unallocation (Verb Code 02) — Text Unit Keys, Mnemonics, and Functions

Dynamic Unallocation Text Units

The following text units are used with the dynamic unallocation (verb code X'02').

Ddname specification - Key = X'0001'

DUNDDNAM specifies the ddname of the resource to be unallocated. When this key is
specified, # must be one, LEN is the length of the ddname field, and PARM contains the
ddname.

Example: to specify the ddname DD1, code

KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Dsname specification - Key = X' 0002'

DUNDSNAM specifies the data set name to be unallocated. When this key is specified, # must
be one, LEN contains the length of the dsname, and PARM contains the dsname.

Example: to specify the dsname MYDATA, code

KEY # LEN PARM
0002 0001 0006 D4 E8 C4 Cl E3 C1

Membername specification - Key = X'0003'

DUNMEMBR specifies that a particular member of the data set is to be unallocated. Dsname
must also be specified when this key is specified. When this key is specified, # must be one,
LEN is the length of the member name, and PARM contains the membername.

Example: to specify the membername MEM1, code

KEY # LEN PARM
0003 0001 0004 D4 C5 D4 Fl

Chapter 3: Requesting SVC 99 Functions 63

Overriding Disposition specification - Key = X'0005'

DUNOVDSP specifies a disposition that overrides the disposition assigned to a data set when
it was allocated. When this key is specified, # and LEN must be one, and PARM contains:

X'01' for an overriding disposition of UNCATLG
X'02' for an overriding disposition of CATLG
X'04 for an overriding disposition of DELETE
X'08' for an overriding disposition of KEEP

Example: to specify an overriding disposition of CATLG, code

KEY # LEN PARM
0005 0001 0001 02

Note: This key will be ignored if any of the following situations are true:

• The data set was originally allocated with a disposition of PASS.

• The data set was a VSAM data set.

• The data set was a non-subsystem data set that had a system-generated name

Note: When this key is ignored, the request is still processed but the disposition on the
original request will be used.

Unalloc Option specification - Key = X'0007'

DUNUNALC specifies that unallocation is to occur even if the resource has the permanently
allocated attribute. The remove option specification (see below) is mutually exclusive with this
key. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify the unalloc option, code

KEY # LEN PARM
0007 0000 - -

Remove Option specification - Key = X'0008'

DUNREMOV specifies that the in-use attribute is to be removed even if the resource does not
have the permanently allocated attribute. The unalloc option key is mutually exclusive with this
key. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify the remove option, code

KEY # LEN PARM
0008 0000 - -

Overriding SYSOUT Nohold specification - Key = X'000A'

DUMOVSNH specifies that the SYSOUT data set being unallocated is not to be placed on the
hold queue. This specification overrides the HOLD/NOHOLD specification assigned when the
data set was allocated. This key is ignored if the data set is not a SYSOUT data set. The
overriding hold key (see below) is mutually exclusive with this key. When this key is specified,
must be zero. LEN and PARM are not specified.

Example: to specify nohold, code

KEY # LEN PARM
000A 0000 - -

64 OS/VS2 MVS System Programming Library: Job Management

Overriding SYSOUT Class specification - Key = X'0018'

DUNOVCLS specifies a SYSOUT class which overrides the class assigned when the SYSOUT
data set was allocated. This key is ignored for non-SYSOUT data sets. When specified, # and
LEN must be one, and PARM contains the overriding class.

Example: to specify an overriding class of C, code

KEY # LEN PARM
0018 0001 0001 C3

Overriding SYSOUT Remote Workstation specification - Key = X'0058'

DUNOVSUS specifies that the SYSOUT data set being unallocated is to be routed to a remote
user. This specification overrides the remote workstation specification assigned when the data
set was allocated. This specification is ignored if the data set is not a SYSOUT data set. When
this key is specified, # must be one, LEN is the length of the remote workstation name
(maximum of 8), and PARM contains the remote user name.

Example: to specify the remote work station USER01, code

KEY # LEN PARM
0058 0001 0006 E4 E2 C5 D9 F0 F1

Overriding SYSOUT hold queue specification - Key = X' 0059'

DUMOVSHQ specifies that the SYSOUT data set being unallocated is to be placed on the
hold queue. This specification overrides the hold/nohold key assigned when the data set was
allocated. This key is ignored if the data set is not a SYSOUT data set. The overriding nohold
key is mutually exclusive with this key. When this key is specified, # must be zero. LEN and
PARM are not specified.

Example: to specify hold, code

KEY # LEN PARM
0059 0000 — —

Chapter 3: Requesting SVC 99 Functions 65

Hex Text IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

0001 DCCDDNAM Specifies the ddnames to be concatenated.
0004 DCCPERMC Specifies the permanently concatenated attribute.

Figure 12. Dynamic Concatenation (Verb Code 03) - Text Unit Keys, Mnemonics, and Functions

Dynamic Concatenation Text Units

The text units for dynamic concatenation (verb code X'03') are described below and listed in
Figure 12.

Ddname specification - Key = X'0001'

DCCDDNAM specifies the ddnames that are associated with the data sets to be concatenated.
When this key is specified, # is the number of ddnames being specified (a minimum of two),
LEN is length of the immediately following ddname field and PARM contains a ddname.

 Example: to specify concatenation of SYSLIB to MYLIB, code

KEY # LEN PARM LEN PARM
0001 0002 0005 D4E8D3C9C2 E2E8E2D3C9C2

Permanently Concatenated Attribute specification - Key = X'0004'

DCCPERMC specifies that the concatenated group be assigned the permanently concatenated
attribute. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify assignment of the permanently concatenated attribute, code

KEY # LEN PARM
0004 0000 — —

66 OS/VS2 MVS System Progranuning Library: Job Management

0006

Hex Text IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

0001 DDCDDNAM Specifies the ddname of the group to be deconcatenated.

Figure 13. Dynamic Deconcatenation (Verb Code 04) - Text Unit Key, Mnemonic, and Function

Dynamic Deconcatenation Text Units

The text unit for dynamic deconcatenation (verb code X'04') is described below and listed in
Figure 13.

Ddname specification - Key = X'0001'

DDCDDNAM specifies the ddname of the concatenated group that is to be deconcatenated.
This key must be specified. In specifying this text unit, # must be one, LEN is the length of
the ddname field and PARM contains the ddname.

Example: to specify the ddname, DD1, code

KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Chapter 3: Requesting SVC 99 Functions 67

Hex Text IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

0001 DRITCBAD Removes the "in-use" attribute from all resources associated with the
specified TCB address.

0002 DRICURNT Removes the "in-use" attribute from all resources but those of the current
task and its higher-level tasks.

Figure 14. Remove In-Use Processing Based on Task-Id (Verb Code 05) — Text Unit Keys, Mnemonics, and

Functions

Text Units for Removing the In-Use Attribute Based on Task-Id

The text units for remove in-use processing based on task-id (verb code X'05') are described
below and listed in Figure 14.

TCB Address specification - Key = X'0001'

DRITCBAD specifies that the in-use attribute is to be removed from all resources associated
with the specified TCB address. The current task option key (see below) is mutually exclusive
with this key. When this key is specified, # must be one, LEN must be four, and PARM
contains the TCB address.

Example: to specify the TCB address 22AC0, code

KEY # LEN PARM
0001 0001 0004 00022AC0

Current Task Option specification - Key = X'0002'

DRICURNT specifies that the in-use attribute is to be removed from all resources except those
associated with the current task, its direct ancestors, and the initiator. This key is mutually
exclusive with the TCB address key. When this key is specified, # must be zero. LEN and
PARM are not specified.

Example: to specify the current task option, code

KEY # LEN PARM
0002 0000 — —

68 OS/VS2 MVS System Programming Library: Job Management

Hex Text IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

0001 DDNDDNAM Specifies the ddname to be allocated.
0002 DDNRTDUM Requests a dummy data set indication.

Figure 15. Ddname Allocation (Verb Code 06) — Text Unit Keys, Mnemonics, and Functions

Ddname Allocation Text Units

The following text units described below and listed in Figure 15 are used with the ddname
allocation (verb code X'06').

Ddname specification - Key = X'0001'

DDNDDNAM specifies the ddname to be allocated. This text unit must be specified. When
this key is specified, # must be one, LEN contains the length of the ddname field, and PARM
contains the ddname.

Example: to specify the ddname SYSLIB, code

KEY # LEN PARM
0001 0001 0006 E2 E8 E2 D3 C9 C2

Return DUMMY Indication specification - Key = X'0002'

DDNRTDUM requests an indication if a DUMMY data set is associated with the specified
ddname. When this key is specified, # and LEN must be one, and PARM is a one-byte field.
Dynamic allocation sets PARM as follows:

X'80' if a DUMMY data set is associated with the ddname
X'00' otherwise

Example: to specify that the DUMMY indication be returned, code

KEY # LEN PARM
0002 0001 0001

Chapter 3: Requesting SVC 99 Functions 69

-

Hex Text IEFZB4D2
Unit Key Mnemonic Dynamic Allocation Function

0001 DINDDNAM Specifies the ddname identifier of the requested information.
0002 DINDSNAM Specifies the data set for which the information is requested.
0004 DINRTDDN Requests the return of the associated ddname.
0005 DINRTDSN Requests the return of the data set name
0006 DINRTMEM Requests the return of the PDS membername.
0007 DINRTSTA Requests the return of the data set's status.
0008 DINRTNDP Requests the return of the data set's normal disposition.
0009 DINRTCDP Requests the return of the data set's conditional disposition.
000A DINRTORG Requests the return of the data set's organization.
000B DINRTLIM Requests the number of resources that must be unallocated before making a

new allocation.
000C DINRTATT Requests the return of special attribute indications.
000D DINRTLST Requests the return of a last relative entry indication.
000E DINRTTYP Requests the return of the data set's type (terminal or dummy).
000F DINRELNO Specifies the desired allocation information retrieval by relative request

number.

Figure 16. Dynamic Information Retrieval (Verb Code 07) — Text Unit Keys, Mnemonics, and Functions

Dynamic Information Retrieval Text Units

The text units for dynamic information retrieval (verb code '07') are described below and
listed in Figure 16.

Ddname specification - Key = X'0001'

DINDDNAM specifies a ddname that identifies the allocation about which information is to be
returned. It is mutually exclusive with the dsname and relative entry key. When this key is
specified, # must be one, LEN is the length of the ddname field, and PARM contains the
ddname.

Example: to specify the ddname DD1, code

KEY # LEN PARM
0001 0001 0003 C4 C4 F1

Dsname specification - Key = X'0002'

DINDSNAM specifies a dsname that identifies the allocation about which information is to be
returned. It is mutually exclusive with the ddname and relative entry keys. When specified, #
must be one, LEN is the length of the dsname, and PARM contains the dsname.

Example: to specify the dsname MYDATA, code

KEY # LEN PARM
0002 0001 0006 D4 E8 C4 C1 E3 C1

Return Ddname specification - Key = X'0004'

Code DINRTDDN to determine that the ddname associated with the specified allocation.
When this key is specified, # must be one, LEN must be eight, and PARM is an eight-byte
field. Upon return to the caller, PARM will contain the ddname and LEN will be set to its
length.

Example: to specify that the ddname be returned, code

KEY # LEN PARM
0004 0001 0008

70 OS/VS2 MVS System Programming Library: Job Management

Return Dsname specification - Key = X'0005'

Code DINRTDSN to determine the dsname associated with the specified allocation be
returned. When this key is specified, # must be one, LEN must be forty-four, and PARM is a
forty-four byte field. Upon return to the caller, PARM will contain the dsname and LEN will
be set to its length.

