GC28-0984-0
File No. S370-20

Systems OS/VS2 MVS Overview

First Edition (June, 1978)

This edition applies to release 3.7 of OS/VS2 MV'S, and to all subsequent releases and
modifications until otherwise indicated in new editions or Technical Newsletters.
Changes may be made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest 1BM System/370
Bibliography, GC20-0001, for the editions that are applicable and current.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Department D58,
Building 706-2, PO Box 390, Poughkeepsie, New Y ork 12602. Comments become the
property of IBM.

© Copyright International Business Machines Corporation 1978

Preface

This book describes the main features of MV S. It explains each of these
features and describes the flow of work through the mgjor parts of the
system. It does not, however, describe every feature of the system. The
emphasis here is on what MV S does and how it accomplishes its objectives.

The book isintended for a general audience, but some knowledge of
operating systems is necessary.

Chapter lisanintroduction to the basic features of MVS. It shows how
MV S accomplishes its main objective of doing more work. Those who
require only a high-level overview of the system can obtain this from
Chapter 1.

Chapters 2 — 10 provide detailed information on each of the concepts
Chapter 1 introduces. Chapters 2 — 10 are, generally speaking, a
chronological view of the system. That is, they take the reader from the
concepts of virtual storage through initializing the system to entering,
scheduling, and supervising work. The main topics they discuss are MV'S,
the System Resource Manager, Job Entry Subsystems, 1/O, Error Recovery,
and Multiprocessing.

There are no prerequisites to this publication. Related publications are:

OSVS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

OSVS2 MVS Release Guide, GC28-0707

OSVS2 System Programming Library: System Generation Reference,
GC26-3792

OS/VS2 System Programming Library: Supervisor, GC28-0628

OSVX Supervisor Services and Macro Instructions, GC28-0683

OSVS2 MVS Multiprocessing: An Introduction and Guide to Writing
Operating and Recovery Procedures, GC28-0952

OSVS2 Conversion Notebook, GC28-0689

OSVS2 MVS Performance Notebook, GC28-0886

OS/VSL to OSVS2 Conversion Notebook, GC28-0953

OVIVR2 System Modification Program (SMP) System Programmer's Guide,
GC28-0673

Operator's Library: OSVS2 MVS System Commands, GC28-0229

OSVX2 MVSJCL, GC28-0692

Operator's Library: OSV MVSJESR2 Commands, GC23-0007

Operator's Library: OSVS2 MVSJES3 Commands, GC23-0008

OSVS2 MVS System Programming Library: JES?, GC23-0002

OSV2 System Programming Library: Job Management, GC28-0627

Introduction to JES3, GC28-0607

Preface iii

iV OS/VS2 MVS Overview

Contents

Chapter 1: INtrOQUCLION ...ovieee ettt b et st a e r s 11
Direct Benefits cccovvrneee s 11
Multiple Virtual Storage
AddressinginMVS ...
Sharing Real Storagecceeeee.
SUMMATY oo
MUILIPIOCESSING ..veeevieeueeieeeieeee e eie st eeee e
Tightly-Coupled and Loosely-Coup
Availability ...
Flexibility
Attached Processor System —..........
Error RECOVEIYooviiiiinieeeeeeeeeeies
Recovery Management Support —.............
Recovery Termination Management
Summary of Direct Benefits

Indirect BENEitScoveveerercicreece e
Greater Support for Interactive Users
Sessionsand Transactions —................
Terminal 1/0 ..o
SWaPPING .eeeeeeereenn
Improved BalanCe cccoveininnieneeeeeee
Control of Performancecccccoevveeene
Overview of the SRM
Reduction in Bottlenecks
Improved Security and Integrity
Isolate and Protect —
Validate and Authorize
User Responsibility —.................
Enhanced FUNCLION ..o
Job Entry Subsystem
JES2 s
JES3 s
Subsystem Interface
System Generation and Initialization
System Generationcccceveirenienene
System INItialiZatioNcooveiiiiie e
SYSLEM OPEFELION ...ceeeiieeeieete ettt st seene e
Virtual Storage Access Method (VSAM)
SUMIMENY ottt st se et se e et r e e n e ne e eeenane
Chapter 2: Virtual Storagein MVS ..ot
Pages, Frames, and SIOtSccoeeveininnieneeeeee v 21
INEEGIILY o e 23
Storage Protect Keys ..o e 2-3
Address Space cccoeeeenne. wvrererenneens 20
Dynamic Address Trandlation .. e rerverennienene 270
Virtual Addresscccceveenne SOV 2-6
Segment and Page Tables e 2-8
Two-Level Table Lookup ... e e 2-9
PagiNg oo ettt ettt e e ees 2-10
Demand Paging ... e 2-10
SWAPPING o rereerene 2-11
Page Stedlingc.cccceeevenneee e v 2711
Page Frame Tahle ...t 2-11
SyStEM COMPONENES ..ttt a e eb e 2-13
Real Storage Manager (RSM) v 213
Auxiliary Storage Manager (ASM) ... v 2713
Virtual Storage Manager (VSM) e s 2-13
Program Loading v 2-14
Virtual Storage Areas e ————— 2-15
SySteM Areacccceveevevererenenn vt 2-17
COMMON ATERL ...ttt b bbb bbb bbb bbb bbb bbbt eb bbb erenas 2-17
System QueUE Area (SQA) .ottt e 2-17
Pageable Link Pack Area (PLPA) ... e s 2-17
Common SErVICE ATEA (CSA) oottt 2-18

Contents v

vi OS/VS2 MVS Overview

PrIVAIE ATEALviiiiiiiiicicicieiei et 2-18
Local System Queue Area (LSQA) oo 2-18
Scheduler Work Ar€a (SWA) ... 2-19
Subpools229/230 ccceeenee e 2-19
System Region ..., e ——— 2-19
Virtual (V=V) User Region s 2-19
Real (V=R) USEr REJION ..o 2-20

Extensions and Optionsc..cc...... ettt 2-21
Fixed Link Pack Area(FLPA) e 2-23
Modified Link Pack Area(MLPA) ettt ettt e ettt eaeneene 2-23
BLDL LISIS ..euiiiiiuiieitieieieieieie ettt bbb 2-23

Chapter 3: Installing and Servicingthe System ..., 31
Installing the System ... e 31

Preliminary Considerations —.........ccccceeeeeene e 31

The INStallation Plan ... 31
Installation Taskscooeeivereerreeee e ST 32
Checkpoints and Interdependencies ettt ettt eeeeeae s 33
Performance ..., e 33
Staffing and Personnel s 33

SyStem GENEration cccecoeveiereneeereesie e w33
Planning and Preparing for the System Generationccccoveeeeene. v 34
Executing the System Generation cccccoeveeerenneneeieneneee e .. 35
Verifying the System Generation cccccoeveevenrieveneesec e e 37

MV'S System Installation Productivity Option (MVS System IPO) ...

The MVS SYyStemM IPO ..ot

MV'S System |PO Documentation
The MV S System IPO Installation Plan

Servicing the System
The System Modification Program (SMP)
Installing Selectable Units (SUS)cccccvueeeeee
SMP OPLON .ot
Installing Programming Temporary Fixes (PTFs)
Installing User Modificationscccoceevierciciencnenne
SMP Control FUNCLIONS ..o
Chapter 4: Preparing the System for Work —.....ooeoeiveiee e 41
Overview of the Initialization Process s 41
Initiating the Load Procedure —............. e 4-2
The System Residence Volume ... e 42
The System Console ... T 4-2
Initial Program Loading s 4-3
Clearing Storage e 4-3
Loading the Nucleuscccoceeeveicnnene. v 44
Nucleus Initidlization viaNIP v 44
Initializing Real SOrageccccoeereeeereieee e v 45
Initializing A Master Address Space ... v 46
Obtaining System Parametersccoccoeereievennesee e e 4T
The System Parameter Lists ... e 4-9
System Operator Activity s 4-9
Resource Initidization ViaRIMS ... R 4-10
Initializing 1/0 DEVICES ocvvvevvirerrereerreeeee s e 411
Initializing Volume Attributes ... v 412
Initializing System Consoles 413
Initializing the System Catalogcccceeereierereereeere e crreneees 414
Initializing the System Resources Manager —ccooeeeeveveeneveseeneseseenenenns e 416
Automatic Priority Group (APG) Initializationc.ccoceeevvvvnienreecneees 4-16
Installation Performance Specification Initialization (IPS) ccccooeeiieineeeee. 4-16
Optional System Tuning Parameter Initialization (OPT) ...ccoceireveieneiencene 4-16
Additional SRM Initializationcccoeeevveiinnecenneens e 4-17
Initializing the Auxiliary Storage Manager —ccccceeeeveverencnnens v 417
Page Data Set Initializationccooevvrneinenncesreeeens v 417
Swap Data Set Initialization ... e 4-18
Duplex Data Set Initialization ettt se s 4-18
V10O Data Set Initialization e 418
Initializing the Program Manager — 4-18
Pageable Link Pack Arealnitialization e 419
Fixed Link Pack Arealnitiaization s 4-21
Modified Link Pack Arealnitialization s
Tableand List Initialization —ccvee.
Master Scheduler INItialiZalioN cccooveeenereee e

Initializing the Master Scheduler Base
Initiating the Master Scheduler
Initializing the Master Scheduler Region .

Creating an AddreSS SPate ...c.ooeeceirieereereeeer e
Initializing the Region Control Task
INITIAING JES oottt

Chapter 5: Entering and SchedulingWork ..o
Terminology and CONCEPLSccceeeeuiiicieececee et

INtErNal REAAESooieeeeee et e

Initiators and JOb ClasseS cocveveeie e

Address SPace Creation coceieerereererese e e
Job Entry Subsystem Processing

NPUL ettt e e nnenn s

Conversion e ———_

L= o1 1110 o [

JES2 Featuresccccooeeeeverecccencnnnne.
Priority AQING oo
Execution Batch Scheduling e
Automatic Commands —............ e
Multi-Access Spool — ettt et sttt neenas

JES3 Featuresooeeveiieniens ettt e e e
Dependent Job Control ..o
Device Fencing e h et e e bbb e bt e e b et be et ee e enenean
PriOMity AQING oottt st
Deadline SCheduling ..o e
Network Job ProCESSINGooveeiieericcree s
RemOote JOD ProCESSING ..oovoeieeereeereee e
Dynamic System Interchange ... ettt neeae

AlloCation Of DEVICES ...ovoeieeee e
Dynamic Allocation

Chapter 6: Supervising the Execution of Work —ccoovieiiiiniiecieeee

Interruption ProCeSSINGccoovveeveenerereecrieeeeeeas
The Role of Program Status Words
The Interruption Handler (IH) Routines ...

Creating Dispatchable Units of Work —...............
Task Control Blocks (TCBS) ccecvvvenee
Service Request Blocks (SRBS)

Dispatching Workccccooeevennieneccneene

Serializing the Use of Processors —
ENQUEUEING <ottt
Locking

Chapter 7: Managing SyStem RESOUICES ..c.veerueieerieerierieereeesee e
How the SRM Meets Its Objectivescoevveinenenne.
Magjor Functional Areasof SRM ...
Communicating With SRM
SRM Controlccovevireeee
SWEP ANAYSIS oo
The Workload Manager ... e
The Resource Managerccccoceeeeeeenncneee
Storage Management cccceevveneene
I/O Managementcccce.. .
Processor Management
ReSOUrce MONITOMNG ..voeeieeeirieeeie e

Chapter 8: Satisfying 1/0 Requestsand Data Management —.....................
ACCESS MELNOU ...
Data Set Organization
Access Techniques —............
Access Method Types
Scheduling /O ..o
User Program Functions
OPEN Processing
[/O REQUESL ...ttt

4-26
4-26
4-26
4-27
4-27
4-27
4-27

8-2
8-2
83
8-4
8-4
8-6

Contents vii

vii OS/VS2 MVS Overview

CLOSE PrOCESSING ..eueuceereresreeereresaseeeseeasesesesesesessessssssssessssssssssssssessesssssssesssessens 8-7

Access Method Function ... e aeans 8-8
Control Blocks — ettt ettt R ettt sttt 8-8
Channel PrOgram ..ot 89
EXCP Macro Instructionc.ccceeeeenne .. 89
APPENdAgES ..o ... 810

Input/Output Supervisor (10S) Functions ettt 8-10
EXCIOSriver Front End . 8l
Channel Scheduler 812
I/O Interruption Handler 8-13
EXCP Driver Disabled Interruption Exit (DIE) 813
POSt SEBIUS «.eeereeecneeeereeeireeseseesessesesseseseeseseeseseenas e 814
EXCP Driver Back End e 8-14

SUMIMEBIY ottt r e ne e r et n e 8-14

Virtual Input/Output (V10) ... 816
Virtual Storage Access Method (VSAM) et 8-17

Control INterval .o ettt ees 818

Key-Sequenced Data Set ... e e 8-20

Entry-Sequenced Daf@ SELccvrrerererrnreenireeeeene e 821

Relative Record DataSet : . 821

AREINELE INABES ... 8-22

SYSLEM CAAIOF ...vvieerireriicieteieee ettt bbbttt bbbt 8-22

Chapter 9: ReCOVENiNG frOM EITOrS ocvvviececiiciiesisisirese e 91
Recovery Terminationc..cccceeeeeee 91
Task Recovery Routines 9-2
Functional ReCOVErY ROULINES cviiiiiiiiic s 9-2
Recovery Management SUPPOMccvececuerniieciereseessesesssese s sesetessssssesessssssssesesneas 9-3

Machine Check Handler e 9-3
Alternate CPU Recoverycccevenne e 95
Channel Reconfiguration Hardwarecccoooconiericnccneeeeseee e 9-5

Channel Check Handlerccocovveceeunene. e ——— 9-5

Dynamic Device Reconfiguration ... e 9-6

Missing Interrupt Handler ... 9-6

Chapter 10: MUItIPrOCESSING -veueereurereseereseeres et
Loosely-Coupled MUItIPrOCESSING ...ooveveieeieieccee e 10-1
Tightly-Coupled MUItiproCESSING ...ooveeee e 10-1

Configuration ccccoceeeeereienereeeene e 10-2
Logical Reconfiguration —........ e 10-2
Physical Reconfiguration ettt 10-2

COMMUNICAION eereeeeereeeeeeereresceeeseseseeeseseseesesesesseee e sessaessesesese e s sensesessessasenssenssnsnes 10-3
MV S-Initiated Communication —........... s 10-3
Hardware-Initiated COmMmUNICALION ccooveiieieie e 10-4

CONrol oo e 10-5
PhySiCal AQAIESSES ...evveececerereeereeeresereeeesesessesesesessas e senes e 10-5
Status and Control Information e 10-5

Attached ProCessor SYSEEM coiiicciceer e s 10-6
T 1= GO I-1

Figure 2.1
Figure 2.2
Figure 2.3
Figure2.4
Figure 2.5
Figure 2.6
Figure2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure2.11
Figure 2.12
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure4.5
Figure4.6
Figure4.7
Figure 4.8
Figure 4.9
Figure4.10
Figure4.11
Figure4.12
Figure4.13
Figure4.14
Figure5.1
Figure 5.2
Figure5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure8.12
Figure9.1

Basic Virtua Storage Concepts
TheKeyinStorage”
Storage Protect ng Assignment
Virtual Storage Address
Segment Table and Page Tables
Dynamic Address Trandation
Page Frame Table
Page-out and Page-in
Program L oading
Virtual Sorag'a Layout
V=R Storage Mapping
Extensionsand Options
Installation Planning Phases)
Creating an MV'S System with System Generation Procegure
Executing the System Generation
1/0 Device Generation]
MVS System |PO Documentation
The MVS System |PO Ingtallation Phase Plan
3(4 en Instdll Option
Ingtall Option
SMPFunctions
System Initialization Summary
Initial Program L oading
Loading the Nucleus
Initializing Red Storage
Initializing the Master Address Space
System Parameters
Pathsto a Device)
Specifying Volume Attributes
Locating a Master System Console
Locating the System Catalog
Initializing the PLPA o
System Pack List and ALPAQ Initialization
Intidizing FLPA
Master Scheduler Initialization
Creating an Address Space o
A JES2Multi-access Spool Configuration
A JES3 Complex

The Use of Program Status Words (PSWs) in Interruption Processing

Summary of Inferruption Processing
Task Control block FTCB) Structure

Summary ofMV'S Locks]

Major Stepsin a Standard 1/0 Operation

Relationships Established by OPEN

Access Method and User Program in an Address Space
CLOSE Processing Summary)

Control Block Structure for the EXCP Driver

|OS Drivers

Flow of an 1/O Request

V10 Window .

Control Intervals and Physical Records

Data Records and Contral Information Placement
Relationshi Ps Between Levels of a Prime Index
Structure of the System Catalog

MCH Control Flow

Figures

3 R @RGP, s s s IO T RO RO TS
ST AR NGRPOOSADNSHaRR UG AR

W
TN

£

47

[=2]
—_

.;U)H&O&OO’@'-‘(OOO\IO‘)LHNOIO@J

CO OO 0O 0O 0O 0O 0O
© 1 Rors P s ps 1290 Q0 Q0 QO GO

Contents ix

X OS/VS2 MVS Overview

Chapter 1. Introduction

The basic difference between the IBM Operating System/Virtual Storage
with Multiple Virtual Storage (MV'S) and previous IBM operating systems
isthat MV S does more work. That is, MV S does things faster and does
more things at the same time.

This ability to do more work benefits the user directly and indirectly:

« Directly, it provides greater support for alarger number of users, both
interactive and batch. The user can have many more activities going
on in the system simultaneously without loss of time.

« Indirectly, the ability to do more work allows the system to enhance
its own capabilities by providing improved performance, improved
security and integrity, and enhanced function.

What then allows MV S to do more work and what are these
improvements to the basic ahilities of any operating system?

Direct Benefits

There are several basic MV S features that enable it to do more work. They
ae

» Multiple virtual storage
» Increased multiprocessing capabilities
» Enhanced error recovery

These MV S features provide the most direct benefits to the user.

Multiple Virtual Storage

Main storage is a scarce resource and even when it can be shared, the
amount of space an installation's programs and data require far exceed the
amount of main storage available. In previous systems, this was true not
only on an installation basis, but on a program basis:

amount of storage available in the

amount of storage available = system — (system requirements + amount
to a particular program of storage already being used by other
programs)

Furthermore, previous systems had to preallocate storage before the job
executed, the preallocated storage had to belong to the job for the duration
of the job, and the programmers had to plan complicated overlay structures
to fit their programs into the available space. This caused three very
expensive problems:

1. Some portions of storage may not be used at all.

Chapter 1: Introduction 1-1

1-2 OS/IVS2 MV S Overview

Example: The system has one million bytes of main storage. Job A requests
and receives 384,000 bytes; these bytes belong to Job A until it completes
— they cannot be shared; Job B and Job C request and receive 300,000
bytes each. Now thereis a fragment of 16,000 bytes that cannot be used at
all unless the system starts ajob that requires only that much. Thisis
known as fragmentation — unused fragments, too small to start a normal
job, exist throughout storage.

2. Though occupied, some locations did not contain active programs.
These programs were waiting for some event to occur or they were
waiting for another part of the program to be brought into storage to
overlay the completed part. In any case, they tied up storage without
being active.

3. Todea with the size limitations, users had to design complicated
overlay structures. Thistook agreat deal of programmer time. Also,
the system had to wait while finding and bringing in the next part of
the overlay structure.

In short, even though main storage was scarce, previous systems still
wasted it. To help overcome this problem, IBM developed virtual storage
and then multiple virtual storage systems. To understand how MV'S
overcomes these three problems, you must know a bit about addressing.

Addressingin MVS

Generally speaking, an addressis a group of charactersthat identify a
physical location in main storage (called real storage in MVS). In MVS, an
address has 24 positions (called bits). An addressing scheme based on
24-bit addressing allows up to 16,777,216 addresses (16 megabytes).

Of course, anormal system may not have this many real storage
locations — and, even if it did, there would be other programsin real
storage at the same time so that the 16 megabytes would have to be divided
among them.

MV S allows each programmer to use all 16 million addresses, even
though real storage includes only, for example, 4 million physical locations.

How?

The range of addressesin a program — from entry to completion, is
called the program address space. When a programmer creates a program,
he makes within it certain references to required pieces of information.
These references are usually of a symbolic nature, such as: CALL
UPDATE, where UPDATE begins a series of instructions. In previous
systems, each of these program references had to be associated with areal
storage location. Thus, specific real storage locations had to be preallocated
to them leading, as we mentioned, to the problem of fragmentation.

In MV S, references in the program address space are not associated with
aparticular real storage location. They remain ,references to a particular
piece of information. But where does virtual come in?

The references in the program are not references to real storage
addresses but to pieces of information, they are called virtual addresses.
They become real only when assigned to a physical location, and these real
locations need not be assigned either contiguously or in a particular place.
For example, the program might occupy 16,000 bytesin lower storage,
48,000 in the middle of storage, and another 64,000 bytes at the higher end
of real storage. If that program had to be removed from real storage and
later returned, it could be located or loaded anywhere, in real storage: that
is, it need not be in the same location as before.

When the program is ready to execute, the system, using a System/370
hardware feature called Dynamic Address Translation (or, more familiarly,
the DAT feature), maps the virtual addresses in the program to the real
storage addresses and resolves all references (for a more detailed
description of this process see Chapter 2: Virtual Storage Management). By
doing this, MV S can make the program address space larger than the
number of physical locations available in real storage because each program
can create references up to the theoretical limit of the addressing scheme:
16 megabytes. Thus, each program can operate as if it had accessto all of
storage.

In summary, then, there are three levels of addressingin MV S:

1. Thetheoretical limit, derived from the 24-bit addressing scheme: 16
megabytes. All users of MV S can program up to this limit, that is,
there can be multiple virtual user address spaces.

2. Virtual addresses. These are the addresses within the program address
space. They refer to a specific piece of information and not to area
storage location.

3. Real storage addresses. These are the addresses of the locationsin the
storage hardware unit.

When the program is ready to execute, the DAT feature translates the
virtual addresses to real storage addresses. The real storage locations that
the program occupies depend on which ones are available.

However, addressing is only part of the story. The second part is
concerned with how the system makes use of it to do more work, how it
allocates and shares real storage.

Sharing Real Storage

MV S views real storagein 4K blocks called frames. When it allocates
storage, that is, assigns storage areas to specific tasks, it allocates a certain
number of frames. These frames may be contiguous, but they need not be.
Because it allocates storage on a 4K -one page- basis, it minimizesthe
problem of fragmentation (if afragment does exist, it will be smaller than
4K). If, for example, there are 10 frames available and they are scattered
through storage, MV S can still allocate them as if they were contiguous.

What happens, though, if a hundred programs, each larger than the
available real storage are ready to execute at the same time?

Chapter 1: Introduction 1-3

1-4 OS/IVS2 MV S Overview

When MVS; isfully loaded, the only portion of a program allowed in
real storageisonethat isactive, that is, one that is using the processor or
being referenced. The remaining parts of the program remain on auxiliary
storage (data storage other than real storage; for example, storage on direct
access devices; space on auxiliary storageis called aglot; adot is4K) until
they become active. (Note: The user does not have to worry about any of
this ... the system determines what should be in real storage and what
remains on auxiliary storage). When a program in real storage must wait, it
is moved from real storage to auxiliary storage, and another job or another
part of the same program is brought in. (The process of moving a part of a
program between real storage and auxiliary storage is called paging; a page
is4K. An access method — see the chapter " Satisfying 1/0 Requests' —
moves the program from direct access storage to real storage and back.)
When the program is again ready to execute, it is assigned whatever frames
(MV S keeps track of the activity of each frame) are available — not
necessarily the same onesit previously occupied. Thus, generally speaking, a
program in MV Sreal storage is aworking program, not a waiting one.

Summary

These are the essential points to grasp about multiple virtual storage:

1. MV Sdoes not waste very much storage. It does not preallocate
storage thus significant fragments do not occur. In afully loaded
system, only active portions of programs occupy real storage
locations.

2. MV S reduces program design time: the user does not have to worry
about fitting his program into real storage.

Because of these factors, MV S can share the real storage resource among
many more programs and start many more programs running. Thus, it can
do more work.

Multiprocessing

MV S supports many new hardware developments. Among them are:

« TheIBM System/370 provides more capacity and speed than previous
IBM systems, and at comparable prices. More real storageis available
and the cost per byte has been significantly reduced. For example, the
System/360 Model 50 had a maximum real storage size of 512K, while
many System/370 models have more than 4 megabytes of rea
storage, more than eight times that of the Model 50.

» Complementing these real storage improvements are faster, more
capable processors. For example, the processor cycle time on the
System/360 Model 50 was 500 nanoseconds (one-thousand-millionth
of asecond); on the System/370 Model 158 it isonly 115
nanoseconds, and on other modelsitisless.

» Block multiplexer channels (a multiplexer channel that interleaves
-accesses two or more streams of data from distinct storage units
simultaneously—blocks of data rather than bytes asin a byte
multiplexer channel), not available on System/360, are standard on
many System/370 models. While maintaining compaetibility with the
System/360 selector channels, block multiplexer channels can sustain
much higher data rates.

Each of these hardware improvements contribute to MV S's ability to do
more work. An even more direct influence is MV S's multiprocessing (MP)
capability, which isincorporated into the MV S system control program. The
optional MP and the Attached Processor (AP) System can increase the
instruction processing capability of the installation; the AP system is
discussed later in this chapter and in more detail in Chapter 10:
Multiprocessing.)

Tightly-Coupled & Loosely-Coupled Multiprocessing

Multiprocessing simply means executing two or more tasks simultaneously
on two or more processors. It isalogical extension of multiprogramming, in
which two or more tasks logically execute concurrently on asingle
processor.

When a single processor shares a common workload with other
processors, but does not share storage, it becomes part of aloosely-coupled
multiprocessing complex.

When a single processor shares real storage with another processor, and
when both are controlled by a single system control program, they become
part of atightly-coupled multiprocessing complex. Both processors can run
under the MV S system control program in multiprocessor (M P) mode.
When a single processor is not sharing real storage, it can run under MV S
in uniprocessor (UP) mode.

Our emphasis here is on tightly-coupled Model 158 or Model 168
multiprocessors, which have the following characteristics:

» The processors share access to all processor storage available to them.

» The processors communicate by storing datain shared storage and by
direct processor-to-processor signals (both program-initiated and
hardware-initiated).

» The processors operate under the control of a single operating system
(MVS) that isresident in the shared processor storage. The operating
system treats the processors as resources, assigning them to process
tasks. Also, the operating system maintains one input queue and one
task queue and can use either processor to process (although not
concurrently) asingle job, if necessary.

A component of MV S, called the Job Entry Subsystem (JES2 or JES3)
assumes the role of coordinator and controls the flow of work through the
system, that is JES controls the entry and exit of work to and from the
system.

Availability

Clearly, if you can now do two things where before you could only do one,
you can now do more work. Multiprocessing also offers increased
availability. Availability in data processing means the percent of scheduled
time the system or an application is capable of processing. A systemis
available when both its hardware and programming system can process jobs.
An application is available when it can perform processing for its end users.

Chapter 1: Introduction 1-5

1-6 OS/VS2 MVS Overview

The improved availability MV S offers derives from the ability to:

« Automatically switch from afailing unit to an alternate for it

» In MP, the system can switch work from afailing processor to the
good one

» Reconfigure hardware componentsto fit an installation's needs

» Reconfigure hardware components to allow service personnel to
perform concurrent maintenance

Thus, over aperiod of time, the system does more work because it loses
less time due to failing hardware.

Flexibility

Y ou can divide a multiprocessor into two systems that operate in
uniprocessor mode when necessary. For example, you might need a
uniprocessor system for preventative maintenance, atest system for a
system programmer, or a programming system other than MVS (VM/370,
for example). The installation can divide the two systems so that only the
hardware components actually required for the special system are allocated
to one processor, leaving the balance of the hardware resources available
for normal work on the other processor.

Thus, MP not only does more work in the sense of doing two things at
onetime, but also is available more responding to the different needs of an
installation at different times.

Attached Processor System

The attached processor (AP) consists of a System/370 Model 158 or
Model 168 processor (host processor) combined with an attached
processing unit to form atightly-coupled processing system. The host
processor provides instruction processing, 1/0, and storage functions. The
attached processor has a similar instruction processing capability, but no
1/O or storage facilities of its own; the attached processor shares the
storage facilities of the host processor. When joined in atightly-coupled
configuration to an Attached Processor system, the host and the attached
processor provide significantly increased instruction processing power.

Error Recovery

As mentioned, one way of doing more work isto ensure that the systemis
available when necessary. Multiprocessing is one means of increasing
availability. Another is eliminating the need for unscheduled shutdowns.

When an error occurred in previous systems, the system could not do
any work until the installation reinitialized the system. When an error
occurs in the MV S system, the system attempts to continue operating. MV S
attempts to retain availability through error recovery routines that:

* |solate and record
e Clean up and repair
» Retry and reconfigure

Processing continues while the system carries out these tasks. Primarily,
recovery management support and the recovery termination manager

perform these functions (see Chapter 9 for more information on error
recovery.)

Recovery Management Support

One means of increasing availability is to reconfigure the system when there
is a problem with a hardware component. In this way, the system can
continue working. MV S provides this ability through RM S routines.

Missing Interruption Handler: The missing interruption handler (MIH)
checks whether expected /O interruptions occur within a specified time
period. If the interruptions do not occur, the operator is notified so he can
take steps to correct the situation before the system status is harmed.

The MIH checks for pending device ends, channel ends, DDR swaps,
and MOUNT commands. When a pending condition is found, the condition
isindicated in the UCB of the device. After a specified time el apses,
another check is made for the pending condition. If the condition is still
pending, a message is used informing the operator what condition is
pending and what operator action is required.

Dynamic Device Reconfiguration: The operator may invoke dynamic device
reconfiguration (DDR) when a device cannot be made ready, or the system
may invoke it to bypass a permanent 1/O failure. DDR makes it possible to
move a demountable DASD or tape volume from one device to another.
MV S processes DDR requests without shutting down the system and may
eliminate the need for terminating a job.

Channel Check Handler: The channel check handler (CCH) receives
control when a channel error is detected. CCH builds an error control block
and records the error environment. When the CCH is entered due to an
error affecting an entire channel, it invokes 1/O restart routines to recover
the I/O activity on the failing channel.

Machine Check Handler: The machine check handler (MCH) in MV S
supports the expanded machine check hardware in the IBM System/370. A
machine check is an interruption that a malfunction causes. Some machine
checks can be corrected by hardware. Others require software recovery.
The MCH records all machine checks and invokes software recovery
routines when necessary. If the MCH determines that processing cannot
continue on a processor, it terminates operations on that processor.

Alternate CPU Recovery: When running in MP mode, alternate CPU
recovery (ACR) alowswork in progress on afailing processor to be
recovered on the good processor. The object isto retain system availability
and continue system operation.

The ACR routine takes responsibility for all work in progress on the
failing CPU, including I/O. If critical 1/0O devices are symmetrical (that is
attached to both processors), or if channel reconfiguration hardware (CRH)
isavailable, critical 1/0 can be recovered. ACR will attempt to restore
resources to an operable state, recover from the failure, and continue
operation. (The operator must also take actions such as reducing the
workload or reconfiguring hardware if the system is to continue running
efficiently.)

ACRisavailable only in MP and AP mode, and it can provide
significant added availability.

Chapter 1: Introduction 1-7

1-8 OS/VS2 MV S Overview

Recovery Termination Management

Recovery termination management (RTM) cleans up system resources when
atask or address space terminates. Specifically, RTM performs normal and
abnormal task termination, normal and abnormal address space termination,
writes dumps, records errors, provides for recovery of supervisory routines
viarouting control to functional recovery routines, and recovers the system
when a processor in atightly-coupled multiprocessing environment fails.
RTM provides these functions for both system and problem program
routines.

Functional Recovery Routines: FRRs are provided for critical system
components — those that have high availability requirements, such as the
interruption handlers, the lock manager, and the dispatcher. Upon entry, a
functional component establishes an FRR by issuing the SETFRR, a macro
instruction. FRR's are placed in LIFO - last in, first out order in an FRR
stack maintained by the RTM. Each FRR stack represents the functions
being performed in a single path through the system control program. When
an error occurs in apath, the RTM passes control to the most recent FRR
placed in the appropriate stack. That FRR will attempt to contain the error,
record it, repair it, and either request retry or termination. If retry is
requested, RTM will reenter the function at a specified location. If
termination is requested, the error is passed to the next FRR in the stack to
attempt recovery; this processis called percolation.

Task Recovery: Task recovery routines may be written for critical units of
user or subsystem work. Task recovery routines should be written for those
critical lager or subsystem tasks that have a high availability requirement. If
they are not, the availability of critical subsystems, or critical user jobs may
be unnecessarily reduced.

An MV Sfacility called the extended subtask abend exit (ESTAE)
supports task recovery. With this facility, users can write and establish
recovery routines in the form of user exits that will receive control at
appropriate times during abnormal termination of the task. A recovery exit
may be set up when atask is created or it may be established at any time
by issuing an ESTAE macro instruction. Each ESTAE routine is placed in
LIFO order on achain established for that task. When RTM is entered, it
routes control to the last ESTAE routine in atask's chain. That task
recovery routine attempts to contain the error, record it, and repair it if
possible. It will then request either retry or termination of the task. If retry
isrequested, RTM reenters the failing task or subtask at a specified
location.

If you want your own exit routine to receive control for certain exceptions,
you can issue the specify program interruption exit (SPIE) macro
instruction. Any problem program being executed in performance of atask
can issue SPIE. When the task is active, your exit routine receives control
for all interruptions resulting from exceptions the SPIE macro instruction
specifies unless the current routine for the task is operating in supervisor
mode. For other program interruptions, control is given to the control
program exit routine. Each succeeding SPIE macro instruction completely
overrides specifications in the previous macro instruction.

Percolation: If an FRR or ESTAE routine is requesting or continuing
termination, percolation occurs. The recovery termination manager passes
the error to the next recovery routine in the FRR stack or in the ESTAE
chain. This represents the previous or the next higher level of control.
Hence, the term, percolation. This process continues until aretry resultsin
recovery or until the FRR stack or ESTAE chain has been exhausted.

Summary of Direct Benefits
MV S can do more work because:

1. MV S makes more effective use of real storage, in effect increasing
the space available for installation programs.

2. MV S provides more throughput by extensive use of
multiprogramming. Through MP and AP it can do two things
simultaneously.

3. MVS has higher availability more of the time over the long term
through enhanced error recovery function.

I ndirect Benefits

The ability of MV S to do more work also allowed IBM to improve the
basic functions of the operating system itself. These indirect benefits lead
to:

» Greater support for interactive users
* Improved performance

» Improved security and integrity

» Enhanced functions

Greater Support for I nteractive Users

The Time Sharing Option (TSO) is an integral part of MVS. IBM has
enhanced TSO as follows:

» Each TSO user isassigned a private address space, and so has more
space for processing and is protected from other users.

e TSO users may allocate a greater variety of data sets and devices.

» TSO command processors and service routines may be in pageable
storage.

» TSO driver and swapping functions have been integrated into MV S.

TSO makes the operating system available to both local and remote
terminal users. A TSO user, identified by a unique userid, can initiate a
TSO session by issuing a LOGON command. Each TSO user can develop,
test, and execute programs interactively without experiencing the usual
delays associated with batch job processing.

Sessions and Transactions

MV S allocates data sets and 1/O devices to a user at the beginning of a
TSO session. In thisrespect, a TSO session is like abatch job. Interaction
with aterminal user involves aterminal read, the appropriate processing,
and aterminal write. Each such interaction is called a TSO transaction.

Chapter 1: Introduction 19

1-10 OS/IVS2 MV S Overview

A user may be entering aline of input or compiling a program; both are
transactions. Additional resources may be allocated during transaction
processing. In this respect, a TSO transaction is somewhat like a batch job
step.

Some TSO transactions are trivial and some are not. For example, TSO
provides an EDIT facility to create and modify user data sets. When adata
set isbeing created, EDIT prompts the user for a new line of input by
displaying aline number. A line of datais entered, stored by EDIT, and a
new line number is displayed. Thisisatrivia transaction because line
number prompting requires very little processing and not much 1/O.

By contrast, the user may enter a transaction that invokes a COBOL
compiler. The response can be afull source listing with compiler
diagnostics. Thisisanon-trivial transaction.

Terminal 1/0

All terminal 1/O for TSO is controlled by the telecommunications access
method (TCAM) or the virtual telecommunications access method

(VTAM). (For information on TCAM and VTAM see OSVSTCAM
Concepts and Applications, GC30-2049 and Introduction to VTAM,
GC27-6987.) A TSO address space is frequently in the wait state since
terminal 1/O is slow compared to internal processor speeds and terminal
users tend to require "think time." During thistime, processing is suspended
and the user can be swapped out.

Swapping

Swapping means moving address spaces in and out of real storage. When an
address space is swapped out, the virtual storage pages associated with that
user are moved from real storage framesto auxiliary storage. Other users
who have processing to do can then use the frames. When the swapped-out
user is again ready to run, the appropriate virtual storage pages can be
swapped in and processing can be resumed.

MV S uses swapping to manage the workload and control the job mix.
Swapping takes place for almost all TSO and batch users. An new MVS
function, the system resources manager (SRM), makes swapping decisions
to meet performance objectives and to balance the use of resources. (For
more information on swapping, see Chapter 2.)

I mproved Performance

Improved performance derives from control of system resources and a
reduction in bottlenecks.

Control of Performance

Asdiscussed, MV S allows more users (address spaces) to be active
concurrently in the system. More users mean more competition for available
system resources — processor time, 1/O resources, and real storage. An
address space has access to these resources only when it isin real storage.
The system resources manager (SRM) is the component in MV S that
decides which address spaces to swap in or out and when to swap them in
or out; therefore, it is the component that controls access to system
resources.

The SRM has two objectives:

« Objective One: Meet installation-specified performance guidelines,
which reflect the installation's response and turnaround time
requirements

* Objective Two: Achieve the optimal use of processor time, real
storage, and /O resources, from the viewpoint of system throughput.

SRM makes decisions that represent trade-offs between these two
conflicting objectives.

Overview of the SRM

The installation specifies its requirements for the first SRM objectivein a
member of the parameter library (SY S1.PARMLIB) called the installation
performance specification (1PS). Through IPS, the installation divides its
types of work into distinct groups, assigns relative importance to each
group, and specifies the desired performance characteristics for each address
space within each group.

A secondary means of specifying requirements to the SRM is through the
OPT, member of PARMLIB. (The OPT member contains parameters that
affect swapping decisions by the SRM.) Through a combination of IPS and
OPT parameters, an installation can exercise adegree of control over
system throughput characteristics (objective two). That is, an installation
can specify whether, and under what circumstances, throughput
considerations are more important than response and turnaround
requirements when the need arises to make tradeoffs between objectives
one and two.

The SRM attempts to ensure optimal use of system resources by
monitoring and balancing resource utilization. If resources are
under-utilized, the SRM attempts to increase the system load. If resources
are over-utilized, the SRM attempts to alleviate this by reducing the system
load or by shifting commitments to under-utilized resources. Examples of
such resources are the processor, logical channels, auxiliary storage, and
pageable rea storage.

For more information on the SRM see Chapter 8. For information on
performance analysissee OSV2 MVS Performance Notebook.

Reduction in Bottlenecks

A bottleneck is an obstruction, something that slows down work. While
specific bottlenecks differ from installation to installation, there are some
general ones. MV S design has attempted to reduce the impact of these and
improve performance by:

» Reducing path lengths
* Increasing paralelism
* Reducing contention for system resources

Chapter 1: Introduction ~ 1-11

1-12 OS/VS2 MV S Overview

These concepts are defined and illustrated in the following descriptions
of:

The Scheduler Work Area
Device Allocation

Virtual Input/Output

» Service Request Blocks

« Multiple Locks

Scheduler Work Area; In MVS, the scheduler work area (SWA) contains
much of the same job control information that the System Job Queue
(SY SIOBQE) did in previous systems. SY SIOBQE was a major source of
contention in MVT and SV S because almost every component of the job
scheduler (and every job in execution) required concurrent accessto it.

SWA is, in effect, alocal job queue for each MV S user and it residesin
the user's private address space. All control information that appliesto a
single job, such as data set and device allocation information, is placed in
SWA when ajob is selected. It is available to the job scheduler and the
user while he is executing. It improves performance, therefore, by
eliminating SY SIOBQE.

Device Allocation: The process used to allocate 1/O resourcesis called
device allocation. Data sets, volumes, and devices are allocated to a batch
user when ajob step isinitiated and to a TSO user when a session begins.
They may aso be allocated dynamically. In MVT and SV'S, allocation
requests are processed one at atime. This serialization eliminates potential
conflicts and possible deadlocks. However, in afully loaded MVT or SVS
system, device allocation can be a serious bottleneck.

MV S eliminates this bottleneck by processing requestsin parallel. The
process may be summarized as follows:

» Associate a user data set with avolume
« Associate the volume with adevice
« Allocate the device to the user

Significant performance improvement has been realized through this
redesign of device allocation.

Virtual Input/Output: In MVS, temporary data sets can be handled by a
new facility called virtual input/output (V10). Data sets for which V1O has
been specified reside in paging space on auxiliary storage. However, to a
user or to one of the access methods, the data appearsto reside in areal
data set on a DASD volume. A V10 specification exists only for the
duration of the job.

During system generation, one or more unit names can be defined as
V10 and associated with areal DASD device type, such as a 3350. These
unit names are then specified on the job control statements requesting
device allocation_ These requests are processed in parallel and no deviceis
allocated for the VIO request.

After the job has gone through the device allocation process, and as data
is being stored in 4K blocks on a V1O data set, real storage frames and
auxiliary storage slots are assigned as required. These frames and slots may
not be contiguous and the data may be dispersed in real storage and on
auxiliary storage. When a user accesses a V10 data set, the desired datais
paged in and out of real storage as required. The auxiliary storage slots are
released when the data set is deleted or the job ends and are immediately
available for paging. V10O offers these performance advantages:

» Elimination of some device allocation and data management overhead

» Generally more efficient use of DASD space

» Use of the /O load balancing capability of the auxiliary storage
manager (ASM)

Service Requests: Service requests, anew facility in MV'S, improve
performance and make MV S a more responsive system. The system, a
privileged (authorized) user, or subsysterm may issue them.

The requester builds a service request block (SRB) and issues the
SCHEDULE macro instruction. The SRB represents work to be done and
the SCHEDULE macro instruction places the SRB on one of the service
manager queues. An SRB for a particular address space is given control
before any tasks associated with that address space.

An SRB is an efficient way to communicate between address spaces.
SRBs also make it possible to handle multiple eventsin parallel.

Multiple Locks: A lock isameans of serialization. MV S has implemented
multiple system locks to improve and standardize serialization techniques.
There are two different categories of locks. A global lock protects a serially
reusable resource that relates to the whole system — for example, thereisa
global lock for each unit control block (UCB) associated with each device
in the system. A local lock serializes address space related storage areas.
Implementation of these locks offers the MV S user these performance
improvements:

» A standard for path serialization techniques
» Lessdisabled processor time and a more responsive system
* More parallelism and less contention

Improved Security and Integrity
Increased security and integrity are major design objectives of MV S:

» Security isthe ability to protect resources from unauthorized access,
alteration, or destruction.

* Integrity istheinability of any program not authorized by a
mechanism under the customers control to:

1.Circumvent or disable store or fetch protection

2. Access a password-protected or a RA CF-protected resource
(RACF isthe Resource Access Control Facility program product)

3.0btain control in an authorized state, that is, in supervisor state,
with a protection key less than eight, or protected by the authorized
program facility

Chapter 1: Introduction 1-13

1-14 OS/VS2 MV S Overview

A goal of MV Sisto build integrity into the base system so that if an
installation wishes, it can add a security system to it.

| solate and Protect

In MV S, virtual storage consists of a system area, acommon area, and a
private area. Every MV S user can address one private area. MV S isolates
each user from every other user in a private address space — thereby
preventing him from violating another user's address space. MV S uses
multiple storage protect keys to protect the system and subsystems from
unauthorized users.

Validate and Authorize

Before MV S performs services on behalf of the users, it takes stepsto
validate any protected resources that are to be used and to authorize the
use of any restricted functions. Thisis done to prevent possible security
violations through the use of invalid control blocks or the execution of
unauthorized code and to avoid user-induced system failures due to
improperly specified requests.

User Responsibility

To avoid compromising MV S security, each installation must assume
responsibility for:

* Theintegrity of user written authorized programs

» Password protection of critical system libraries

» Access to the system by programmers and operators
» The physical security of the computing systems

Increased security and integrity costs some processor time and real
storage space. However, every effort has been made to employ efficient
programming techniques that do not significantly impact performance.

Enhanced Function

Thereisan overall enhancement of function in MVS. MV S function has
been enhanced by integrating into the system many functions that
previously were only available as add-on support and by extending these
functions to include multiple virtual storage. In particular this enhancement

appliesto:
e JES2 and JES3
» System generation and initialization
» The virtual storage access method (VSAM)

Job Entry Subsystem

Job management has been enhanced by the implementation of JES2 and
JES3. Either JES2 or JES3 may be specified as the primary job entry
subsystem. Job management in MV S is handled by the job entry subsystems

(JES2 and JES3). They control the entry of jobs and perform job
scheduling functions upon request. MV S interfaces with these job entry
subsystems via a new component, the subsystem interface (SSl). For further
information on JES, see Chapter 5.

JES2

JES2? isthe MV S replacement for HASP Il (Houston automatic spooling
program). Most of the functions performed by HASP |1 have been
integrated along with many functions formerly performed by the job
scheduler in MVT and SV S. These are some of the functions performed by
JES2:

* Reading jobs and SY SIN data, both local and remote

* Spooling jobs and input data to direct access storage

» Scheduling, initiating, and monitoring jobs

* Reading SY SIN data and writing SY SOUT datafor active jobs
* Writing jobs and SY SOUT data, both local and remote

An extensive set of JES2 operator commands is provided. Job
accounting, journaling, and restarting capabilities have been integrated into
the subsystem; and the scheduling of TSO sessions and the control of batch
output for 1SO usersis done by JES2.

JES3

JES3 functions, integrated into MV S, are generally the equivalent of those
in ASP (asymmetric multiprocessing system) Version 3. Multiple processors
in avariety of loosely-coupled combinations are supported.

When JES3 is used to manage a loosely-coupled multiprocessing
complex, it controls job scheduling and device allocation for the entire
complex. The controlling processor is called a global processor and the
others are called local processors or ASP mains. A local processor with
access to the necessary 1/0O devices and connected to all other processors
can assume global functionsif the global processor fails. JES3 provides
even more extensive job management functions than those listed for JES2.
In addition to increasing availability, JES3 permits more efficient use of
system resources by providing:

» Automatic scheduling of jobs to multiple processors

» Controlled allocation of all 1/0O devicesin the complex

* Mounting and verifying of private volumes before scheduling ajob
» Deadline scheduling

Subsystem Interface

Both JES2 and JES3 use MV S functions and service MV S requests. Each is
considered a subsystem and communicates with MV S via a component,
called the subsystem interface (SSI). SSI makes it easier to add subsystems
to MV, including those written by users.

System Generation and I nitialization

During system generation and system initialization, an installation can select
options and specify parameters that tailor an operating system to meet
specific needs. In MV S, the number of SY SGEN options that must be

Chapter 1: Introduction 1-15

1-16 OS/VS2 MVSOverview

specified have been minimized and initialization flexibility has been
increased. Operating procedures have been simplified and dependence upon
the system operator has been reduced, while the control of system resources
has become more automated during system initialization. Preset initialization
options may be stored in the parameter library and invoked by specifying
the parmlib member at initial program load (IPL).

System Generation

Macro instructions are used during system generation to select options from
IBM Distribution Libraries (DLIBS). This process has been simplified for
MV Sin the following ways:

» Many previous options are now standard

» Severa macro instructions have been eliminated, consolidated, or
clarified

» Multiple jobs can be run to speed up the SY SGEN process

See Chapter 3 for more information on system generation.

System Initialization

The installation can use the consol e to select parameter lists from
PARMLIB or to specify additional parameters during system initialization.
In MV'S, changes have been made to the initialization process that provide
greater flexibility in specifying parameters, and that simplify the process by
reducing the amount of operator intervention required. These changes
include:

» Fewer operator messages and fewer replies
* Multiple parameter lists and selective merging of parameters

See Chapter 4 for more information on system initialization.

System Operation

MV S depends less upon the system operator than any of its predecessors.
Operator commands are used to request system and user status and to
initiate, alter, or terminate system functions. Many functions that previously
depended upon operator commands are now performed by JES2 or JES3.
In some cases, the system may not wait for operator intervention when
devices being allocated are offline or not ready. The operator is usually not
required to make job scheduling and storage configuration decisions.

Virtual Storage Access Method (VSAM)

The virtual storage access method (VSAM) is ahigh performance access
method for direct access storage. It is designed to run in virtual storage and
uses virtual storage to buffer input and output operations. VSAM provides
support for batch users, online transactions and data base appliceations.
Through amaster catalog, VSAM controls the allocation of data space on
VSAM volumes and the location and use of VSAM data sets. In MV S, the
VSAM master catalog is also the system catal og. (See Chapter 8 for more
information on VSAM.)

Summary

Through better management of real storage, increased multiprocessing and
instruction processing capability, and enhanced error recovery MV S can do
more work than previous systems. This has improved the system's basic
operating capabilities, especially in the areas of resource management,
integrity, and function.

MV S integrates many items, such as TSO and tightly-coupled

multiprocessing, into the overall system that has been special purpose
options.

Some of the major new features that MV S includes are recovery
facilities, VSAM, virtual 1/0, and multiple virtual address spaces.

MV S offers more space to more users, greater throughput, high
availability, and more control of the system. In short, it does more work
than previous systems.

Chapter 1: Introduction 1-17

1-18 OS/VS2 MV S Overview

Chapter 2: Virtual Storagein MVS

Storage in an MV S system — or any computing system, for that matter —
consists of a number of locations available for programs and data. In a
system without virtual storage, the range of addresses (the number of
storage locations, each having a unique address) is equal to the number of
addressable physical locations in the main storage installed. In a system with
virtual storage, however, the range of addresses available for programs and
datais equal to the theoretical limit of the addressing scheme. In MV S, this
theoretical limit — the size of the virtual storage available to the
programmer — is 16 megabytes, the maximum number of addresses
allowed by the 24-bit addressing scheme that MV S uses. Virtual storageis
larger than main storage (called real storage in MV S); how much larger
depends on the size of real storage installed. Therefore, the use of virtual
storage increases the number of storage locations available to hold programs
and data.

In most computing systems, a program cannot execute unlessthereisa
single block of storage big enough to hold it, and the block of storageis
allocated to the program until it has finished. However, when a program
executesin virtual storage under MV'S, only the parts of the program that
are currently active need be in real storage at any particular time. The
inactive parts of any executing program are held in auxiliary storage, in
special data sets that most probably reside on a high-speed direct access
device. Thus, the programmer is freed from the problem of designing a
program to fit a predetermined limit of real storage. Additionally, more
programs can occupy real storage concurrently because only the active parts
of each program are in real storage at any particular time; thus, the system
can start more jobs.

Pages, Frames, and Slots

To enable the movement of the parts of a program executing in virtual
storage between real storage and auxiliary storage the MV S system bresks
real storage, virtual storage, and auxiliary storage into blocks:

* A block of real storageisaframe.
» A block of virtual storageis apage.
» A block of auxiliary storageisasdlot.

A page, aframe, and adlot are all the same size; each is 4K bytes. An
active virtual storage page residesin areal storage frame; an inactive virtual
storage page resides in an auxiliary storage slot. Moving pages between real
storage frames and auxiliary storage slots is called paging.

Chapter 2: Virtual Storagein MVS 2-1

2-2 OS/VS2 MVSOverview

Figure 2.1 shows how paging is performed for a program running in
virtual storage. Parts A, B, and C of athree-page program are in virtual
storage. Page A is active and executing in areal storage frame, while pages
B and C reside in auxiliary storage slots. At point (1) page B isrequired;
the system brings B in from auxiliary storage and puts it in an available real
storage frame. At point (2) page C is required; the system brings C in
from auxiliary storage and putsit in an available real storage frame. If page
A became inactive and the system needed its frame in real storage, page A
would be moved to an auxiliary storage slot. as shown at point

Real Storage

Auxiliary
Storage
Virtual
Storage
als|c

Figure2.1. Basic Virtual Storage Concepts

Thus, the entire program resides in virtual storage; the system moves
pages of the program between real storage frames and auxiliary storage
sots to ensure that the pages that are currently active are in real storage
when they are required. Note also that both the frames and the slots
allocated to a program need not be contiguous; thus, a page could occupy
several different frames and several different slots during the execution of a
program. That is, if page A in the example become active again, MV S could
move it to any available frame.

Integrity

Figure 2_1 showed how virtual storage worksfor one program; in reality, of
course, many programs or users would be competing for use of the system.
MV S implements two techniques to preserve the integrity of each user's
work: (1) a private address space for each user and (2) multiple storage
protect keys. Each of these techniques is described in the following text.

Storage Protect Keys

Under MVS, theinformation in real storage is protected from unauthorized
use by means of multiple storage protect keys. A control field in storage
called akey is associated with each 2K block of real storage. Thisfield or
key, sometimes called a " storage bump,” is not part of addressable storage.

The key in storage contains the protect key of the owner and afetch
protect bit (as well as the reference and change bits maintained by the
hardware and used by the software to make paging decisions, as described
later in this chapter under "Paging.") The protect key protects the block of
storage from unauthorized modification. The fetch protect bit protects the
block of storage from an unauthorized attempt to read or fetch its contents.
Figure 2.2 shows the format of the key in storage.

Chapter 2: Virtual Storagein MVS 2-3

2-4 OS/VS2 MVS Overview

Key FIR clu

4-bit protect key

Fetch protect

Storage has been referenced
Storage has been changed
Reserved

Storage Key

1 1 1 [1 1

2K 2K 2K 2K 2K

Real
Storage

))
{C

~
Addressable Storage

Figure2.2. TheKey in Storage

When arequest is made to modify the contents of areal storage
location, the key in storage is compared to the storage protection key
associated with the request, which appears in the current program status
word (PSW). (See "The Role of Program Status Words' in Chapter 6 for
more information about the PSW.) If the keys match, the request is
satisfied. If the key associated with the request does not match thekey in
storage, the system rejects the request and issues a program exception
interruption.

When arequest is made to access (read or fetch) the contents of area
storage location, the request is automatically satisfied unless the fetch
protect bit is on. When the fetch protect bit is on, the block of storageis
fetch-protected. When a request is made to access the contents of a
fetch-protected real storage location, the key in storage is compared to the
key associated with the request. if the keys match, the request is satisfied.
If the keys do not match, the system rejects the request and issues a
program exception interruption.

There are sixteen possible storage protect keys available. A specific key
is assigned according to the type of work being performed. Figure 2.3
summarizes the assignment of storage protect keys.

Storage protect keys 0 through 7 are reserved for the MV S system
control program and various subsystems. Storage protect key 0 is the master
key. When a storage protect key of O is associated with a request to access
or modify the contents of areal storage location, the request is
automatically satisfied. Thus, the use of key 0 is restricted to those parts of
the MV S system control program that require unlimted store and fetch
capabilities.

Storage protect keys 8 through 15 are assigned to users. Because all
users are isolated in private address spaces, most users — those whose
programs run in avirtual region — can use the same storage protect key.
These users are assigned akey of 8. Some users, however, must runin a
real region. These users require individual storage protect keys, which are
assigned from the range of 9 through 15. Descriptions of avirtual region
and areal region appear later in this chapter under "Virtual (V=V) User
Region" and "Real (V=R) User Region."

Key Use

0 MVS system control program

1 Job scheduler and job entry subsystems
(JES2 or JES3)

2-4 Reserved

5 Data management
6 TCAM and VTAM
7 IMS

8 V=V users

9-15 V=R users

Figure 2.3. Storage Protect Key Assignment

Frequently, a user program requests a service from a system (or
subsystem) program,; with the request the program passes the address of an
area in storage to be modified by the system program. This area should
belong to the user. However, if an error occurs and the areareally belongs
to the system instead of the user the system could be destroyed Thus, the
system program does a key switch before performing the service for the
user. A key switch means that the system program uses the storage protect
key of the user rather than its own storage protect key while performing the
requested service. The key switch is thus another mechanism MV S uses to
provide protection from possible destruction.

Chapter 2: Virtual Storagein MVS 2-5

2-6 OS/VS2 MV S Overview

Address Space

MV S assigns each user his own map of virtual storage. The 16-megabyte
virtual storage available to each user is called an address space. A
16-megabyte address space is available to each job, TSO user, or system
task. Each address space competes with all other active address spaces for
the use of real storage and other system resources, and the work being
performed in each address space is paged between real and auxiliary
storage.

In order for this paging activity to take place quickly and efficiently, the
system must be able to translate a virtual address (the address of a specific
instruction or dataitem in virtual storage) into areal address (the address
of the corresponding location in real storage). The solution is dynamic
address trandlation.

Dynamic Address Trandation

Dynamic address trandlation (DAT) is a System/370 hardware feature that
makes virtual storage possible. The DAT feature hardware worksin
conjunction with MV S system software to trand ate a virtual addressinto a
real address.

Virtual Address

In order to obtain avirtual address, MV S breaks the 16 megabytes of
virtual storage into 256 segments, numbered O through 255. Each segment
consists of 64K bytes. The 64K bytes in each segment are further broken
down into 16 pages, numbered O through 15. Each page, as stated earlier,
consists of 4K bytes. Within each page, a specific location is addressed by
its byte displacement, that is, the number of bytes between the page origin
and the specific location.

A virtual address consists of the segment number, the page number
within that segment, and the byte displacement within that page. Figure 2.4
shows how virtual storage is broken down to provide a virtual address that
consists of a segment number, a page number, and a byte displacement.

Virtual storage of
16,777,216 bytes

16,320K

(16,384K)
| Page 15

Segment 255

Page 0 |

pu
—

128K

Segments 2 to 254 !

[

64K

Page 15

Segment 1

Hex

Page O |

| Page 15

Segment O

Page O

64K segments, 4K pages

o 1 F 0 o0 4
8 16 20 31
00000001| 1111 | 000000000100
Segment Page Byte

L'l 15 4 Y
T

Virtual Storage Address

Figure 2.4. Virtual Storage Address

Chapter 2: Virtual Storagein MVS 2-7

Segment and Page Tables

To translate avirtual address into a 24-bit real address, the DAT feature
requires tables that describe each address space. These tables are the
private segment table and the private page tables. The segment table has
one entry for each of the 256 segments in the address space; each entry
contains a pointer to the page table for that particular ssgment. The page
table for each segment has one entry for each of the 16 pagesin the
segment. If apageiscurrently in areal storage frame, the entry consists of
the real storage address of that page. If a page is not currently in real
storage, the entry in invalid; that is, the system must move the page from
auxiliary storage to real storage and update the page table before the virtual
address can be successfully translated. Figure 2.5 shows the relationship
between the segment table, the page tables, and the pagesin virtual storage.

Virtual Storage

Iy

Page Tables Segment 265

Page 15 1213|114 | 18

= == glof10]mn

Segment Table Page 0 [~ - 4|5 6| 7

Segment 266 I 213
Segment 254

Segment 1

Segment O E 12 (13114 | 16

Page 15 8 |92 (10| 1

- -~ 456 |7

Page O — — — — P O 1 2 3

Segment O

2-8 OS/VS2 MVS Overview

Figure 2.5. Segment Table and Page Tables

Two—Level Table Lookup

To translate a virtual address into areal address, DAT uses atwo-level
table lookup. Figure 2.6 illustrates this process. The first table lookup
uses the segment table origin in the segment table origin register (STOR)
and the segment number in the virtual address (multiplied times 4, the
length of each segment table entry) to locate the origin of the page table
for that segment. The second table lookup @ uses the page table origin
from the segment table entry and the page number in the virtual address
(multiplied times 2, the length of each page table entry) to locate the
required entry in the page table. Unless the entry isinvalid, the page table
entry contains the address of thereal storage frame that holds the page
specified in the virtual address. The final step @ in dynamic address
translation adds the address of the real storage frame to the byte
displacement in the virtual address to compute the 24-bit real address. This
value isloaded into a hardware storage address register (SAR).

Virtual Address

I Segment i Page i Byte Displacement
STOR /
Segment Table Origin (
ADD e
Segment Table
Page Table

/ Page Frame Number
Page Table Origin e
'—’\/ L_J

SAR

Real Storage Address

Figure 2.6. Dynamic Address Translation

Chapter 2: Virtual Storagein MVS 2-9

2-10 OS/VS2 MV S Overview

Each time a virtual addressis successfully translated into areal address, the
system saves the address of the real storage frame in a special hardware
buffer called the tranglation lookaside buffer (TLB). The TLB contains the
segment number and page number from the virtual address and the
corresponding real storage address for the most active virtual pages. The
DAT hardware checks the TLB before beginning the process of address
trandation, and, because a very high percentage of addresses can be found
in the TLB, address translation time is significantly reduced by bypassing
the two—Ievel table lookup process.

When the second step of the table lookup process encounters an invalid
page table entry, the required page is not in real storage. The DAT
hardware thus cannot trandlate the virtual address, and a page translation
exception, known as a page fault, occurs. Paging — the movement of pages
between auxiliary storage and real storage — is required to bring the page
into real storage.

Paging

Paging is the movement of pages between real storage and auxiliary storage
to ensure that currently active pages are in real storage. In addition to the
DAT hardware and the segment and page tables required for address
tranglation, paging activity involves a number of system components to
perform the movement of pages and several additional tables to keep track
of where each pageis at any particular time.

Demand Paging

To understand how paging works, assume that DAT encounters an invalid
page table entry during address trandlation, indicating that apageis
required that isnot in areal storage frame. To resolve this pagefault, the
system must locate an available real storage frame. If thereis no available
frame, an assighed frame must be freed. To free aframe, the system moves
its contents to auxiliary storage. This movement is called a page-out. The
system performs a page-out only when the contents of the frame have been
changed since the page was brought into real storage.

Once aframeislocated for the required page, the contents of the page
are moved from auxiliary storageto real storage. Thismovement is called a
page-in. The process of bringing a page from auxiliary storage to real
storage in response to a page fault is called demand paging.

MV Striesto avoid the time-consuming process of demand paging by
keeping an adequate supply of available real storage frames constantly on
hand. Swapping is one means of ensuring this adequate supply. Page
stealing is another.

Swapping

Swapping is the movement of an entire address space between virtual
storage and auxiliary storage. It is one of several methods MV S employs to
balance system workload, as well as to ensure that an adequate supply of
available real storage framesis maintained. Address spaces that are
swapped in are active, currently executing in virtual storage with pagesin
real storage frames and pages in auxiliary storage slots. Address spaces that
are swapped out are inactive; the address space resides on auxiliary storage
and cannot execute until it is swapped in. Swapping is performed in
response to recommendations from the system resources manager (SRM),
described later in this book in "Chapter 7: Managing System Resources."

Page Stealing

In addition to swapping, the system uses page stealing to ensure an
adequate supply of available real storage frames. Page stealing occurs when
the system takes a frame assigned to an active user and makes it available
for other work. The decision to steal a particular page is based on two
factors: (1) the size of the working set for an address space and (2) the
activity history of each page currently residing in areal storage frame. The
working set isthe number of virtual pages that should reside in real storage
framesin order for work in an address space to run effectively. Each user
— that is, each address space — has aworking set, and the system does
not steal pages from the working set under normal operating conditions.

Page Frame Table

Any active pages that exceed the working set, however, are candidates for
page stealing. To determine the pages that are to be stolen, MV S examines
the activity history of the pagesthat are currently in storage. This
information is held in the page frame table. There is one page frame table
for the entire system, and it has an entry for each frame of real storage.
Each entry includes the address space identifier and the segment and page
number within the address space for the virtual page that is currently using
the frame.

Other information in the entry describes the activity history of the page.
The status field indicates whether the frame is currently in use; if the status
field is set to zero, the frame is available. Two additional bits associated
with the entry, the reference bit and the change bit, are relevant when the
frameisinuse. (Note These bits are actually part of a control field
associated with each 2K block of storage. They are maintained by the
hardware and used by the software to make paging decisions; they are
therefore described here asif they were physically part of the page frame
table.)

Thereference bit is set on whenever the page is referenced. At regular
intervals, the system sets the reference bits back to zero. Thus, the
reference bit is an indication of how recently the page has been used. A
page in storage with the reference bit set off has not been referenced
recently; it is a candidate for page stealing.

Chapter 2: Virtual Storagein MVS 2-11

The change bit is set to zero when a page isinitially brought into areal
storage frame. When the contents of the page are changed during execution
of work in the address space, the change bit is set on. Setting the change
bit on tells the system that it must move the contents of the frame to
auxiliary storage before making the frame available for other work.
Checking the change bit ensures that no changes made during program
execution are lost during the paging process.

Figure 2.7 shows how the page frame table entries are set up and how
the status, reference, and change information is used to determine which
pages will be stolen. All of the pagesin the table are active; the status field
is set to one. The system checks the reference bits and finds two pages that
have not been referenced recently and are, therefore, temporarily inactive.
These two pages will be stolen. The first page has not been changed
since it was brought in from auxiliary storage; therefore, no physical
page-out isrequired to save its contents because the copy of the pagein
real storage isthe same asthe copy of the pagein auxiliary storage. The
second page @ has been changed; therefore the system performs a
page-out before it steals the page, and the contents of the page are written
to auxiliary storage. The system is thus able to steal two pages, only one of
which requires a page-out. To save the time required to perform a page-out,
the system, whenever possible, steals pages that have not been changed.

PAGE FRAME TABLE

Frame Program Page & Segment Reference
Number Number Number Status Bit Change Bit
i i 1
1 1 0
1 0 0 o

This page has not been recently
referenced, but it has been changed
since page-in. Before page stealing
occurs, it must be paged-out.