Example: to specify that the dsname be returned, code

KEY # LEN PARM
0005 0001 002C

Return Membername specification - Key = X'0006'

Code DINRTMEM to determine the membername associated with the specified allocation.
When this key is specified, # must be one, LEN must be eight, and PARM is an eight-byte
field. Upon return to the caller, PARM will contain the membername and LEN will be set to
its length (zero if none).

Example: to specify that the membername be returned, code

KEY # LEN PARM
0006 0001 0008

Return Status specification - Key = X'0007'

Code DINRTSTA to determine the data set status of the specified allocation. When this key is
specified, # and LEN must be one. PARM is a one-byte field. Upon return to the caller, the
PARM field will contain on of the following:

X'01' for OLD
X'02' for MOD
X'04' for NEW
X'08' for SHR

Example: to specify that the status be returned, code

KEY # LEN PARM
0007 0001 0001 -

Return Normal Disposition specification - Key = X`0008'

Code DINRTNDP to determine the normal disposition of the specified allocation. When this
key is specified, # and LEN must be one. PARM is a one-byte field. Upon return to the caller,
PARM will contain one of the following:

X'01' for UNCATLG
X'02' for CATLG
X'04' for DELETE
X'08' for KEEP
X'10' for PASS

Example: to specify that the normal disposition be returned, code

KEY # LEN PARM
0008 0001 0001 -

Chapter 3: Requesting SVC 99 Functions 71

Return Conditional Disposition specification - Key = X'0009'

Code DINRTCDP to determine the data set conditional disposition of the specified allocation.
The values for #, LEN and PARM are the same as for return normal disposition key.

Example: to specify that the conditional disposition be returned, code

KEY # LEN PARM
0009 0001 0001

Return Data Set Organization specification Key = X' 000A'

Code DINRTORG to determine the data set organization of the specified allocation. When
this key is specified, # must be one, LEN must be two, and PARM is a two-byte field. Upon
return to the caller, PARM will contain one of the following:

X'0000' if undetermined
X'0004' if TR
X'0008' for VSAM
X'0020' if TQ
X'0040' if TX
X'0080' for GS
X'0200' for PO
X'0300' for POU
X'0400' for MQ
X'0800' for CQ
X'1000' for CX
X'2000' for DA
X'2100' for DAU
X'4000' for PS
X'4100' for PSU
X'8000' for IS
X'8100' for ISU

Example: to specify that the data set organization be returned, code

KEY # LEN PARM
0 0 OA 0001 0002

Return Limit specification - Key = X'000B '

Code DINRTLIM to determine the number of resources that must be unallocated before a
request can be made that requires a new allocation. When this key is specified, # must be one,
LEN must be two, and PARM is a two-byte field. Upon return to the caller, PARM is set to
the number of resources to unallocated.

Example: to specify that the number be returned, code

KEY # LEN PARM
000B 0001 0002

If three resources must be unallocated, this text unit is returned as follows:

KEY # LEN PARM
000B 0001 0002 0003

72 OS/VS2 MVS System Programming Library: Job Management

-

--

--

Return Dynamic Allocation Attribute specification - Key = X'000C'

Code DINRTATT to determine if the specified allocation has the permanently allocated,
convertible, in-use, permanently concatenated, and dynamically allocated attributes. When this
key is specified, # and LEN must be one, and PARM is a one-byte field. Upon return to the
caller, PARM is set as follows:

Bit 0, on if, permanently concatenated attribute
Bit 1, on if, in-use attribute
Bit 2, on if, permanently allocated attribute
Bit 3, on if, convertible attribute
Bit 4, on if, dynamically allocated attribute
Bits 5-7 reserved

Example: to specify that the data set attributes be returned, code

KEY # LEN PARM
000C 0001 0001 —

If the allocation has the in-use and permanently allocated attributes, this field is returned as
follows:

KEY # LEN PARM
000C 0001 0001 60

Return Last Entry specification - Key = X'000D '

Code DINRTLST to determine if the relative entry number specified corresponds to the last
relative entry. When this key is specified, # and LEN must be one, and PARM is a one-byte
field. Upon return to the caller, PARM will be set as follows:

X'80' if last relative entry
X'00' otherwise

Example: to specify that the last entry indication be returned, code

KEY # LEN PARM
000D 0001 0001 —

Return Data Set Type specification - Key = X'000E'

Code DINRTTYP to determine if the specified allocation is a DUMMY data set, a terminal
allocation, a SYSIN data set, or a SYSOUT data set. When this key is specified, # and LEN
must be one, and PARM is a one-byte field. Upon return to the caller, PARM is set as
follows:

X'80' if a DUMMY data set
X'40' if a terminal
X'20' if a SYSIN data set
X'10' if a SYSOUT data set
X'00' otherwise

Example: to specify that data set type be returned, code

KEY # LEN PARM
000E 0001 0001 —

Relative Request Number specification - Key = X'000F'

DINRELNO specifies a relative request number that identifies the allocation about which you
are requesting. The ddname and dsname keys are mutually exclusive with this key. When this
key is specified, # must be one, LEN must be two, and PARM contains the relative number.

Chapter 3: Requesting SVC 99 Functions 73

Example: to specify information is to be returned about the tenth request, code

KEY # LEN PARM
000F 0001 0002 000A

Example of a Dynamic Allocation Request
The assembler language example in Figure 17 illustrates a dynamic allocation request for
allocating SYS1.LINKLIB with a status of SHARE. It also requests that the dynamic allocation
routines return the ddname associated with SYS1.LINKLI B.

Figure 18 shows the parameter list that results from the code in Figure 17.

74 OS/VS2 MVS System Programming Library: Job Management

LA 0,75
GETMAIN R,LV=(0)
LR 8,1
USING S99RBP,8
LA 4,S99RBPTR+4
USING S99RB,4
ST 4,S99RBPTR
OI S99RBPTR,S99RBPND
XC S99RB(RBLEN),S99RB
MVI S99RBLN,RBLEN
MVI S99VERB,S99VRBAL
LA 5,S99RB+RBLEN
USING S99TUPL,5
ST 5,S99TXTPP
LA 6,S99TUPL+12
USING S99TUNIT,6
ST 6,S99TUPTR
LA 7,DALDSNAM
STH 7,S99TUKEY
LA 7,1
STH 7,S99TUNUM
LA 7,L'LINKDSN
STH 7,S99TULNG
MVC S99TUPAR(12),LINKDSN
LA 6,S99TUNIT+18
LA 5,S99TUPL+4
ST 6,S99TUPTR
LA 7,DALSTATS
STH . 7,S99TUKEY
LA 7,1
STH 7,S99TUNUM
STH 7,S99TULNG
MVI S99TUPAR,X'08'
LA 6,S99TUNIT+7
LA 5,S99TUPL+4
ST 6,S99TUPTR
OI S99TUPTR,S99TUPLN
LA 7,DALRTDDN
STH 7,S99TUKEY
LA 7,1
STH 7,S99TUNUM
LA 7,8
STH 7,S99TULNG
LR 1,8
DYNALLOC

AMOUNT OF STORAGE THAT THIS REQUEST NEEDS
GET THE STORAGE NECESSARY FOR THE REQUEST
SAVE THE ADDRESS OF THE RETURNED STORAGE
ESTABLISH ADDRESSABILITY FOR 'RBPTR' DSECT
POINT FOUR BYTES BEYOND START OF 'RBPTR"
ESTABLISH ADDRESSABILITY FOR 'RB' DSECT
MAKE 'RBPTR' POINT TO 'RB'
TURN ON THE HIGH ORDER BIT IN 'RBPTR'
ZERO OUT 'RB' ENTIRELY
PUT THE LENGTH OF 'RB' IN ITS LENGTH FIELD
SET VERB CODE FIELD TO ALLOCATION FUNCTION
POINT TWENTY BYTES BEYOND START OF 'RB'
ESTABLISH ADDRESSABILITY FOR TEXT UNIT PTRS
INITIALIZE THE TEXT POINTERS ADDRESS IN 'RB'
POINT JUST PAST THE THREE TEXT UNIT POINTERS
SET ADDRESSABILITY FOR THE FIRST TEXT UNIT
POINT 1ST TEXT UNIT POINTER TO 1ST TEXT UNIT
GET THE KEY FOR DSNAME
PUT THE KEY IN THE TEXT UNIT KEY FIELD
BECAUSE THE DSNAME KEY REQUIRES ONLY ONE
PARAMETER, LOAD AND STORE 1 IN NUMBER FIELD

GET THE LENGTH OF THE DSNAME FIELD AND PUT
IT INTO THE TEXT UNIT'S LENGTH FIELD

PUT THE DSNAME INTO TEXT UNIT PARM FIELD
POINT JUST PAST THE FIRST TEXT UNIT
POINT TO THE 2ND TEXT UNIT POINTER IN LIST
POINT 2ND TEXT UNIT POINTER TO 2ND TEXT UNIT
GET THE KEY FOR STATUS SPECIFICA-
TION AND PUT THE KEY IN THE TEXT UNIT

BECAUSE THE STATUS KEY REQUIRES ONLY ONE
PARAMETER, LOAD AND STORE 1 IN THE NUMBER FIELD
SET THE STATUS PARM LENGTH FIELD ALSO TO 1
SET THE PARM FIELD TO INDICATE SHARE DISP
POINT JUST PAST THE SECOND TEXT UNIT
POINT TO 3RD TEXT UNIT POINTER IN THE LIST
POINT 3RD TEXT UNIT POINTER TO 3RD TEXT UNIT
TURN ON HIGH ORDER BIT TO INDICATE LAST PTR
GET THE KEY FOR 'RETURN DDNAME' AND
PUT THE KEY IN THE TEXT UNIT KEY FIELD

BECAUSE 'RETURN DDNAME' KEY REQUIRES ONLY 1
PARAMETER, LOAD AND STORE 1 IN NUMBER FIELD

SET LENGTH OF FIELD FOR RETURNING DDNAME TO 8

PUT REQ BLK PTR ADDR IN REG 1 FOR DYNALLOC
INVOKE DYNAMIC ALLOCATION TO PROCESS REQUEST

•
LINKDSN DC C'SYS1.LINKLIB'

IEFZB4D0
IEFZB4D2

RBLEN EQU (S99RBEND-S99RB)

|

 Figure 17. Example of a Dynamic Allocation Request

Chapter 3: Requesting SVC 99 Functions 75

Note the following concepts that the example illustrates:

• Storage is obtained via a GETMAIN macro instruction.
In the example, the requirement is for 75 bytes, derived as follows:

Bytes Purpose

4 Pointer to the request block.

20 Request block space.

12 Four bytes each for three text unit pointers.

18 Text unit space for the data set name.

7 Text unit space for the data set status.

14 Text unit space for the requested return of the ddname.

• The parameter structure is mapped by the DSECTs that IEFZB4D0 provides.
• The example uses IEFZB4D2 mnemonics in the text unit keys.

| Figure 18. Resulting Parameter List From Dynamic Allocation Example

76 OS/VS2 MVS System Programming Library: Job Management

Chapter 4: Internal Readers

The internal reader facility allows a programmer to build a job and place it directly in the
input stream, without using intermediate devices such as a card punch (to transform the JCL
into cards) and card readers (to place those cards in the input stream). An internal reader is
simply a data set that the system places in the input stream. Any data (such as JCL) you place
in the internal reader, therefore, is placed in the input stream and subsequently passed to the
job entry subsystem for execution. MVS uses internal readers to pass JCL for started tasks
and logon requests to the job entry subsystem.