Figure2.7. Page Frame Table

2-12 OS/VS2 MV S Overview

System Components

Through swapping, page stealing, and, when required, demand paging, MV S
ensures that the most active pages of each address space are in real storage
when required and keeps track of the exact location of each page. This
complex paging process is transparent to the user: each program runsin its
own address space asiif it were the only program executing at any particular
time and asif it had all of virtual storage at its disposal. The paging process
is managed by several components of MV S. The three major ones are the

real storage manager, the auxiliary storage manager, and the virtual storage
manager.

Real Storage Manager (RSM)

The real storage manager (RSM) checks and maintains the entriesin the
page frame table. It determines which pages are to be moved out of real
storage in response to a request for swapping an entire address space out of
storage or in response to aneed for page stealing or demand paging.

The real storage manager also verifies the storage protect keys. The use
of storage protect keys is described earlier in this chapter under " Storage
Protect Keys."

Auxiliary Storage Manager (ASM)

The auxiliary storage manager (ASM) to keeps track of the contents of the
page data sets and swap data sets. Page data sets contain virtual pages that
are not currently occupying areal storage frame. Swap data sets contain the
virtual pages for address spaces that have been swapped out.

The ASM also maintains atable called the external page table. Entriesin
the external page table enable ASM to determine the location of a page
residing in an auxiliary storage slot. When a page-in is required, the RSM
locates an available frame, and the ASM uses the external page table to
find the required page on auxiliary storage and bring it into real storage.
When a page-out is required, ASM locates a slot on auxiliary storage,
moves the page from real storage to auxiliary storage , and updates the
external pagetable.

Virtual Storage Manager (VSM)

The virtual storage manager (V SM) provides the map of virtual storage for
each address space. VSM works with RSM to handle subpool management,
requests to obtain and free storage, and storage allocations for programs
that must run in real storage rather than virtual storage.

Figure 2.8 summarizes the paging process, showing how pages move
between real and auxiliary storage in response to a page fault or to fill the
need for an adequate supply of real storage frames.

Chapter 2: Virtual Storagein MVS 2-13

AUXILIARY STORAGE
VIRTUAL STORAGE N
- - — - AN
R AN
Segment N
(pages O to 15) Tables N\ N
map pages AN
and slots N
AN
AN
AN
\ REAL STORAGE
-~ . ‘*L Tabl l l
- Virtual —_ —_ Slots — : eES mdap :
storage T o - Pages an
Paged area (containing frames
pages pages of
within : instructions
segments and data) Frames
;_ {containing active =
pages of executing
programs)
Page-in [~ l
-1 P Contents of
T [~ pageable
virtual storage
- Nucleus
Segment 1 {Nucleus) i —_=
(pages 0 to 15)
Segment 0
{pages O to 15)
L e e

Figure 2.8. Page-out and Page-in

Program Loading

Paging also takes place when the program loader initially loads a program
into virtual storage. The program loader brings an entire program into
virtual storage from the library on which the program resides. Virtual
storage is obtained for the user program. Each page in the program is
brought into real storage; that is, areal storage frame is allocated to each
page and an entry, including reference and change bits, is built in the page
frame table. Each page is then active and subject to the normal paging
activity; that is, the most active pages are retained in real storage while the
pages not currently active are paged out to auxiliary storage. Figure 2.9
summarizes the program loading process.

2-14 OS/VS2 MV S Overview

Program
Libraries

/
/
7/
e

Loader
Program
is executing

Control Control

Program Program

REAL STORAGE VIRTUAL STORAGE

Figure 2.9. Program L oading

Up to this point, virtual storage has been described asif the entire
16-megabyte address space is available for user programs and as if all of
real storageisavailable for paging. As Figure 2.8 and 2.9 show, however,
some virtual storage and a corresponding amount of real storage are taken
up by the control program, also called the nucleus. In most systems, an area
of approximately eight to ten megabytes is available for user programsin an
address space. The map of virtual storage for each address space includes
both the areas used by the control program and the area available for a
user program. The remainder of this chapter describes the map of virtual
storage in more detail to show how storage is organized in MV S to make
effective use of real storage, an important system resource.

Virtual Storage Areas

Each virtual storage area consists of a system area, a private area, and a
common area. The address space each user controls enables him to address
all three areas. However, private segment and page tables and storage keys
isolate one address space from all other address spaces and protect the
system from destruction.

Chapter 2: Virtual Storagein MVS 2-15

Figure 2.10 shows the major parts of virtual storage. The system area
and the common area @ contain the system control program and
variousroutines and data areas that pertain to the entire system. The
private area @ isthe areaavailable for user programs. Asthe figure
shows, both the common area and the private area contain several separate
parts. The contents of the system area, the common area, and the private
area are described in the following text.

In addition to the basic storage layout shown in Figure 2.10, the system
area and the common area can be extended or changed, depending on the
configuration or options a particular installation selects. These additions to
the storage layout are described later in this chapter under "Extensions and

Options."
- High Address
System Queue Area
Common Pageable Link Pack Area
Area
Common Service Area
/

Local System Queue Area

Scheduler Work Area

Subpools 229/230
]

Y

Private
Area User’s Private Address Space

A

User Region

System Region

System
Area Nucleus

Low Address

Figure2.10. Virtual Storage Layout

2-16 OS/VS2 MV S Overview

System Area

The system areais allocated from the bottom of virtual storage during
system initialization. It contains the nucleus load module and any extensions
to the nucleus, the page frame table entries, DEBs (data extent blocks) for
the system libraries. recovery management support routines, and unit

control blocks. The nucleus and the other contents of the system area make
up the resident part of the MV S system control program.

The system areaisinitialized after initial program load (IPL) by the
nucleus initialization program (NIP). The system areais fixed; that is, it is
non-pageable and non-swappable. Its contents are mapped one for one into
real storage frames at initialization time and remain fixed for the duration
of the IPL. While the size of the system area varies depending on the
system configuration and the extensions and options an installation chooses,
the size of the system area does not change once it isinitialized.

Common Area

The common areais allocated from the top of virtual storage. It contains
parts of the system control program, control blocks, tables, and data areas.
The basic parts of the common area are:

» The system queue area (SQA), which contains tables and queues that
are used by the entire system

» The pageable link pack area (PLPA), which contains system programs,
such as SV C routines and access methods, and selected reentrant user
programs

» The common service area (CSA), which contains system and user data
areas

System Queue Area (SQA)

The system queue area (SQA) contains tables and queues relating to the
entire system. For example, the page tables that define the system area and
the common area are held in SQA. The contents of SQA depend on an
installation's configuration and job requirements.

SQA isallocated from the top of virtual storage in 64K segments; a
minimum of three segments are allocated during system initialization.
Within the virtual segments, SQA space is allocated as long-term fixed
frames when it isrequired. Because it consists of long-term fixed frames,
allocated SQA space is both non-swappable and non-pageable.

Pageable Link Pack Area (PLPA)

The pageable link pack area (PLPA) contains SV C routines, access
methods, other system programs, and selected user programs. As its name
implies, PLPA is pageable; however, no physical page-outs are performed.
Because any changes made to a module would be lost and because the
modulesin PLPA are shared by all users, al program modulesin PLPA
must be reentrant and read-only.

PLPA spaceisallocated in 4K blocks directly below SQA. The size of
PLPA is determined by the number of modules included, and, once the size
is set, PLPA does not expand.

Chapter 2: Virtual Storagein MVS 2-17

2-18 OS/VS2 MVS Overview

Common Service Area (CSA)

The common service area (CSA) contains pageable system and user data
areas. It is addressable by all active virtual storage address spacesand is
shared by all swapped-in users. Data associated with an individual address
space can be isolated by a storage protect key.

Virtual storage for CSA isallocated in 4K pages directly below PLPA.
The amount of storage allocated is determined by the value specified for
the CSA parameter during system initialization. CSA is paged in and out of
storage as required.

Private Area

As stated earlier, each address space can access the contents of the system
area and the common area. In addition, each address space has its own
private area. Virtual storage for the private areais allocated from the top of
the system area up, and from the bottom of the common area down.

In most installations, the size of the private area ranges from eight to ten
megabytes. Even when there are significant extensions to the nucleus, SQA,
CSA, and PLPA, more than five megabytes should be available to each
user. The private area is made up of the local system queue area (L SQA),
the scheduler work area (SWA), subpools 229/230, and a system region, in
addition to the user region.

The user region isthe space within the private area that isavailable for
running the user's problem programs. There are two types of user regions:
virtual (V=V) and real (V=R). The two types are mutually exclusive; that
is. auser region can be V=V or V=R, but it cannot be both.

The two types of user regions, as well asthe other areas within the private
area, are described in the following text.

L ocal System Queue Area (L SQA)

The local system queue area (L SQA) contains tables and queues that are
unique to a particular address space. For example, LSQA includes the user's
private segment table and private page tables. L SQA also contains all the
control blocks required by the region control task (RCT). The region

control task isthe highest level task in each address space; it plays a key
role when .an address space must be swapped in or out.

LSQA is allocated downward from the top of the private area,
intermixed with the scheduler work area (SWA) and subpools 229/230.
L SQA for each address space that is swapped in isfixed in real storage
frames.

Scheduler Work Area (SWA)

The scheduler work area (SWA) contains the control blocks that exist from
task initiation to task termination. It is, in effect, alocal job queue, and the
information it contains eliminates contention for a system job queue. The
information in SWA is created when ajob isinterpreted and used during
job initiation and execution. "Chapter 5: Entering and Scheduling Work"
describes how MV'S processes ajob.

SWA is allocated from the top of each private area, intermixed with
L SQA and subpools 229/230. It is pageable and swappable.

Subpools 229/230

A subpool isalogical group of storage blocks that share some common
characteristics; each type of subpool has a unique identifying number.
Subpools 229 and 230 are both protected by the user's storage key. In
addition, subpool 229 is fetch-protected, which means that its contents
cannot even be read unless the key in storage matches the key in the PSW.

Subpools 229/230 contain user control blocks that can be used only by
programs with the appropriate storage protect key. Protected user resources,
such as the data extent block (DEB) that describes a user data set, residein
these subpools.

Space for subpools 229/230 is allocated from the top of each private
area, intermixed with LSQA and SWA.

System Region

The system region within the private areais used by system functions
performing work for an address space. These system functions run under
the region control task (RCT) and obtain the storage they need from the
system region by issuing GETMAIN macro instructions.

The system region consists of four virtual pages (16K) allocated from the
bottom of the private area. It is pageable and exists for the life of the
address space.

Virtual (V =V) User Region

A virtual (V=V) user region can be any size up to the size of the private
area minus the size of LSQA, SWA, subpools 229/230, and the system
region. Its size can be limited by the REGION parameter on the user's JOB
or EXEC statement.

V=V user regions are pageable and swappable. Only enough real storage
frames are allocated at any particular time to hold the active (paged-in)
parts of the problem program. A V=V region, as shown earlier in Figure
2.10, begins at the top of the system region and is allocated upward to the
bottom of LSQA, SWA, and subpools 229/230.

Chapter 2: Virtual Storagein MVS 2-19

Real (V = R) User Region

A real (V=R) user region is assigned a virtual space within the private area
that maps one for one with real storage; that is, each virtual addressin the
region always corresponds to the same real address. Figure 2.11 illustrates
V=R storage mapping; the shaded areas in Figure 2.11 indicate unallocated
storage. Real storage for the entire region is allocated and fixed when the
real region is created. An installation must use the ADDRSPC=REAL
parameter at system generation time to reserve sufficient storage for all
V=R regions that might exist at any particular time. When no V=R jobs
are running, the system uses the storage reserved for V=R jobs for normal
paging activity. Particularly when system activity is high, a V=R job might
not be started immediately; it must wait until the system can free the
storage required for the real region.

Reserved Area
for V=R .Jobs

VIRTUAL STORAGE

Common Area

REAL STORAGE

LSQA, SWA and

LLI] LIV

LSQA, SWA and

LLI LI

LSQA, SWA and
228/230

Pageable Area

V=R JOB3

< V=R JOB2

V=R JOB1

V=R: JOB1

System Region System Region

System Region

System Area System Area

Figure2.11. V=R Storage Mapping

2-20 OS/VS2 MVSOverview

Real regions should be used only for jobs with time-dependent functions
(that is, jobs that cannot wait for paging activity to take place) or for jobs
that cannot run in the virtual environment, such as jobs with channel
programs that use the program control interruption (PCI) to dynamically
modify themselves. See "Chapter 8: Satisfying 1/0O Requests' later in this
book for more information about channel programs.

V=R region size is controlled by the VRREGN parameter specified at
IPL or by the REGION parameter in a user JOB or EXEC statement.

Extensions and Options

Both the system area and the common area can be extended, depending on
the configuration of the system or options an installation selects. Figure
2.12 shows all possible extensions, in addition to the storage areas
described earlier (which are shaded in the figure).

Two of the extensions, the RM S (recovery management support) nucleus
extension and the prefixed storage area (PSA), depend on your system
configuration.

The RM S nucleus extension contains the recovery management support
routines that increase the availability of the MV S system. The size of this
extension depends on the particular configuration at an installation, but it is
always present in the system area.

The prefixed storage area (PSA) is only present for a multiprocessor
system. Itsuseis described more fully in "Chapter 10: Multiprocessing”
later in this book. When present, the PSA occupies 4K of virtual storage
and is allocated in the common areajust above the CSA.

Other extensions are optional; you choose them at either system
generation time or IPL time. These extensions are:

» Thefixed link pack area (FLPA)
» Themodified link pack area (MLPA)
» TheBLDL list, which can be either fixed or pageable

Each of these optional areas is described in the following text.

Chapter 2: Virtual Storagein MVS 2-21

Built from the

MVS VIRTUAL STORAGE

Fageable nkPack A_rea

Modified Link Pack Area*

high address
I down

— — — - 64K boundary

— — — — 4K boundary

Common Area < Pageable BLDL Table**

— — — — 4K boundary

Prefixed Storage Area***
(4K)

rvice Area

L4 Common

N

Argg a_ir_w_d‘ Subpool 229/2_30

Private User Area (

e

Local System Queue Area and Scheduler Wark

/

RMS Nucleus Extension

; : systemReglon

—~ — — — 4K boundary

— — — — 4K boundary

il — — — — 64K boundary

~
~ Mutually
Exclusive
~ " Private
- Region Aress

- —— — — 4K boundary

—— — — 64K boundary

Fixed Link Pack Area

System Area ﬂ Fixed BLDL Table**

*The MLPA is optional.
**The pageable and fixed BLDL tables are mutually exclusive.
***The PSA is only for MP systems.

__L Built from the

low address up

Figure 2.12. Extensions and Options

2-22 OS/IVS2 MV S Overview

Fixed Link Pack Area (FLPA)

The fixed link pack areais an extension to the system areathat an
installation defines at system generation time. It contains reentrant,
read-only modules similar to those loaded in PLPA.

Because FLPA isfixed — mapped one for one against real storage — it
reduces the amount of storage available for running installation programs.
Thus, the modules selected for FLPA should he chosen with care. The
paging algorithm MV S uses tends to keep a heavily-used PLPA modulein
real storage. Therefore, the most likely candidates for FLPA are modules
that significantly improve system performance when they are fixed rather
than paged, such as a module that is infrequently used but that requires
rapid response when it is heeded.

Modified Link Pack Area (MLPA)

The modified link pack area (MLPA) can be used for reentrant modules
from selected system or user libraries; it acts as an extension to PLPA, but
it exists only for the duration of the current IPL. That is, the MLPA is not
saved from IPL to IPL asthe PLPA is.

MLPA modules do not have to be read-only, and they can be modified.
One effective use of MLPA isto modify and test modules before adding
them to PLPA.

When MLPA is specified during system initialization, it is allocated just
below PLPA in the common area. It exists for the life of the IPL, and it is
pageable.

BLDL Lists

A BLDL listisalist of directory entries for modules residing on a system
library. Specifying a BLDL list can improve system performance because
the system does not have to perform alibrary search to locate a required
module. Each entry in aBLDL list contains the information the system
requires to locate the module. The type of module that can be most
effectively included in aBLDL list would be a heavily-used module that
cannot be loaded in FLPA or PLPA because either it istoo largeor itis
not reentrant.

A BLDL list can be either fixed or pageable, but not both. An
installation can choose either afixed or a pageable BLDL list during system
initialization.

Fixed BLDL: If you choose afixed BLDL list, the BLDL isallocated in
the system area directly above the nucleus. As part of the system areq, it is
not pageable. Fixed BLDL removes arelatively small amount of real
storage from use by installation programs. However, fixed BLDL can
reduce the number of page faults that occur during system execution and
should be considered when fast processing by the modulesin thelistis
critical.

Pageable BLDL: If you choose a pageablelist, the BLDL isalocated in
the common areabelow PLPA, or below MLPA, if present.

Chapter 2: Virtual Storagein MVS 2-23

2-24 OS/VS2 MV S Overview

Chapter 3: Installing and Servicing the System

This chapter contains information on installing and servicing an MVS
system. Among the items discussed are: installation planning; system
generation; an alternative to system generation called the MV S System
Installation Productivity Option (MV S System |PO); and the System
Modification Program (SMP) used to service the system.

Installing the System

Theinstallation of OS/VS2 MV S involves the creation of an MV S system
tailored to the needs of a specific installation and to a particular set of user
requirements. The installation can choose to perform afull system
generation, use the IBM-provided installation productivity option (MVS
System 1PO), or use combinations of these to assist in the tailoring process.

Preliminary Considerations

For many locations, installing MV S includes converting existing OS/MVT
functions, SV S functions, or OS/V S1 functions to comparable MV S
functions and adding certain new OS/VS2 MV S features and
enhancements. Such an effort requires a good deal of preliminary thought
prior to system generation in the areas of migration planning, conversion
planning, and installation planning. Those installations who are migrating or
converting from MVT or SVS should refer to OS/'VS2 Conversion Notebook,
for information on migration and conversion planning. Those install ations
who are migrating or converting from VS1 should also refer to OSVSL to
OSVS2 Conversion Notebook for information on migration and conversion
planning. This section focuses on installation planning, system generation,
and the MV S System 1 PO.

TheInstallation Plan

Installation planning is a key step to successfully installing OS/VS2 MV S.
A well thought out, managed, documented, and executed plan takes into
consideration everyone who uses or supports the system. The installation
should prepare a planning document that includes:

* A guide that indicates the appropriate tasks to be performed and
identifies who should perform these tasks

» Appropriate checkpoints, interdependencies, and deadlines

» User goals and performance expectations

» Staffing and assignment of personnel

Chapter 3: Installing and Servicing the System 3-1

3-2 OS/VS2 MVS Overview

Installation Tasks: Installation tasks can be categorized in five phases, as
shown in Figure 3.1: overall installation planning, generating the system,
integrating and testing the various components, testing the production
system, and stabilizing the production system. These phases are basically
the same as those provided in the MV S System I PO installation plan
discussed later in this chapter. Refer to that discussion for details on how
each of the planning phases should be handled if the MVS System IPO is
going to be used.

Overall
installation
planning

Generate the
system

Integrate and
test

Test the
production
system

Stabilize the
production
system

Figure 3.1. Installation Planning Phases

Checkpoints and Interdependencies: Checkpoints should be established for
each of the tasks within a given phase. Interdependencies of tasks,
identification of tasks that can berun in parallel, and other related planning
information can be established and documented during the overall
installation planning phase.

Performance: In order to migrate or convert to an MV S system from an
exigting system, the installation must understand the performance of the
current system and the desired performance of the new system.
Performance expectations should be documented in the installation plan and
should include such items as:

* Turnaround time for all classes of batch jobs
* Response time for online transactions
» Elapsed time for long-running jobs

In addition, the installation should create a workload profile to document
the expected volume of transactions and storage requirements. It may also
be possible to estimate processor use, channel use, and system paging rates.
Several IBM facilities are available to help the installation perform this task.
These include the Generalized Trace Facility (GTF), System Activity
Measurement Facility (MF/ 1), and the Resource M easurement Facility
(RMF), an IBM program product. Once performance expectations are
understood and system growth is projected, the proper hardware and
software configuration can be designed and generated. The OSVS2 MVS
Performance Notebook, includes information on defining performance
objectives.

Staffing and Personnel: Ideally, the installation plan will be carried out by
the current system programming staff. As an example, atypical
programming staff for installing MV S might include:

* Two people for MV S with JES2/JES3 experience
* One person for TSO with TCAM/VTAM experience
* One person for IMS/CICS (IBM program products)

This staff would be responsible for system generation, problem diagnosis,
monitoring and tuning, and other operation support activities. Each
participant should be fully educated, either in a classroom or self-study
environment, on how to handle each of the installation planning tasks to
which heis assigned. This education time should not be compromised.

System Generation

System generation is the process of selecting modules, options, and
parameters from IBM distribution libraries (DLIBS) and using them to
tailor the installation's MV S system. As shown in Figure 3.2, the system
generation procedure uses an MV S starter system (or a previously-working
MV'S system), a set of IBM distribution libraries, and a set of
installation-specified JCL and macro instructions (user specifications) to
produce the new MV S system.

Chapter 3: Installing and Servicing the System 3-3

N

JCL and macros —:—__’_——>

© e—’ [VIV
system
MVS starter
system " system
or generation
Prior MVS

Diagnostics
ﬁ and listings

1BM-supplied - :

Figure 3.2. Creating an MV'S System with the System Generation Procedure

When the MV S system is already generated but the installation wishesto
change the machine configuration or certain other program configurations,
an 1/O device generation can be performed. Refer to the publication
OSVR SPL: System Generation Reference, for adetailed description of
1/O device generation.

Note: Distribution libraries can be modified prior to system generation to
include specific IBM-supplied selectable units (a new way of packaging
function). This enables the installation to reap the benefits of an improved
MV S packaging and distribution process provided under the selectable unit
(SU) concept. More is said on this new process under "Servicing the
System."

Planning and Preparing for the System Generation

To prepare for the system generation process, the installation must:

1. Order the MV Sdistribution libraries from IBM. Information on how
to do thisisin the latest edition of the OSV2 Release Guide.

2. Select the appropriate MV S system control program options from
those available with MV S. Selected options, with the standard

3-4 OS/VS2 MVSOverview

features, comprise the installation's system. An explanation of all
MV S-supported options is available through the local IBM branch
office representative.

Note that in MV S the number of system generation options that must
be specified has been reduced. Many of the previous options have
been made standard under MV S. In addition, several macros (used to
specify the selected options) have been eliminated, consolidated, or
clarified.

Select and code the system generation macro instructions that specify
the selected options, standard features, and the allocation or
pre-allocation of data sets on the system. Instructions on defining
system data sets and a list of system generation macros and their uses
can befound in OSV2 MVS SPL: System Generation Reference.

If program products, such asIMS or CICS, areincluded in the
system, consult the local IBM Branch Office representative for the
appropriate documentation.

Initialize the DASD volumes required for the system generation.
Before the system can be generated, the DASD volumes that contain
the MV Sdistribution libraries, the MVS starter system (or prior MVS
system), and the MV S system-to-be must be initialized.

Executing the System Generation

With MV S system generation, multiple jobs can be run in parallel to speed
up the process. In addition, because many of the previous system options
have been standardized, installation time is saved in coding applicable
macro instructions for these options.

System generation is executed in two stages, as shown in Figure 3.3. In
Stage I, the system generation macros are assembled and then expanded
into job control statements, utility control statements, assembler statements,
and linkage editor control statements. Together, these statements describe:

The hardware configuration

The system control program

The access methods

Installation routines that are to become part of the system
Installation-selected program options that are to be included in the
new system

In other words, the statements describe the new, tailored MV S system.
(Additional tailoring can be done during subsequent initializations of the
generated MV S system.)

Chapter 3: Installing and Servicing the System 3-5

Stage |

User-supplied j'>
JCL and macros

>

MVS starter

Documentation
listing and
diagnostic
messages

gystem >
or
e Assembles Punched cards,
Existing MVS card images on tape,
system or data set on disk
JCL and
control statements
MVS
distribution
libraries
Stage |1
\——/ New MVS
system
MVS starter Assembles, controf
system > tink edits, program
or copies
Existing MVS
system

Documentation
listing

Figure 3.3. Executing the System Generation

3-6 OS/VS2 MVSOverview

The output of Stage | isinput to Stage Il. During Stage |1, modules from
the distribution libraries are assembled, link edited, and copied to the data
sets that are allocated on the new system volumes.

For afull system generation, Stage Il consists of six or seven jobs,
depending on what the installation has pre-defined. For an 1/0O device
generation, Stage Il consists of only five jobs. in all cases, the sequence of
execution is the same and is designed so that multiple jobs are executed in
paralél; that is, it isamultiprogrammed job stream.

The output of Stage Il isthe installation's MV S system control program
and alisting that documents Stage 11 execution.

Verifying the System Generation

After the system generation process completes, an IBM-supplied installation
verification procedure (1VVP) should be performed to verify that the new
system is operating properly on the specified hardware configuration.
Optionally, the installation can perform an 1/O device generation to alter or
extend the I/O configuration of the MV S system. The Installation
Productivity Option (MV'S System 1PO), to be discussed next, contains
information on system integration and testing of the production system.

MVS System | nstallation Productivity Option (MVS System | PO)

The MV S System IPO, an alternative to the full system generation process,
is anew approach to packaging, distributing, installing, and servicing a
system. It isaresult of an MV S installation completed at an IBM internal
location. As such, the MV S System 1PO package provides the installation
with the benefit of extensive installation experience. It should help to
achieve full production status with fewer resources as well as to significantly
reduce the time and effort required to plan, prepare, and execute the
installation of the MV S system.

This section discusses the MV S System IPO, the MV S System | PO
installation plan, and the documentation provided in support of the MVS
System I PO.

The MVS System PO

MV S System PO comes to the installation as a pre-generated extension of
the MV S starter system, supporting batch and TSO operation. The standard
version includes JES?2, an expanded 1/O configuration, TCAM or VTAM
support for TSO or IMS (a separately orderable feature of the MV S System
IPO isavailable for IMS/VS), and the most common MV S system options.

The system is a moderately tuned, two-volume MV S system that can be
used asisor altered to meet the installation's requirements. It comes with a
set of installed selectable units and programming temporary fixes (PTFs).
(Though the MV S System IPO is not formally tested when the SUs and
PTFsare applied, IBM uses the latest distribution level as a production
system at the IBM installation producing the MV S System | PO package.)

Chapter 3: Installing and Servicing the System 3-7

To simplify the installation process, the MV S System | PO package
includes examples of JCL usage and procedures to show how the
installation can use certain functions, change them, or incorporate them into
the MV S system. TSO userids, LOGON procedures, and a sample
command processor are provided, asis information about operating a
time-sharing system, including initializing, monitoring, and terminating TSO.
In addition, examples of exit routines are provided.

The MVS System I1PO can be used to educate the installation's system
programmers, system operators, and users. With it, the installation can:

» Perform early testing without extensive tailoring or reconfiguration

* Minimize the number of installation decisions to be researched,
implemented, and tested

* Reduce the stand-alone machine time required

Note, however, that the IBM internal location where the MV S System
IPO package was constructed was limited by the specific hardware/software
configuration at that location. Therefore, the installation should do an I/O
device generation to match the configuration of the installation's system, as
shown in Figure 3.4. Later, the system can be tailored and extended to
meet installation and user requirements.

me— I
MVS generation

System
1PO

Figure 3.4. 1/O Device Generation

The MV 'S System 1PO package also contains supporting documentation
and an installation plan. Discussions of each of these follow.

MV S System | PO Documentation

The MV S System 1PO package includes a comprehensive set of documents
to assist the installation in using the MV S System 1PO package. These
documents, shown in Figure 3.5, explain how to use the MV S System | PO,
describe how to build a production test system, and provide hints and
techniques relating to the installation process

3-8 OS/VS2 MVS Overview

Others)
i Machine-readable
Memo to Users or
emo r [_‘ Hard-copy

" '
. . Machine-readable
Planning an Tuning Guide /J
M VS System
i i [T i

{ .

Ins i
tallation System & Installation Machine-readable
Guide
(2 Volumes)
MVS System IPO Machine-readable
Contents

Figure 3.5. MV S System | PO Documentation

All MVS System 1PO documents except the planning document are
distributed in machine-readable form. Because of this, they reflect the latest
experience and the most current MV S System 1PO information. The
machine-readable documents can be listed on a system printer or displayed
on aTSO terminal. Their contents follow:

« Memoto Users: Thisdocument contains a general description of the
MV'S System PO package. It includes the purpose and concept of the
MV S System IPO, a description of the physical characteristics of the
tapes on which it is distributed, and a brief summary of each MVS
System PO document.

« Planning an MVS System | PO Installation: This document contains
general information about MV S System IPO. It isintended to assist
those responsible for installation planning in evaluating the use of the
MV'S System I PO for their installation. It describes in detail a
structured installation plan that makes maximum use of the MVS
System | PO package.

« MVSSystem IPO System Contents: This document contains a
physical description of the:

— MV S System IPO distribution libraries and the MV S System 1PO
itself
— Installed selectable units and applied programming temporary fixes

Chapter 3: Installing and Servicing the System 3-9

3-10 0S/VS2 MVS Overview

— 1/O configuration and defined UNITNAMEs

— Contents of the MV S System | PO data sets, physical data set
characteristics, and library members

» Systemand Installation Guide, Volumel: This document discusses
the procedure for installing the MV S System | PO and the rationale
behind the procedure. In addition to discussing the basic system
set-up, it describes procedures for:

— Printing the MV S System 1PO documents and listings
— Coding system generation macro instructions

— Performing an 1/O device generation

— Verifying the initial system

— Building atest production system

» System and Installation Guide, Volume 11: This document discusses
the techniques for tailoring the MV S System 1PO. These techniques
include the use of the System Modification Program (SMP), user SVC
routines, user exits, and the program properties table. It also discusses
password protection and provides catal og examples, hints about
system back-up, and fall-back and recovery techniques.

» Tuning Guide: This document discusses IBM experience in measuring
and tuning the MV S system along with experience in using certain
programs and aids for tuning purposes. It provides a tuning
methodol ogy, discusses the tailoring of MV S System 1PO, and offers
general tuning advice.

There are various other MV S System 1PO documents as well. For example:

* MVS System IPO User's Guide

* MVS System IPO Communication and Interactive Guide
* MVS System PO Operator's Guide

* Program Product Usage and Experience Guide

* Various Conversion Guides

These are explained in more detail in the publication Installation
Productivity Option (1PO) for OSV Release 3.7 (MVS): Planning an
MVS System | PO Installation, GC20-1852-2.

The MVS System | PO Installation Plan

The MV S System 1PO package includes an installation plan that helps the
installation's project leaders devel op their own plans tailored to the needs of
the installation. The MV S System 1PO installation plan, which is divided
into five phases, does the following:

* It definesthe required tasks.
* Itidentifiesthose tasks that can be performed in parallel.
It suggests a schedule for executing the various tasks.

Asshown in Figure 3.6, each of the system installation phases following
theinitial planning effort is preceded by planning activity pertinent to that
phase. Keep in mind while reading the discussions of each of these phases
that the MV S System I1PO installation plan formalizes some of the activities

that the installation should seriously consider doing whether or not the
MVS System | PO, itself, is used.

Overall planning
and preparation

Build a test
system

Test the production
system

Stabilize the
production system

Figure3.6. The MVS System | PO Installation Phase Plan

Phase 1 -- Plan and Prepare: During Phase 1, the MV S programming
group will obtain the necessary MV S education and study the MVS
publications. Then, after printing and reviewing the MV S System | PO
documentation, detailed tasks can be incorporated into the installation plan.
Note that similar tasks are performed in parallel by TSO and IMS

programming groups, as well as operations and users. (This applies to the
other phases, aswell.)

To use the new operator and user facilities MV S offers, the installation
may have to revise its standards and procedures. Those responsible for
operations and user applications should evaluate this need.

Chapter 3: Installing and Servicing the System 3-11

3-12 OS/VS2 MV S Overview

When the installation has completed all other Phase 1 planning and
preparation, the MV S System | PO and the distribution libraries should be
moved from IBM tapes to installation DASD volumes in preparation for an
I/O device generation.

Phase 2 -- Build a Test System: During this phase, an MV S system tailored
to the installation’'s needs and suitable for subsequent production testing is
built. Activitiesin this phase include:

* An /O device generation

» Creating PARMLIB and PROCLIB members
» Entering user data setsin the catalog

» System verification

» Preparing the TSO component

» Component testing

The MV'S System PO documents and listings include detailed
instructions for completing this phase.

Phase 3 -- Integrating and Testing: The objective of this phaseisto ensure
that the individual components, with system enhancements and extensions,
work with one another to accomplish the various system functions. At the
end of this phase, the system that the installation began building in Phase 2
is available for production testing. All functions and options are completely
integrated and the structure of the MV S system is complete. (Note,
however, that overall system tuning is not completed until the system
stabilization phase is executed.)

To expedite this phase, there is much parallelism and overlapping that
can be done in the testing of the various components. For thisreason, it is
important that the installation synchronize the various activities, and that
the various TSO, IMS, operations, and user groups communicate with each
other and with the MV S system programming group before and during the
testing.

Phase 4 -- Testing the Production System: The objective of this phaseisto
test the entire system with simulated production. The MV S system
programming group should control the testing, but all groups are involved.
Several tests should be planned and executed early, including terminal
simulations, if required. Many installations schedule at |east one production
test with live, on-line users prior to releasing the system for limited
production. In any event, it should prove useful to introduce the MVS
system to end users during this phase to familiarize them with new
procedures, modified standards, and enhanced facilities. The MVS System
IPO Tuning Guide provides excellent guidance for this phase.

Before proceeding into limited production (assuming that production
testing has gone satisfactorily), fall-back procedures should also be tested.
The MVS System IPO Operator's Guide includes recommended steps and
procedures.

Phase 5 -- Stabilizing the Production System: The objective of this phaseis
to bring the MV S system to a point where it can move into full production
status. Phase 5 is a continuous activity that includes releasing the system for
limited production and for eventual full production. During limited
production, the tuning process is continued to ensure that the system is
adjusted to meet installation performance expectations. Full production is

achieved when performance expectations and all planned user requirements
have been met. In addition to the MVS System IPO Tuning Guide, the
installation will find the following publications useful in reaching full
production status: OSVS2 MVS Performance Notebook, and OSV2
System Programming Library: Initialization and Tuning Guide.

Servicing the System

After full production status has been attained, the installation will want to
control the application of service, including the installation of new
selectable units (SUs), program temporary fixes (PTFs), and user
modifications. System service may also involve ordering a more current
release of the MV S System I PO and repeating some of the key installation
tasks.

The System Moaodification Program (SMP) is the primary IBM-provided
tool for servicing the MV S system.

The System Modification Program (SMP)

The SMP controls the application of service at the installation. To do this,
SMP creates arecord of al modules and macro instructions in the target
system (that is, the system to be serviced). As service for the systemis
received (in the form of new SUs, PTFs, or user modifications), SMP
checks these records to see what modifications have been made. In this
manner, a high degree of control of what isto be included in the system
can be maintained.

SMP can also be used to modify and keep arecord of modifications to
permanent user libraries and the IBM distribution libraries. This section
discusses the kinds of modifications that can be made, namely:

* Installing new selectable units
+ Installing programming temporary fixes
* Installing user modifications

In addition, some information is included about the SM P functions used
to carry out these modifications.

Installing Selectable Units (SUs)

Selectable units (SUs) represent a recent change to the MV S packaging and
distribution process. By choosing appropriate selectable units, the
installation can add enhanced or new functions to their MV S system
whenever these functions are needed by the installation. This means
installation on a more timely basis with fewer untimely disruptionsto
operations.

SUs areinstalled using anew MV S macro called the INSTALL macro.
The parameters in this macro identify the SUs to be installed and indicate
where the SUs are to beinstalled. SUs can be installed in the distribution
library for a subsequent MV S system generation (called the SY SGEN
option) or they can be installed from a distribution library into the target
system itself (called the SMP option). The SMP program controls both
methods.

Chapter 3: Installing and Servicing the System 3-13

SY SGEN Option: When the SY SGEN option is selected, the INSTALL
macro creates a new set of distribution libraries from the IBM distribution
library and the SU tape. Various SMP functions are performed during the
installation process, as discussed under "SMP Control Functions." The
resulting modified distribution libraries (see Figure 3.7) can be used to
generate anew MV S system that will include the selected SUs.

Note that when the SY SGEN option is selected, the target system, itself
is not affected.

/
Customer
SU selections

Customer SYSGEN
library

IBM distribution
library tape

IBM SU tape INSTALL
macro
su1 ,suz.... /\
\4 v
Customer’s updated
MVS system
SYSGEN

Figure3.7. SYSGEN Install Option

3-14 OS/VS2 MV S Overview

SMP Option

When the SMP option is selected, the INSTALL macro receives applicable
SUs, applies them to the existing MV S system, and accepts them as
modifications to the permanent user libraries or to the distribution libraries.
Thisis carried out according to the SMP function control statements
encountered by SMP. When the SMP option is selected, the target systemis

directly modified, as shown in Figure 3.8 -- no new system generation is
required.

Customer
SU selections

l

1BM SU tape Updated MVS

: system

Existing MVS system

INSTALL

Figure3.8. SMP INSTALL Options

Installing Programming Temporary Fixes (PTFs)

A programming temporary fix (PTF) isan IBM-supplied correction to a
defect in one of its programs. It is intended to fix or prevent problems.
Unless the defect isremoved in alater release, the PTF becomes a
permanent part of the system. IBM distributes these correctionson a PTF
tape. IBM also distributes program update tapes (PUT) to reduce the effort
required to perform service. The tapes contain selected PTFs organized and
arranged to facilitate easy application.

Chapter 3: Installing and Servicing the System 3-15

3-16 OS/VS2 MV S Overview

Each PTF contains a series of SMP function control statements and one
or more changes. The control statements:

* Identify the change

» Verify that the change applies to the installation's system

» Specify prerequisite additions to or deletions from the system for this
particular PTF. (In some cases, a PTF cannot be applied unless one or
more prior PTFs are first added, or unless a PTF added earlier isfirst
removed.)

* Indicate whether the change is to macro instructions, source modules,
object modules, or load modules

* Indicate whether the change is an update or a replacement

Installing User Modifications

Once your system isinstalled, you may want to develop and code your own
changes. These changes may be new or replacement macros or source, load,
or object modules. Changes can be assembled and link edited, if that is
required, or SUPERZAP statements can be used. Each change should have
an identifying number.

SMP can be used to apply user modifications. It provides the same
control capabilities and benefits for user modifications as it does for
applying IBM PTFs. To install user modifications with SMP, you write SMP
function control statements to specify the changes you want to make and to
verify the correct base level of the system. The SMP statements should also
be used to cheek prerequisite changes or changesin the system that might
preclude the present change.

SM P Control Functions

SMP can process several changes at once and can accept input in the form
of SUPERZAP statements, module replacements, and in PTF form. It
controls application of changes through the use of SMP function control
statements. Figure 3.9 illustrates the function provided by the SMP control
statements. Additional details can be found in the publication OS/VS
System Modification Program (SMP) System Programmer's Guide.

RECEIVE >

processing
SMP control
data set

——____—> (SMPCDS)

Ne—

Want
c EJEC
< 10 appiy =, No RE T
processing
change ?

APPLY
processing

MVS target
system

RESTORE
processing

Application
valid ?

ACCEPT
processing

P

Alternate
SMP control
data set

(SMPACDS)

Figure3.9. SMP Functions

Chapter 3: Installing and Servicing the System 3-17

3-18 OS/IVS2 MV S Overview

RECEIVE Function: The RECEIVE function creates essential control
information used to determine whether or not to add the current
modification to the system. Thisinformation is placed in an SMP control
data set called SMPCDS. The RECEIVE function also checks the syntax of
control statements and verifies that the current modification applies to your
particular system. Additionally, it prints alisting to help you determine
which changes should be applied to the system or rejected.

REJECT Function: If you decide not to apply a particular change after
RECEIVE processing, the REJECT function deletes the appropriate control
information from the SMPCDS data set.

APPLY Function: The APPLY function first determines that all necessary
changes are either on the system or being applied. It also identifies any
previous changes that might precede this change. When you are satisfied
that you can proceed with the change, the APPLY function makes the
modification.

RESTORE Function: If you find during atesting period that a change does
not work or that you must remove one or more changes for any reason, the
RESTORE function will remove the changes from the system and update
the SMPCDS data set.

ACCEPT Function: The ACCEPT function places into permanent libraries
or into the distribution libraries any changes that the RECEIVE and
APPLY functions have processed. An SMP alternate control data set
(SMPACDYS) is updated to reflect any changes to the distribution libraries.

Chapter 4: Preparing the System For Work

Before productive work can be done, the MV S system must be initialized to
specific starting values. These values, some of which were previously
established during the system generation process and some of which may be
provided by the system operator during the initialization process, provide
installation tailoring to the MVS system.

Overview of the Initialization Process

Asshown in Figure 4.1, theinitialization process consists largely of
locating, loading, and initializing the nucleus, initializing system resources,
initializing the master scheduler, and initiating the primary job entry
subsystem (JES). In the course of the initialization process, an initia
program loader (IPL), a nucleusinitialization procedure (NIP), various
resource initialization modules (RIMS), and a master scheduler initializer are
loaded and activated to perform the appropriate initialization steps. To
provide additional flexibility to the initialization process, the system

operator can interact with the various initialization routines through a
system console.

System
operator Master
initiates Initiate
IPL > NIP » scheduler j——0
load initializer
procedure -
o L T A —
Locates, initializes e T RIMs 1 Inigializes
loads nucleus . master
nucleus scheduler
Initialize
system

resources

Figure4.1. System Initialization Summary

Chapter 4: Preparing the System for Work 4-1

I nitiating the Load Procedure

The load procedure isinitiated by the system operator. He ensures that the
system residence volume (SY SRES) is mounted and that the load deviceis
readied. Then, using the system console, he selects the load device and
initiates the load procedure.

The System Residence Volume

The system residence volume (SY SRES) must be online and ready during
system initialization because it contains the initial program loader and some
of the system data sets necessary during the initialization process. For
example, three such data sets that must be on the SY SRES volume are:

SYS1.NUCLEUS
SYS1.LOGREC
SYS1.SVCLIB

SY S1.NUCLEUS contains the resident nucleus to be loaded and
initialized. It also contains the nucleus initialization procedure modules
(NIP), the resource initialization modules (RIMS), and the modules used to
initialize the master scheduler.

SY S1.LOGREC contains arecord of hardware, software, and
input/output errors that occur during system operation. The data set is
opened during initialization so that error recording can take place.

SYS1.SVCLIB isan authorized program library that contains certain
supervisor routines that are not part of the resident nucleus but that are
invoked by NIP.

The System Console

The operator uses the system consol e to operate and control the system.
The system console consists of a control panel and a console device. On
some System/370 models, the operator uses the control panel to select the
load device and initiate the load procedure. On other models, he or she uses
the console device, which includes a keyboard, alight pen, and a display
screen. In the case in which the console device is used, the operator must
first perform an initial micro program load (IMPL) after powering up the
processor. Theinitial micro program controls the display screen, thereby
permitting function selections to be made available as "menu"” items. In any
case, the operator'sinitial actions bring the initial program loader into
storage.

4-2 OS/IVS2 MV S Overview

Initial Program L oading

When the operator initiates the |oad process, the stand-alone initial program
loader (IPL) isloaded from SY SRES into real storage starting at location
zero, as shown in Figure 4.2. Then | PL receives program control.

‘ Program control

SYSRES 8
Load key

Figure4.2. Initial Program Loading

IPL

Theinitial program loader has two major functions: clearing storage and
loading the nucleus.

Clearing Storage

IPL clearsthe general registers and floating point registers. Then it limits
the effective size of real storage to a size specified by the system operator.
(Cr, if no sizeis specified, the system default size contained in the system
parameter library isused.) Next, IPL clears effective real storage and resets
the storage keys.

Chapter 4: Preparing the System for Work 4-3

Loading the Nucleus

After storage has been cleared, |PL searches the system residence volume
for the nucleus, or, if applicable, for an operator-specified alternative
nucleus. When it finds the nucleus, IPL relocates itself and then loads the
nucleus load module (IEANUCOXx) and the NIP module (IEAV NIPO)
starting at location zero. |PL then passes control to NIP. Thisisillustrated

in Figure 4.3.
Real storage
Key IPL
::> Data transfer
AN

‘ Program control

SYSRES
IEAVNIPO NIP

b d A

-
IEANUCOx

| Nucleus ioad module

Figure4.3. Loading the Nucleus

Nucleus I nitialization via NIP

After NIP receives control from IPL, it first performs a few preliminary
initialization functions such as verifying that the nucleus has been properly
loaded, initializing the SY SRES unit control block (UCB), and building a
SY S1.NUCLEUS data extent block (DEB). Then NIP performs three major
initialization functions. It:

* Initializesreal storage

» Establishes an address space

» Processes SY S1.PARMLIB-specified and operator-specified
initialization parameters

In addition, NIP controlsinitialization of system resources. (The

appropriate resource initialization modules actually initialize the resources,
however.)

4-4 OS/VS2 MV S Overview

Initializing Real Storage

Aspreviously described, IPL cleared effective real storage, as specified by
the system operator or as an installation default limit. In a multiprocessing
(MP) system, NIP overrides this limit, clearing al real storage and setting
all storage keysto zero. Then NIP reserves space for permanent data areas
and control blocksin real storage, after which it initializes these items.

As shown in Figure 4.4, space at the high end of real storage isreserved
for the system queue area (SQA), and the control blocks necessary for the
management of virtual storage and the processor are built and initialized.

Once SQA spaceisreserved and initialized, space for the master
scheduler's local system queue area (L SQA) is obtained from the next
available real storage frame below SQA. Aswith the SQA, appropriate
control blocks are built in that area. Finally, NIPO initializes the NIP
transient area, which is used to execute the various load modul es that
constitute NIP.

The bottom of the NIP transient area is the top of the system area, as
shown in Figure 4.4. If an installation attempts to extend the system area
beyond this limit, MV S abnormally terminates and needs to be reinitialized.

NIP also initializes the page frame table entry (PFTE) for each real
storage frame it allocates.

Real storage

Key
Q
:> Data transfer SQA
A LSQA

Program control

::f) MP transient area

T+ | !

IEAVNIPO System

IEANUCOx |

Figure4.4. Initializing Real Storage

Chapter 4: Preparing the System for Work 4-5

4-6 OS/VS2 MVSOverview

Initializing A Master Address Space

NIP establishes a master address space in virtual storage. The master
address space contains a system area, acommon area, and a private area.
(NIP and the master scheduler execute in the private area.) As shown in
Figure 4.5, virtual space is alocated in the common areafor SQA, PLPA,
MLPA, and CSA. Spaceis allocated in the private areafor the master
scheduler LSQA and SWA, the master scheduler region, and the system
region. Space is also allocated in the system area for the nucleus load
module and, optionally, for fixed LPA and fixed BLDL.

Virtual storage

/ SQA)
/ PLPA
/ Common area
MLPA
/ CSA
Real storage ﬁ
SQA LSQA and SWA
LSQA Master
scheduler > Private area
region
NIP transient area System region <
Fixed LPA
IEAVNIPO Fixed BLDL > System area
{EANUCOxX IEANUCOx

Figure4.5. Initializing the Master Address Space

Next, NIP builds a segment table in the master scheduler's L SQA and
initializes it with pointers to page tables for the nucleus and NIP. These
page tables are built and initialized in SQA. At this point, NIP is ready to
initialize system resources. However, before going into system resource
initialization, a discussion on where NIP getsitsinitialization valuesisin
order.

Obtaining System Parameters

NIP depends on system parameters to tell it what initialization functions to
perform, what values to use, and which SY S1.PARMLIB membersto use to
initialize the system. Figure 4.6 provides an overview of all system
parameters. While these parameters are not discussed here at any length,
some of them should be meaningful to the installation from previous
discussions. Otherswill be discussed later. (Many of them, for example,
directly affect the initialization of system resources, a topic that will be
covered later in this chapter.)

IEASY Sxx Function Performed/Value SYSLPARMLIB

Parameter Specified/Data Set Named List Red

APF Authorized library name IEAAPFxx

APG Automatic priority group for system resources
manager

BLDL Pageable directory for SYS1.LINKLIB IEABLDxx
Nonpageable directory for SYS1.LINKLIB iEABLDxx

CLPA New link pack area to be created IEALODOO

CMD Command to be issued internally COMMNDxx

CSA Size of the common service area

CvVIO Delete all VIO data sets from paging space

DUMP Data sets for SYS1.DUMP

DUPLEX Duplex data set name

FIX Reenterable routines for nonpageable LPA TEAFIXxx

HARDCPY Hard copy log

10S specifies parmlib member containing options TECIOSxx
used by I/O Supervisor

IPS Installation performance specification IEAIPSxx

LNK Names of data sets concatenated to LNKLSTxx
SYS1.LINKLIB

LOGCLS Output class for log data set

LOGLMT WTL limit for log data set

MAXUSER Maximum number of virtual address spaces

Figure4.6. System Parameters (Part 1 of 2)

Chapter 4: Preparing the System for Work

4-8 OS/IVS2 MV S Overview

IEASYSxx

Function Performed/Value

SYS1.PARMLIB

Parameter Specified/Data Set Named List Real
MLPA Modifications to pageable LPA IEALPAXx
OPI SYS1.PARMLIB operator intervention
restrictions
OPT System resources manager tuning parameters IEAOPTXx
PAGE Page data set names
PAGNUM Number of page and swap data sets that may
be added
PURGE Demounts all mass storage system volumes
REAL V = R address area size
RSU Number of storage units available for storage
reconfiguration in an MP system
SMF SMF parameters SMFPRMxx
SQA Size of the system queue area
SWAP Swap data set names
SYSP System parameter list to be merged with IEASYSxx
IEASYS00
VAL Volume characteristics VATLSTxx
VRREGN Default region size for a V = R request
WTOBFRS Number of buffers for WTO (write to
operator) routine use
WTORPLY Number of operator reply elements for WTOR

routine use

Figure4.6. System Parameters (Part 2 of 2)

System parameters are provided to the initialization process fr om two
sources: from system parameter lists, which are established on the system
residence volume when the system is generated, and directly from the
system operator during the initialization process.

The System Parameter Lists

System parameter lists are contained in SY S1.PARMLIB. NIP always reads
the primary system parameter list (IEASY S00). Thislist contains basic
initialization instructions, installation-specified initialization defaults, and
other initialization values that will not change from IPL to IPL.

SYS1.PARMLIB may aso contain secondary parameter lists (IEASY Sxx's
other than IEASY S00) that can be merged with the primary parameter list
at initialization time. The secondary lists, sometimes called alternate lists,
contain values that override previous values in the primary list. They may
also contain additional values not originally specified in the primary list.
Secondary lists should contain parameters that are subject to change -- for
example, they might contain the kinds of changes that are necessary
between shifts. For more information on these parameters, refer to
0OS1 V2 System Programming Library: Initialization and Tuning Guide.

System Operator Activity

The system operator is the key to a successful initialization. After console
communication has been established and the system catal og opened, NIP
asks the system operator to:

SPECIFY SYSTEM PARAMETERS.

If one or more secondary parameter lists are to be merged with the
primary list, the system operator identifies them at thistime. In addition,
the system operator may directly specify certain system parameters at this
time. Such a"direct specification” would include parameters that are unique
for aspecific IPL. If no secondary parameter lists or direct specifications
are indicated by the system operator, the primary system parameter list is
the sole source of initialization values.

Parameters specified in secondary parameter lists override previous
parameters in the primary list. Likewise, directly supplied parameters
override previous parameters in primary and secondary lists. For example, if
IEASY SO0 contains:

MLPA=00,BLDL=00

and IEASYSO01 contains:
MLPA=(01,02),BLDL=01

and IEASYS02 contains:
MLPA=03,SQA=10

and the system operator specifies:
R 00,'SYSP=(01,02),SQA=2'

Note: The SY SP parameter specifies which secondary lists
are to be merged with the primary list.

then the system parameters used by NIP will be:
MLPA=03,BLDL=01,SQA=2 .

Chapter 4: Preparing the System for Work 4-9

4-10 OS/VS2 MVS Overview

While the use of secondary lists and operator-supplied parameters
provides flexibility in tailoring MVS, it increases dependence on the system
operator and tends to slow down the initialization process. By specifying
OPI=NO in the primary system parameter list, the installation can forego
operator intervention. And by specifying OPI=NO for secondary lists or for
selected "critical" parameters in these lists, the installation can restrict
operator intervention.

Resour ce Initialization ViaRIMs

NIP controls the initialization of each system resource. However, the actual
initialization is done by a resourceinitialization module (RIM) that belongs
to the function owning the resource. For example, because the input/output
supervisor (10S) uses and controls the unit control blocks (UCBS) that
represent the I/O devices, the RIM that initializes these devices belongs to
the input/output supervisor. Likewise, the RIM that initializes the system
consoles belongs to the communications task because that task owns the
consoles, and so on. Developing and distributing RIMs in this way tends to
increase system reliability and simplify service.

This section deals with the initialization of the following system
resources:

» |/O devices
» System consoles
» System catalog

and the following resource managers:

» System resources manager
* Auxiliary storage manager
* Program manager

Initializing I/O Devices

Each deviceis represented by a unit control block (UCB) that is used for
subsequent device allocation and to control 1/O operations. The I/O RIM
initializes each device's UCB by setting status and condition flags in the
UCB and, for DASD. by recording volume information in the UCB .
However, before device UCBs can be initialized, the /O RIM must ensure
that the devices and paths to those devices are available and accessible.

An available path includes an online processor, a physical channel
attached to an online processor, and at |east one online device to complete
the path. Figure 4.7 illustrates a configuration in which 1/O device a
single path, and devices 2, 3, and 4 have multiple paths. Note that for a
device to be available, there must be at least one path to that device.
Devices generated offline and devices generated online but with no
available paths are unavailable.

CPUOQ CPU 1

\

/
~ 7T~

Chn 1 Chn 2 Chn ‘l1 Chn 21
Dev 3 Dev 4
—
Path 1 2 3 4 5 6 7 8 9
CPU 0 o 0 1 o 1 1 1 1
¥

Chn 1 1 2 11 2 11 21 11 21
Dev 1 2 2 2 3 3 3 4 4

Figure4.7. Pathsto a Device

Chapter 4: Preparing the System for Work 4-11

The I/O RIM tests the accessibility of each available device on all
available paths. To do this, the RIM requests an 1/0O operation on each
available path. The results of these I/O operations will determine on which
paths a device can be accessed. For DASD, thefirst of these 1/0
operations attempts to read the volume label to determine the volume serial
number and the location of the volume table of contents (VTOC). For
shared DASD, the RIM will issue an I/O operation to see if the deviceis
actually sharable. Unavailable devices are not tested for accessibility.

After the applicable UCBs have been initialized, the RIM scans online
DASD UCBsfor duplicate volume serial numbers. If any duplicate volumes
are found, the operator is requested to remove them.

I nitializing Volume Attributes

SYS1.PARMLIB

VATLSTxx

Volume attributes are actually initialized toward the end of NIP processing
by a separate RIM called the volume attribute RIM. The installation can
specify mount and use attributes for DASD volumes in avolume attribute
list (VATLSTxx), amember of SYS1.PARMLIB. Thelist is selected at
initialization time when the VAL system parameter is encountered in a
system parameter list or is specified by the operator.

As shown in Figure 4.8, the volume attribute RIM processes the
VATLSTxx and, accordingly, sets the mount and use attributes in the
UCBsfor all mounted volumes. If avolume is not mounted, the system
operator is asked to mount it.

Voiume
attribute uUcB
RIM UCBPRES Permanently resident
MOUNT
I’" UCBRESV Reserved
—'_—IJ> :> UCBSTR Storage volume
L ucspPUB Public volume USE
UCBPRI Private volume

Figure 4.8. Specifying Volume Attributes

4-12 OS/VS2 MV S Overview

The MOUNT attribute indicates the conditions under which avolume
can be subsequently demounted. Y ou'll remember that a permanently
resident volume (PRES) cannot be physically removed, or cannot be
demounted until the device is varied offline. Such volumes, which include
the system residence volume and volumes containing critical system data
setssuch as SYS1.LINKLIB or the paging data sets, are always marked
PRES. Their MOUNT attributes should not beincluded in VATLSTxx.

Reserved volumes, on the other hand, are demountable. They remain
mounted only until the operator issues a subsequent UNLOAD or aVARY
OFFLINE command. A volumeis marked RESV if so specified in a
VATLSTXxX, or if the operator issuesa MOUNT command for the volume.

The use attributes indicate the types of requests for which avolume can
be allocated. Volumes will be marked as storage volumes (STR), public
volumes (PUB), or private volumes (PRV), as applicable.

Initializing System Consoles

The system console is the I/O device the system operator uses to provide
system parameters and otherwise control the initialization process. Because
it isused for operator-to-system communication, it is actually one of the
first devicesto beinitialized.

The RIM that initializes the system console must locate an available
console, designate it asthe master console, and initialize it. To do this, it
looks first for the installation-specified master console. If the
installation-specified master is not available, it will search for an available,
installation-specified, alternate console to designate as master. If no
alternate consoles are available, it will search for any other available
console to designate as master.

Figure 4.9 shows how the RIM locates a master console. The RIM first
locates the UCB for the install ation-specified master console by searching
the unit control module table (UCM), which contains an entry for each
console in the system. The RIM checks the online flag in the appropriate
UCB. If the console isonline and available, it is selected as the master
console.

Master console — UCBs

Alternate console - Online flag

Alternate console

Other console ~ Online flag

P

Online flag

Figure4.9. Locatinga Master System Console

Chapter 4: Preparing the System for Work 4-13

4-14 OS/VS2 MVS Overview

If the installation-specified master console is not available, the RIM
searches the UCM for an online, available, alternate console. If it finds one,
it selectsit as the master console, it resets flags in the UCM entry for the
installation-specified master console, and it sets like flags in the entry for
the selected alternate console. If no suitable alternate console is located, the
first other available console the RIM finds is designated as the master
console, and the appropriate UCM entries are modified accordingly.

After amaster console has been selected, the RIM passes the UCB
addressto NIP so that the console can be opened and used to communicate
with the system operator. Finally, the RIM acquires buffer space in SQA
for messages isssued by NIP. NIP uses this space to pass messages to the
communi cation tasks so that the messages can be written as hardcopy
during master scheduler initialization.

System parameters RIM uses to initialize the system consoles include:
HARDCPY, LOGCLS, LOGLMT, WTOBFRS, and WTORPLY . Y ou may
want to review the explanation for these parameters given in Figure 4.6.

Initializing the System Catalog

The system catalog is used to locate catal oged data sets and other catalogs.
It contains the volume serial number and device type of each cataloged data
set. Unlike MVT and SVS, the MV S system catalog isaVSAM (virtual
sequential access method) data set serving as the VSAM master catalog. It
can contain entries for VSAM data SetS and VSAM user catalogs, as well as
entries for OS data sets and OS user catal ogs.

NIP can open data sets residing on the system residence volume whether
or not the system catal og has been opened. However, system data sets
residing on volumes other than the system residence volume are located
through system catal og pointers and cannot be opened or accessed until the
system catalog isinitialized. For example, before NIP can complete the
opening of SYS1.LINKLIB, and before any parameters can be read from
SY S1.PARMLIB, the system catalog must be opened.

Various VSAM RIMs open, initialize, and close the system catalog at
initialization time. As shown in Figure 4.10, one of the. VSAM RIMs
obtains the volume serial number and device type of the system catalog
from SY S1.NUCLEUS. It then locates the UCB representing the device on
which the volume is mounted. If the volume containing the system catalog
is not mounted, the operator is requested to mount it. A VSAM RIM then
searches the VTOC of the mounted volume to locate the system catal og.
When it has been found, another VSAM RIM builds the control blocks
necessary to access aVSAM data set. It then opens the data set and
initializes it as the system catal og.

SYSRES

5

N

SYS1.NUCLEUS

e
/l
M \
\
/] v\
Volume Device / ©
serial type : UCBs

\

: ystem

catalog

A

vTOC

Figure 4.10. L ocating the System Catalog

After NIP initialization has completed (before NIP terminates), aVSAM
RIM is again invoked to close the system catalog. After system initialization
is complete, the first reference to a cataloged system data set will cause the
system catal og to be opened normally.

Chapter 4: Preparing the System for Work 4-15

4-16 OS/V S2 MVSOverview

Initializing the System Resources Manager

Itisthejob of the system resources manager (SRM) to provide an
installation-specified level of acceptable user service while making the most
efficient use of available system resources. SRM initialization consists of
establishing system constants and processing certain SRM system
parameters.

System constants are used to adjust processor, storage, and 1/0 loads,
and are based on such variables as the processor model, the number of
online processors, and the number of logical channels. (A logical channel is
the set of all paths to a specific device or group of devices. Figure 4.7, for
example, depicts four logical channels, one for each device.)

The installation establishes the level of user servicein various system
parameter lists and values selected at initialization time. The APG, IPS, and
OPT system parameters specify or point to:

» The automatic priority group (APG)
* Installation performance specifications (IPS)
* Optional system tuning parameters (OPT)

Automatic Priority Group (APG) Initialization

Through use of the APG system parameter, the installation establishes a
range of dispatching priorities designated as an automatic priority group.
During subsequent system operation, the APG value is one of the values
used to determine the position of APG group address spaces on the
dispatching queue. If the installation chooses not to set this value initially, a
default value is established at initialization time. During a subsequent IPL,
the system operator can override an existing APG value by specifying a
system parameter directly.

Installation Performance Specification Initialization (1 PS)

The SRM manages the workload and apportions appropriate service to the
current users of the system based on an installation-specified service rate
provided as the installation performance specification. The installation
performance specification isincluded in one of the IEAIPSxx lists, each of
which is a member of SYS1.PARMLIB. The IPS system parameter tells the
SRM RIM which list to use at initialization time.

Optional System Tuning Parameter Initialization (OPT)

The SRM makes tuning decisions based on recommendations from the
workload manager and the various resource managers. Optional system
tuning parameters are used to weight the recommendations of the processor
and I/O resource managers and to attempt to prevent the users from tying
up serially reusable resources.

Optional system tuning parameters are supplied to the SRM in one of the
IEAOPTxx system parameter lists, each of which is a member of
SYS 1.PARMLIB. The OPT system parameter tells the SRM RIM which list
to use at initialization time.

Additional SRM Initialization

After processing the APG, IPS, and OPT system parameters, the SRM RIM
builds an SRM user control block (OUCB) and a user extension block
(OUXB) for the master scheduler address space. Once the master scheduler
isinitialized, these blocks, used by SRM to control each user, is
subsequently built for each address space as the address spaceis created.

After the SRM isinitialized, NIP passes control to the RIM for the
auxiliary storage manager.

Initializiing the Auxiliary Storage Manager

The auxiliary storage manager (ASM) controls the auxiliary storage used for
paging and swapping, and the 1/O operations associated with these
activities. To page efficiently, the ASM divides paging requirements into
pageable link pack area (PLPA), common, and local pages. When the
system is generated, the installation allocates, catalogs, and formats page
data sets to meet the requirements of the three types of page data sets
mentioned above. The installation places the names of the data sets into the
primary system parameter list. Additional page data sets can be specified in
secondary system parameter lists or supplied directly by the system operator
at initialization.

Optionally, the names of installation-defined swap data sets and/or
duplex data sets can be specified in the same manner. Also, the installation
can indicate how it wants V10 data sets to be reestablished when
subsequent |PLs are performed.

After initialization, additional page and swap data sets can be
dynamically added to the system. To do this, the system operator uses the
PAGEADD command and names the page and/or swap data sets to be
added. The total number of page and swap data setsis limited at
initialization by the PAGNUM system parameter, which is obtained from a
system parameter list or supplied directly by the operator.

Page Data Set Initialization

Page data sets are opened and initialized by the ASM RIM according to the
type of IPL start — cold or warm (quick starts are handled like warm
starts). During a cold start (defined as thefirst |PL after the system is
generated or any IPL in which the CLPA--create link pack area--system
parameter is specified), the PAGE system parameter specifies applicable
page data set names. The PAGE parameter isincluded in a primary system
parameter list. Additional page data sets can be specified in secondary lists
or directly by the system operator.

During awarm start (a start following a system failure), page data set
names are "remembered” from the previous IPL. In these cases, the PAGE
parameter can still be used to specify additional data sets. (Note that the
PAGE parameter cannot be used to replace data sets. That is, secondary or
directly-specified PAGE parameter values are concatenated to those
specified in the primary list. They do not override existing values).

Chapter 4: Preparing the System for Work 4-17

4-18

OS/VS2 MVS Overview

To successfully initialize the ASM, one PLPA, one common, and at least
one local page data set must be specified and available. All page data sets
(amaximum of 64) must be allocated, cataloged, and formatted as VSAM
data sets prior to IPL. The sum of the local page data sets should be large
enough to hold all of the private area pages and any V10 pages. The PLPA
page data set should be large enough to hold all PLPA pages, and the
common page data set large enough to hold all other pages in the common
area (SQA, CSA, PSA).

Swap Data Set Initialization

Swap data sets are optional, but their use can significantly improve
performance. (If no swap data sets are specified, L SQA pages will be
directed to alocal page data set.) Swap data set names are specified by the
SWAP system parameter contained in one of the system parameter lists or
supplied directly by the operator. Unlike the PAGE parameter, the SWAP
parameter permits both the addition and replacement of data set names
specified in the system parameter lists.

Swap data sets must be allocated, cataloged, and formatted prior to the
IPL. A maximum of 25 swap data set names can be specified. When SWAP
is specified, at least one swap data set must be available at IPL time.

Duplex Data Set Initialization

The installation can define a duplex data set to hold a duplicate copy of all
pages written to the pageable link pack area (PLPA) and common page
data sets. The DUPLEX system parameter, contained in a system parameter
list or specified directly by the system operator, specifies the data set name.