To use the internal reader facility, your program must allocate an internal reader either
dynamically or on a DD statement. You use the SYSOUT parameter (or text units), specifying
an output class and INTRDR (for example, SYSOUT=(A,INTRDR)). Messages for a job
placed in the internal reader are assigned the same class as that specified in the SYSOUT
parameter for the internal reader, unless you include the MSGCLASS parameter on the JOB
statement for the job.

The following paragraphs describe how a user-written program can dynamically allocate and
use an internal reader.

Dynamically Allocating an Internal Reader
Use the following text unit keys to allocate the internal reader:

• DALSYSOU — specifies the SYSOUT data set and defines its class
• DALSPGNM — specifies the SYSOUT program name (for example, INTRDR)
• DALCLOSE — specifies unallocating INTRDR at CLOSE
• DALRTDDN — specifies the return of the associated ddname assigned by dynamic

allocation

Chapter 3 of this publication describes the format of these text units and how to invoke
dynamic allocation. The TSO SUBMIT command is an example of a program that dynamically
allocates an internal reader using these text units.

Opening the Internal Reader
You open the internal reader data set using a VSAM Access-Method Control Block (ACB),
specifying the ddname returned by dynamic allocation and the keyword
MACRF= (ADR,SEQ,OUT) where:

• ADRs specifies addressed data processing with no index references
• SEQ specifies sequential processing
• OUT specifies writing the data

Passing JCL Records and Jobs to the Internal Reader
Issue a PUT to pass the input JCL record to the INTRDR data set and use the VSAM

request parameter list (RPL) for both PUTs and ENDREQs specifying
OPT= (ADR,SEQ,SYN,NUP),RECLEN= 80 where:

• ADR specifies addressed data processing with no index references
• SEQ specifies sequential processing
• SYN specifies a synchronous request and control should be returned after completion of

this request
• NUP specifies nonupdate mode; records being retrieved are not updated or deleted

Chapter 4: Internal Readers 77

• RECLEN=80 specifies that the submitted JCL records are 80 bytes in length

You should dynamically specify the ACB address and the address of the JCL record. Issue
a ENDREQ, using the VSAM RPL, to tell the job entry subsystem that all JCL records for
this job have been "put" into the internal reader. The subsystem will enter the job for
background processing and return the jobid it assigned in RPLRBAR. A CLOSE should be
issued after the final ENDREQ.

78 OS/VS2 MVS System Programming Library: Job Management

Chapter 5: Job Scheduler Restarting Support

Job scheduler restarting support allows a failing job to resume or terminate processing. This
function collects job status and job-related control block information for the reconstruction of
a failing job's scheduler work area (SWA). This reconstruction of the failing job's SWA is
necessary to support the following restart situations.

• Automatic step — permits execution to resume at the beginning of a job step

• Automatic checkpoint — permits execution to resume from the most recently executed
checkpoint in the user's program

• Deferred checkpoint — permits execution to resume from a user-specified checkpoint
upon resubmission of a job

• System — permits the termination of active jobs in the event of a system failure

• Continue — permits a job to continue at the next job step if the system fails during step
termination

For a detailed discussion of the checkpoint/restart facility, refer to OS/VS
Checkpoint/Restart.

Job Journal
The job journal is a temporary sequential data set that resides on the spool volume of the job
entry subsystem (JES). It preserves a set of selected job-related control blocks that are
necessary for restart processing.

The job journal is necessary because scheduler control blocks are maintained in the SWA in
pageable storage. When the system fails, the address space containing the SWA is lost. When a
job abnormally terminates, the job's SWA is released. Reconstruction of the SWA is possible
because the job journal preserves up-to-date copies of the essential control blocks. This facility
is necessary in the following restart situations:

• Automatic step
• Automatic checkpoint
• Continue
• System

Unless the user specifies no job journal via the JES initialization parameters, each job is
provided with a job journal. Without a job journal, the capability for automatic restarting is
lost. In addition, jobs that are executing when the system fails forfeit their data set disposition
processing if there is no job journal. For additional information about a "no journal"
environment, refer to the discussion of the NOJOURN initialization parameter, under "Job
Class Parameters," in OS/VS2 System Programming Library: JES2.

Two service routines process the job journal. They are:

• Journal write routine, which determines which scheduler control blocks are necessary to
restart a job and writes them to the job journal.

• Journal merge routine, which merges the control blocks from the job journal to the SWA
during restarts. This routine reconstructs the SWA to its condition prior to the job or
system failure.

Chapter 5: Job Scheduler Restarting Support 79

The job journal contains the following records:

• Step header
• Job control table (JCT)
• Step control table (SCT)
• Step input/output table (SIOT)
• Job file control block and its extension (JFCB and JFCBX/JFCBE)
• Passed data set information block (PDI block)
• Generation data group name table (GDGNT)
• Volume unload table (VUT)
• Account control table (ACT)
• Virtual input/output data set control blocks (VDSCBs - virtual data set control blocks,

and DSPCT — data set page control table header)

For additional information about restart processing, refer to OS/VS2 System Logic Library.

80 OS/VS2 MVS System Programming Library: Job Management

PPTNAME

PPTBYTE1 PPTKEY I PPTCPUA

PPTPUBYT (Reserved Bytes)

Chapter 6: Assigning Special Program Properties

The installation can assign special properties to programs by placing the program names in the
program properties table (IEFSDPPT), a nonexecutable CSECT in load module IEFSD060.
Executing the SGIEFOPT macro during system generation makes the table available for the
initiators to use. When the initiator initiates a program, it scans the table to determine whether
special properties apply to the program.

Format and Contents of Program Properties Table (PPT)
Each entry in the PPT is 16 bytes long, the final entry being X'FF' followed by 15 bytes
containing zeros. Each entry has the following format:

+0

+4

+8

+12

Program Name (PPTNAME):
EXEC statement for the job.

Program Properties (PPTBYTE1): a one-byte field that indicates the special properties assigned
to a program.

The following describes the contents of PPTBYTE1:
Bit Bit Name Meaning When On
1000 0000 PPTNCNCL The program cannot be canceled.
0100 000 PPTSKEY Unique protection key is to be assigned to the program. The key is

defined in the next byte of the table entry (PPTKEY).
0010 0000 PPTNSWP The program is nonswappable.
0001 0000 PPTPRIV The program is privileged. It will not be swapped unless the address

space is in a long wait.
0000 1000 PPTSYSTK The program is a system task that will not be timed. (When a

program is not timed, the system does not check for time limits.
The program must be a one-step program initiated with a START
or MOUNT command.)

0000 0100 PPTNDS1 The program does not require private use of the data sets that it
requests, that is, the program does not need to obtain exclusive
control over the data set to maintain data set integrity. It must be a
one-step program.

0000 0010 PPTNOPAS The program is to bypass password protection.
0000 0001 Reserved.

Notes:

1. The properties represented by the various bit settings might not be honored by the
system. An example is: a program is assigned special properties only if it resides in an
APF-authorized library and all JOBLIB and STEPLIBs are APF-authorized libraries.

2. The requirements of the initiator influence the need to maintain data set integrity as
follows:

• If one or more data sets requested by a program are not available when the job is to
be initiated, the scheduler waits until the job can acquire control of all data sets that it

Chapter 6: Assigning Special Program Properties 81

the eight-byte name specified in the PGM parameter on the

requires. Although the job itself may not require data set integrity, the initiation
process for the job does.

• Jobs that request the no-data-set-integrity property (bit 5) will not be initiated if both
of the following conditions exist:

— The job requests a data set whose name is an alias for a data set that is unavailable
during the job's initiation.

— The job contains either a JOBLIB or STEPLIB

Protection Key (PPTKEY): a one-byte field that specifies in bits 0-3 the unique protection key
to be assigned to the program. (A protection key is assigned if bit 1 of the preceding byte
(PPTBYTE1) is on.)

Affinity Mask (PPTCPUA): a halfword that indicates processor affinity, which is a system
generation option. Each bit in the 16-bit mask refers to a corresponding processor identifier
(0-F) assigned during system generation. For example, bit 0 corresponds to processor 0. If bit
0 is on, the program is eligible to run on processor 0. The bit mask should be set to X'FFFF '
if affinity is not required.

Preferred Storage Flags (PPTPUBYT): a one-byte field whose flags indicate whether LSQA
and private area fixed pages require frames in preferred storage (nonreconfigurable and non
V=R storage). Use these flags for programs whose fixed pages could prevent the successful
execution of a VARY STOR,OFFLINE command (or could fragment the V=R area) if those
fixed pages were assigned frames in reconfigurable or V=R storage. The first two flags are
meaningful for swappable programs (PPTNSWP=0) with a special requirement for preferred
frames. The third flag is used only by the SYSEVENT TRANSWAP. Following is a
description of the flags:

• PPT2LPU (1000 0000) — when this bit is on, the system assigns all private area
short-term fixed pages to preferred frames.

• PPT1LPU (0100 0000) — when this bit is on, the system assigns all private area
long-term fixed pages and LSQA pages to preferred storage frames.

• PPTN2LP (0010 0000) — when this bit is on, the system need not assign private area
short-term fixed pages to preferred storage frames. (This flag is meaningful only for users
of the SYSEVENT TRANSWAP: V=R job steps, nonswappable programs, applications
using the BTAM OPEN function, and any applications using a system function that
issues SYSEVENT TRANSWAP.)

The initiator maps the preferred storage flags to corresponding flags in the ASCB. The
ASCB flags determine how the system allocates frames to the address space.

If PPT1LPU=1 and PPT2LPU=0, the initiator sets ASCB1LPU in the ASCB to 1. If
PPT2LPU=1, the initiator sets both ASCB1LPU and ASCB2LPU in the ASCB to 1,
regardless of the value of PPT 1 LPU and PPTN2LP. The value of PPTN2LP is copied to
ASCBN2LP. ASCBN2LP merely prevents SYSEVENT TRANSWAP from setting ASCB1LPU
to 1 as the address space changes to a nonswappable state; if ASCB2LPU is 1 before the
TRANSWAP, it is not reset to 0. The topic, "Examples of Using Preferred Storage Flags"
summarizes the effect of the preferred storage flags on the allocation of frames during
execution of the program. The five low-order bits of the preferred storage flag-byte are
reserved for future use.

82 OS/VS2 MVS System Programming Library: Job Management

Tips for Using the Preferred Storage Flags: The following tips apply to all three flags:

• Do one of the following for an application program that issues SYSEVENT DONTSWAP
or issues SYSEVENT REQSWAP and then a SYSEVENT DONTSWAP:

— List the program in the PPT with the first two preferred storage flags set as desired.
This allows the program to be attached as swappable, but all LSQA and private area
fixed pages will be assigned preferred frames during the entire job step.

— Remove SYSEVENTs REQSWAP and DONTSWAP from the program and list the
program in the PPT as nonswappable (PPTNSWP=1) and set the third flag
(PPTN2LP) as desired. This allows the program to be attached as nonswappable, and
all LSQA and private area fixed pages will be assigned preferred frames during the
entire job step.

• The OLTEP program IFDOLT must be listed in the PPT with PPT1LPU and PPT2LPU
set to one and PPTN2LP set to zero. This allows OLTEP to make itself nonswappable
by issuing a REQSWAP and then a DONTSWAP. The system handles OLTEP in the
same manner as the application program previously described.