Only one duplex data set can be specified, and then only on cold starts.
For warm starts, the ASM RIM uses the duplex data set name specified on
the most recent cold start.

If the duplex parameter is used, there must be a duplex data set
available. It must be allocated, cataloged, and formatted as a VSAM data
set prior to IPL.

V10O Data Set Initialization

For warm starts, the ASM RIM will reestablish all VIO data setsif the
volumes containing the previous local page data sets are available. However,
for all cold starts, or if the clear VIO (CVIO) system parameter is specified
for warm starts, the ASM RIM will delete all VIO data sets from local page
space.

Initializing the Program Manager

The program manager locates, loads, deletes, and transfers control between
load modules residing in either the link pack area (LPA) or job pack area.
This section discusses initialization of the LPA. (Modulesin the job pack
area are associated with job steps and are not discussed here.) During
initialization, the program manager RIM loads LPA modulesinto the
common area and builds and initializes related control blocks and queues.
The following areas areinitialized:

» The pageable link pack area (PLPA)
The fixed link pack area (FLPA)
The modified link pack area (MLPA)
* Varioustables and lists

Pageable Link Pack Area Initialization

The pageable link pack areais allocated in the common area of virtua
storage directly below SQA. For cold starts, the program manager RIM
loads the LPA modules from the link pack arealibrary (SYS1.LPALIB) into
the PLPA, as shown in Figure 4.11. Each module is represented by an
entry that is built and initialized in the PLPA directory (PLPAD) asthe
module is |oaded.

For warm starts, the PLPA is gtill in auxiliary storage from a previous
IPL, and is not reloaded. Instead, the program manager RIM calls areal
storage RIM to reconstruct PLPA page tables and segment table entries,
and to place the auxiliary storage slot addresses in the appropriate external
page table entries. This procedure speeds up the IPL process.

Program
manager
RiM Common area
SQA
/'J ’
Load madules
PLPA
SYS1.LPALIB . :
e
Directory entries PLPAD

Figure4.11. Initializing the PLPA

To reduce page faults and improve performance, it is sometimes
appropriate to group PLPA modules that refer to each other or that execute
in sequence. In this manner, the grouped modules will tend to occupy the
same page, or at least bein real storage at the sametime. The system pack
lis (IEAPAKOQ), which isamember of SYS1.PARMLIB created when the
system is generated, is used to provide such a grouping. It contains the
names of the modules to be grouped.

Chapter 4: Preparing the System for Work 4-19

4-20 OS/VS2 MV S Overview

As shown in Figure 4.12, the program manager RIM refers to the system
pack list to determine the order in which SYS1.LPALIB modules are to be
loaded into PLPA. If no pack list exists, modules are loaded as they are
encountered, starting at the top of PLPA space. Note that there are no
alternate pack lists; however, IEAPAKOO can be modified (or eliminated)
by the installation prior to initialization.

If it isimportant to speed up the search procedure for certain link pack
areamodules, the load list (IEALODOQO) can be used to do this. As shown
in Figure 4.12, the program manager RIM creates and initializes an entry in
the active link pack area queue (ALPAQ), within the SQA, for each
module in the load list. During subsequent MV S system operation, the
program manager searches the ALPAQ before searching the LPA directory.

Program
manager
RIM

Refers to
IEAPAKOO

!
| N
I NS

\ —

\ SYS1.PARMLIB

AN
N L

[N

/ For info on which
‘ modules to group.

Common area

SQA
Load list (1EALODOOQ) entries >
ALPAQ
SYS1.LPALIB Load modules N
PLPA
Directory entries
PLPAD

Figure4.12. System Pack List and ALPAQ Initialization

Fixed Link Pack Arealnitialization

The fixed link pack areais an extension of the nucleus and is located
directly aboveit in the system area of virtual storage. It contains reentrant
modulesin fixed V=R pages, which can be used by any task in the system.

Asshown in Figure 4.13, FLPA modules are loaded by the program
manager RIM as directed by afix list IEAFIXxX) in SYS1.PARMLIB.
Since there can be multiple fix lists, the FIX system parameter is used to
specify which list isto be used. If FIX is not specified, no FLPA modules
will be loaded. The fix list can contain names from SY S1.LPALIB,
SYSL1.SVCLIB, and SYS1.LINKLIB.

In addition, up to 15 libraries, from which FLPA modules can be loaded,
can be concatenated with SY S1.LINKLIB. To concatenate libraries, the
installation creates and/or modifies one or more link lists (LNKLSTOO or
LNKLSTxx). Thelink lists contain the names of libraries to be
concatenated. At initialization, the LNK system parameter is used to specify
which link lists are to be used. If LNK is not specified, only the default
LNKLSTOO will be used. (Thislist, as created when the system is
generated, contains only the name SY S1.LINKLI B.)

Asthe program manager RIM loads FLPA, it builds an SQA ALPAQ
entry for each module. After FLPA isloaded, it is possible for modules
from SYSL.LPALIB to now exist in both PLPA and FLPA. In these cases,
the FL PA module represented in the ALPAQ is the one used. The PLPA
module will be in the PLPA directory, but not on the active queue.

Chapter 4: Preparing the System for Work 4-21

Program
manager
RIM

1

\

\
\

N

Y
]

N

SYS1.PARMLIB

IEAFIXxx | <]

SYS1.LPALIB

SYS1.8VCLIB

s

1 SYS1.LINKLIB

LNKLST

N
N

N

F1X system parameter
selects fix list

SQA

ALPAQ entries

ﬁ') ALPAQ

LLoad modules

-/ FLPA

Nucleus

Figure4.13. Initializing FL PA

4-22 OS/VS2 MV S Overview

Modified Link Pack Area Initialization

The modified link pack area (ML PA) is an optional arealocated directly
below the PLPA directory in virtual storage. It constitutes an extension to
PLPA that remains on the paging data sets and on the ALPAQ only until
the next IPL. With the next IPL, the areais cleared.

As achoice of modulesto put in the MLPA, the installation might select
those modules that have been tentatively modified and are being tested.
The original module is not removed from PLPA, but the MLPA moduleis
substituted for the original module during the current 1PL.

Modules to be included in MLPA must be named in one of the modified
LPA lists (IEALPAXX) specified by the MLPA system parameter. If MLPA
is not specified, no MLPA modules are loaded. The program manager RIM
loads each MLPA module and builds an entry for that module on the
ALPAQ. MLPA modules, like FL PA modules, can be loaded from
SYSL.LPALIB, SYS1.SVCLIB, and SYS1.LINKLIB. Additional
concatenated libraries can be included.

Tableand List Initialization

In addition to initializing LPA, the program manager RIM initializes tables
and lists used by the program manager. These include:

o BLDL list
« SVCtable
» APF table

BLDL List: TheBLDL list contains directory entries for frequently-used
modules from SY S1.LINKLIB or any of the concatenated libraries. The
program manager uses the BLDL list to eliminate the 1/O required to bring
the directory into storage when accessing a module that is not in virtual
storage. (An in-storage copy of the directory isused.) A well thought out
BLDL list can significantly improve performance. It can be in fixed storage
directly above FLPA, or in pageable storage directly below MLPA. (A
fixed BLDL list improves performance even more by eliminating the page
faults that might otherwise be encountered in searching the list itself)

The names of the modules to be included are contained in a | EABLDxXx
list. The BLDLF system parameter specifies the fixed BLDL list to be used.
The BLDL system parameter specifies the pageable list. The program
manager builds and initializes either afixed list or a pageable list.

SVC Table: The SVC table contains an entry for each available SVC
routine. The program manager RIM initializes entries for SV C routines that
are not a part of the resident nucleus but have been placed in the LPA. It
searches the ALPAQ and the PLPA directory for SV C load modules and
places their addresses in the appropriate entries within the SV C table. If a
load module cannot be found, the RIM places the address of the SV C error
routinein the SVC table.

APF Table: The authorized program facility (APF) permits an installation
to identify the system and user libraries that contain programs authorized to
use restricted functions. The names of these authorized libraries are placed
in an APF table that the program manager RIM buildsin SQA. Entriesin
the table are established at initialization for SY S1.LINKLIB and

Chapter 4: Preparing the System for Work 4-23

4-24 OS/VS2 MV S Overview

SYSL1.SVCLIB. As aresult, theselibraries are always authorized. Note:
Because concatenated libraries are assumed to be part of SYS1.LINKLIB,
they are authorized when accessed through SY S1.LINKLIB. If accessed any
other way (e.g., through STEPLIB) they are not necessarily authorized.
(That is, they are authorized in these cases only if included in the APF
table)

In addition, the installation can specify authorized librariesin any APF
list IEAAPFxX) contained in SY S1.PARMLIB. Thelist to be used is
specified by the APF system parameter. The program manager RIM
initializes an entry in the APF table for each library named in the
applicable IEAAPFxx list.

Master Scheduler Initialization

Master scheduler initialization can be broken into three steps, as shown in
Figure 4.14. In the first step, the base initialization routine performs some
basic initialization functions. In the second step, the initiator initiates the
master scheduler by attaching the master scheduler region initialization
routine as ajob step task. To do this, it processes, through the subsystem
interface, a set of master JICL (MSTRJCL) statements obtained from
SYS1.LINKLIB. In the third step, additional tasks are attached by the
region initialization routine. In addition, automatic commands contained in a
command list (COMMNDxx) on SY S1.PARMLIB are executed or
scheduled' for execution, as the case may be. After region initialization is
completed, control istransferred to the master scheduler wait routine.

NiP

ON 1

* iviaster scheduler

Base initialization

»| Subsystem interface

SYS1.LINKLIB

MSTRJCL

f

Initiator \
- Master subsystem
< — Device allocation

®

SYS1.PARMLIB Master scheduler

COMMNDxx Region initialization

<

)

Master scheduier

Wait

Figure4.14. Master Scheduler Initialization

Chapter 4: Preparing the System for Work 4-25

4-26 OS/VS2 MV S Overview

Initializing the Master Scheduler Base

The master scheduler base initialization routine is entered from NIP. It
creates and initializes the control blocks needed to invoke the initiator.
Then it locates and stores entry points for certain job scheduler routines. It
initializes the subsystem interface, the communications task, some TSO
addresses and parameters, and the time-of-day clock. Finally, it attaches the
initiator to initiate the master scheduler.

Initiating the Master Scheduler

Before the initiator can attach the master scheduler region initialization
routine, it must read the JCL to do so. (Applicable job step task control
blocks must be created and data sets must be allocated.) As yet, however,
no JES readers are active and no procedure libraries are open. So the
initiator gets the necessary JCL from aload module (MSTRJCL)
established on SYS1.LINKLIB at system generation time.

To read and process MSTRJCL, the initiator uses the subsystem
interface to request job entry services, as shown in Figure 4.14. The request
is passed to the master subsystem, which reads the MSTRJCL and invokes
job scheduler routines to process the JCL and initialize necessary control
blocks. The last statement in MSTRJCL is a command to START JES. This
command is passed to the command processor portion of the master
scheduler and scheduled for execution.

The initiator uses the device allocation routine to allocate the data sets
indicated in MSTRJCL and required by the master scheduler (data sets
such as SY S1.PROCLIB and SY S1.PARMLIB). These are required when
WS is subsequently started. Two internal readers are also allocated. They
are used later to pass JCL from system routinesto JES. Lastly, the initiator
attaches master scheduler region initialization as the job step task, and the
master scheduler is active.

Initializing the Master Scheduler Region

The region initialization routine attaches other tasks to be run in the master
scheduler region and passes commands located in SY S1.PARMLIB to the
command processor for execution or scheduling. These commands are
contained in acommand list (COMMNDxx) a member of SY S1.PARMLIB.
Because there can be multiple command lists, the CMD system parameter is
used to tell master scheduler initialization which list to use.

When initialization is complete, control is transferred to the master
scheduler wait routine, which eventually encounters START JESin a
command scheduler control block (CSCB).

Job Entry Subsystem (JES) Start-Up

When the master scheduler wait routine scans the CSCB chain and finds
the START JES CSCB, it attaches a new address space. (START JESisa
task-creating command requiring a new address space.) Then aregion
control task (RCT) prepares the address space for execution. After these
preliminaries have been taken care of, started task control (STC) builds the
JCL necessary to invoke the JES procedure. Then the initiator starts JES.

Creating an Address Space

The master scheduler attaches the address space create routine. This routine
asks SRM if a new address space can be created. Because the only thing
running at this point is the master scheduler, there should be no contention
for system resources. After the address space create routine receives
permission to proceed, it invokes the virtual storage manager to create a
virtual address space for JES. Then it builds LSQA in the private area and
initializes page table entries. Lastly, it builds task control blocks for a

region control task (RCT) and places the address space control block
(ASCB) on the dispatching queue.

Initializing the Region Control Task

The region control task (RCT) isthe highest priority task in the new
address space. Therefore, when the JES address space becomes active, the
RCT isthefirst task dispatched. RCT controls the address space and
preparesit for execution (RESTORE) after a swap-in. It also prepares the
address space (QUIESCE) for a swap-out, and frees the address space
when the initiator terminates.

After RCT isinitialized, it attaches the started task control routine to
initiate JES.

Initiating JES

The started task control (STC) routine uses START JES CSCB information
to build the JCL necessary to invoke the JES procedure. Next, STC invokes
the master subsystem to see if JESis aready started (as in subsequent
system operation). If JES was already started, STC usesit. But since JESis
not yet started, STC links to theinitiator.

The initiator invokes the master subsystem, which uses job scheduler
routines much as it did when initiating the master scheduler. However, to
start JES, it uses the internal JCL built by STC rather than MSTRJCL.

After SYS1.PROCLIB has been allocated to the master scheduler, the JES
procedure can be read.

After all JCL has been processed and after job scheduler control blocks
have been built in the SWA, theinitiator links to device allocation to
allocate JES data sets specified in the JES procedure. Then, using the
program name from the EXEC statement of the JES procedure, the

initiator attaches the primary job entry subsystem. JES is started and MVS
isready for work.

Chapter 4: Preparing the System for Work 4-27

4-28 OS/VS2 MV S Overview

Chapter 5: Entering and Scheduling Work

When system initialization is complete and the job entry subsystemis
active, MV'S can accept jobs for processing. All jobs, started tasks (other
than the job entry subsystem), and time-sharing LOGON requests must
enter the system through the job entry subsystem. Also, the job entry
subsystem processes all output data produced by the jobs.

MV S works with either of two job entry subsystems — JES2 or JES3.
Only one of these subsystems can be specified during system generation to
run as the primary job entry subsystem for MV S. Both JES2 and JES3
perform the following basic functions:

* Reading jobsinto the system

» Scheduling jobs for execution

» Maintaining all data submitted with jobs

» Supporting the system management facilities

» Handling output from jobs and time-sharing users

This book uses the acronym JES when referring to the basic functions

supported by both JES2 and JES3. JES2 and JES3 are described separately
in more detail later in this chapter.

Terminology and Concepts

The following information describes several terms and concepts that are
essential to understanding how ajob entry subsystem works.

I nput Stream

When you present a job to the system for processing, the job consists of
JCL statements and input data. The JCL statements specify job
information, data set characteristics, and device requirements for the job's
execution. Theinput data is the data to be processed. The sequence of JCL
statements and input data for one or more jobs being submitted is called an
input stream. The job entry subsystem reads an input stream from card
readers, magnetic tapes, direct access devices, remote and local terminals,
and internal readers.

| nternal Reader

An internal reader is not an actual hardware device such as a card reader; it
isaspecia output data set that other programs can use to submit jobs,
control statements, and commands to the job entry subsystem. The job
entry subsystem can receive multiple jobs simultaneously through the
internal reader facility. MV S uses the following two internal readers,
allocated during system initialization, to pass JCL for started tasks and TSO
logon requests to the job entry subsystem:

Chapter 5: Entering and SchedulingWork 5-1

» STCINRDR, which is used by the started task control (STC) routine
when processing a START command. For example, if you issue a
command to start VTAM, STC creates JCL to refer to the VTAM
procedure and passes the JCL to the job entry subsystem through the
STCINRDR internal reader.

* TSUINRDR, which is used by the TSO LOGON command to initiate
aTSO terminal session. The LOGON command writes the
user-specified data set(s), consisting of JCL and input data, into the
TSUINRDR internal reader.

IBM supplies an external reader procedure named RDR that uses the
internal reader facility to submit an input stream from tape or disk. Also,
any job executing in MV S can use the internal reader facility to pass an
input stream to the job entry subsystem.

I nitiators and Job Classes
Aninitiator is ajob scheduler function that:

» Receivesjobs and job steps to be executed

» Causes input/output devicesto be allocated for them

» Places them under task control

» Supplies (at completion of the job) control information for writing job
output on a system output device

Normally, the system operator or the job entry subsystem starts several
initiators after system initialization is complete.

A job classis any one of many job categories that an installation can
define using JES initialization parameters. By assigning jobsto job classes,
the installation can attempt to:

» Avoid contention between jobs that require the same resources by
preventing these jobs from running concurrently

» Provide abetter mix of jobs for more efficient use of the system

» Process high-priority work quickly

To define ajob class, first determine which characteristics are most
important in achieving a good balance of jobs in your installation.
Generally, jobs of similar characteristics and identical processing
requirements should be assigned to the same class. For example, assume
that several jobs are time-dependent and are executed in nonpageable
dynamic storage. Running these jobs concurrently may not be desirable
because it will tie up much nonpageable dynamic storage. The jobs can all
be assigned to class B (or C or D — class names have no inherent
meaning); then, if only oneinitiator is started that can accept class B jobs,
more than one of these jobs will never be in execution at once.

Suppose you make the following assignments:

Class R
Class C

jobs that are time-dependent

jobs with high instruction-processing
requirements

Class D = jobs with high I/O-request requirements

5-2 OS/IVS2 MV S Overview

And you specify initiator parameters such as:

(iMlitiator 1) can process classes B, C, and D

Initiator 1 can accept jobsin classes B, C, and D, but the lowest-priority
jobin class B will be executed ahead of the highest-priority job in class C,
and so on. That is, initiator 1 will only process class C jobs when classB is
empty, and class D jobs when classes B and C are empty. If the three
initiators are processing jobs with the same priority and all necessary
resources (for example, I/0O devices and data sets) are available, then three
jobs (one from each of the three different classes) run concurrently. If a
job within one of the classes has higher priority than the othersin that
class, it will be initiated first.

To specify ajob's class, you code the CLASS parameter on the JOB
statement. Classes are automatically associated with each initiator during
JES initialization or dynamically by the operator. During execution, the
initiator receives jobs from JES in priority order within their class. That is,
the lowest priority job in the first non-empty class is selected ahead of the
highest priority job of the next class.

When an initiator becomes active, it asks the job entry subsystem for a
job that is ready for execution. The job entry subsystem selects the highest
priority job in a class associated with the initiator, prepares the job for
execution, and returns the job to the initiator. The initiator attaches the first
job step within the job and waits for it to complete before attaching the
next job step, and so on. When all job stepsin the job have completed, the
initiator cleans up the address space and asks for another job. This
continues until the operator stops the initiator or the job entry subsystem,
or until the job class associated with the initiator is exhausted.

For more information on establishing job priorities, see OSVS2 MVS
JCL.

Address Space Creation

During system initialization, the control program relates an address space
for the master scheduler, and one for the job entry subsystem. After
initialization is complete, the control program creates additional address
spacesin responseto START, MOUNT, and LOGON commands, which
represent requests to use system resources. The control program creates one
address space for each program started by a START command (such as
TCAM, IMS, or an initiator), each MOUNT command, and each logged-on
time-sharing user.

When you want to start ajob from a console device, reserve avolume
on adevicefor all jobs that need that volume, or start a TSO terminal
session, you enter a START, MOUNT, or LOGON command, respectively.
The master scheduler, in conjunction with other system components, creates
atask that performs the requested function (initiating a job, reserving a
volume, or initiating a TSO session) in the task's own address space. Figure
5.1 summarizes the process of creating an address space.

Chapter 5: Entering and Scheduling Work 5-3

Master Scheduler’s User’s Address Space
Address Space
L — ——
| User issues |
 START, MOUNT, or |
| LOGON command J

. Sommand |
Address space l
creation routine |
® assigns ASID
® creates control ?Aystem R(Zs; qu;:es l
blocks anager
® notifies SRM ® approves or [
e T ™ rejects new ! Region Control
e if SRM approves, address space Tasgk (RCT)
invokes VSM ‘
e if SRM rejects, | o e builds control
unassigns ASID, | blocks
releases storage,
and informs I *
operator
Started Task
, Control (STC)
Virtual Storage e builds in-storage
Manager {VSM) JCL for job
® assigns virtual ® determines which
storage command being
processed
a sets up addressability T
e builds an LSQA Job Entry
Subsystem {JES)
® creates RCT -
control blocks | ® reads job
e scans JCL and Converter
I writes it to spool
invoke e transforms the
¢ invokesconverter [spooled JCL to
- _.| . internal text
@ queues the job
@ assigns job ID &
passes it to initiator
|
/
Initiator subroutine
of STC JES Interpreter

o asks JES to e builds control
i - . ro
2;‘;23';? ojsb for e invokes interpreter | o blacks from

internal text

e invokes allocation
routines

e initiates the
job’s execution

Figure5.1. Creating an Address Space

5-4 OS/VS2 MV S Overview

The address space creation routine, operating in the master scheduler's
address space, assigns the new address space an ASID (address space
identifier) and creates control blocks for it. Then the routine notifies the
system resources manager (SRM) that a new address space is to be created.
SRM decides (based on the availability of system resources) whether the
creation of an address space is advantageous. If system conditions are
unfavorable for creating a new address space, SRM does not allow the
address space to be created. The address space creation routine unassigns
the ASID and frees the storage used by the control blocks. The operator
receives a message indicating that the address space could not be created. If
current system conditions are favorable to creating the new address space,
the address space creation routine invokes virtual storage management
(VSM) to assign virtual storage and set up addressability for the address
space. VSM builds an LSQA (local system queue area) and sets up a
segment table, page table, and external page tablesin it. VSM also creates
control blocks to operate the region control task (RCT) for the address
space.

Notee The MAXUSER parameter specified during system initialization
limits the number of address spaces that can exist at any one time; within
the MAXUSER limit, SRM controls the number of address spaces that
actually exist at any onetime.

Next the RCT receives control in the new address space. One RCT
exists for each address space. When the address space is created, the RCT
isthe only task associated with it. The RCT builds control blocks that
further define the address space, then attaches the started task control
(STC) routine.

STC determines which command is being processed (START, MOUNT,
or LOGON), builds in-storage JCL for the task associated with the
command, the passes the JCL to the job entry subsystem. The job entry
subsystem reads the job, scans the JCL and writes it on a spool data set,
invokes the converter to transform the spooled JCL into internal text,
queues the job on an internal queue, and assigns ajob 1D which it returns
to STC.

Next, STC usesits initiator subroutine to passthisjob ID back to the job
entry subsystem with arequest to prepare the job for execution. The job
entry subsystem invokes the interpreter to build and initialize the scheduler
control blocks for the address space from the internal text created by the
converter. Upon return from the job entry subsystem, the initiator
subroutine invokes the allocation routines and issues an ATTACH macro
instruction for the task related to the address space: any started program
(START), the MOUNT command processor (MOUNT), or the terminal
monitor program (LOGON).

Chapter 5: Entering and SchedulingWork 5-5

5-6 OS/VS2 MV S Overview

Job Entry Subsystem Processing

Job entry subsystem (JES) processing consists of five stages:

e Input

» Conversion
» Execution
* Output

* Purge

The system operator can communicate with the job entry subsystem in
all stages by using JES commands that control and monitor the devices,
jobs, and functions. For descriptions of the JES commands, see either
Operator's Library: OSVS2 MVSJES? Commands or Operator's Library:
OSVX2 MVS JES3 Commands.

The following descriptions of the five stages apply to JES2 and JES3.
Functions unique to JES2 or JES3 are described briefly in "JES2 Features"
and "JES3 Features' later in this chapter.

I nput

The job entry subsystem reads an input stream from card readers, magnetic
tapes, direct access devices, remote and local terminals, and internal
readers. Before passing control to the converter, JES stores the JCL and
input data on a direct access device called a spool data set .

Conversion

The converter takes the JCL from the spool data set, mergesit with JCL
from a procedure library (for any job that requestsinclusion of a
procedure), and converts the JCL to internal text (aform of datathat is
recognizable by the control program). The internal text is also stored on the
spool data set. If the converter detects any JCL syntax errors, it issues
diagnostic messages and places the job on the output queue. If the job has
no syntax errors, the job entry subsystem assignsit ajob ID and putsit on
apriority queue to await processing.

Execution

Jobs are selected in priority sequence within each job class. JES selectsa
job for execution when an initiator eligible to process the job is available.
The use of the word "priority" for. JES refersto input queues and output
queues and the order in which jobs will be selected for processing.

JES invokes the interpreter to build and initialize SWA control blocks
from the internal text created by the converter. The initiator callsthe
allocation routines to analyze the 1/0O device requirements of the job and to
allocate the required devices and data sets. Then the initiator activates the
job. JES provides an access method for reading and writing data to and
from the spool data sets in response to requests from executing jobs. When
the job completes its processing, JES places it on a queue to await output
processing.

Output

During its execution, a job creates system messages that must be printed,
and data sets that must be printed or punched. Upon termination of a job,
JES analyzes the characteristics of the job's output in terms of output class,
setup requirements (such as mounting a carriage control tape or pre-printed
forms on a printer, or inserting identification cards between sets of punched
card output on a card punch), and output priority. JES queues the output
data according to these characteristics; the output data on each output
queue hasidentical characteristics and is eligible for processing only on an
output device that matches these setup characteristics. Thus JES minimizes
operator interaction with the output devices by grouping together similar
output data.

The JES print/punch routines or the external writer process job output.
The external writer facility allows the user to write to devices other than
printers and punches (such as disks or magnetic tapes) and allows the user
to control all output written by installation-supplied writers.

Purge

When all processing for ajob is completed, JES releases the spool space
assigned to the job, making it available for allocation to subsequent jobs.
JES also issues a message to the operator to indicate that the job has been
purged from the system.

JES? Features

JES2 provides four features that extend the basic job scheduling functions
of ajob entry subsystem. JES2 allows an installation to:

» Dynamically control ajob'sinput priority (priority aging)

» Reduce job-scheduling overhead for certain types of jobs (execution
batch scheduling)

» Automatically schedule a given set of commands at specified times
(automatic commands)

» Share a common workload across several processors (multi-access

spool)

Priority Aging

JES2 can increase the priority of ajob based on the length of time the job
has been in the system. JES2 initialization parameters specify an upper and
alower limit for priority aging, and an integer that represents the number
of times the priority can be increased in a 24-hour period. By using the
priority aging facility, an installation can ensure the eventual processing of
low priority jobs. The longer alow-priority job remains on an input queue,
the greater its chance for execution.

Execution Batch Scheduling

Execution batch scheduling is an extension of normal job-scheduling that
can increase throughput by reducing job-scheduling overhead for certain
types of jobs. The jobs eligible for execution batch scheduling are jobs of

Chapter 5: Entering and SchedulingWork 5-7

58 OS/VS2 MV S Overview

relatively short duration, especially multistep jobs with common setup
requirements that are run frequently. Examples of such jobs are:
compile-and-go debugging jobs and order-entry and file-inquiry jobs.

To use the execution batch scheduling facility, an installation must write
an execution batch (XBATCH) processing program and a procedure to
initiate it, and assign the jobs a unique job class associated with the
execution batch procedure. Also the installation must include execution
batch scheduling parameters when initializing JES2. When JES2 recognizes
ajob with the execution-batch-scheduling job class, JES2 builds and
submits JCL through an internal reader to invoke the XBATCH procedure.
Once the XBATCH procedure initiates the)(BATCH program, the program
remains active aslong as it has jobs to process. Thus execution batch
scheduling involves gathering related jobs into a single input stream and
passing them as an input data set to the user-written XBATCH program.
This process reduces the overhead associated with setting up for and
processing numerous individual jobs or job steps.

For more information on the XBATCH program, see OSVS2 MVS
System Programming Library: JES2.

Automatic Commands

Y ou can specify from the console or through alocal reader that certain
commands or strings of commands take effect automatically at specific
times or at regular intervals. By performing common preset routines through
automatic command processing, you can eliminate the operator's
involvement in such tasks as:

» Providing periodic status displays
» Starting, stopping, and modifying initiators
» Starting or stopping remote lines

Multi-Access Spool

Previous topics have described JES2 functions on a single system (a
uniprocessor or a multiprocessor) operating under a single copy of the MVS
control program. JES2 can also operate two to seven such systems (each a
uniprocessor or multiprocessor) as members of a multi-access spool
configuration, as shown in Figure 5.2.

Each system in the configuration operates independently and includes all
functions previously described for single JES2 systems. That is, each JES2
system can read jobs from local and remote card readers, schedule jobs for
conversion and execution under MV Sinitiators, print and punch results
from local and remote output devices, and communicate with operators and
time-sharing users. However, all systems share a common JES2 workload
queue, which resides on spool volumes.

By sharing a common queue, the systems can balance the workload by
allowing jobs to execute on whatever system has an idle initiator with the
correct class, and to print or punch on whatever system has an idle device
with the correct class, routing, setup, and other requirements.

Mvs

Local and

.....]

LUUD: anu Remote
Remote Card Reade
Card Readers ar rs
Operator ey) — Operator

|

i
=N

TS T
\

i 4 \
l_ JES2 / JES2 e —
Checkpoint
JES2 | Data Set JES2 MVS
Y — > Queue \\ / Queue < — 3

\\ \ // / |
/ 7
N

spool volumes) |
Time Sharing

|
Time Sharing

o =

Local and Local and
Remote Remote
Printers and Printers and
Punches Punches

Figure5.2. A JES2 Multi-Access Spool Configuration

Because al systems are functionally the same, if one system in the
configuration fails, the others may continue processing from the common
queue. Only work in process on the failed system is interrupted; this work
may be recovered by awarm start of the failed system while the other
systems continue processing.

JES3 Features

Under MV S, JES3 supports configurations of one to eight
physically-connected uniprocessors or multiprocessors. In addition, the
configuration can include a number of ASP main processors, up to a
combined maximum of 32 processors.

Chapter 5: Entering and Scheduling Work $-9

5-10 OS/VS2 MV S Overview

The global JES3 function, which can reside in any one of the MV S
systems that make up the configuration, actively controls the other
processors in the complex. The other MV S processors in which JES3 resides
are called local processors. All processors on which jobs can execute are
called main processors; therefore, there may be a global main processor, one
or more local main processors, and one or more ASP main processors.
Figure 5.3 shows atypical JES3 complex.

JES3 Global
Processor
| I~
yd |
Ve |
pd]
JES3 Local JES3 Local
Processor Processor
AN '
‘\
Shared
Spool

\ \

Shared tape and disk devices

N

AN

Legend:
— — — CTC adapter

~

ASP Main

P

rocessor

/

Figure5.3. A JES3 Complex

The spool volumes, containing SY SIN and SY SOUT data, JCL, internal
text, and the job queues for the entire complex, are shared by the MV'S
processors. Each local processor is also connected to the global processor
by a channel-to-channel adapter for the interchange of control information.

JES3 must run under MV Sin all systems sharing the spool volumes. Asa
compatibility aid, JES3 also supports ASP Version 3.1 main processors on a
System/360 or System/370 connected through a channel-to-channel (CTC)
adapter to the global JES3 processor. These ASP main processors do not
share the spool volumes. Their access to the centralized lob queueis
through the CTC adapter to the global system.

JES3 performs the same basic job entry, scheduling, and output services
that JES2 performs. JES3 also offers the following features, some of which
JES2 a'so provides:

» Dependent job control

» Devicefencing

» Priority aging (also provided by JES?)

» Deadline scheduling

» Network job processing (also provided by JES2)
» Remote job processing (also provided by JES2)
» Dynamic system interchange

Dependent Job Control

Dependent job control (DJC) is a JES3 function that causes JES3 to
control job selection based on dependencies among jobs. With JES3 control
statements, the user can specify that one set of jobs (predecessor jobs) isto
be completed before other jobs (successor jobs). The success or failure of a
predecessor job can cause execution, holding, or cancellation of its
successor jobs.

Device Fencing

Device fencing involves reserving devices for use only by jobswithin a
specified job group, or jobs within a specific job network. By reserving
devices for certain jobs, the user can improve overall job turnaround
although device utilization will be less efficient. Jobsin a DJC network or
job class may optionally use devices other than the pool of reserved
devices.

Priority Aging

JES3 can increase the priority of ajob depending on the number of times
the job has been passed over for selection. However, at an
installation-specified priority barrier, JES3 attempts to prevent lower
priority jobs from using idle resources if the resources are known to be
needed by a higher priority job.

Deadline Scheduling

Deadline scheduling allows the user to specify atime of day by which ajob
should be scheduled. If the job is not scheduled by this time, JES3 increases
the job's priority at user-defined intervals until it is scheduled.