• An I/O device requiring operator intervention can interfere with taking storage offline by
fixing pages in reconfigurable storage. An example of this is a printer requiring action to
be taken or a tape unit with a mount pending. Until the required action is completed, the
storage associated with the I/O operation cannot be taken offline. This problem cannot
be bypassed through the use of preferred storage flags.

• All three flags are ignored if one or more non-APF-authorized joblibs or steplibs are
defined in the JCL for the job step.

The following tips apply to flag PPTN2LP:

• PPTN2LP has meaning only for programs for which SYSEVENT TRANSWAP is issued.
The initiator issues TRANSWAP for V=R job steps and nonswappable programs
(PPTNSWP=1). Also, the BTAM OPEN routine issues TRANSWAP. TRANSWAP
causes the transition of the address space to a nonswappable state. TRANSWAP
performs the same function as SYSEVENT DONTSWAP, and in addition, ensures that
preferred storage is used whenever necessary.

• PPTN2LP should be set to 1 when a program's short-term fixed pages do not need to be
assigned to preferred storage frames; that is, the program's short-term fixes are indeed
short-term fixes and can be allowed in reconfigurable storage.

The following tip applies to flags PPT1LPU and PPT2LPU:

• PPT1LPU and PPT2LPU are intended for use with authorized swappable programs that
issue SYSEVENT DONTSWAP to become nonswappable for relatively short periods
(rather than setting PPTNSWP=1). Use of the preferred storage flags forces the
program's private area fixed pages and LSQA pages into preferred storage frames and
thus ensures they do not prevent any attempts to take storage offline.

Note: Programs need not be nonswappable to have the system assign their fixed pages to
preferred storage frames.

Chapter 6: Assigning Special Program Properties 83

-

Examples of Using Preferred Storage Flags: The following example shows the effect of setting
preferred storage flags for the nonswappable program JES2.

The JES2 entry in the PPT would include the following bit values:

PPTNSWP = 1

PPT1LPU = 0

PPT2LPU = 0

PPTN2LP = 1

These values indicate nonswappability and that short-term fixes are indeed short-term fixes
that can be allowed in reconfigurable storage. After the initiator issues a TRANSWAP and
attaches JES2, the ASCB flags are set as shown below:

ASCB1LPU = 1

ASCB2LPU = 0

ASCBN2LP = 1

These values result in LSQA and long-term fixed pages in preferred storage only; short-term
fixed pages; however, are allowed in reconfigurable storage.

The next example shows the effect of setting the flags for a swappable program that issues
SYSEVENT DONTSWAP.

The program's entry in the PPT would include the following bit values:

PPTNSWP = 0

PPT1LPU = 1

PPT2LPU = 1

PPTN2LP = 0

These values indicate that the program is swappable and that all fixed pages and LSQA pages
must be in preferred storage. The initiator attaches the program as swappable, with the ASCB
flags set as follows:

ASCB1LPU = 1

ASCB2LPU = 1

ASCBN2LP = 0

The program can then issue DONTSWAP, being assured that its fixed and LSQA pages are
in preferred storage and will not prevent storage from being taken offline.

Following is a summary of the most common uses of the PPT preferred storage bits:

PPTNSWP PPT I LPU PPT2LPU PPTN2LP Effect on Program

1 - 0 The initiator makes the address space nonswappable
via the SYSEVENT TRANSWAP prior to attaching
the job step. LSQA and all private area fixed pages
are in preferred storage.

1 - - 1 Same as preceding case except short-term fixed pages
are allowed in reconfigurable or V=R storage.

0 1 1 - The initiator attaches the job step as swappable.
LSQA and all private area fixed pages are in
preferred storage. In this case, the program can issue
DONTSWAP and be assured that its fixed pages will
not prevent reconfiguring storage.

Note: In this example, a dash (-) indicates the setting of the bits is irrelevant.

84 OS/VS2 MVS System Programming Library: Job Management

Updating the PPT

The PPT includes five dummy entries for adding program names. The dummy entries initially
contain the properties necessary for TCAM:

• Unique protection key of 6 (PPTSKEY=1; PPTKEY=6)
• Nonswappable (PPTNSWP=1)
• Bypassing of password protection (PPTNOPAS= 1)

An installation can execute the AMASPZAP service aid program to change these entries for
the installation's purposes. To add more than five program names to the PPT, an installation
can either update the macro SGIEFOPT prior to system generation or update the source
module IEFSDPPT, then assemble and linkedit it into load module IEFSD060 again after
system generation. To update the macro SGIEFOPT prior to system generation, follow these
steps:

1. Obtain a deck of the macro SGIEFOPT.

2. Add the desired entries to the deck.

3. Replace SGIEFOPT in SYS1.AMODGEN with the expanded version (from step 2).

TCAM Message Control Program (MCP) names other than IFDQTCAM must be added to
the program properties table (IEFSDPPT). These names must be added to the PPT after
system generation by using the AMASPZAP service aid. (For information on AMASPZAP, see
OS/VS2 System Programming Library: Service Aids.) If more than six MCPs are required,
the PPT must be reassembled to create more entries. An MCP will not operate unless its name
is in the PPT. TCAM OPEN routines must run in key 6 and will abnormally terminate any
caller who was not initiated in key 6. Prior to MVS, MCP names were put in the PPT to make
the MCP noncancellable, but the MCP would execute properly if its name were not in the
PPT.

Chapter 6: Assigning Special Program Properties 85

86 OS/VS2 MVS System Programming Library: Job Management

Chapter 7: System Log

The system log is an integral part of MVS. It consists of dynamically created data sets that
record the communications among problem programs, operators, and the operating system. It
contains operating data entered by problem programs using the write-to-log (WTL) macro
instruction. The log contains the following information:

• Job time, job step time, and data from the JOB and EXEC statements of a job that has
ended

• Descriptions of unusual events recorded by the operator via the LOG command

• Write-to-operator (WTO) and write-to-operator with reply (WTOR) messages

• Accepted replies to WTOR messages

• Commands issued through operator's consoles and the input stream and commands issued
by the system

If the installation does not modify system log operation, the system automatically allocates
the system log data set during IPL as a class A SYSOUT data set. Subsequently, the log keeps
track of the number of entries it receives by counting the WTL macro instructions executed
against it. After 500 WTLs, the system opens and allocates a new system log and closes and
dynamically unallocates the currently full log.

Modifying the System Log
The system programmer can alter the default operation of the system log to control the
processing associated with the log data sets. He can change the SYSOUT class of the log data
sets and the number of WTLs received before switching log data sets.

The processing of the log data sets can be controlled from the operator console or from a
SYS1.PARMLIB member name IEASYSxx, where xx is a unique number (chosen by the
installation) that identifies the member. This member must be included in the system during
IPL, in response to the request to specify the system parameters.

From the console, the operator can control the processing with commands. (For further
information about the operator commands, see Operator's Library: OS/VS2 MVS System
Commands. For example, the operator can issue a WRITELOG command with the START
operand after a system failure or after a WRITELOG command with the CLOSE operand.

The following SYS1.PARMLIB parameters initialize or alter the system log control values:

• LOGLMT which controls the number of WTLs received before the system switches data
sets

• LOGCLS which controls the SYSOUT class of the system log data set

The LOGLMT value must be a six-digit number in the range 000001-999999. An all-zero
entry value results in the system default of 500. When choosing the LOGLMT value, the
system programmer should consider:

• Whether the system log is defined as MCS hardcopy

• Whether the system log data is sufficiently critical to the system to require frequent
allocating, switching, and queuing to a SYSOUT class

The LOGCLS value must be one alphameric character. The default value is class A.

Chapter 7: System Log 87

The following example shows the correct format for including the LOGLMT and LOGCLS
parameters in the IEASYSxx member of SYS1.PARMLIB when specifying the system
parameters during IPL:

LOGLMT=004852,LOGCLS=L

The preceding example would cause the system log task to switch data sets after 4852 WTLs,
and the job entry subsystem to queue the current data set to class L for SYSOUT processing.

88 OS/VS2 MVS System Programming Library: Job Management

Chapter 8: Updating the Master Job Control Language Data Set

The master job control language data set (CSECT name and load module name are
MSTRJCL) is a nonexecutable module that is created during system generation and resides on
SYS1.LINKLIB. As provided by IBM, MSTRJCL contains data definitions for all system input
and output data set necessary for communications with the job entry subsystem. MSTRJCL
also contains the START command that starts the job entry subsystem at initialization. Figure
19 shows MSTRJCL as it exists before it is assembled. During system generation, & SSNAME
is replaced with the name of the job entry subsystem.

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

CL80'//MSTRJCL
CL80'//
CL80'//STCINRDR
CL80'//TSOINRDR
CL80'//IEFPDSI
CL80'//IEFPARM
CL80'//SYSUADS
CL80'//SYSLBC
CL80'//SMFMANX
CL80'//SMFMANY
CL80'// START &SSNAME'
CL80'/*'

JOB MSGLEVEL=(0,0)'
EXEC PGM=IEEMB860,DPRTY=(15,15)'
DD SYSOUT=(A,INTRDR)'
DD SYSOUT=(A,INTRDR)'
DD DSN=SYS1.PROCLIB,DISP=SHR'
DD DSN=SYS1.PARMLIB,DISP=SHR'
DD DSN=SYS1.UADS,DISP=SHR'
DD DSN=SYS1.BRODCAST,DISP=SHR'
DD DSN=SYS1.MANX,DISP=SHR'
DD DSN=SYS1.MANY,DISP=SHR'

Figure 19. MSTRJCL Data Set

If an installation does not plan to use TSO, the system programmer can delete the
TSOINRDR, SYSUADS, and SYSLBC data definitions. He can add other data definitions as
necessary, provided that the data sets they define are created before the IPL that is to make
use of them. If the allocation of any data set defined in MSTRJCL fails, the IPL also fails.

Changes to MSTRJCL fall into two categories: modifying an existing statement, and adding
or deleting a statement. To modify a particular statement, the system programmer can use the
AMASPZAP service aid program. To delete an existing statement or add a new one, he must
reassemble the MSTRJCL statements, including a MSTRJCL CSECT card and an END card
with the statements shown in Figure 19. In the figure, & SSNAME should be replaced with the
name of the job entry subsystem.

By deleting the statement that contains the START command for the job entry subsystem,
the system programmer enables the console operator to specify the job entry subsystem during
system initialization.

Note: Until the primary job entry subsystem is started, no work can be done that requires
any input or output services.

Chapter 8: Updating the Master Job Control Language Data Set 89

90 OS/VS2 MVS System Programming Library: Job Management

Chapter 9: Updating the Subsystem Names Table — IEFJSSNT

The subsystem names table (CSECT name and load module name is IEFJSSNT) is a
non-executable module that resides in either SYS1.LINKLIB or a library that is concatenated
to SYS1.LINKLIB via a LNKLSTxx member of SYS1.PARMLIB The subsystem names table
defines secondary subsystems that were not defined on the SCHEDULR macro during system
generation and, optionally, the names of corresponding subsystem initialization routines. MVS
processes the table during master scheduler initialization, which allows subsystem initialization
routines to execute as part of the master scheduler initialization process.

The format of a table entry is shown in Figure 20. As provided by IBM, IEFJSSNT
contains five null entries.

Entry Name Unused
4 5 12 13 80

Name

Where name is one of the following:

• A one-to-four-character alphameric subsystem name. If the name contains fewer than
four characters, it must be left-justified and padded with blanks.

• A null entry specified by making the first character of the name field a blank.

• The end-of-table indicator, specified by a value of X'FFFFFFFF'.