Network Job Processing

Network job processing (NJP) permits two or more global processors to
schedule and route JES3 jobs from one global processor to another using
telecommunication lines. The system programmer must determine which
jobs can be sent where, based on data dependencies. By specifically
defining the types of jobs (by job class) that can execute at various
locations, the system programmer can improve the workload balancing
among JES3 global processors.

Chapter 5: Entering and SchedulingWork 5-11

Remote Job Processing

Remote job processing (RJP) permits a user located many miles from a
particular JES3 installation to submit jobs to that installation. The unit
record devices at the remote site are logically operated by JES3 asiif they
were local readers, printers, punches, and consoles. Thus, while operating all
local unit record devices, JES3 can simultaneously read jobs from several
remote readers into the queue of jobs awaiting processing. It can also send
the results of previously entered jobs that have completed execution to
several remote printers and punches.

Dynamic System I nterchange

Dynamic system interchange (DSI) allows the operator to assign the JES3
global function to a capable, active local processor. The purpose of DSI is
to sustain the operation of the JES3 complex when along-term global
system failure occurs. Such afailure might be the result of a hardware
failure of the processor, a channel, or a control unit on the global
processor.

Thelocal processor assuming the global function must have
channel-to-channel pathsto all other local and ASP processorsin the
complex. Any processors for which no path exists cannot be supported by
the new global processor

DSl isinvoked by the* CALL,DSI operator command on the processor
that is to assume the global function.

Allocation of Devices

Device allocation is the assignment of aresource (1/0 device, volume, data
set) for use by a specific job step. When a user submits ajob for
processing, the job consists of statements and any related input data. The
JCL statements identify the job (JOB statement), each job step within the
job (EXEC statement), and the data sets to be used by the job (DD
Statements).

When JES selects ajob and passes it to an eligible initiator for
execution, the job's JCL has already been converted into internal text,
which the interpreter usesto build and initialize the SWA control blocks.
The parameters on the DD statement provide such control block
information as:

¢ The name of the data set

» The name of the volume on which it resides

* Thetype of 1/O device that holds the data set

» Theformat of the recordsin the data set

* Whether the data set is old or new

» The size of newly-created data sets

» The access method that will be used to create or refer to the data

The initiator passes control to the allocation routines which use the
control block information to analyze the job's device, volume, and data set
requirements.

5-12 OS/VS2 MVS Overview

During step initiation, the allocation routines assign the requested
devices, volumes, and data sets to the job step. The initiator does not start
the job step's execution until the allocation processis complete. That is, the
job step does not receive control until it has all the resources it needs to
execute successfully. A similar process occurs when a time-sharing user
issues aLOGON command to start a TSO terminal session.

These are the major functions that device allocation performs:

* Locating arequested data set's volume and unit information

* Resolving relationships between two or more requests

» Cresating, via data management, new data sets

» Assigning I/O devices to the requests

* Instructing the operator to mount necessary volumes

* Allowing dynamic concatenation and deconcatenation of data sets

These are the major functions that device unallocation performs:

* Directing the processing of a data set's disposition
* Releasing data sets, reserved by an initiator, for use by other job steps
* Releasing 1/O devices for use by other job steps

Dynamic Allocation

The allocation performed during job step initiation can be altered prior to
job step unallocation (or LOGOFF command to end a TSO terminal
session) by invoking dynamic allocation. Because resource requirements
may not be fully known prior to execution, dynamic allocation routines
enable jobs and time-sharing users to acquire resources as the need
develops. Dynamic allocation also allows resources to be used more
efficiently because the resources can be acquired just before use and
released immediately after use.

A typical use for dynamic allocation Isin a program that needs
temporary use of a device, volume, or data set for which there is heavy
contention. In such a case, dynamic allocation provides the means for a job
to tie up the resource for only as long as necessary rather than for the life
of the job.

Another common use for dynamic allocation isin ajob whose need for
allocation resources may vary according to input. Dynamic allocation
permits such jobs to dynamically allocate and free only the data sets
necessary to process the input, so the specific resources supporting the
required data sets can be in use for the minimum time.

For more information on dynamic allocation, see OSVS2 System
Programming Library: Job Management.

Chapter 5: Entering and SchedulingWork 5-13

5-14 OS/VS2 MVSOverview

Chapter 6: Supervising the Execution of Work

As described in the preceding chapters, work enters the system, is assigned
aprivate address space, and is scheduled for execution. Once the work is
brought into real storage (where it has access to the processor), it becomes
the responsibility of the supervisor.

The supervisor provides the controls needed for multiprogramming. This
chapter describes the following functions of the supervisor:

* Interruption processing. In order to achieve multiprogramming, some
technique must exist to switch control from one routine to another —
so that, for example, when routine A must wait for an 1/0O request to
be satisfied, routine B can be executing. In MV S, asin MVT and
SVS, thisis achieved by interruptions, which are events that alter the
sequence in which the processor executes instructions. When an
interruption occurs, the supervisor receives control, saves the
execution status of the interrupted routine, analyzes the interruption,
and passes control to the appropriate routine to process the
interruption.

* Creating dispatchable units of work. The supervisor requires some way
of identifying and keeping track of all the work in the system. It does
this by representing each unit of work with a control block. Two types
of control blocks represent dispatchable units of work in MVS
systems: task control blocks (TCBs), which also existin MVT and SVS
systems and which represent tasks executing within an address space;
and servicerequest blocks (SRBs), which wereintroduced in MVS as
an efficient way to provide high priority for system services.

 Dispatching work. After supervisor routines process interruptions, they
either return control to the routine that was interrupted or pass
control to aroutine called the dispatcher. (Which action occursis
described in detail in the topic "The Interruption Handler (1H)
Routines.") The dispatcher determines which unit of ready work, of
all the ready units of work in the system, has the highest priority and
passes control to that unit of work.

» Serializing the use of resources. In a multiprogramming system, almost
any sequence of instructions can be interrupted, to be resumed later.
If that set of instructions manipulates or modifies a resource (for
example, a control block or arecord in a data set), the supervisor
must prevent other programs from using the resource until the
interrupted program has completed its processing of the resource.

In MV'S, the supervisor provides two techniques for serializing the use of
resources. enqueuing (viathe ENQ or, for shared DASD, RESERVE macro
instruction), which is also availablein MVT and SV S systems; and |ocking
using multiple locks, which was introduced in MV S as an efficient way to
serialize the use of resources by supervisor routines and, in a
tightly-coupled multiprocessing environment, by processors.

For detailed information on supervisor functions see System
Programming Library: Supervisor and Supervisor Services and Macro
Instructions.

Chapter 6: Supervising the Execution of Work 6-1

6-2 OS/VS2 MVSOverview

Interruption Processing

An interruption is an event that alters the sequence in which the processor
executes instructions. An interruption may be planned (specifically
requested by the task the processor is currently executing) or unplanned
(caused by an event that may be either related or unrelated to the task
currently executing). There are six types of interruptions:

» SVC (supervisor call) interruptions, which occur when the program
issues an SV C instruction. An SVC isarequest for a particular system
service — for example, to open adata set (SVC 19 — OPEN), to
obtain storage (SVC 4 — GETMAIN), to write a message to the
operator (SVC 35 — WTO/WTOR).

» |/Ointerruptions, which occur when a channel or device signals a
change of status. For example, an I/O operation completes, an error
occurs, or a device becomes ready.

» External interruptions, which indicate any of several events for
example, atime interval expires, the operator presses the interrupt key
on the console, or asignal is received from another processor.

» Restart interruptions, which occur when the operator presses the
restart button on the console or when arestart SIGP (signal
processor) instruction is received from another processor.

» Program interruptions, which are caused by program errors (for
example, the program attempts an invalid operation), page faults
program references a page that is not in real storage), or requests to
monitor an event.

» Machine check interruptions, which are caused by machine
malfunctions.

The supervisor includes six routines called interruption handlers(IHs) to
process the six types of interruptions: an SVC IH, 1/O IH, external IH,
restart IH, program IH, and machine check I1H. When an interruption
occurs, the system must save the status of the program that was interrupted
and route control to the appropriate interruption handler routine. Thisis
accomplished by means of a hardware feature called program status words
(PSWs).

The Role of Program Status Words

Program statuswords (PSWs) are used to control the order in which
instructions are executed and to hold and indicate the status of the system
in relation to the program currently being executed. There are three types
of PSWs: current PSW, new PSWSs, and old PSWs.

The current PSW indicates the next instruction to be executed. It also
indicates whether the processor is enabled or disabled for 1/O interruptions,
external interruptions, machine check interruptions, and certain program
interruptions. When the processor is enabled, these interruptions can occur.
When the processor is disabled, these interruptions are ignored or remain
pending, to be processed when the unit of work that is executing disabled
compl etes the processing that requires disablement. (The processor is never
disabled for SVC, restart, or certain program interruptions.)

A new PSW and an old PSW are associated with each of the six types of
interruptions. The new PSW contains the address of the interruption
handler routine that can process its associated interruption. If the processor
is not disabled when an interruption occurs, the System/370 hardware
switches PSWs by:

* Storing the current PSW in the old PSW associated with the type of
interruption that occurred

* Moving the contents of the new PSW for the type of interruption that
occurred into the current PSW

The current PSW, which indicates the next instruction to be executed,
now contains the address of the appropriate IH routine to handle the
interruption (see figure 6.1); this has the effect of transferring control to
the appropriate interruption-handling routine.

NEW PSWs OLD PSWs
RESTART RESTART
EXTERNAL EXTERNAL

SUPERVISOR CALL

PROGRAM CHECK

MACHINE CHECK

Current PSW

SUPERVISOR CALL

\@

1/0

Contains address of
routine within supervisor
to handle interruption

Hardware switches
PSWs

PROGRAM CHECK

MACHINE CHECK

1/0

Provides a savearea for
PSW that was current at
time of interruption

Chapter 6: Supervising the Execution of Work 6-3

Figure6.1. The Use of Program Status Words (PSWSs) in Interruption Processing

6-4 OS/VS2 MV S Overview

The Interruption Handler (IH) Routines

Theinterruption handler (1H) that receives control saves the status (general
registers and the old PSW) of the unit of work that was interrupted,
analyzes the interruption, and determines the control program action
required. Specifically:

» The SVC interruption handler determines the type and location of the
requested SV C routine and, if the requested SV C requires that the
caller be authorized, checks that the caller has the appropriate
authorization. (The request is denied if the caller lacks necessary
authorization.) There are several types of SV Cs, each type having
different execution characteristics. For example, some types of SVCs
reside in the nucleus, othersin the link pack area; some types can
issue other SV Cs, other types cannot. If the requested SVC isatype
that can issue other SV Cs, the SV C IH builds a control block called
an SV C request block (SVRB) for the requested routine. The SVRB is
needed to save status information about the routine so that it can be
resumed after an SV C interruption has been processed. After checking
for proper authorization and, if necessary, building an SVRB, the SVC
IH passes control to the requested SV C routine.

» The 1/O interruption handler passes control to the input/output
supervisor (10S). 10S performs all processing for 1/O requests and
controls all 1/O error processing. For more information on 10S, see
chapter 8.

e The external interruption handler determines the cause of the external
interruption and passes control to the appropriate external service
routine.

» The restart interruption handler routes control to the recovery
termination manager (RTM). For more information on RTM, see
chapter 9.

« The machine check interruption handler records all machine checks and,
if the machine check cannot be corrected by hardware, callsthe
recovery termination manager (RTM) —see chapter 9.

» The program interruption handler determines the cause of the program
interruption and, depending on the cause, passes control to one of the
following:

— Real storage management (RSM), if the program interruption was
caused by a page fault. RSM determines if the page fault isvalid
and, if it is, starts the processing necessary to bring the referenced
page into real storage.

— Generalized trace facility (GTF), if the interruption occurred as the
result of arequest to monitor an event. GTF (if it is active) records
the event.

— A user-provided program-interruption exit routine, if the program
interruption was caused by an error in user code (for example,
using an incorrect address or attempting to execute privileged
instructions) and the user provided an error-handling routine (by
means of the SPIE —set-program-interrupti on-element— macro
instruction).

— The recovery termination manager (RTM), if the program
interruption was caused by an error in system code or, if the user
does not provide his own error-handling routine, in user code.

The routine that receives control after the interruption is processed
depends on whether the interrupted unit of work was non-preemptive. A
non-preemptive unit of work can be interrupted but must receive control
after the interruption is processed. All SRBs are non-preemptive; a TCB is
non-preemptive if it is executing a non-preemptive SVC (the installation
identifies which SV Cswill be non-preemptive during system generation) _ If
the interrupted unit of work was preemptive, the dispatcher receives control
and determines which unit of work should be performed next.

Figure 6.2 summarizes the processing of interruptions; for more
information on the dispatcher, see the topic "Dispatching Work."

Chapter 6: Supervising the Execution of Work 6-5

Unit of Work — executing

System/370
loads new PSW

tnterruption
occurs

Unit of Work

\

Highest Priority Ready \

|
Nl

N\
\\

Interruption-handling Routine

& Analyzes interruption
¢ Determines action required

o Routes control to appropriate part
of control program

\

Routine that Performs Requested
Service

Some services might require another
service and, therefore, cause an
interruption, which causes the supervisor
cycle to be restarted.

interrupted unit

of work non-preemptive
?

Dispatcher

The dispatcher dispatches the highest
priority ready unit of work, which might
be the unit of work that was interrupted
or might be another task or SRB.

Figure 6.2. Summary of Interruption Processing

6-6 OS/VS2 MVS Overview

Creating Dispatchable Units of Work

In MV S, dispatchable units of work are represented by two different
control blocks:

* Task control blocks (TCBs), which represent tasks executing within an
address space —user programs and system programs executed to
support the user programs.

* Service request blocks (SRBs), which represent requests to execute a
service routine. SRBs are typically created when one address space is
executing and an event occurs that affects a different address space;
they provide the mechanism for amost all communication between
address spaces.

Task Control Blocks (TCBs)

Task control blocks (TCBs) are created in response to an ATTACH macro
instruction. By issuing ATTACH, auser or system routine causes the
supervisor to begin the execution of the program specified on the ATTACH
macro as a subtask of the caller's task. As a subtask, the specified program
can compete for processor time and may use certain resources already
allocated to the caller's task.

The ATTACH macro instruction causes an SV C interruption. The SVC
interruption handler branches to the ATTACH SV C routine to perform the
requested service. The ATTACH routine does the following:

* Obtains storage for anew TCB

* Placesin the new TCB information needed to control the subtask

* Placesthe new TCB on the chain of TCBs for that address space

* Branchesto program management routines to locate the first program
to be executed for the new subtask and, if necessary, fetch the
program from a program library.

The region control task (RCT), which is responsible for preparing an
address space for swap-in and swap-out, is the highest priority task in an
address space. All tasks within an address space are subtasks of the RCT.
The RCT's TCB is pointed to from the address space control block
extension (ASXB) and points to the next TCB in the address space. Figure
6.3 illustrates the basic TCB structure for batch jobs, operator-started jobs,
and TSO users.

Chapter 6: Supervising the Execution of Work 6-7

System Area — SQA | Private Area — LSOA

Batch job
ASCB o ASXB TCB TCB TCB TCB TCB
RCT DUMP STC INIT JOB
~1 » STEP
o A ~1 ~1
Operator-started job
ASCB ASXB TCB TCB TCB TCB
RCT DUMP STC Started
i » - A _ job
TSO User
ASCB ASXB TCB TCB TCB TCB TCB
Vad
/ RCT DUMP STC LOGON T™MP
—] ~—r ~—q ~—f ,
Legend:
ASCB — address space control block
ASXB — address space control block extension
DUMP — dump task
INIT — initiator
LOGON — TSO LOGON task
LSQA — local system queue area
RCT — region control task
SQA — system queue area
STC — started task controi
TCB — task control block
T™P - terminal monitor program

Figure 6.3. Task Control Block (TCB) Structure

6-8 OS/VS2 MV S Overview

Service Request Blocks (SRBs)

Service request blocks (SRBs) are typically created when one address space
is executing and an event occurs that affects a different address space. For
example, address space A is executing and an I/O interruption occurs
because an /O operation requested by address space B has completed. The
I/O interruption handler collects the necessary information about the
interruption and builds and schedules a service request block (SRB). The
1/O interruption handler can then start 1/0O requests that were waiting for
the 1/O path used by the request that just completed and can accept any
additional pending interruptions. Delaying complete processing of the
interruption by building the SRB allows faster re-use of the I/O path and
less disabled interruption time.

The SRB identifies the routine to be executed and the address space in
which the routine should be executed. In the preceding example, the SRB
would be executed in address space B, because that address space had
requested the I/O operation. To schedule an SRB, the routine that builds
the SRB issues the SCHEDUL E macro instruction. On the SCHEDULE
macro instruction, the routine indicates the priority of the request relative to
other requests in the system by specifying either GLOBAL or LOCAL.
SRBswith aglobal priority are given a priority higher than that of any
address space, regardless of the actual address space in which they will be
executed. SRBswith alocal priority receive a priority equal to that of the
address space in which they will be executed, but higher than that of any
TCB within that address space. The assignment of global or local priority
depends on the "importance” of the request; for example, SRBsfor 1/0
interruptions are scheduled at a global priority, so that I/0 delays are
minimized.

Dispatching Work

Dispatching work consists of routing control to the highest priority unit of
work that is ready to execute. The dispatcher, a supervisor routine,
dispatches work in the following order:

I. Special exits. These are exits to routines that have a high priority
because of specific conditionsin the system. For example, if one
processor of atightly-coupled multiprocessing system fails, alternate
CPU recovery (ACR) will be invoked by means of a special exit to
recover work that was being executed on the failing processor.

2. SRBsthat have global priority. If aglobal SRB cannot be dispatched
(for example, the address space in which it will execute is swapped
out), the dispatcher reschedulesit at alocal priority.

Chapter 6: Supervising the Execution of Work 6-9

6-10 OS/VS2 MV S Overview

3. Ready address spacesin order of priority. An address space is ready
to execute if it is swapped in and not waiting for some event to compl ete;
an address space's priority is determined by the dispatching priority
specified by the user or the installation. The address space control block
(ASCB) contains the address space's dispatching priority; ASCBs that
represent ready address spaces are queued in storage according to their
dispatching priority. To select an address space, the dispatcher selects the
first ready ASCB on the chain of ASCBs.

After selecting the highest-priority ASCB, the dispatcher first
dispatches SRBs with alocal priority that are scheduled for that address
space and then TCBs in that address space.

If there is no ready work in the system, the dispatcher loads an enabled
wait PSW.

The dispatcher receives control after atask isinterrupted or becomes
non-dispatchable, after an SRB completes or is suspended, (that is, an SRB
is delayed because a required resource is not available), and from other
supervisor routines that want higher priority work dispatched without
waiting for an interruption to occur. The dispatcher saves the status of the
unit of work relinquishing control, selects a unit of work, builds a program
status word (PSW) for the selected unit of work, and issues aload PSW
(LPSW) instruction, which results in the selected routine receiving control.
That routine executes until an interruption occurs or until the routine
voluntarily gives up control (for example, by issuing aWAIT SVC).

Serializing the Use of Resour ces

The supervisor provides two techniques for serializing the use of resources:
enqueuing, which was availablein MV T and SV'S systems; and locking
using multiple locks, which is a new technique for MV S.

Enqueuing

Enqueuing is accomplished by means of the ENQ (enqueue) and DEQ
(dequeue) macro instructions, which can be used by both user and system
programs; or, for devices shared between systems, by means of the
RESERVE and DEQ macro instructions. On ENQ or RESERVE, a user
specifies the name(s) of one or more resources and requests shared or
exclusive control of those resources. If the resources are to be modified, the
user must request exclusive control; if the resources are not to be modified,
the user should request shared control, which allows the resource to be
shared by other users that do not require exclusive control. The DEQ
macro instruction is used to release control of aresource.

Locking

Locking using multiple locks is a new technique in MV S that serializes the
use of system resources by supervisor routines and, in atightly-coupled
multiprocessing system, by processors. A lock issimply afield in storage
that indicates if aresource is being used and who isusing it. In MV S, there
are two kinds of locks: global locks, for resources related to more than one
address space. and local locks, for resources assigned to a particular address
space. Global locks are provided for non-reentrant routines and the
following control blocks:

» Control blocksthe dispatcher uses.

» Control blocks the auxiliary storage manager (ASM) uses.

* Routines of real storage management (RSM) and virtual storage
management (V SM) that allocate storage.

» Control blocks and functions of the input/output supervisor (LOS).
These include locks for the following: global 10S functions; the
channel availability table (used by 10S to alocate a channel to an I/O
request); each unit control block (updated by LOS when units are
assigned to or released by 1/0O requests); each logical channel queue
(maintained by 10S for requests waiting for alogical channel).

» Control blocks used by VTAM. Thereis one lock for each of the
following types of control blocks: VTAM node control blocks; VTAM
destination node controls blocks; VTAM data extent blocks.

* The control algorithms and control blocks the system resources
manager (SRM) uses.

» Control blocksthat provide cross-memory services that are not
protected by any of the preceding locks.

A local lock is provided for each address space to serialize the allocation of
storage and the use of control blocks within the address space.

To use aresource protected by alock, aroutine must first request the
lock for that resource. A part of the supervisor called the lock manager
acquires and maintains all locks. If the lock is unavailable (that is, already
held by a different program or processor), the action taken by the program
or processor that requested the lock depends on the type of lock; there are
two types of locks —spin locks and suspend locks:

» If a spinlock isunavailable, the requesting processor continues testing
the lock until the other processor releasesit. As soon asthelock is
released, the requesting processor can obtain the lock and, therefore,
control of the protected resource. All of the global locks except the
cross-memory-services lock are spin locks.

» If a suspend lock isunavailable, the unit of work requesting the lock is
delayed until the lock is available; the requesting processor is
dispatched to do other work. The cross-memory-services global lock
and all local locks are suspend locks.

To prevent deadlocks, MV S locks are arranged in a hierarchy and a
processor or routine may unconditionally request only locks higher in the
hierarchy than locksit currently holds. For example, a deadlock could occur
if processor 1 held lock A and required lock B; and processor 2 held lock B
and required lock A. In MV S, this situation cannot occur because locks
have to be acquired in hierarchical sequence. Assume, in the preceding
example, lock A precedes lock B in the hierarchy. Processor 2, then, cannot
hold lock B without already holding lock A; the deadlock cannot occur.
Figure 6.4 summarizes the locks provided in MV S and lists them in
hierarchical order.

Chapter 6: Supervising the Execution of Work 6-11

6-12 OS/S2 MV S Overview

Class of lock Name of Resource protected Type of
lock* lock
Global DISP Dispatcher control blocks
ASM ASM control blocks
SALLOC RSM and VSM routines
IOSYNCH Global IOS functions Spin
IOSCAT Channel availability table
IosucB Unit control blocks
IOSLCH Logical channel queues
TPNCB VTAM node control blocks
TPDNCB VTAM destination node control
blocks
TPACBDEB VTAM data extent blocks
SRM SRM algorithms and control blocks
CMS Cross memory services Suspend
Local LOCAL Address space storage and control
blocks

*Locks are listed in hierarchical order, from highst. to lowest..

Figure 6.4. Summary of MVS L ocks

The design of locking in MV S allows supervisor routines to execute and
allows one processor in atightly-coupled multiprocessing system to use one
resource while the other processor uses a different resource — two benefits

that were not provided by earlier techniques to serialize the use of

resources.

Chapter 7: Managing System Resour ces

Managing system resourcesin MV Sis the responsibility of a component
called the system resources manager (SRM). SRM has two objectives:

» Todistribute the system's resources (processor time, 1/O resources,
and real storage) among individual address spaces as specified in the
installation performance specification (1PS)

» To achieve the optimal use of processor time, real storage, and 1/0
resources by active address spaces, as seen from the viewpoint of
system throughput

This chapter describes how SRM attempts to meet these objectives. the
decisions it makes and the factors it considers in making those decisions.
The system programmer can influence almost all of the decisions made by
SRM routines by means of the installation performance specification (1PS)
an the IEAOPTxx member of the SYS 1.PARMLIB data set. The
Initialization and Tuning Guide contains detailed information on SRM's
processing and how the installation can influence it.

Note: Except where noted, this chapter describes SRM asiit exists when
SU7 (Supervisor Performance #2) has been installed.

How SRM Meets |ts Objectives

SRM's two objectives are contradictory in terms of the availability of
resources. Optimizing throughput implies keeping resources busy; meeting
the installation's objectives for response and turnaround time (as reflected
in the IPS) implies the availability of any resource when it's required. SRM
makes decisions that represent trade-offs between its two conflicting
objectives.

The decisions SRM makes include the following:

» Which address spaces should be permitted access to the system's
resources (that is, swapped in)

» When to steal pages and which pages to steal

» When to change the dispatching priority of address spaces (called
“chapping”)

» Which device should be allocated, when allocation routines have a
choice of devices

» When to inhibit the creation of new address spaces

These decisions are the controls SRM uses to meet its objectives.

Chapter 7: Managing System Resources 7-1

Major Functional Areas of SRM
To reach its decisions, SRM is divided into three major functional areas:

* SRM control, which determines the processing required by SRM and
routes control to the appropriate SRM routines. SRM control decides
when and which address spaces will be swapped in or out. To make
this decision, it obtains recommendations from the other functional
areas of SRM: the workload manager and the resource manager.

» Workload manager, which monitors the use of resources by the various
address spaces. It gives the SRM control function swapping
recommendations that attempt to maintain each address space's use of
system resources as specified in the IPS.

* Resource manager, which monitors system-wide use of resources to
determine if they are over- or under-utilized. It makes swapping
recommendations to the SRM control function that are intended to
optimize throughput — to optimize use of the processor(s), 1/0
resources, and storage. In addition, the resource manager is
responsible for implementing other SRM controls related to the use of
resources: inhibiting the creation of new address spaces or stealing
pages when certain shortages of storage exist; changing the
dispatching priority of address spaces, which controls the rate at which
the address spaces are allowed to consume resources; choosing the
device to be allocated if achoice of devices exists, in order to balance
the use of 1/0 resources.

Communicating with SRM

Other system components communicate with SRM by means of the
SYSEVENT macroinstruction. All SYSEVENTSs have a code, which
indicates the processing SRM isto do. Essentialy, all codesfall into one of
two categories:

» SYSEVENTSsthat notify SRM of a changein status for a particular
address space or for the system as awhole. For example: real storage
has been configured into or out of the system; an address space has
been deleted; an initiator selects or terminates ajob; aswap-inis
started or a swap-out completes. In response to these SY SEVENTS,
SRM updates, builds, or releases control blocks that contain
information on system and address space activity.

» SYSEVENTSsthat invoke SRM's decision-making functions. For
example: an address space enters along wait (SRM will swap the
address space out of real storage); an address space is to be created
(if ashortage of SQA or pageable storage exists, SRM will prohibit
creation of the address space); allocation routines have a choice of
devices to be allocated to arequest (SRM will recommend one of the
devices); atimeinterval expires. The timer-interval SY SEVENT isthe
exclusive means to invoke most of SRM's algorithms, which provide
data on which SRM bases its decisions.

Most SY SEVENTS cause the SRM control function to be called, which
in turn can call the resource or workload manager for the processing of
various algorithms. The remainder of this chapter describesin greater detail
SRM control, the workload manager, and the resource manager.

7-2 0S/VS2 MV S Overview

SRM Control

SRM control isthe dispatcher of SRM. It schedules actions and algorithms
to be performed by other SRM routines and is responsible for the swapping
of address spaces.

The installation provides guidelines for SRM's swap decisions by defining
a domain for each distinct type of work (for example, batch work). For
each domain, the installation definesa minimum and maximum M PL
(multiprogramming level) and the domain's importance relative to other
domains. The definition of each domain'simportance is used by resource
manager routines, as described in the topic "Resource Monitoring." The
MPLs state the minimum and maximum number of address spacesin each
domain that should bein real storage (that is, swapped in) at the same
time. Within the boundaries of the minimum and maximum MPL and based
on factors such as the total utilization of system resources, SRM
periodically computes an optimal MPL for each domain, called the target
MPL. The objective of the swap analysis performed by SRM control isto
maintain the MPL of each domain at its target value.

Swap Analysis

Swap analysisistriggered by several events —for example, a user becomes
ready to execute or atime interval expires. The swap analysis must answer
two questions: whether a swap is necessary; and, if so, which address

space(s) to swap.

To determine whether aswap is necessary, SRM control goes through the
following steps:

1. SRM control examines each domain, to locate any domain(s) whose
current MPL exceedsitstarget MPL. SRM control swaps out the
required number of address spacesto lower the domain's MPL to its
target value.

2. If auser is swapped out and enqueued on a resource requested by
another user, SRM control swaps in the enqueued user.

3. SRM control examines each domain, to locate any domain(s) whose
current MPL islessthan itstarget MPL. SRM control swapsin the
required number of usersto raise the current MPL to itstarget value.

4. If adomain's MPL equalsits target value, SRM control analyzes
swapped-in users and swapped-out users to determine if an exchange
swap should occur (that is, a swapped-in user and swapped-out user
change places).

Each time swap analysisis called, SRM control proceeds with the preceding
steps until it reaches the end of a step that has resulted in at least one swap
or it determines no swap is required.

To determine which address space(s) within adomain to swap in or out,
SRM control asks the workload manager and resource manager for swap
recommendations, which take the form of swap recommendation values
(RVs). The workload manager's RVs aim to maintain an address space's

Chapter 7: Managing System Resources 7-3

7-4 OS/IVS2 MV S Overview

use of resources as specified in the I PS. The resource manager's RVsam to
correct imbalancesin I/O or processor utilization. By combining the RV's of
the workload manager and resource manager, SRM control makes trade-offs
between its two objectives: distributing resources as specified in the IPS and
optimizing throughput.

The Workload Manager

The workload manager has three basic functions:

* To monitor service rates —the rates at which system resources are
being provided to individual address spaces

» To provide swapping recommendations requested by SRM control

* To collect datafor certain measurement tools —for example, the
system activity measurement facility (MF/1) or the Resource
Measurement Facility (RMF), Program Product #5740-XXH

The workload manager measures the rate at which resources are used in
terms of service units per second. Service units are computed as a
combination of three basic system resources: processor time used, 1/0
activity (EXCP counts for data sets associated with the address space), and
real storage frames occupied. Service rate, then, is the result of dividing the
number of service units by atime interval, which includes both the time an
address space is swapped into real storage and thetime it is swapped out
but otherwise ready to execute.

To arrive at a swapping recommendation, the workload manager
measures the service rates of different address spaces and comparesthem in
light of factors defined by the installation in the IPS (installation
performance specification). By means of these factors, the installation can
instruct SRM to give certain users better service at the expense of other
users. For example, assume two address spaces exist in real storage and one
must be swapped out; the installation-defined | PS factors will dictate how
the workload manager views measured service rates:

» Address space A has a higher service rate than address space B. Based
on IPS factors associated with these two address spaces, the workload
manager determines that address space B should be swapped out. (A
different IPS could result in the opposite decision — that address
space A should be swapped out.)

* Address space A has alower service rate than address space B. The
IPS indicates that address space A is more important and, based on
the IPS, the workload manager determines that address space B should
be swapped out.

» Address space A and address space B have identical service rates.
Again, I PS factors indicate which address space is more important and
which, therefore, should remain in storage.

The I PS factors that dictate the workload manager's swap
recommendations are described in detail in the Initialization and Tuning
Guide. The workload manager passes its swap recommendations to SRM
control, which combines them with recommendations from the resource
manager.

The Resour ce Manager

The resource manager includes algorithms that are concerned with
improving the system-wide use of resources (as contrasted to an individual
address space's use of resources, which is the concern of the workload
manager). The resource manager's routines can be divided into four
functional areas:

» Storage management, which is concerned with SRM's decisions to
steal pages and to prevent the creation of new address spaces

/O management, which is concerned with SRM's swap decisions and
device allocation decisions

 Processor management, which is concerned with SRM's swap decisions
and decisions to change an address space's dispatching priority

» Resource monitoring, which is concerned with adjusting the target
MPLs of individual domains based on the need to raise or lower the
system-wide multiprogramming level

Storage Management

Storage management routines of SRM take action when shortages of the
following are detected: available framesin real storage; space in the system
queue area (SQA); dlots on auxiliary storage; and pageable framesin real
storage.

The system maintains an available frame queue, which indicates the
number of available framesin real storage. When the number of available
framesfalls below a"LOW" threshold, SRM storage management routines
begin to steal the least-recently used pages from the working sets of address
spaces in real storage. The storage management routines continue stealing
pages until the count of available frames plus the number of pages stolen
exceeds an "OK" threshold for the available frame queue.

SQA shortages are detected by the virtual storage manager (VSM),
which calls SRM's storage management routines when a shortage is
detected. The storage management routines prevent the creation of new
address spaces until the shortage isrelieved. The routines also write
messages to the operator when the shortage is detected and when the
shortageisrelieved.