Where entry name is one of the following:

• A one-to-eight-character name corresponding to the entry point of the initialization
routine for the associated subsystem. If the entry name contains fewer than eight
characters, it must be left-justified and padded with blanks. The entry name must be a
member name or an alias in either SYS1.LINKLIB or a library concatenated to
SYS1.LINKLIB via a LNKLSTxx member of SYS1.PARMLIB

• A null entry, specified by making the first character of the entry name field a blank.

Notes:

1. MVS ignores bytes 13 through 80 of a table entry. You may use this area for comments.

2. A null name field reserves space in the table. If a name field is null, MVS does not build
a subsystem communication vector table (SSCVT), and it does not invoke a subsystem
initialization routine.

3. If a table entry has a name field that is not null and an entry name field that is null,
MVS builds an SSCVT, but it does not invoke the subsystem initialization routine.

4. Do not specify duplicate subsystem names.

Figure 20. Entry Format for the Subsystem Names Table

Changes to IEFJSSNT fall into two categories: modifying an existing entry; adding or
deleting entries. To modify an existing entry, use the AMASPZAP service aid program. To add
or delete an entry, reassemble the table. The assembly input must include an IEFJSSNT
CSECT card, the desired table entries prepared according to the format described in Figure 20
(the last table entry must always be the end-of-table indicator), and an END card.

Chapter 9: Updating the Subsystem Names Table - IEFJSSNT 91

1

If you create several null entries when you initially assemble the table, you can later define
a new subsystem to MVS by using AMASPZAP to modify one of these entries; this eliminates
the necessity of reassembling the table each time you define a new subsystem. To create a null
table entry, make the first character of the name field a blank. When MVS processes the
subsystem names table, it ignores null entries.

See Figure 21 for an example of the assembly input.

Figure 21. Sample Input for Reassembling IEFJSSNT

92 OS/VS2 MVS System Programming Library: Job Management

Chapter 10: External Writers

After output is queued by the job entry subsystem the output can be written by the writer
associated with the job entry subsystem or by an external writer. An external writer is a
non-JES writer that calls an IBM-supplied output writer routine called STDWTR or an
installation-defined writer routine named on the SYSOUT DD statement. The operator starts
an external writer in a private address space, and the data is written using the QSAM access
method.

With an external writer, SYSOUT data sets can be written to devices other than local and
remote printers and punches supported by the job entry subsystem. Installation-written writers
can effect special processing of SYSOUT data sets accompanied by special separator pages
formatted by an installation routine. The user requests an installation-written writer by
specifying the name of the writer (other than INTRDR or STDWTR which are reserved) on
the SYSOUT parameter of a DD statement.

There are three rules for selecting data sets to be processed by for an external writer:

• Data sets with data characteristics that include an installation-written writer name are not
eligible for selection by a job entry subsystem printer or punch. An external writer should
be started to the group's output class to process these data sets, or they should be
dequeued specifically by the operator, who can cause the external writer to dequeue data
sets that specify a specific installation writer name regardless of the output class. The
JES2 $DF or JES3 *I,U command can be used to determine the classes in which data
sets specifying installation-written writers are queued.

• Data sets that do not specify a special writer can be written by a job entry subsystem
writer or an external writer, depending on operator action. If the same class is specified
for both a job entry subsystem writer and an external writer, the two routines compete
for data sets on a first-come, first-served basis.

• Print train, carriage, forms flash, paper bursting, and, optionally, forms specification are
ignored when an external writer selects data set groups. As with the MVT and VS2
Release 1 output writer, FCB and UCS specification must be controlled through
separating the data by class.

When there are no more data sets to select, the external writer notifies the operator by
issuing a message, which also informs the operator of the writer's current setup.

An external writer can dequeue data sets by any or all of the following characteristics:
output class, job (job ID), forms, destination of LOCAL or remote workstation name, and
installation-written writer name. Selection by local device name is not available in JES. A
characteristic, if not specified, is ignored when selecting data sets. For example, the operator
can set up an external writer to dequeue data sets for a certain installation-written writer name
and a specific set of forms. Since job, class, and destination are not specified, any data set
specifying the forms and writer is eligible regardless of its class or destination.

For compatibility with the MVT and VS2 Release 1 output writer, the external writer
dequeues data sets by class and LOCAL destination, if one or more output classes are
specified on either the START command or in the cataloged procedure used to call this
external writer. Forms are mounted and installation-written writers are called on demand.

The IBM-supplied name STDWTR can be used by the operator for selecting data sets that
have not specified any writer. Similarly, the forms name STD causes the external writer to
select only those data sets that have not specified a particular form.

Chapter 10: External Writers 93

For individual SYSOUT data sets, 3800 printer parameters such as FCB, CHARS, and
OPTCD=J are ignored. For further information on using the 3800 Printing Subsystem, refer to
IBM 3800 Printing Subsystem Programmer's Guide.

The following sections describe operator commands that control external writers, the
external catalog procedure, installation-defined output writer routines, and output separation
programs.

Operator Commands to Control External Writer Processing
The operator is able to start, modify, cancel and stop an external writer with the following
commands:

• START or S - start the external writer

• MODIFY or F - change the options of the external writer

• CANCEL or C - cancel a data set(s) being processed by an external writer

• STOP or P - stop the external writer

For additional information on the preceding commands, see Operator's Library: OS/VS2
MVS System Commands.

The External Writer Cataloged Procedure
A cataloged procedure for external writers requires two job control statements:

• An EXEC statement named IEFPROC - which specifies the external writer program

• A DD statement named IEFRDER - which defines the output data set

The standard external writer procedure supplied by IBM is named XWTR. The XWTR
procedure is:

//IEFPROC EXEC PGM=IASXWR00,REGION=20K,
// PARM='PA'
//IEFRDER DD UNIT=2400,VOLUME=(,,,35),
// DSNAME=SYSOUT,DISP=(NEW,KEEP),
// DCB=(BLKSIZE=133,LRECL=133,BUFL=133,
// BUFNO=2,RECFM=FM)

When creating an external writer procedure, the procedure format and the statement
requirements must be maintained. The IBM-supplied procedure can be used as an example.
The statements are explained individually in the following topics.

EXEC Statement

The EXEC statement specifies the output writer program and if ADDRSPC=REAL is
requested, its region size. It also passes a set of parameters to the output writer program. The
format for the EXEC statement is:

//IEFPROC EXEC PGM=IASXWROO[,REGION=nnnnnK,ADDRSPC=REAL]
// [,PARM=-cxxxxxxxx,seprname-]

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IASXWR00
specifies the output writer program. The name of the program must be IASXWR00 , as
shown.

94 OS/VS2 MVS System Programming Library: Job Management

REGION = nnnnnK should be specified only for ADDRSPC=REAL
specifies the region size for the output writer. The value nnnnn represents a number from
one to five digits that is multiplied by K (K=1024 bytes) to designate the region size. The
region requirements depends on the size of the buffers and the output writer used. An
insufficient size specification will result in an abnormal termination.

ADDRSPC=REAL
specifies that the external writer program cannot be paged.

PARM="cxxxxxxxx,seprname"
is a set of parameters for the output writer program. The first part of this parameter field
can contain from one to nine characters. The second part of this parameter field, if
specified, is separated from the first part by a comma and contains a program name from
one to eight characters. Both parts of this parameter field are explained below.

c
an alphabetic character, either P (for printer) or C (for punch card), that specifies the
control characters for the class of output to be processed by the writer.

xxxxxxxx

from one to eight (no padding required) single-character class .games for system output.
These characters specify the classes of output that the writer caul process and also establish
the priority of the output classes, with the highest priority on the left. If class name
parameters are included in the START command, they override this entire set of class
names in the cataloged procedure. If no classes are specified on the EXEC statement and
none are specified in the START command, the external writer waits for the operator to
enter a MODIFY command before processing any output.

seprname
the name of the program (up to eight characters) that provides job separation in the output
data set. The named program must reside in the link library (SYS1.LINKLIB) or the LPA
library (SYS1.LPALIB). The name IEFSD094 specifies the output separator program
supplied by IBM, or the name of a user-written program can specified. This subparameter
may be be omitted, in which case no output separator is used.

DD Statement

The procedure for the output writer must include a DD statement that defines the output data
set. The format for this statement is:

The ddname should be IEFRDER and must be the first DD statement in the procedure
IEFPROC. However, the external writer will always treat the first DD statement as an output
data set regardless of the ddname specified. The parameter requirements are as follows:

UNIT = device
specifies the printer, magnetic tape, card punch, or direct access device on which the output
data set will be written.

Chapter 10: External Writers 95

LABEL = (,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME = (,,,volcount)
limits the number of tape volumes that can be used by this writer during its entire operation
(from the time it is started to the time it is stopped). This parameter is not required for
printers, card punches or DASD.

DSNAME = anyname
specifies a name for the output data set, so that the output data set can be referred to by
subsequent job steps. This name is necessary for specification of the KEEP subparameter in
the DISP field.

DISP=(NEW,KEEP)
specifies the KEEP subparameter to prevent deletion of the output data set (tape and direct
access only) at the conclusion of the job step.

DCB = (list of attributes)
specifies the characteristics of the output data set and the buffers. The BLKSIZE and
LRECL subparameter fields must be specified in all cases. The BUFL subparameter field, if
not specified, is calculated on the basis of the BLKSIZE value. Other subparameter fields
may be specified as needed; if they are not, they will assume the QSAM default attributes,
which follow:

BUFNO — three buffers for the 2540 device, two buffers for all other devices.
RECFM — U-format, with no control characters.
TRTCH — odd parity, no data conversion, and no translation.
DEN — lowest density.
OPTCD — printer data checks are suppressed and "select translate table" characters are
printed as data. (The external writer does not support OPTCD=J, a 3800 Printing
Subsystem specification.)

UCS = (code[,FOLD][VERIFY])
specifies the code for a universal character set (UCS) image that will be loaded into the
UCS buffer. FOLD causes bits 0 and 1 to be ignored when comparing characters between
the UCS buffer and the print line buffer. This option allows lowercase alphabetic characters
to be printed in uppercase by an uppercase print chain or train. VERIFY causes the
specified UCS image to be printed for verification by the operator. The UCS parameter is
optional and is valid only when the the output device is a 1403 or 3211.

FCB = (image-id{,ALIGN})

{

,VERIFY}

causes the forms control buffer (FCB) image with the specified image-id to be loaded into
the FCB. One of two optional parameters, ALIGN or VERIFY, can be coded. Either
parameter allows the operator to align forms. In addition, VERIFY causes the specified
FCB image to be printed for visual verification. The FCB parameter is valid when the
output device is a 3211 or 3800; it is ignored when the device is not one of these.

Output jobs that require special print chains, specific classes should be assigned for each
different chain. The desired chain can be specified in the writer procedure; the chain will be
loaded automatically when that writer is started. (Printers used with special chains should be
specified with esoteric device specified as defined during system generation.)

96 OS/VS2 MVS System Programming Library: Job Management

The following sequence is an example of a writer-cataloged procedure for the P11 chain.