SRM's storage management routines periodically check that the number
of available auxiliary storage slots has not fallen below a certain limit.
Shortages of pageable real storage are detected by real storage management
(RSM) when the percentage of fixed framesto total frames exceeds a
certain limit; RSM then notifies SRM's storage management routines. The
action taken by SRM for shortages of auxiliary storage slots or pageable
real storageisthe same; SRM:

» Prevents the creation of new address spaces

» Delays newly-initiated jobs

» Setsthe multiprogramming level in each domain to its minimum MPL

» Swaps out the user who is acquiring slots at the greatest rate (for
shortages of auxiliary storage) or the user who has the most fixed
frames (for shortages of real storage)

» Notifiesthe operator of the shortage and the identity of the
swapped-out user

Chapter 7: Managing System Resources 7-5

7-6 OS/VS2 MVS Overview

When the shortage is relieved, creation of address spacesis again
allowed, the operator is notified, and address spaces that were swapped out
are again made eligible for swap-in.

I/O Management

SRM's I/O management routines are called to:

* Choose a device when allocation routines have a choice of devicesto
dlocate
* Give swap recommendationsto SRM control

In both cases, the objective of 1/0 management isto balance 1/O activity
across logical channels. When choosing a device for alocation, 1/0
management seeks candidates on the logical channel that has the lowest
utilization; for direct access devices, it then chooses the device with the
lowest number of allocated data sets. When giving swap recommendations
to SRM controal, I/O management bases its recommendations on the extent
to which the swap-in or swap-out of a user would correct a detected 1/0
imbalance: it recommends, via swap recommendation values, that a
significant user of an over-utilized logical channel be swapped out; or that a
significant user of an under-utilized logical channel be swapped in.

Processor Management

Processor management routines have three responsibilities:

* Controlling the APG (automatic priority group) subset of dispatching
priorities

» Preventing the swap-out of users who are enqueued on resources
required by other users

» Making swap recommendations to correct under- or over-utilization of
the processor

The APG isarange of dispatching priorities under the control of SRM.
Dispatching priority controls the rate at which address spaces are allowed to
consume resources after they have been given access to those resources. By
placing jobs in the APG range, the installation, viathe IPS and SRM, can
alter the dispatching priorities of address spaces as their execution
characteristics change.

The APG is divided into three groups. the mean-time-to-wait (MTTW)
group, rotate priority, and fixed priorities. (If MV'S System Extensions,
Program Product #5740-XEL1, isinstalled, the installation can define more
than one MTTW group and more than one rotate priority.)

* The MTTW group can be used to increase system throughput by
increasing processor and I/O overlap (that is, the processor is not
waiting while I/O requests are satisfied). Usersin the MTTW group
have a dispatching priority based on the user's mean execution time
before entering await state; users who quickly release the processor
receive a high priority within the MTTW group.

» The rotatepriority can be used to ensure that one address space does
not dominate the processor in relation to other address spaces also
assigned the rotate priority. Processor management routines
periodically reposition the address space that is highest in the rotate
priority group to the bottom of the group.

* SRM does not change fixed priorities; they are available so that the
installation can associate, viathe IPS, adifferent fixed priority with
different periods in the life of ajob or transaction.

By means of the APG, the installation can give SRM control even over
nonswappabl e address spaces.

For users enqueued on resources in demand by other users, processor
management routines prevent their swap-out until they have released the
resource or executed for a fixed period of time (whichever occurs first).
Theinstallation can specify the execution time interval viaan SRM tuning
parameter.

If processor management routines determine that the processor is over-
or under-utilized, they will search for heavy processor users and calculate
swap recommendation values for swap-out (to correct over-utilization) or
swap-in (to correct under-utilization). A heavy processor user is one that
meets or exceeds a certain mean execution time before entering the wait
state. The processor is considered over-utilized if, during the period under
consideration, it did not enter the wait state and any ready address space
on the dispatching queue was not dispatched. The processor is considered
under-utilized when its utilization is less than a certain percentage.
Processor management routines take into account the extent to which the
processor is over- or under-utilized when computing swap recommendation
values for SRM control.

Resource Monitoring

The resource monitoring function of the resource manager periodically
checks several system resource usage indicators, such as length of the ASM
queue, which indicates paging and swapping requests not yet satisfied, and
processor utilization. If measured resource usage (averaged over a number
of sampleintervals) is greater than a"high" threshold or less than a"low"
threshold for that indicator, the resource monitoring function recommends
that the system-wide multiprogramming level (MPL) be lowered or raised.
(The system-wide MPL isthe total number of address spaces in the system
that are swapped in.)

If the system-wide MPL isto be raised or lowered, resource monitoring
routines then identify the individual domain whose MPL will be raised or
lowered to achieve the recommended system-wide MPL. The domain
selected for MPL adjustment depends on the relative importance of the
domains, as defined by the installation in the IPS.

Chapter 7: Managing System Resources 7-7

7-8 OS/VS2 MV S Overview

Chapter 8: Satisfying I/0 Requests and Data M anagement

An input/output operation — 1/O — involves the movement of data
between main storage and a data set on an 1/O device, such as atape, disk,
card reader, or printer. In comparison to the time the processor requiresto
execute a series of instructions, an 1/0O operation is very lengthy.

Under MV S, the processor initiates the 1/O operation by signalling a
channel. The channel, alink between the processor and the device, then
executes independently of the processor, thus allowing an overlap of the
I/O operation with processor activity. Overlap is one of the key techniques
for achieving efficiency in handling 1/O operations.

Data moves between main storage and a device along a path; the logical
path for data consists of main storage, a channel, and adevice. MV S allows
the definition of multiple logical pathsto a single device, thus giving more
flexibility in scheduling 1/O requests to balance the load over physical
channels and devices.

Under MV S, where many jobs execute concurrently and efficient system
operation requires overlap between 1/0 operations and processor activity,
both the information the system must have to perform an 1/O operation
and the decisions it must make to balance its resources are complex.
However, MV S provides a number of services and facilities that make the
complexity of an I/O operation largely transparent to the user. One of
these services is the access method.

Access M ethod

An access method is a data management routine that a user program selects
based on the organization of the data set and the access technique used to
process the records in the data set. The access method moves data between
main storage and an 1/O device in response to macro instructions issued by
the user program.

Data Set Organization

A data set is acollection of related records that are associated with a
particular device. If the device is atape or adisk, the data set occupies a
specific area on a volume mounted on the device. A data set can be
organized in four ways:

» Sequential. Records are stored and retrieved according to their
physical position in the data set.

» Indexed sequential. Records are arranged in sequence according to a
key. An index or set of indexes maintained by the access method gives
access to the records.

Chapter 8: Satisfying 1/0 Requests and Data M anagement 8-1

8-2 0OS/VS2 MVSOverview

» Direct. Therecordsin the data set, which must be on a direct access
device, can be organized in any way that meets the user's needs.
Records are stored and retrieved according to the address of each
record within the data set.

» Partitioned. The data set, which must be on a direct access volume,
consists of members. A member is an independent group of
sequentially-organized records that is accessed through its name in the
directory of the data set. Partitioned data sets are generally used to
store programs and are often referred to as libraries.

Access Techniques

The records in a data set can be accessed by two techniques: the queued
access technique and the basic access technique. Some data sets can be
accessed by either technique.

With queued access, GET and PUT macro instructions are used to
transfer data. The queued technique assumes that the records are to be
accessed sequentially. The access method automatically blocks and deblocks
the records and, on input, anticipates I/O requests so that the record is
generaly available before the request is actually made. After a request,
control (that is, the ability to execute, to use the resources of the system)
does not return to the user program until the requested operation has
completed.

With basic access, READ and WRITE macro instructions are used to
transfer data. The basic technique is used for direct access of any of the
records in the data set. Therefore, the access method does not block or
deblock records and does not perform 1/O operations in advance of the
request. The user program must test for the completion of the 1/O
operation.

Access Method Types

MV S provides an access method, the virtual sequential access method
(VSAM), that is specifically designed to run in virtual storage; itis
described under "Virtual Sequential Access Method (VSAM)" later in this
chapter. MV S also supports the following access methods:

» Basic sequential access method (BSAM). Recordsin adata set
processed by BSAM are sequentially organized and are stored and
retrieved in physical blocks. The READ and WRITE macro
instructions are used to initiate 1/O operations. The user program tests
for completion of the operation and performs any required blocking or
deblocking.

* Queued sequential access method (QSAM). Records in a data set
processed by QSAM are stored and retrieved as logical records;
QSAM handles any physical blocking or deblocking required. On
input, QSAM anticipates the need for arecord based on its physical
order; normally, the desired record isin storage, ready for use, before
the request for it is made. On output, QSAM holds the logical records
in abuffer and performs physical output only when the buffer is
filled.

» Basic direct access method (BDAM). Recordsin adata set processed
by BDAM can be organized in any manner chosen by the
programmer. The data set must reside on a direct access volume.
Records are stored and retrieved by actual or relative addresses within
the data set.

 Indexed sequential access method (ISAM). Recordsin adata set
processed by ISAM are arranged in sequential order according to the
contents of akey. ISAM maintains an index structure that is used to
locate a particular record. Access to the records can be either
sequential (QISAM) or direct (BISAM).

» Basic partitioned access method (BPAM). A data set processed by
BPAM consists of a number of members and a directory that holds
the name and location of each member. A member contains a group
of records that are organized sequentially. BPAM maintains and
accesses the directory; once BPAM locates the desired member, the
records within the member are processed by BSAM.

A user program can also request 1/O operations without using a specific
access method by issuing the execute channel program (EXCP or
EXCPVR) macro instruction.

To request an I/O operation, either the access method or the user
program presents information about the operation to the components of the
MV S system control program that manage the actual physical I/0
operation. These components are the EXCP driver and the 1/O supervisor
(10S). How the EXCP driver and 1OS handle the 1/O operation and how
their functions and responsibilities fit together with those of the user
program and the access method are described under " Scheduling 1/O" |ater
in this chapter.

As ameans of improving system performance by eliminating much of the
overhead and time required to allocate a device and move data physically
between main storage and an 1/O device, MV S provides virtual
input/output (V10). VIO can be used only for temporary data sets; it uses
the system paging routines to transfer data into and out of a page data set
and attempts to keep as much data as possible in real storage. "Virtual
Input/Output (V10)" later in this chapter describes how the system
intercepts a V10 request and branchesto VIO.

Scheduling 1/0

To satisfy an 1/0 request, the user program, with or without an access
method, describes the operation required, and the system components
perform the operation, handle the interruption that signals the completion
of the operation, and post its status.

Figure 8.1 shows the major steps required to perform an 1/O operation.
The figure summarizes the responsibilities and functions of the user
program, the access method, and the system components; the circled
numbers show the chronological sequence of events. The figure assumes the
use of an access method and that the user is executing in avirtual region.
When a program does not use an access method, or when it executesin a
real region, the process differs slightly from the one shown in the figure.
However, the I/O services provided by MV S can handle these special cases.

Chapter 8: Satisfying 1/0 Requests and Data Management 8-3

84

OS/IVS2 MVS Overview

The following text explains the standard operation in more detail and
describes the actions taken to handle special cases, such as the user who
must get control during the execution of an 1/O operation.

User Program Functions

The user program that issues the 1/0O request must describe the data set to
be used and the specific operation to be performed on the data set. To
describe the data set to the system, the user program creates a data control
block (DCB) and issues an OPEN macro instruction.

OPEN Processing

When the user program issues an OPEN macro instruction, it invokes the
system OPEN routines. These routines merge information from various

sources to build a complete description of the data set. The information
used comes from:

» Thejob file control block (JFCB) and atask 1/O table (TIOT) entry
built from information in the DD statement included in the JCL for
the user program. After the device for the data set has been allocated,
the TIOT entry points to the unit control block (UCB) for the
required device.

* Thedata set control block (DSCB) that describes the data set. For
data sets on a direct access device, for example, the DSCB comes
from the volume table of contents (VTOC) for the volume containing
the data set.

» The data control block (DCB) the user program builds. The DCB
includes a great deal of information, one piece of which is the access
method that the user program needs to perform 1/O operations on the
data set. Other information might include how the data set is
organized and how its records are to be accessed.

User Program Access Method System Components

Describes data set.

Issues OPEN macro to
prepare data set.

Issues 1/O request to
link to access method.

0 Buitds control blocks and
channel program to
describe request.

tssues EXCP macro to
invoke the system
components.

e Builds control blocks, fixes
pages and translates channel
program, schedules or starts
operation with an SIO
instruction, and returns to
the requester.

o Waits for operation to
complete. {User program
waits on completion if using
basic access technigue.)

e Handles 1/O interruption
that signals compietion of
the operation, analyzes and
posts the status of the
operation, and returns to the
dispatcher.

9 Continues processing when
1/0 operation is complete.

@ 1ssues CLOSE macro when
all operations on a data set
are complete,

Figure8.1. Major Stepsin a Standard I/0O Operation

Chapter 8: Satisfying I/0 Requests and Data Management 8-5

8-6 OS/VS2 MV S Overview

The OPEN routines can acquire the information they need from any of
these sources, giving the user agreat deal of flexibility in specifying I/0
operations. To achieve device independence, for example, a user can specify
aminimal amount of DCB information in the program and supply the rest
of the information on the JCL for a particular execution of his program.

The OPEN routines build a data extent block (DEB), which specifies the
device on which the volume is mounted and the physical extent of the data
set on that volume. OPEN processing also places addresses in the DCB that
provide linkage between the user program and the access method. If the
user program needs access method appendages or user exits to perform such
functions as analyzing data errors or processing end-of-data conditions,
linkage between the user program and the required routines is also built
into the DCB. Figure 8.2 summarizes the rel ationships the OPEN routines
establish between the control blocks and between the user program and the
access method.

DCB
A
Y
DEB
ucse
\ A
User Access
Exits Method

Figure 8.2. Relationships Established by OPEN

Once the data set to be used for the operation is successfully opened, it
isready to be used. The user program can then issue an I/O request.

1/0 Request

To transfer data between a data area in storage and an 1/0O device using an
access method, the user program issues a macro instruction. GET and PUT
are used for queued input and output requests; the access method does not
return control to the user program until the 1/O operation is complete.
READ and WRITE are used for basic input and output requests; control
returns to the user program once the 1/O operation is initiated, and the
user program must test for the completion of the operation.

Either type of request causes a branch to the access method. The access
method routines reside in PLPA, but, as shown in Figure 8.3, both the user
program and the access method run in the user's address space.

\ OPEN
W) GET/PUT + (DCB)
CLOSE

*Access
Method

Nucleus

Figure 8.3. Access Method and User Program in an Address Space

If the access method cannot satisfy the request because of a specification
error in the request, the access method immediately returns control to the
user with indicators set to describe the nature of the error. If the request
was made correctly, processing of the I/O operation continues as described
later in this chapter under " Access Method Functions.”

A user program can also issue an /O request with an EXCP or
EXCPVR macro instruction to invoke the EXCP driver directly. See
"EXCP Driver Front End" later in this chapter for more information.

When the user program has made all its requests for work to be done on
adata set, it must free the data set by issuing a CLOSE macro instruction.

CLOSE Processing

Issuing a CL OSE macro instruction causes the user program to invoke the
system CLOSE routines. The CLOSE routines modify the DCB to break
the logical connections between control blocks and between the user
program and the access method; these connections were established when
the data set was opened. The CLOSE routines free any storage acquired by
the OPEN routines.

These routines also rewrite the DSCB for the data set to the volume.
Because the DSCB can be modified during OPEN processing, a user
program can change the specifications for the data set by opening and
closing it.

Chapter 8: Satisfying 1/0 Requests and Data Management 8-7

8-8 OS/VS2 MV S Overview

Figure 8.4 summarizes the control blocks used as input to the CLOSE
routines, the functions the CLOSE routines perform, and the modified
control blocks that are created during CL OSE processing.

Input ———————— Process ——————3 Qutput

DCB
e Write DSCB DCB
® Restore DCB

DEB
o Release storage

acquired by OPEN

- -
— -—
_— -

Figure 8.4. CLOSE Processing Summary

Access Method Functions

Because the OPEN routines place the address of the required access
method in the DCB for the data set, the access method gets control when
the user program issues an I/O macro instruction. The access method uses
the control block structure built by the OPEN routines to build control
blocks for the EXCP driver and a channel program for the 1/O request.
The access method then issues an EXCP macro instruction to pass control
to the EXCP driver.

Control Blocks

The access method builds two control blocks: the input/output block (10B)
and the event control block (ECB). The IOB points to the DCB; through
the DCB, the EXCP driver can access the contents of the DEB and the
UCB. The IOB also points to the ECB and to the channel program. The
OB thus contains pointers to all of the information 10S needs about the
1/0 request.

The ECB islogically empty when it is built; it is used when the
operation is complete to post the status of the operation. The access
method or the user program can thus test the contents of the ECB to find
out when the I/O operation is finished.

Channel Program

The access method builds a channel program for the I/O operation. A
channel program consists of a string of channel command words (CCWs)
that describe the operation to the channel. Channel command words
provide the channel with all of the information that it needs to perform the
operation, such as the address of the data area and the number of bytes of
datato be transferred.

EXCP Macro Instruction

When the |OB and ECB have been built and initialized and the channel
program has been created, the access method issues an EXCP macro
instruction. The EXCP macro instruction causes an SV C interruption to
occur. As aresult of thisinterruption, the SV C interruption handler causes
control to be passed to the EXCP driver and then to 10S to schedule and
execute the physical 1/O operation.

Figure 8.5 summarizes the control block structure and the channel
program built by the access method and the pointers it sets before causing
control to pass to the EXCP driver.

Access Method EXCP Driver
EXgCP 10B
sSVC

REG1 REG4

7/

10B DCB DEB Uce TCB -

ECB

Channel
Program

Figure 8.5. Control Block Structurefor the EXCP Driver

When the EXCP driver and 10S have completed or scheduled the
operation, control returns to the access method. If the request used a GET
or PUT macro instruction (queued access technique), the access method
issues a WAIT against the ECB for the operation. In this case, the access
method waits until the ECB is posted complete, and then it returns control
to the user program. If the request used a READ or WRITE macro
instruction (basic access technique), the access method returns control to
the user program, which issues the WAIT macro instruction against the
ECB and waits until the request is completed.

Chapter 8: Satisfying 1/0 Requests and Data Management 8-9

8-10 OS/VS2 MV S Overview

Appendages

Appendages are routines that enable a user to get control at various points
during the execution of an 1/O operation. Some are entered before
execution of the I/O operation, others after execution, and one, the PCI

appendage, enables a user to get control during execution to modify the
channel program whileit is executing.

To establish these exits, authorized routines from authorized libraries
identified during system generation can be loaded during OPEN processing
for authorized users. The DEB contains the pointers to the appendage
routines.

I nput/Output Supervisor (I0S) Functions

The MV S input/output supervisor (10S) has been rewritten and
restructured to:

* Support multiprocessing

* Increase system responsiveness

* Make effective use of virtual storage
* Usethe MV S recovery capabilities

To maintain compatibility and achieve the improved function described in
the preceding list, new interfaces to |0OS were created. These interfaces are
the 10S drivers. Because the standard access methods use the EXCP driver
as an interface to 10S, the balance of this description is concerned only
with the relationship between 1OS and the EXCP driver. Asthis

relationship is explained, you will see that the EXCP driver istailored to
meet the needs of its intended users.

Figure 8.6 shows some of the drivers that were developed to meet the
needs of various |OS users.

108 USER DRIVER 108

AUTHORIZED |_
USER

Os/vSs »| EXCP
ACCESS METHQOD c

| JES2

PAGING
> Asm_]
RSM | AsM

r 1 [vsam
VSAM | 1 (ABP)
—» 08
PROGRAM >
MANAGER > -’:ETCH
| vram | »{ vTAM

FE

DIAGNOSTICS -OLTEP
[wss }—f wmss]
| JES3 f— » Jes3 | y

Figure8.6. IOSDrivers

The EXCP driver has three major parts: the front end, the disabled
interruption exit (DIE), and the back end. These parts function in response
to the needs of the I/O request to interact with the three major parts of
IOS: the channel scheduler, the 1/O interruption handler, and the post
status routines. The driver is separate from 10S, acting primarily as an
interface between the 1/0 requestor and 10S. However, the following
description of the functions of the driver and 10S is presented in
chronological order to show the steps involved in satisfying asingle 1/0
request.

EXCP Driver Front End

The front end of the EXCP driver gets control from the SV C interruption
handler when an 1/O requestor issues an EXCP or EXCPV R macro
instruction. The EXCP macro instruction is used by the standard access
methods and most user programs. The EXCPV R macro instruction is used
by programs that have special 1/0 needs, such as a program that must
dynamically modify a channel program.

Chapter 8: Satisfying I/0 Requestsand Data Management 8-11

8-12 OS/VS2 MV S Overview

Most user programs and the standard access methods run with virtual
addresses. Thus, user data areas, control blocks, and the channel programs
built by the standard access methods are in virtual storage, use virtual
addresses, and are pageable. However, the System/370 channels transfer
datainto and out of real storage locations. Therefore, the data areas, the
control blocks, and the channel program for the I/O operation must be
fixed and use real addresses.

The front end of the EXCP driver performs the address translation and
page fixing required by the user running in avirtual (V=V) region. Such
users invoke the driver with an EXCP macro instruction.

However, usersthat run in area (V=R) region do not require address
tranglation or page fixing. The EXCP driver recognizes a V=R user and
bypasses the address translation and page fixing functions.

Users who invoke the driver with an EXCPVR macro instruction must
construct their own channel programs and build alist of pages to be fixed
by the EXCP driver.

Thus, a user who needs to dynamically modify his channel program must
either run V=R or use the EXCPV R macro instruction to invoke the
driver. Note that the disabled interruption exit (DIE) of the EXCP driver
can be invoked only by a user who runsin a V=R region or issues the
EXCPVR macro instruction.

Whether or not address translation and page fixing are performed, the
EXCP driver front end processing constructs the control blocks |OS
requires and branches to the 10S channel scheduler.

The EXCP driver front end gets control again when the channel
scheduler hasinitiated or scheduled the requested I/O operation. At that
point, the front end returns control to the access method or user program
that issued the EXCP or EXCPVR macro instruction.

Channeél Scheduler

The 10S channel scheduler gets control from the EXCP driver. The channel
scheduler initiates the physical 1/0 operation by attempting to establish a
path from the processor through a channel to a device.

If no path is available because the device, the control unit, or the
physical channel is busy, the channel scheduler queues the request. To
queue arequest, the channel scheduler placesit on alogical channel queue
where it waits until the required path becomes available. (MV S allows the
definition of multiple logical pathsto a single device, thus giving more
flexibility in scheduling 1/O requests to balance the load over physical
channels and devices.)

If apath is available, the channel scheduler initiates the 1/O operation
by issuing a start I/0 (SIO) instruction to the channel. Before issuing the
SIO instruction, the channel scheduler places the address of the channel
program in the channel address word (CAW) in afixed real storage
location. When the SIO instruction isissued, the channel fetches and loads
the CAW and uses its contents to locate the channel program, which it then
proceeds to execute without requiring further intervention from the
processor.

After queuing or initiating the 1/O operation, the channel scheduler
returns control to the front end of the EXCP driver.

During the course of system execution, the channel scheduler is also
invoked by the I/O interruption handler each time an /O interruption
occurs, which usually signals the completion of an I/O operation. When the
channel scheduler isinvoked by the 1/O interruption handler, it searches
the logical channel queues for an operation that was queued but not
initiated because a path was not available. If an operation iswaiting for a
path that is now available, the channel scheduler issues an SIO instruction
to initiate the operation before returning to the I/0O interruption handler.
Control then passes to either the interrupted program or the dispatcher.

I/O Interruption Handler

When the physical 1/O operation completes, the channel sends an 1/0
interruption to the processor. The status of the operation is stored in a
fixed real storage location called the channel status word (CSW). The
hardware then passes control to the I/O interruption handler in the
supervisor, called the first-level interruption handler. This routine passes
control to the interruption handler in 1OS, the second-level interruption
handler.

If the 1/0O request was initiated from a V=R region or by means of an
EXCPVR macro instruction and if the interruption was a program
controlled interruption (PCI), control also passes to the disabled
interruption exit (DIE) of the EXCP driver.

After analyzing the status information about the operation and, if
required, taking the disabled interruption exit, the second-level 1/0
interruption handler schedules execution of the 10S post status routines and
passes control to the channel scheduler so that any scheduled 1/0
operations can be initiated.

EXCP Driver Disabled Interruption Exit (DIE)

The disabled interruption exit (DIE) of the EXCP driver is entered only
when the 1/O interruption that occurred was a program controlled
interruption (PCI) and the user is either running in a V=R region or has
issued the EXCPV R macro instruction.

In each CCW in a channel program, thereisa PCI bit. When the PCI
bit is on, an /O interruption occurs when the CCW is loaded into the
channel. Setting the PCI bit on, which indicates that the user might want to
modify his channel program while it is executing, causes control to pass to
the DIE.

When the DIE gets control, the processor isin supervisor state and
disabled for I/O interruptions. For the DIE to function, the address of a
valid PCI appendage must have been placed in the DEB during OPEN
processing. The PCI appendage and the DIE make it possible for an
authorized user to get control during the execution of the 1/O request.

After the user program has processed the PCI, it returns control to the
DIE. The DIE then returns control to the second-level 1/O interruption
handler.

Chapter 8: Satisfying 1/0 Requests and Data Management 8-13

8-14 0OS/VS2MVSOverview

Post Status

The /O interruption handler schedules an SRB to invoke 1OS post status.
When post status is dispatched, it passes control to the EXCP driver back

end, which handles any appendages requested by the user, and returns
control to the post status routine.

Post status then analyzes the status indicators from the completed
operation and returns to the back end of the EXCP driver. If an error has
occurred, post status passes control to an error recovery procedure (ERP)
before returning to the back end of the EXCP driver. After the back end

of the EXCP driver completes its processing and returns control, post status
returns to the dispatcher.

EXCP Driver Back End

The back end of the EXCP driver receives control after 10S has analyzed
the status of the event. The back end exits to any access method
appendages that are to receive control after the execution of an 1/0
request. Upon return from any appendages, the EXCP driver back end
issues a POST macro instruction to post the status of the completed
operation in the. ECB and returns control to the post status routine.

The access method or user program that is waiting for the ECB to be
posted then becomes ready for execution and is eventually dispatched.
Control returns to the user program or access method at the instruction
immediately following the WAIT for the completion of the 1/O request.

Summary

The preceding explanation described the part each component of the EXCP
driver and 10S performs in satisfying an I/O request made by a user
program directly or by an access method on behalf of a user program.
Figure 8.7 presents an overview of the interaction between the user
program, the access method, the EXCP driver, and 10S, showing the flow
of asingle operation and the means of passing control from step to step.

Software (Storage)

Hardware

~ EXIT

CREATES
CHANNEL
PGM

CHANNEL RESTART

0

EXIT

2

_ el
1;EXIT// SCHEgDULE
S YDISP_ATCHER |

Access Driver
Method Exits
Exits

DCB
i

BACK END
~—_

S EXIT
3 —
PO§ST

2

DISPATCHER

POST STATUS
~——_
/ E)§T

EXIT DISPATCH

S~

ERP

Access EXCP
Program Method Driver 108
Channel
T ’/S FRONT END S.':'AIC\I.DIELM Program
OPEN - C SCHEDULER
~ EXIT
N
. ~_6S «C)
GET/PUT ~ /' g
? | / = EXIT
BRANCH—] é -7
<, Py b b -~
2 SVe < 7 SI0
% \ BRANCH
W/%lT \% \\
EXIT RETURN
; . S SEL | ,
CLOSE-— + — — DIE ANALYZE STATUS 4/7&7
~

l‘ Device Ii

\H'J

Control
Unit

Channel

1

Processor

Figure8.7. Flow of an 1/0 Request

Chapter 8: Satisfying 1/0 Requests and Data M anagement

8-15

Virtual Input/Output (VIO)

A physical input/output operation reads data from or writes datato a data
set on an 1/O device. A virtual input/output (V10) operation uses the
system paging routines to transfer data.

To use VIO, an installation specifies one or more I/O unit names for
V10 at system generation time. Then, a user program or access method can
build a channel program to send input data to a system-named temporary
data set on a unit that was specified for VIO. The EXCP driver intercepts
such a channel program and branchesto V10O instead of invoking |OS to
transfer the data over a channel to adevice. VIO uses the move character
(MVC) instruction to move that data from the channel program buffers to
aspecial buffer in the user's address space. This special buffer iscalled a
window.

The window contains enough contiguous virtual storage pages to hold all
of the data that could be placed on atrack for areal device. For example,
a 2314 track requires a two-page window, and a 3330 or 2305 track
requires a four-page window. Figure 8.8 shows the movement of data
between the channel program buffer and the VIO window.

Channel
Program
Buffer

<

[
User’s \/ \’./'/
Address _ -
Space - -
P MvC | |
Instruction - — — —
I ! Pages
I
|
Virtual
Data Set

Figure8.8. VIO Window

When V10O intercepts a channel program and issues the first MV C
instruction, a page fault causes frames to be assigned to the window. One
or more channel programs are then executed to fill the window. When the
user program or access method determines that the track isfull, it builds
another channel program to place data on a second track. When V1O
detects this track switch, it writes the contents of the window to a page

8-16 OS/VS2 MVSOverview

data set, using the system paging operations. The system provides special
support to keep V10 data set pagesin real storage after this page-out,
whenever possible. V1O then disconnects the window from the frames that
contain the V1O data set pages. When V10O moves new data (the second
track) to the window, another page fault occurs, causing fresh frames to be
assigned to the window.

Asthe data set is created and external page storage assigned, the system
keeps track of the locations of each page of the V10O data set. The paging
data set dots, like thereal storage frames, are not necessarily contiguous;
they are allocated dynamically throughout external page storage as the data
set is created.

When dataisto beretrieved from the V1O data set, V1O locates the
pages that contain the required data. If the datais not currently in the
window, V10 changes the appropriate page table entries to point to the
required pages in external page storage. Then V1O usesthe MVC
instruction to move data from the window to the channel program buffers.
Thisinstruction causes a page fault, and the proper page is either reclaimed
or brought into real storage and made addressabl e through the window.

Thus, V10O uses paging rather than explicit I/O to transfer data. VIO
eliminates the channel program translation and page fixing done by the
EXCP driver as well as some device allocation and data management
overhead. It also provides dynamic allocation of DASD space asitis
needed. Another advantage of V1O isthat the data set can remain in rea
storage after it is created because V10O attempts to keep the pagesin real
storage as long as possible. In this case, no actual 1/0O operations are
required to create or retrieve datafrom the VIO data set.

Virtual Storage Access Method (VSAM)

The virtual storage access method (VSAM) is a high performance access
method for direct access storage that runsin virtual storage and uses virtual
storage to buffer input and output operations. VSAM supports batch users,
online transactions, and data base applications.

Through amaster catalog, VSAM controls allocation of data space on
VSAM volumes and the location and use of VSAM data sets. An MVS
system requires at least one VSAM master catalog; thisrequired catalog is
also the system catalog. It is maintained by VSAM, but, becauseit is
required for system operation, it is discussed separately later in this chapter
under " System Catalog."”

VSAM can process three types of data sets: key-sequenced,
entry-sequenced, and relative record. The order in which the data set is
initially loaded and updated is different for each type.

For a key-sequenced data set, records are loaded, as the name implies, in
key sequence. Each record must have a key, and the ordering of the records
is determined by the collating sequence of the keys. Any new records
subsequently added to the data set are added in key sequence.

For an entry-sequenced data set , records are loaded in sequential order as
they are entered. New records are added at the end of the data set.

Chapter 8: Satisfying I/O Requests and Data Management 8-17

8-18

OS/IVS2 MVS Overview

For a relativerecord data set , records are loaded according to arelative
record number that can be assigned either by VSAM or by the user
program. When VSAM assigns the relative record number, new records are
added at the end of the data set. When the user program assigns the
relative record number, new records can be added in relative record number
sequence.

When aVSAM data set of any typeis created, it is defined to VSAM as
a cluster . A cluster for a key-sequenced data set consists of an index
component and a data component. A cluster for an entry-sequenced or
relative record data set consists of only a data component.

A VSAM data set of any typeisallocated in adata space. A VSAM data
space is an area of direct access storage defined in a volume table of
contents (VTOC) for exclusive VSAM use. A data space can consist of a
single extent (area) on a single volume, multiple extents on multiple
volumes, or multiple data spaces on multiple volumes. A single volume can
contain both VSAM data spaces and non-V SAM areas.

Within aVSAM data set, VSAM stores the records for each type of data
set in the same way — in afixed-length area of direct access storage called
acontrol interval.

Control Interval

A control interval is a continuous area of direct access storage that VSAM
uses for storing data records and the control information that describes
them. It isthe area that VSAM transfers between virtual and direct access
storage during an input or output operation. A control interval can contain
stored records, free space, or both stored records and free space.

The size of the control interval for a data set can be chosen by either the
user or VSAM. Once chosen, the sizeisfixed, and all control intervals
within the data set are the same length. When VSAM chooses the size of
the control interval, it considers the following factors:

» Thetype of direct access device used for the data set

» Thesize of the data records

» The smallest amount of virtual storage the user program can provide
for 1/O buffers

When the user chooses the size of the control interval, the size chosen must
fall within limits that VSAM finds acceptable, based on the factors listed
above.