//IEFPROC EXEC PGM=IASXWR00, X
// PARM='PDEG,IEFSD094'
//IEFRDER DD UNIT=SYSPR,DSNAME=SYSOUT,FCB=(STD2,ALIGN), X
// UCS=P11, X
// DISP=(,KEEP),DCB=(BLKSIZE=133,BUFL=133, X
// LRECL=133,BUFNO=2,RECFM=FM)

If the output device is a 3211, a UCS or FCB image can be loaded dynamically between
the printing of data sets. Therefore, a mixture of data sets using different images in a single
output class is allowed; however, this might require mounting trains and changing forms, and
might not be desirable. When the output device is a 1403 or 3800, the UCS image or 3800
attributes are specified at START XWTR time and cannot be changed until the writer is
stopped; all data sets within an output class must be printed using the same train. This
parameter cannot be overridden for a specific data set when using the (asynchronous)
SYSOUT writer. The FCB image is ignored when the 1403 is specified.

External writer output to an IBM 3800 Printing Subsystem can also make use of the
CHARS, COPIES, FLASH, and MODIFY JCL parameters. For information about how to use
these parameters, refer to IBM 3800 Printing Subsystem Programmer's Guide. For further
information about coding rules, defaults, and examples, refer to OS/VS2 MVS JCL.

Writing an Output Writer Routine
You can create your own installation-defined external writer subroutine to support devices not
supported by the JES writers. The output data set writer routine used for a data set can be
specified by name (other than INTRDR or STDWTR) in a DD statement. If it is, the data set
must be processed by an external writer. If a data set that does not specify an
installation-written writer or output writer is processed by the external writer, a standard
IBM-supplied writer routine is used. The standard routine transcribes the data set to the
specified output device, making only those data format and control character transformations
required to conform to the attributes specified for the output data set.

The following material describes how to write an output data set writer routine.

Characteristics of the Standard External Routine

Before writing or modifying an output writer routine, the functions performed by the standard
data set writer should be understood. In general, these functions include opening the data set
(referred to as an input data set) that contains the information to be processed, obtaining the
records of the data set, making any necessary transformations in record format or control
character attributes, and placing these (possibly transformed) records in the output data set,
which appears on a specified output device. The standard writer also must close the input data
set and restore system conditions to the state they were in before the writer routine was
invoked. The output writer cannot be named STDWTR or INTRDR.

The Output Writer Routine

To use the output writer routine, the name of the routine must be specified as a parameter in
the SYSOUT operand of a DD statement. The routine must be in the link library
(SYS1.LINKLIB) or the LPA library (SYS1.LPALIB)

For VS2 you should:

• Use standard linkage conventions for attaching the output writer routine.

• Create the output writer routine in reentrant mode.

Chapter 10: External Writers 97

• Attach the output writer routine via the ATTACH macro instruction when your data set
requires processing.

• Acquire necessary storage via the GETMAIN macro instruction.

• Release storage via the FREEMAIN macro instruction.

• Return control to the standard writer, at the end of processing, via the RETURN macro
instruction.

Parameter List

After job management routines perform initialization requirements and open the output data
set into which the writer routine places records, control is given to the routine via the
ATTACH macro instruction. At this time, general registers 1 and 13 contain information that
the program requires. Register 1 contains the storage address of a 12-byte parameter list. The
information in this parameter list follows:

Output Device

Byte 0 Bits 0-2 Bits 0 thru 2 describe the type of device:
011 2520 or 2540 punch unit
001 1403, 1443, 3211, or 3800 printer device
010 tape device with punch-destined output
000 tape device with printer-destined output

Bit 2 If this bit is on, the output unit is either a printer or a punch.
Bits 3-7 No significant information.

Bytes 1-3 Not used, but must be present

Bytes 4-7 This word contains the address of the data control block (DCB) for the opened output data set
to be referred to by the writer.

Bytes 8-11 This word contains the DCB address for the input data set from which the writer will obtain
logical records. (At the time this 12-byte parameter list is given to the writer, the input data set
is not open.)

The switches indicated by the three high-order bit settings in byte 0 should be used to
translate control character information from the input data set records to the form required by
the output data set records.

The writer should save and restore registers.

Programming Conventions

An output writer routine must issue an OPEN macro instruction to open the desired input data
set residing on a direct access device as a result of the previous execution of a processing
program. (Note: The output data set used by a writer is opened by a job management routine
before control is given to the writer. This output data set must be given records by a PUT
macro instruction operating in the "locate" mode.)

If the processing program that produces a given data set (to be used as an input data set by
a writer) did not open the data set, the data set contains no records, and the DCBBLKSI and
DCBBUFL fields of the input DCB contain zero. The DCBBLKSI field may also be zero even
if the data set does contain records — if the processing program did not put the block size
value for the input data set in the DCB. If both these DCB fields are zero, the writer routine
should insert a value (the standard writer inserts the decimal value of 18) in the DCBBLKSI
field to permit the open routine to continue. The standard writer does this via a routine
pointed to by an entry in the EXLIST parameter of the DCB. Since there is no data set,
nothing is put on the output device. The output data set writer provides a SYNAD routine to
process errors associated with the output as well as the input data set.

The standard data set writer also includes accounting support for the SMF output writer
record (record type 6).

98 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

Before the OPEN macro instruction is issued, the DCBD macro instruction can be used to
symbolically define the fields of the DCB, and the EXLIST and/or SYNAD routine addresses
can be inserted. Other than SYNAD, no modifications can be made to the output DCB.

After the routine finishes writing the output data set, it must close the input data set and
return using the RETURN macro instruction. A return code must be placed in register 15. This
code should indicate that an unrecoverable output error has occurred (code of 8) or has not
occurred (code of 0).

Note: The programming support for the 3525 Interpret Punch includes an INTERPRET
PUNCH feature that is supported by BSAM and QSAM. The support for this feature includes
the punching and printing of graphically printable punched characters on print lines one and
three of the card. Line one includes the first 64 characters and line three includes the last 16
characters (right-justified). Extraneous characters are printed for non-graphic eight-bit codes.

If the INTERPRET PUNCH function is designated via the FUNC parameter in either a
DCB or DD statement, an existing output data set will be interpreted as well as punched. The
output must be 80 bytes, or 81 bytes if first-character control is being used.

Processing Performed by the Output Writer

Figure 22 provides a general description of the procedures followed by the standard writer.
When writing a writer routine, items can be deleted, modified, or added to some of these
procedures, depending on the characteristics of the data set(s). However, the procedures must
be consistent with operating system conventions.

Chapter 10: External Writers 99

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Figure 22. General Logic of Standard External Writer Routine

Saving Register Contents: Upon entering the writer program, the program must save the
contents of the general registers, as previously described.

100 OS/VS2 MVS System Programming Library: Job Management

Obtaining Main Storage for Work Areas: The standard writer obtains storage for a work area
by means of the GETMAIN macro instruction. In this work area, the standard writer
establishes switches and saves record lengths and control characters.

Processing Input Data Set(s): To process a data set, the writer must obtain each record
individually from the input data set, transform (if necessary) the record format and the control
characters associated with the record in accordance with the output data set requirements, and
put the record in the output data set. Data set processing by the standard writer can be
considered in three aspects.

1. The first consideration is what must be done before actually obtaining records from an
input data set. For example, the output device is a printer, a SETPRT macro instruction
can be issued to initialize it. Provision must also be made to handle the two forms of
record control character that may accompany a record in an output data set. The printer
is designed so that, if the output data set records contain machine control characters, a
record (line) is printed before the effect of its control character is considered. However,
if ANSI control characters are used in the output data set records, the control character
effect is considered before the printer prints a record.

Thus, if all the input data sets do not have the same type of control characters, it might
be desirable to avoid overprinting the last line of one data set with the first line of the
following data set. If the records of the input data set have machine control characters
(mcc) and the output data set records are to have ANSI control characters (acc), the
standard writer produces a control character that indicates one line should be skipped
before printing the first line of output data.

If the input data set records have acc and the output data set records are to be written
with mcc, the standard writer prints a line of blanks before printing the first actual
output data set record. Following this line of blanks, a one-line space is generated before
the first output record is printed. The preceding "printer initialization" procedure (or a
similar one based on the characteristics of the data sets) is recommended.

2. After an input data set is properly opened and any necessary printer initialization (such
as issuing a SETPRT macro instruction) is completed, the writer obtains records from
the input data set. The standard writer uses the locate mode of the GET macro
instruction. As each record is obtained, its format and control character must be
adjusted, if necessary, to agree with that required for output.

Since the output data set is previously opened by another routine (job management), a
writer routine must adhere to the established conventions. The data set is opened to
receive records from the PUT macro instruction operating in the locate mode. For
fixed-length record output, the length of the records in the output data set is obtained
from the DCBLRECL field of the DCB. If an input record length is greater than the
length specified for the records of the output data set, the standard writer truncates the
necessary right-hand bytes of the input record. If the input record length is smaller than
the output record length, the standard writer left-justifies the input record and adds
blanks on the right end to give the correct length.

When the output record format is variable and the input record format is not variable,
the standard writer constructs each output record by adding control character
information (if necessary) and variable record control information to the output record.
The record control information is four bytes long and the control character information
is one byte long. Both additions are made to the left end of the record. If the output
record is not at least 18 bytes long, it is further modified by adding bytes (blanks) to the
right end of the record. If the output record length does not agree with the length of the
output buffer, the standard writer makes the proper adjustment.

Chapter 10: External Writers 101

3. The third aspect is an end-of-input-data-set routine. The standard writer handles output
to either a card punch unit or a printer unit, as required. Output to an intermediate
device such as a tape unit is considered in light of the ultimate destination (for example,
punch or printer). If proper consideration is not given, all records from a given data set
may not be available on the output device until the output of records from the next data
set is started or until the output data set is closed. When the output data set is closed,
the standard writer automatically puts out the last record of its last input data set.

Punch Output: Normally, when the standard writer is using a card punch as the output device,
the last three output records are not in the collection pockets of the punch when the input
data set is closed. To put out these three records with the rest of the data set and with no
intervening pauses, the writer provides for three blank records following the actual data set
records.

Printer Output: When the standard writer uses a printer as an output device, the last record of
the input data set is not normally put in the output data set when the input data set is closed.
To force out this last record, the writer generates a blank record that follows the last record of
the actual data set.

The problem of overprinting the last line of one data set by the first line of the following
data set must also be considered. Depending on the combination of input record control
character and required output record control character, a line of blanks and a spacing control
character may be used either individually or in combination to preclude overprinting. (Note: If
overprinting is desired for some reason, control characters in the data set records themselves
may be used to override the effect (but not the action) of the previously described solutions to
overprinting.)

Closing Input Data Set(s): After the standard writer finishes putting out the records of an input
data set, it closes the data set before returning control to the system output writer. All input
data sets must be closed.

Releasing Main Storage: The storage and buffer areas obtained for the writer must be released
to the system before the writer relinquishes control. The FREEMAIN macro instruction should
be used for this.

Restoring Register Contents: The original contents of general registers 0 through 12 and 14
must be restored. The RETURN macro instruction is used for this. To inform the operating
system of the results of the processing done by the writer, a return code is placed in general
register 15 before control is returned. If the writer routine terminates because of an
unrecoverable error on the output data set, the return code is 8; otherwise, the return code is
0. Unrecoverable input errors must be handled by the data set writer.

Output Separation
The external writer can be used by a problem program to channel its output to a printer or
punch. When this is done; however, the output stream goes uninterruptedly from one job to
another, making it difficult to separate the output of one job from that of another unless
output separation is provided.

The output separator facility of the system provides a means of identifying and separating
the output of various jobs processed by the same output unit. To do this, the separator writes
separation records to the system output data set between the writing of each section of a job's
output.

For data processed by the external writer, the IBM output separator or the user's own
output separator can be used.

102 OS/VS2 MVS System Programming Library: Job Management

The external writer standard separator function operates under control of the external
writer. The external writer separator program must reside in the link library (SYS1.LINKLIB)
or the LPA library (SYS1.LPALIB). Its name, IEFSD094, must be included as a parameter in
the output writer procedure (the second part of the PARM field in the EXEC statement).
(The cataloged procedure for the writer is described in the beginning of this section.) The type
of separation provided by the separator depends on whether the output is punch-destined or
printer-destined.

Punch-Destined Output: The external writer provides three specially punched cards (deposited
in stacker 1) prior to the punch card output of each job. Each of these separator cards is
punched in the following format:

Columns 1 to 35 blanks
Columns 36 to 43 jobname
Columns 44 to 45 blanks
Column 46 output classname
Columns 47 to 80 blanks

Printer-Destined Output: The external writer provides three specially printed pages prior to
printing the output of each job. Each of these three separator pages is printed in the following
format:

• Beginning at the channel 1 location (normally near the top of the page), the jobname is
printed in block character format over 12 consecutive lines. The first block character of
the 8-character jobname begins in column 11. Each block character is separated by 2
blank columns.

• The next 2 lines are blank.

• The output classname is printed in block character format covering the next 12 lines.
This is a 1-character name, and the block character begins in column 55.

• The remaining lines to the bottom of the page are blank.

In addition to the above, a full line of asterisks (*) is printed twice (overprinted) across the
folds of the paper. These lines are printed on the fold preceding each of the three separator
pages, and on the fold following the third page. This feature provides easy separation of job
output in a stack of printed pages.

For printer-destined output with the IBM-supplied separator, a channel 9 punch should be
included in addition to the channel 1 punch on the carriage control tape or in the forms control
buffer (FCB). The channel 9 punch controls the location of the line of asterisks and should
correspond to the bottom of the page. To print the line of asterisks on the fold of the pages,
the printer registration should be offset.

Because the IBM-supplied separator routine makes no provision for a 3800 Printing
Subsystem, the FCB must locate a channel 9 punch at least one-half inch from the paper
perforation.

Writing an Output Separator Program

You can write your own separator program for your installation. However, the program should
conform to the requirements explained in the following topics. The separator program, when
added to the link library (SYS1.LINKLIB) or the LPA library (SYS1.LPALIB), is invoked by
specifying its name as a parameter in the EXEC statement of the output writer cataloged
procedure.

Chapter 10: External Writers 103

Parameter List

The external writer provides the separator program with a 4-word parameter list of needed
information. When the program receives control, register 1 contains the address of a 4-word
parameter list, which contains the following:

Byte 0 This word contains switches that indicate the type of output unit, as follows:
011 2520 or 2540 punch device
001 14.03, 1443, 3211, or 3800 printer device
010 tape device with punch-destined output
000 tape device with printer-destined output

Bytes 1-3 Reserved

Bytes 4-7 This word is the address of the output DCB (data control block).

Bytes 8-11 This word is the address of an 8-character field containing the jobname.

Bytes 12-15 This word is the address of a 1-character field containing the output classname.

The DCB pointed to by the parameter list is established for the queued sequential access
method (QSAM) and is already open when the separator program receives control.

The address of the jobname and the address of the output classname are provided in the
parameter list so that this information may be used in the separation records written by the
separator program.

Programming Conventions

The separator program, if specified in the external writer cataloged procedure, is brought into
storage by a LINK macro instruction issued by the external writer. The separator program can
be any size, but a program over 8K might affect the region requirement of the external writer.

Caution: Since the separator program operates with a privileged protection key, but in problem
program mode, the separator program must insure data protection during its execution.

When writing a separator program, the following programming conventions must be
observed:

• The program must conform to standard linkage conventions.

• The program must use the PUT macro instruction in locate mode to write separation
records on the output data set. (This method is required by the QSAM DCB that is open
for the output data set.)

• The program must establish its own synchronous error exit routine. The address of this
routine must be placed into the DCBSYNAD field of the output DCB. This gives control
to the error exit routine in case an uncorrectable I/O error occurs while writing the
program's output.

• The program should use the RETURN macro instruction to return control to the external
writer. Before returning, the program must free any main storage it obtained during its
operation and must place a return code (binary) in register 15. The return codes signify:

o — Successful operation

8 — Unrecoverable output error (should be set if the error exit routine is entered)

Output from the Separator Program

The separator program can write any kind of separation identification. The jobname and the
output classname for each job are available through the parameter list for inclusion in the
output, if desired. An IBM-supplied routine can be used that constructs block characters
(explained below). As many separator cards can be punched or as many separator pages can
be printed as necessary.

104 OS/VS2 MVS System Programming Library: Job Management

The output from the separator program must conform to the attributes of the output data
set. These attributes, which can be determined from the open output DCB pointed to by the
parameter list, are:

• Record format (fixed, variable, or undefined length)
• Record length
• Type of carriage control characters (machine, ANSI, or none)

For printer-destined output, the separation records must be begin on the same page as the
previous job output, or, if there is no previous output, the next page available. However, the
separator program should skip at least one line before writing any records, because in some
cases the printer is still positioned on the line last printed.

After completing the output of the separation records, the separator program should write
sufficient blank records to force out the last separation record. This also allows the error exit
routine to obtain control if an uncorrectable output error occurs while writing the last record.
The requirements are:

• One blank record for printer-destined output
• Three blank records for punch-destined output

Using the Block Character Routine

For printer-destined output, the separator program can use an IBM-supplied routine to
construct separation records in a block character format. This routine is a reenterable module
named IEFSD095 and resides in the module library SYS1.AOSB0.

The block character routine constructs block letters (A to Z), block numbers (0 to 9), and a
blank. The program furnishes the desired character string and the construction area. The block
characters are constructed one line position at a time. Each complete character is contained in
12 lines and 12 columns; therefore, a block character area consists of 144 print positions. For
each position, the routine provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string. However, the
routine does not enter blanks between or within the block characters. The program must
prepage the construction area with blanks or other desired background before entering the
block character routine.

To use the IBM-supplied block character routine, the separator program executes the CALL
macro instruction with the entry point name of IEFSD095. Since the block characters are
constructed one line position at a time, complete construction of a block character string
requires 12 entries to the routine. Each time, the address of a 4-word parameter list should be
provided in register 1. The parameter list must contain the following:

• Bytes 0-3

• Bytes 4-7

• Bytes 8-11

• Bytes 12-15

This word is the address of a field containing the desired character string in EBCDIC
format.

This word is the address of a full word field containing the line count as a binary
integer from 1 to 12. This represents the line position to be constructed on this call.

This word is the address of a construction area in main storage where the routine will
construct a line of the block character string. The required length in bytes of this
construction area is 14n-2, where n represents the number of characters in the string.

This word is the address of a fullword field containing, in binary, the number of
characters in the string.

Chapter 10: External Writers 105

106 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

Index

affinity, CPU 82
affinity mask, in PPT 82
ALLOCATE command 13,12
allocation

by ddname 15
by dsname 13
guidelines for improving 2

allocation conflicts 22
allocation resource recovery 5
allocation services 1-10
allocation suggestions for TSO 2.1
allocations, order of 1
AMASPZAP service aid program

master job control language data set 89
program properties table 85

assigning special program properties 81-87
assigning volume attributes 2
ATTRIBUTE command 12
automatic checkpoint restart 79
automatic step restart 79

block character routine 105
bringing device online 20
bypassing password protection 81

CANCEL command
external writer 94

catalog, private
removing in-use attribute from 12
restriction on unallocating 16

cataloging
dynamically allocated data sets 14

changing parameters for SVC 99 34
CHARS parameter 97
concatenated group

assigning in-use attribute to 17
forming dynamically 17
removing in-use attribute from 17
unallocating 16

concatenation, dynamic
defined 17

continue restart 79
control limit 12
control value

defined 12
exceeded 12
definition 12

controls designed for time-sharing environment 12
convertible attribute

definition 13
use in SVC 99 processing 13

COPIES parameter 97
CPU affinity 82
CPU identifier 82
creating device allocation tables (5752-864) 2

DAIR (Dynamic Allocation Interface Routine) 28
DALBFALN 50-51
DALBFTEK 51,50
DALBLKLN 40,37
DALBLKSZ 50,51
DALBUFIN 51,50
DALBUFL 51,50
DALBUFMX 51,50
DALBUFNO 52,50
DALBUFOF 52,50
DALBUFOU 50,52
DALBUFRQ 52,50
DALBUFSZ 53
DALCDISP 39,37
DALCLOSE 44,37,77
DALCNVRT 60,50

DALCODE 53,50
DALCOPYS 43,37
DALCPRI 52,50
DALCYL 40
DALDCBDD 47,48,37
DALDCBDS 47
DALDDNAM 38,37
DALDEN 53,50
DALDIAGN 58,50
DALDIR 40,37
DALDSNAM 38,37
DALDSORG 53,50
DALDSSEQ 45,37
DALDUMMY 46,37
DALEROPT 54,50
DALEXPDT 45,37
DALFCBAV 47
DALFCBIM 46,37
DALFRID 58,50
DALFUNC 59,50
DALGNCP 54,50
DALINOUT 45,37
DALINTVL 54,50
DALIPLTX 58,50
DALKYLEN 54,50
DALLABEL 44,37
DALLIMCT 54-55,50
DALLRECL 55,50
DALMEMBR 38,37
DALMODE 56
DALMSVGP 48,37
DALNCP 55,50
DALNDISP 39,37
DALOPTCD 55,50
DALOUTLM 44,37
DALPARAL 43,37
DALPASPR 45,37
DALPASSW 60
DALPCIR 56,50
DALPCIS 56,50
DALPERMA 60
DALPRETPD 45,37
DALPRIME 40,37
DALPRIVT 41,37
DALPROT

data set name allocation 48,37
used to specify RACF protection 55

DALPRTSP 56-57,50
DALQNAME 46,37
DALRECFM 57,50
DALRLSE 41,37
DALROUND 41,37
DALRSRVF 57
DALRSRVS 57,50
DALRTDDN 60,77
DALRTDSN 60
DALRTORG 60
DALRTVOL 60
DALSECND 41
DALSFMNO 43,37
DALSHOLD 48,37
DALSOWA 57,50
DALSPFRM 41,37
DALSPGNM 43,37
DALSSNM 48,37
DALSSPRM 48,37
DALSTACK 58,50
DALSTATS 39,37
DALSUSER 48,37
DALSYSOU 43,37,77
DALTERM 46,37
DALTHRSH 58,50
DALTRK 39,37
DALTRTCH 58,50
DALUCS 47,37

Index 107

September 14, 1979

DALUFOLD 47,37
DALUNCNT 42,37
DALUNIT 42,37
DALUVRFY 47
DALVLCNT 42,37
DALVLRDS 42,37
DALVLSEQ 42,37
DALVLSER 41,37
data set integrity 81
data set name allocation text units 38
data set organization

returned by dynamic allocation 19
DCB attribute text units 50
DCCDDNAM 66
DCCPERMC 66
DDCDDNAM 67
DD DYNAM statements 12
DD statement

external writer cataloged procedure 95
ddname

allocation of 15
unallocation of 16

ddname allocation text units 69
DDNDDNAM 69
DDNRTDUM 69
deconcatenation, dynamic 18

defined 18
deferred checkpoint 79
demounting volumes 10
determining number of volumes and units 8
device allocation tables (5752-864) 2

defining 2
creating 2
using a version 2

DINDDNAM 70
DINDSNAM 70
DINRELNO 73,70
DINRTATT 73,70
DINRTCDP 72,70
DINRTDDN 70
DINRTDSN 70,71
DINRTLIM 72,70
DINRTLST 73,70
DINRTMEM 71,70
DINRTNDP 71,70
DINRTORG 72,70
DINRTSTA 72
DINRTTYP 73
direct access space

allocation defaults 20
disposition, data set

changing during unallocation 34-35
DRICURNT 68
DRITCBAD 68
dsname allocation

defined 13
detailed description 13
function 15

DUMMY data sets
order of allocating I
used to satisfy a request 33

DUMOVSHQ 64,63,65
DUMOVSNH 64
DUNDDNAM 63
DUNDSNAM 63
DUNMEMBR 63
DUNOVCLS 65,63
DUNOVDSP 64,63
DUNOVSUS 65,63
DUNREMOV 64,63
DUNUNALC 63,64
DYNALLOC macro instruction 23,11
dynamic allocation functions (SVC 99 functions) 11

error reason codes 28
flag settings 25-26
functions available with 11
informational reason codes 28
keys

by function 36
defined 26

non-JCL functions 14,60
of a ddname 15
of dsname 13
parameter structure 24-27
text unit keys 11,26
verb codes 11

dynamic allocation function verb codes
by function 36
defined 11

Dynamic Allocation Interface Routine (DAIR) 27
dynamic concatenation 17-18
dynamic concatenation text units 66
dynamic deconcatenation 18
dynamic deconcatenation text units 67
dynamic information retrieval 18
dynamic information retrieval text units 70
dynamic unallocation 16-17
dynamic unallocation text units 63
DYNAMNBR parameter 12

EDT (eligible device tables) (5752-864) 2
EDTGEN macro (5752-864) 2
eligible device tables (EDT) (5752-864) 2
environmental conflicts, allocation 33
error code field

place in parameter structure 25
purpose 25

error reason codes
in parameter structure 28
meanings 28-30

example of SVC 99 request 74
exclusive use of data sets 84
EXEC statement

external writer cataloged procedure 95
existing allocations 33

changing parameters of 34
choosing among 33
eligible 33-34
ineligible 33

External Writer 95-105
canceling 94
cataloged procedure 94-97
modifying 94
starting 94
stopping 94

failing job
resumption or termination of 79

FCB considerations 97
features of SVC 99 processing 23
FLAGS1 field

bit meanings 25
place in parameter structure 24
purpose 25

FLAGS2 field
bit meanings 25
place in parameter structure 24
purpose 25

FLASH parameter 97
forms control buffer (see FCB considerations)

generation data groups
permanently allocated 17
removing . in-use attribute from 18
unallocating 17

HOLD/NOHOLD options
overriding during unallocation 17

IASXWR00 94
IBM 3800 Printing Subsystem

CHARS parameter 94
COPIES parameter 97
FLASH parameter 97
forms control buffer (FCB)

considerations 94

108 OS/VS2 MVS System Programming Library: Job Management

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

MODIFY parameter 94
OPTCD parameter 94

output separation restriction 103
parameters

for individual SYSOUT data sets 97
special 96

SETPRT macro instruction for 99
identifying a resource by task-id 17
IEFEB400 (5752-864) 2.1
IEFPROC 95
IEFJSSNT 91
IEFRDER 95
IEFSDPPT 81
IEFSD060 81
IEFZB4D0 macro instruction 76
IEFZB4D2 macro instruction 76
indexed sequential data sets

allocation restriction 26
INFO field

place in parameter structure 25
purpose 25

informational reason codes
in parameter structure 24
meanings 25

improving allocation response 4
input validation routine 20

programming considerations 20-21
installation options 19
installation validation routines 20

programming considerations 21
internal reader

dynamically allocating 77
opening 77
passing JCL records and jobs 77-78

in-use attribute 12
ISAM data sets

allocation restriction 15

job journal
journal merge routine 79
journal write routine 79
purpose 79
records in 79

job scheduler restarting support 79-80

KEY field (SVC 99)
place in parameter structure 11
purpose 25

layout of SVC 99 parameter list 24
LEN field

place in parameter structure 25
purpose 25

LENGTH field
place in parameter structure 24
purpose 25

log data sets
controlling the processing of 87
SYSOUT class of 87

log, system 87-88
LOGCLS initialization parameter 87
LOGLMT initialization parameter 87,88

master job control language data set 89
MCS (multiple console support)

hardcopy 87
membername

specified for a dynamic unallocation request 17
MLPA facility (5752-864) 2
modify, external writer 94
MODIFY parameter 94
mount and use attributes combinations 4
mount attribute 2
mounting volumes 20
multiple versions of device allocation tables (5752-864)
MSS

UADS authorization for 20-21
MSTRJCL data set (see master JCL data set)

new SVC 99 allocations 35
no-data-set-integrity program property 81
NOJOURN initialization parameter 81
non-JCL dynamic allocation functions 60
non-private volume 14
non-support JCL DD statements 4
nonspecific request 6
nonspecific volume request 6

nonspecific request for 14
nonsharable attribute 4-5

defined 4
nonspecific volume requests

types of 6-7
nonswappable program property 81
not-in-use attribute 33
number field 26

OPTCD parameter 94
output class

overriding during unallocation 17
output separation 102-105
output writer (see External Writer)

PARM field
place in parameter structure 24
purpose 27

parameter list (SVC 99) 24
password protection 81

bypassing 81
passwords 27
permanently allocated

defined 12
performance consideration 1

permanently concatenated attribute
defined 18
how assigned 18
properties of 18

permanently concatenated groups
defined 17
unallocating 17

permanently resident attribute 3,2
defined 3

permanently resident volumes 3
at job termination 14
order of allocating 11

PPT (see Program Properties Table)
examples 83-84

printing subsystem, 3800 (see IBM 3800 Printing
Subsystem)

preferred storage flags
defined 82
example 84
tips for using 83

private attribute 3
private volumes

defined 2,3
nonspecific request for

privileged programs 81
processing allocation requests 5
program name, in PPT 81
program properties, in PPT 81
Program Properties Table (PPT) 81-85

content 81
format of entry in 81-82

CPU affinity mask 82
program name 81
program properties 81
protection key 82

how to change or add an entry 85
PROTECT

error reason code 25
specification in text units 53

2 protection key, in PPT 81
public attribute 2-3

Index 109

Page of GC28-0627-2
Revised September 14, 1979
By TNL GN28-4681

public volumes
defined 2

punch 131

recovery 5
remote workstation defaults 19
remote workstation designation 19

overriding during unallocation 17
removable attribute 3
request block fields, dynamic allocation 25
reserved attribute 2,3
reserved volumes 3

order of allocating 1
restarts, types of

automatic checkpoint 79
automatic step 79
continue 79
deferred checkpoint 79
system 79

request block (S99RB) 25
reserved volumes

defined 3
restarting support, job scheduler 79-80
results of SVC 99 requests 76
retrieving allocation information 18
return codes

dynamic allocation 27
rules for

dynamic allocation 14-15
dynamic unallocation 16-17

satisfying MSS nonspecific request 7
satisfying new SVC 99 request 35
separator, output 102-105
serialization of allocations 1
SETPRT macro instruction 99
SGIEF0PT macro 85
sharable units

order of allocating 1
space and unit default 19
space default 19
specific volume request 6
special program properties, assigning 81-85
START command

external writer 94
job entry subsystem 93

STDWTR 93
STOP command

external writer 94
storage volumes

defined 2,3
structure of SVC 99 parameter list 24
subsystem data set

parameters, specifying 91
requesting 91

subsystem names table
content
description 91
format 91
modifying entries 91
module name 91
processing, by MVS 91

suggestions for TSO allocations 2.1
SVC 99 11

allocation 15
unallocation 16
concatenated 17
deconcatenated 18
information retrieval 18

SVC 99 parameter list 24
SVC 99 processing 23-36
SVC 99 programming considerations 23
SYSP parameter (5752-864) 2.1
System restart 79
S99ERROR 27
S99FLAG1 25
S99FLAG2 25
S99INFO 28

S99RB (SVC 99 request block) 25
S99RBLN 25
S99TXTPP 25
S99VERB 25
SWA (scheduler work area)

reconstruction of 79
SYSIN data sets

order of allocating 1
SYSOUT data sets

order of allocating 1
unallocating 16
for communication with job entry subsystem 87

system log 87-88
altering the operation of 87

default operation 19

task ID
used to identify allocation resources 17

TCAM message control program 84
teleprocessing devices

order of allocating 1
TEXT POINTERS field

place in parameter structure 24
purpose 25

TEXT UNIT field
place in parameter structure 24
purpose 25
subfields defined 26

text units by function 36
text units for removing the in-use attribute based on task-id

68
3800 printer (see IBM 3800 Printing Subsystem)
time sharing option allocation suggestions 2.1
TSO allocation suggestions 2.1

unallocation
dynamic 16
of resources held for reuse 34

understanding features of SVC 99 processing 12
unit defaults 19
unit description

SVC 99 defaults 19
units

determining the number per job 8
determining the number per step 9

unit description
dynamic allocation defaults 19

updating MSTRJCL data set 89
use attribute 1
users of SVC 99 function 12

batch user 12
time-sharing user 12

VATLST 2
VERB CODE field

place in parameter structure 24
purpose 25
settings defined 24

verb codes (SVC 99)
X`01' 13
X'2' 16
X'3' 17
X'4' 18
X'5' 17
X'6' 14
X'7' 15

VIO data sets
order of allocating 1

volume attributes 20
volume demounting 10
volume mounting 20
volume requests

how satisfied 8-9
MSS 6-7
nonspecific 7
specific 7
type of volume assigned 4

110 OS/VS2 MVS System Programming Library: Job Management

September 14, 1979

volume sharing 4
volumes

determing the number 8

write-to-log (WTL) 87
writer

job entry subsystem 93
WRITELOG command 87

writer, external 93-105
logic flow 100

WTL (write-to-log) macro instruction 87

XWTR 94
3800 printer (see IBM 3800 Printing Subsystem)

Index 111

September 14, 1979

112 OS/VS2 MVS System Programming Library: Job Management

Technical Newsletter This Newsletter No. GN28-4681
Date September 14, 1979

Base Publication No. GC28-0627-2
File No. S370-36

Prerequisite Newsletters/ None
Supplements

OS/VS2 MVS System Programming
Library: Job Management

© Copyright IBM Corp. 1975, 1976, 1978

This newsletter contains replacement pages for Job Management to support maintenance
updates to Release 3.8.

Before inserting any of the attached pages into Job Management, read carefully the
instructions on this cover. They indicate when and how you should insert the pages.

Pages to
be Removed

Cover - Edition Notice

Attached Pages
to be]nserted*

Cover - Edition Notice
iii - x
1 - 2
9-10

iii - x
1 - 2.4
9-10

15 - 20 15 - 20
23 - 26 23 - 26
29 - 38 29 - 38
41 - 42 41 - 42
45 - 48 45 - 48
99 - 100 99 - 100
107 - 112 107 - 112

*If you are inserting pages from different Newsletters/Supplements and identical page
numbers are involved, always use the page with the latest date (shown in the slug at the
top of the page). The page with the latest date contains the most complete information.

A change to the text or to an illustration is indicated by a vertical line to the left of the
change.

Summary of Amendments

Changes have been made throughout the publication to reflect maintenance updates
and changes to OS/VS2 MVS Release 3.8.

Note: Please file this cover letter at the back of the base publication to provide a record
of changes.

IBM Corporation, Publications Development, Department D58, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134