The size of the control interval need not correspond to the size of a
track on the device. Figure 8.9 shows the independence of control intervals
from physical records, which are limited by the capacity of atrack on a
particular device.

Physical
Records Control Interval Control Interval Control Interval
N
Track 1 Track 2 Track 3
Control Interval Control Interval Control Interval
Track 1 Track 2 Track 3 Track 4

Figure8.9. Control Intervalsand Physical Records

Control intervals are grouped together in a control area. A control area is
the unit of a data set that VSAM preformats for data integrity as records
are added to the data set. The number of control intervalsin a control area
isfixed by VSAM; the minimum istwo. In a key-sequenced data set,
control areas are also used for placing portions of the index next to the
data set and for distributing free space throughout the data set. Free space
is distributed as a percentage of control intervalsin each control area.

Therecordsin aVSAM data set can be either fixed or variable; VSAM
treats both types in the same way. It puts control information at the end of
acontrol interval to describe the data records stored in that control interval.
The combination of a data record and its control information, even though
they are not physically adjacent, is called a stored record. When adjacent
records are the same length, they share control information. Figure 8.10
shows how data records and control information are stored in a control
interval.

Although the records for each type of VSAM data set are similar in that
they are all stored in control intervals, there are significant differencesin
the way V SAM processes each data set type. These differences are
explained in the following text.

Control Interval

Data Data Data Data Data Data Control
Record Record Record Record Record Record Information

Figure 8.10. Data Recordsand Control Information Placement

Chapter 8: Satisfying 1/0 Requests and Data Management 8-19

8-20 OS/VS2 MVS Overview

Key-Sequenced Data Set

A key-sequenced data set is always defined with an index and distributed
free space. The index relates key values to the location of the associated
record in the data set. The index created with the data set isthe prime
index; other indexes, called alternate indexes, can also be created for the
data set, as described later in this chapter under "Alternate Indexes.”
Distributed free space is the number of control intervals within a control
areathat areinitially left blank; VSAM uses the distributed free space to
add records to the data set in key sequence. VSAM also reclaims space
freed by the deletion or shortening of records; that is, such spaceisalso
available to hold additional records.

The index for a key-sequenced data set has one or more levels, each of
which is a set of records that contains entries giving the location of the
records in the next lower level. The index records at the lowest level are
called the sequence set ; they give the location of control intervals containing
datarecords. Therecordsin al higher levels are called the index set; they
point to lower-level index records. The highest level always consists of only
onerecord. The index of a small data set thus might consist of one record.

Figure 8.11 shows the levels of a prime index and the relationship
between a sequence-set index record and a control area. Note that the
highest-level index record (A) controls the entire next level (B through Z)
and that each sequence-set index record pointsto a control area as well as
to control intervals within the control area.

Figure 8.11 also shows both vertical and horizontal pointers. Vertica
pointers are followed to access records directly by key. Horizontal pointers
are followed between the sequence-set index records to access records
sequentially by key. To reduce the size of the index, keys can be
compressed; that is, VSAM retains only those characters required to
distinguish one key from another.

Because VSAM transmits control intervals between direct access storage
and virtual storage, index keys are compared and stored and records are
accessed while they are in virtual storage.

/
A Index Set
%
-,\'\("& /
ey
&
Index < 3¢
Horizontal
) Pointer V

B ~—-/ C r/o .o ./ d } Sequence Set
AY ™, ~ -

Y

Data Set sse ese see
Control Intervals of First Control Area Control Intervals of Second Control Area

Figure 8.11. Relationships Between Levels of a Prime Index

Entry-Sequenced Data Set

Records in an entry-sequenced data set are loaded in the order in which
they are received. When VSAM places arecord in the data set, it returns
the relative byte address (RBA) of the record to the user program. Thus,
the records could be accessed directly because the user program can create
an index based on the RBAs returned by VSAM.

When the records are accessed sequentially, VSAM retrieves them in the
order in which they were stored. Thus, an entry-sequenced data set is very
useful for such applications asajourna or alog.

No prime index is associated with an entry-sequenced data set; however,
it can have an alternate index. See "Alternate Indexes" later in this chapter.

Relative Record Data Set

In arelative record data set, each record occupies a fixed-length slot, each
of which has arelative record number ranging from one up to the total
number of recordsin the data set. A record is stored and retrieved
according to the number of the slot that it occupies.

Because a slot can contain data or be empty, a data record can be
inserted, moved, or deleted without affecting the position of other data
records. Records can be accessed either sequentially or directly but only by
relative record number; arecord cannot be accessed by its relative byte
address (RBA).

Chapter 8: Satisfying 1/0 Requests and Data Management 8-21

8-22 OS/VS2 MV S Overview

A relative record data set is appropriate for many applications that use
fixed-length records. A user program could, for example, process afield in
each record to yield a unique relative record number for each record. Then,
arecord could be located directly through the contents of the field. In this
way, arelative record data set could be accessed asiif it were a
key-sequenced data set but without the overhead required to search through
index records to locate a particul ar record.

Like akey-sequenced or entry-sequenced data set, recordsin arelative
record data set are grouped together in control intervals. Each control
interval contains the same number of dlots, the size of which is the record
length specified when the data set is defined. The number of slotsin a
control interval is determined by the control interval size and the record
length.

Alternate I ndexes

An alternate index provides another way to gain access to a single data set,
thus eliminating the need to keep multiple copies of the same information
organized in different ways for different applications. For example, a
payroll data set indexed by employee number can also be indexed by other
fields, such as employee name or department number. Thus, multiple
alternate indexes can be associated with the same base data set, allowing
multiple logical paths to the same data.

VSAM can build an alternate index for either a key-sequenced or an
entry-sequenced data set. Each entry in an alternate index for a
key-sequenced data set contains an alternate key and one or more prime
key pointers. Each entry in an alternate index for an entry-sequenced data
set contains akey and an RBA pointer. Alternate indexes can be used to
access a data set either sequentially or directly.

Alternate indexes must, of course, be updated to reflect changes to the
base data set. Either VSAM or the user program can maintain the alternate
indexes.

System Catalog

Under MV S, the VSAM master catalog, which acts as a central information
point for volumes, data spaces, and data sets controlled by VSAM, isalso
the system catal og.

The system catalog contains pointersto VSAM data sets, to all system
data sets that must be cataloged, to VSAM user catalogs, and to
non-VSAM data sets and user catalogs. Non-V SAM data sets are called OS
data sets, and non-VSAM user catalogs are called CVOLs. Figure 8.12
shows the structure of the system catal og.

There can be only one system catalog. It is established at system
generation time and must be available to the system during system
initialization and operation to locate user catal ogs, data spaces, and data
sets. The volume on which the system catalog is defined must be
permanently mounted.

MVS
Master Catalog

/N

0Ss 0s 3227\/?6]
Data Set CvoL VSAM User
Information Information and VSAM Catalog(s)
Qther Data Sets
Data Sets /
N
Y
VSAM
and VSAM
Other Data Sets

Data Sets

Figure 8.12. Structure of the System Catalog

Chapter 8: Satisfying 1/0 Requests and Data Management 8-23

8-24 OS/IVS2 MV S Overview

Chapter 9: Recovering From Errors

A system is available when both its hardware and software are capable of
processing jobs. Error recovery in MV S is designed to increase the
availability of the system and reduce the impact on users when errors occur
in critical software and hardware components. If recovery is not possible,
MV S attempts to continue without the damaged facility. In general,
recovery is attempted in such a manner that the recovery processes are
transparent to the user.

Recovery routines have four objectives:

» Toisolate the error

» To assess the damage, and attempt to confine it to one user or task

» Toindicate the actions, such as dumping, that should be taken

» Torepair the damage and perform clean-up processing so that the
function is reinvokable

In MVS, error processing of software failuresis handled by recovery
termination, and error processing of hardware failuresis handled by
recovery management support (RMS). As aresult of these facilities, MVS
processing continues with minimal downtime.

Recovery Termination

The recovery termination manager (RTM) monitors the flow of software
recovery processing by handling all abnormal termination of tasks and
address spaces, and passing control to recovery routines associated with the
terminating functions. The RTM enables user programs to establish their
own recovery protection and system programs to enhance system
serviceability and reliability.

The RTM isinvoked for the following conditions:

« |/O error during a page-in operation

» Program error not handled by a program interruption routine

» Machine error not handled by hardware recovery

e Supervisor call that isinvalid

» Restart operation initiated by the console operator

+ CALLRTM macro instruction directed towards another task
(ABTERM)

« CALLRTM macro instruction directed towards an address space
(MEMTERM)

» ABEND macro instruction

» Dynamic address trandlation (DAT) error

» Branch entries for abnormal termination requests

» Reentry for abnormal termination requests

» Reentry for machine checks

Two types of recovery routines are identified by the RTM: task recovery
routines and functional recovery routines. These routines are described in
the following sections. (For more information on the recovery routines and
the RTM, see OSVS2 System Programming Library: Supervisor,
GC28-0628.)

Chapter 9: Recovering From Errors 9-1

9-2 OS/VS2 MV S Overview

Task Recovery Routines

Task recovery routines (STAE/STAI, ESTAE/ESTAI) provide recovery for
those programs that run enabled, unlocked, and in task mode. They are
established by using the STAE or ESTAE macro instruction or the STAI or
ESTAI parameter of the ATTACH macro instruction.

I ssuance of the STAE or ESTAE macro instruction or ATTACH with
the STAI or ESTAI option allows the user to intercept an anticipated
abend. Control is given to a user-specified routine in which the user may
perform pretermination processing, diagnose the cause of the abend, and
specify aretry address if he wishesto avoid the termination. The routines
operate in the mode (problem program or supervisor) that existed at the
time the STAE/ESTAE request was made.

Note: The STAE macro instruction is available with OS/V S2 Release 1
(SVS) and with OS/MVT and OS/IMFT. Although STAE isalso available
in MVS, it isrecommended that ESTAE be used in MV S. ESTAE provides
increased capabilities over STAE: it can schedule clean-up processing under
certain instances for which STAE routines do not get control, and it can
provide defaults for the most commonly used options.

If atask is scheduled for abnormal termination, the recovery routine
specified by the most recently issued ESTAE (or STAE) macro instruction
is given control. If the ESTAE routine cannot provide recovery for the
error, the next higher-level ESTAE routine (if any) associated with the task
is given control. (This process of passing control from arecovery routine to
ahigher-level recovery routine along a preestablished path is called
percolation, and does not apply to STAE routine.) Each ESTAE routine for
the task is then given control, one at atimein LIFO (last-in first-out)
order, until retry is requested or all routines for the task are exhausted.
When ESTAE processing is exhausted, abnormal termination occurs.

Functional Recovery Routines

Functional recovery routines (FRRs) provide recovery for those system
programs that run disabled, locked, or in SRB (service request block) mode.
The system programs establish the FRRS by using the SETFRR macro
instruction.

The SETFRR macro instruction provides each system program with the
ability to define its own unique recovery environment. Each FRR
established by a system program is placed in an FRR LIFO (last-in
first-out) stack that is used during processing of the RTM. The SETFRR
macro instruction can be used to add, delete, or replace FRRs in the stack,
or to purge all FRRs in the stack.

Each FRR stack used by RTM contains the addresses of the FRRs
established to protect a single path through the system control program.
When an error occurs in a path, the RTM passes control to the last FRR in
the associated stack. If the FRR cannot provide recovery for the error, the
previously-established FRR in the stack is given control (percolation.) Each
FRR in the stack is eventually given control, one at atimein LIFO order,
until retry is requested or the stack is exhausted. When FRR processing is
exhausted, appropriate task recovery routines (if any exist) are given
control; otherwise, abnormal termination occurs.

Any user-written routines outside the control program that are qualified
to issue the SETFRR macro instruction may add one, and only one, FRR
to astack. If more than one FRR is added to a stack, abnormal termination
may occur when SETFRR isissued.

Recovery Management Support

Recovery management support (RMS) includes those standard MV S
facilities that gather information about hardware reliability and allow retry
of operations that fail because of processor, 1/0 device, or channel errors.
The facilities are designed to keep the system operational in the event of
hardware failures.

The RMSfacilities are:

» Machine check handler
—Alternate CPU recovery
—Channel reconfiguration hardware
» Channel check handler
» Dynamic device reconfiguration
» Missing interruption handler

For information on the RMSfacilitiesin an MP environment, see OSV2
MVS Multiprocessing: An Introduction and Guide to Writing Operating and
Recovery Procedures, GC28-0952.

Machine Check Handler

The machine check handler (MCH) minimizes the impact of machine
malfunctions on System/370 models supported by MV S. It aertsthe
control program of any hardware failures that could affect the successful
execution of the control program.

Recovery from machine malfunctionsisinitially attempted by the
hardware instruction retry (HIR) and error checking and correction (ECC)
facilities of the hardware. If the hardware recovery attempts are
unsuccessful, MCH isinvoked to analyze the data and isolate the source of
error. MCH then provides the recovery termination manager (RTM) with
an analysis of the error.

WHnShe@GERAQ eceives control, it records the error analysis on the
data set and invokes the appropriate functional recovery
routines to attempt recovery from the machine check. If recovery is
possible, RTM resumes the interrupted program at the point of interruption;
if recovery isnot possible, RTM terminates the interrupted program.

In a uniprocessing environment, if MCH determines that processing
cannot continue on the processor, it will terminate execution on that
processor and place the processor in a disabled wait state. In a
multiprocessing environment, however, MCH will invoke the alternate CPU
recovery routine.

Chapter 9: Recovering From Errors 9-3

Figure 9.1 demonstrates the flow of control through the machine check
handler and, also, through alternate CPU recovery and channel
reconfiguration hardware.

Figure9.1. MCH Control Flow

9-4 OS/VS2 MV S Overview

(FRRs, ESTAESs)

Task In Execution
I At Time Of Error
AAANAS
Machine Check
~ Machine Check
Handier (MCiH}
m .
Repairabie
Machine Terminating
i, Check Machine Check up System
Terminates
Nonrepairable
M Machine Check MP
A e,
Alternate .
CPU Recovery 1/0 Restart
et {ACR)
/
Channel
Retry Recovery Reconfiguration
Termination Hardware (CRH)
Manager *168 MP Only
(RTM}
Terminate
ABEND
y
Recovery
Routines

Alternate CPU Recovery

The alternate CPU recovery (ACR) routine provides a multiprocessing
system with the ability to recover system operations on the operational
processor after one processor fails. Where possible, it will take responsibility
for all work in progress on the failing processor, including /0.

In amultiprocessing environment, if MCH is unsuccessful because of a
recursive error or a damaged processor, MCH invokes ACR on the
operative processor to terminate execution on the failing processor. When
ACR receives control, it attempts to transfer work that was in progress on
the failing processor to the operative processor. The recovery termination
manager then initiates recovery by invoking the appropriate functional
recovery routines to free resources associated with the failing processor.

ACR then cleans up resources associated with the failing processor and
frees them, where possible, for use by the operative processor. The failing
processor is logically disconnected along with all devices uniquely affiliated
with that processor. Since the remaining processor cannot continue to
handle the load of two processors, it isimportant for the installation to take
appropriate actions to reduce workload and reconfigure 1/0.

In a system without channel reconfiguration hardware (CRH), a
processor failure in a multiprocessing environment means the loss of all 1/0
paths through channels attached to the inoperative processor. However, if
CRH was included during system generation for a Model 168 MP, then
ACR passes control to the CRH routine.

Channel Reconfiguration Hardware

Channel reconfiguration hardware (CRH) enables either processor in a
Model 168 MP to control the operation of the channels normally dedicated
to the other processor. The facility isintended as a short-term recovery aid,
and can degrade system performance if kept active indefinitely.

CRH receives control when a hardware failure in one processor causes
ACR to take that processor offline, or when the operator varies online a
channel that is attached only to an offline processor. It is available only on
a 168 MP and is included with the 168 hardware; however, it is activated
only if included during system generation.

With CRH, since the operative processor can access the channels on the
inoperative processor, all devicesin the configuration remain accessible to
the system. In addition, CRH allows access to symmetric devices when the
paths through the operative processor are busy or offline, or when the
device isreserved through a path on the inoperative processor.

Since the operation of CRH can result in significant system overhead,
the installation should deactivate CRH as soon as possible.

Channel Check Handler

The channel check handler (CCH) reduces the impact of channel
malfunctions on System/370 models supported by MV S. It aids the I/O
supervisor (I0S) in recovering from channel errors and informs the operator
or system maintenance personnel when errors occur.

Chapter 9: Recovering From Errors 9-5

9-6 OS/VS2 MVS Overview

CCH receives control from the 10S after a channel malfunction is
detected. It analyzes the type and extent of the error using the information
stored by the channel. If the error condition affects the entire channel,
CCH invokes the 1/O restart function of 10S to recover the active I/0O on
the failing channel. If any other error condition occurs, CCH allows the
device-dependent error recovery procedures to retry the failing 1/0, forcing
the retry on an aternate channel path (if oneis available). Records
describing the error are written to the SY S1.LOGREC data set.

CCH performs no error recovery itself: it does not retry any operation or
make any changes to the system. Recovery from channel errorsis
performed only by the device-dependent routines.

Dynamic Device Reconfiguration

Dynamic device reconfiguration (DDR) allows the system and user to
circumvent an 1/O failure, if possible, by moving a demountable volume
(tape or disk) from one device to another or by substituting one unit record
device (reader, punch, or printer) for another. DDR requests are processed
without shutting down the system and may eliminate the need for
terminating ajob.

A DDR swap can beinitiated by either the system or an operator. When
apermanent 1/O error occurs, the system initiates a swap along with a
proposed alternate device to take over the processing of the device on
which the error occurred. The operator can accept the swap and proposed
device, accept the swap but select another device, or refuse the swap. The
operator himself may initiate a swap (viathe SWAP command) if adevice
cannot be made ready, if one unit record device is to be substituted for
another, or if, for example, cleaning procedures are to be carried out on a
device.

For additional information on DDR, see Operator's Library: OSVS2
MVS System Commands, GC38-0229.

Missing Interruption Handler

The missing interruption handler (MIH) checks whether expected 1/0
interruptions occur within a specified period of time. If an interruption does
not occur, the operator is notified so that corrective steps can be taken
before system status is harmed. MIH does not support teleprocessing
devices or devices that are marked offline.

MIH isinvoked as part of the master scheduler. It checks for missing
interruptions caused by pending device and channel ends, DDR swaps, and
MOUNT commands. The absence of such interruptions may indicate, for
example, that adeviceis not ready, aMOUNT message has not been
satisfied, or a device has malfunctioned. Channel and device end
interruptions are recorded on the SY S1.L OGREC data set.

If a pending condition is found and remains pending after a useror
system-specified time interval has elapsed, a missing interruption condition
is determined to exist and the operator is notified. The specific pending
condition determines what operator action is heeded to correct the situation.

Chapter 10: Multiprocessing

With the growth of multiple applications and the proliferation of online
users, an installation may find that a single processor cannot service its
needs. More capacity and higher speed are often required. A viable solution
to the need for more computing power is a configuration of several
processors sharing one or more critical resources. In such a configuration
the processors share the workload and synchronize their activities.

Sharing, synchronizing, and controlling the work on several processorsis
generally called multiprocessing. The two basic types of multiprocessing are:

» Loosely-coupled multiprocessing, which alows processors to operate
independently, yet share a common workload queue. The processors
are connected by channel-to-channel adapters or by shared DASD.

» Tightly-coupled multiprocessing, which allows two processors to
operate under the control of a single operating system. The processors
are connected by a multisystem unit.

L oosely-Coupled Multiprocessing

L oosely-coupled multiprocessing affords an easy growth path. The
installation can connect many combinations of System/360 and System/370
processors into a single configuration with the following traits:

» JES2 or JES3 supports the processors access to a common workload
queue.

» Each processor has its own control program.

» The l/O device configurations on the various processors need not be
identical. However, availability can be improved by including
redundant components and by making the configuration symmetrical.

» Jobs can be routed to a particular processor, if necessary.

For further discussion of JES2 and JES3 multiprocessing support this
book, see "Multi-Access Spool" under "JES2 Features' in chapter 5, and
"JES3 Features' also in chapter 5.

For more detailed information about JES2 and JES3 multiprocessing
support, refer to OSVS2 MVS System Programming Library: JES2 and
Introduction to JES3, respectively.

Tightly-Coupled Multiprocessing

In atightly-coupled multiprocessor (MP), the two processors share all
processor storage, communicate directly with each other, and operate under
the control of a single system control program (OS/VS2 MVS). MVS

supports tightly-coupled MPs and APs on the IBM System/370 Model 158
and Model 168.

Chapter 10: Multiprocessing 10-1

10-2 OS/VS2 MVSOverview

A Model 158 or 168 tightly-coupled MP configuration in some respects
has less complex operational requirements than two uncoupled 158 or 168
processors. The MP presents a single system image to the operator even
though there are two processors available for work. The operator has one
operational interface to the entire system, one job scheduling interface. and
one point of control for all the resources available. In addition, the operator
must communicate with and control only one operating system instead of
two.

Three other important characteristics of atightly-coupled MP are:

« The ability to dynamically change the hardware configuration to meet
various needs

« The ability to communicate between the processors to coordinate their
activity

« The ability to control the operation of the two processors and yet
keep their individual control and status information separate

Configuration

A tightly-coupled MP configuration consists of many hardware components,
which MV S regards as resources. "Reconfiguration™ refers to the process of
changing the configuration of these hardware components. It involves
varying system resources online or offline as well as changing some control
switches on the processors' configuration control panel to establish the
corresponding physical configuration.

Change to the configuration can occur for several reasons, such as:

« A segment of storage that experiences failures must be disabled from
both processors. By removing the failing storage from the system
while the system is still processing, the system operator can isolate the
failure from the MV S system and allow the repairs to take place.

» A scheduled change from MP mode to UP mode can allow MV S to
continue uninterrupted on one processor while the other processor
runs a secondary operating system or undergoes repairs.

L ogical Reconfiguration

The process of varying system resources online and offline with the VARY
command is called logical reconfiguration. The system operator uses the
VARY command to make system resources (processor, storage, |/0 device)
either available or unavailable for system use, for example, changing from
MP mode to UP mode by varying a processor offline. This command, along
with other system commands and operator actions, can separate a system
resource from an active M P system without necessarily interrupting the
work being processed.

Physical Reconfiguration

When the system operator changes the logical configuration, he must make
corresponding changes to the physical configuration. This process, called
physical reconfiguration, involves the configuration control panel whichis
housed in the multisystem unit that connects the two processors. The
configuration control panel contains rotary switches, toggle switches,
pushbuttons, and display lights that allow the operator to establish:

» System mode — MP mode in which the processors share real storage
and communicate with each other, or UP mode in which the
processors operate independently, do not share real storage, and do
not communicate with each other.

» Storage configuration — Each storage switch assigns areal storage
address range to its associated segment of storage (a storage element).
Furthermore, each storage element can be enabled for access by one
or both processors or disabled for access by both processors.

» 1/O device configuration — A pair of 1/O allocation switches (one
for each processor) is assigned to each control unit connected to the
configuration control panel. Each switch establishes the associated
processor's access to a particular control unit. As with segments of
storage, each control unit can be enabled for access by one or both
processors or disabled for access by both processors.

» Validity of adesired configuration — The configuration-validity
indicators show whether the desired configuration control panel
settings are acceptable (valid). If the specified configuration is valid,
pressing the ENTER CONFIG pushbutton causes the control panel
settings to take effect.

Communication

To control the system resources, the two processors must communicate with
each other. Communication between the processorsis referred to as
interprocessor communication (IPC). The MV S software and the
System/370 hardware both provide support for 1PC.

MV S-Initiated Communication
MV S establishes interprocessor communication for several purposes:

o To perform system initialization

» To dispatch work or start an I/O operation

» To stop or restart a processor during reconfiguration
» To attempt aternate CPU recovery

To accomplish this communication, MV S uses the signal processor (SIGP)
instruction. A SIGP instruction indicates the address of the processor being
signaled and transmits a request to that processor. The request indicates the
function to be performed. When the addressed processor receives the signal,
an external interruption occurs. As aresult of the interruption, the
addressed processor decodes the request, performs the requested function
(if possible), and transmits a response to the calling processor. The
response contains a condition code and status information.

The following topics describe some of the SIGP requests used by the
system.

Initialization: During the initialization of atightly-coupled MP system, MVS
can determine whether the other processor is online by issuing a SIGP
sense instruction. The addressed processor responds with an indication of its
status. If the response indicates the processor is online, MV'S can issue a
SIGP start instruction. The addressed processor performs the start function
just as though an operator had pressed the START key on the processor's
console. When initialization is complete, multiprocessing operation can
proceed on both processors.

Chapter 10: Multiprocessing 10-3

10-4 OS/VS2 MVS Overview

Operation: Normal operation proceeds with each processor receiving work
from the MV S dispatcher routine. The dispatcher is normally entered after a
system event occurs or when a unit of work is complete. However, if one
processor has entered the wait state because it had no work to perform, the
other processor may wish to tell the idle processor that new work has
arrived. This kind of communication is called " shoulder-tapping.”

Other situations may arise that make shoulder-tapping necessary. For
example, a program running on processor A may need to issue an 1/O
request to a device that is attached only to processor B. Using the SIGP
external-call instruction, processor A can ask processor B to perform the
operation.

Reconfiguration: When the operator varies a processor offline or online,

MV S-initiated communication may be necessary. For example, if the master
scheduler is running in processor A when aVARY command isreceived to
vary processor B offline, processor A must tell processor B to stop. To do
this, processor A issues a SIGP stop instruction. Processor B enters the
stopped state just asit would if the STOP key on the processor's system
console had been pressed. To vary processor B back online, processor A
can issue a SIGP restart instruction. Processor B performs arestart function
just as though the RESTART key had been pressed.

Recovery: When one processor wants the other to perform an action
immediately, it executes a SIGP emergency-signal (EMS) instruction, which
also resultsin au external interruption on 'the other processor. A SIGP
emergency-signal is used to initiate actions such as a request from afailing
processor for alternate CPU recovery activity on the operative processor.
The operative processor can transmit a SIGP program-reset instruction to
reset any pending 1/O operations that were in progress on the failing
processor. The operative processor may also issue a SIGP
stop-and-store-status instruction to determine the status of the failing
processor. If the status can be obtained, the MV S recovery routines have a
better chance of succeeding.

Har dwar e-I nitiated Communication

In addition to the signal's exchanged between processors through use of the
SIGP instruction, the System/370 hardware supports direct communication
between the processors. This communication is necessary to ensure:

» Clock synchronization
 Storage control
* Recovery

Clock Synchronization: In atightly-coupled MP configuration, each
processor has atime-of-day (TOD) clock. When the two processors operate
in MP mode, the TOD clock in one processor transmits synchronizing
pulses to the other processor to keep the TOD clocks synchronized. When
the operator initializes (1PLs) atightly-coupled MP system or varies a
processor online, he must ensure that the TOD clocks are synchronized. If
MV S detects that the clocks have become unsynchronized, an external
interruption occurs and the processor that accepts the interruption first can
reset the clocks and initiate operator intervention, it necessary.

Storage Control: Because storage is shared between the processors, the
processors must communicate with each other to ensure that all references
to shared storage refer to the most current data. Therefore, each processor
(for example, processor A) notifies the other processor (for example,
processor B) when it modifies the contents of areal storage location.
Processor then determ’ nes whether its high=speed buffer currently
contains the contents of that same real storage location. If processor B's
buffer contains this same storage, this copy of the storage is no longer
current; processor B invalidatesits copy in the buffer.

Recovery: When a processor experiences afailure that causesit to enter
the check-stop state, the failing processor generates a malfunction-alert
interruption on the other processor, which then attempts recovery. Alternate
CPU recovery routines receive control and attempt to keep MV S running
on the operétive processor.

Control

Although tightly-coupled MPs share &l real storage and run under the
control of asingle MV S operating system, each processor must have a
unique physical address for identification purposes. Likewise, each processor
must have its own status and control information.

Physical Addresses

In atightly-coupled MP, one processor is called processor A and the other
is called processor B, asindicated on the configuration control panel.
Internally, the processors have addresses of 0 and 1, respectively, which the
processors must use when signaling each other and when recording the
processor identifier in operator messages, SMF records, and so on. The
operator must use 0 and 1 when issuing the configuration commands (for
example, VARY PATH, VARY CPU). These addresses are permanent and
apply in both MP and UP modes.

Status and Control Information

The System/370 hardware and MV S software maintain status and control
information in specifically-assigned real storage locations. This information
consists of data such as PSWs. A 4096-byte block of fixed storage is
reserved for the information in the low-address range (storage locations
0-4095) of real storage. However, the two processors can execute two jobs
concurrently, one in each processor. In order to keep the jobs separate,
each processor must have its own storage area. The technique used to
achievethisis called prefixing, whereby the two processors do not use
absol ute locations 0-4095 (0-4K) for status and control information. Each
processor has its own separate 4K -byte prefixed storage area (PSA) of real
storage. MV S can locate each PSA by referring to the address contained in
the prefix register for each processor.

Chapter 10: Multiprocessing 10-5

10-6 OS/VS2 MV S Overview

Attached Processor System

An attached processor (AP) system consists of a System/370 Model 158 or
Model 168 processing unit (called the host processor) and an attached
processing unit. The host processor provides instruction processing, 1/0
control, and storage control. The attached processor has a similar
instruction processing ability, but has no 1/O or storage control of its own.
The host processor sharesits 1/0O and storage control with the attached
processor.

Most communication and control facilities of atightly-coupled MP also
apply to an AP system. However, an AP system's availability is not
significantly increased over a UP system because an AP system's ability to
reconfigure is limited. An attached processor does not have the same
configuration control panel that an MP has. If an attached processor fails, it
can be varied offline and MV S can continue on the host processor in UP
mode. But if the host processor fails, it cannot be varied offline and MVS
cannot continue on the attached processor. [Exception: The Model 168 does
allow the operator to reinitialize (re-IPL) an attached processor as a
stand-alone host processor with access to channels and storage.]

The advantage of an attached processor system is increased performance.
Just asin atightly-coupled MP system, an AP system can execute two tasks
concurrently, one in each processor. Part of the performance improvement
results from less interprocessor communication (no need to communicate
for 1/O-device and storage control).

A
abnormal termination (see recovery termination
management)
ACCEPT function 3-18
acceptingwork 5-1
access method 1-4
appendages 8-10
description 8-1
for JES 5-6
functions 8-8
types 8-2
VSAM 8-17
access techniques 8-2
accessible
devices—checking for 4-12
paths—checking for 4-12
ACR (alternate CPU recovery) 1-7,9-5
address 1-2
address space 2-6
content of 4-6
creation of 5-3
when prevented by SRM 7-5,7-6
improved performance 1-10
initialization 4-6
locksfor 6-11,6-12
serialization 1-13
swapping 1-10
address space control block (see ASCB),
address space control block extension (ASXB), in TCB
structure 6-8
address space identifier (ASID) 5-4
addressesOand 1 10-5
addressing
inMVS1-2
scheme 1-2
allocating
internal readers during initialization 4-26
I/O resources (see device allocation)
storage 1-3
virtual space during initialization 4-6
allocation of devices 5-12
dynamic 5-13
influenced by SRM 7-6
major functions 5-13
allocation routines, called by initiator 5-6
ALPAQ initialization 4-20
alternate
console, initializing 4-13
CPU recovery (ACR) 1-7,9-5
indexes 8-20,8-22
parameter list 4-9
SMP control dataset 3-18
AP (see attached processor)
APF (authorized program facility)
initializing 4-23
list IEAAPFxx), use during initialization 4-24
system parameter use 4-24
table, initiadizing 4-23
APG (automatic priority group)
controlled by SRM 7-6
initialization 4-16
appendages to access methods 8-10
APPLY function 3-18
ASCB (address space control block)
containing dispatching priority 6-10
in TCB structure 6-8
initialization 4-27

Index

ASID (address space identifier) 5-4
ASM (auxiliary storage manager) 2-13
initializing 4-17
locks 6-11,6-12
ASP main processors 1-15,5-10
assembling system generation macros 3-5
assigning
ajobclass 5-2
amaster console 4-14
resources to jobs 5-12
ASXB (address space control block extension)
in TCB structure 6-8
ATTACH macro instruction 9-2
ATTACH routine processing 6-7
to create TCBs 6-7
attached processor (AP) 1-5,1-6,10-6
reconfiguring 10-6
attaching the initiator during initialization 4-26
attribute list, volume 4-12
attributes, initializing volume 4-12
authorized program facility (see APF)
automatic commands 5-8
automatic priority group (see APG)
auxiliary storage 1-4
shortages detected by SRM 7-5
auxiliary storage manager (see ASM)
availability 1-5
multiple virtual storage 1-6
multiprocessing 1-5
available
devices—checking for 4-11
frame queue, used by SRM 7-5
path, definition of 4-12
paths—checking for 4-11

B
back end of EXCP driver 8-14
base, initialization of master scheduler 4-26
basic access technique 8-2
basic direct access method (BDAM) 8-3
basic partitioned access method (BPAM) 8-3
basic sequential access method (BSAM) 8-2
batch jobs, TCB structure for 6-8
BDAM (basic direct access method) 8-3
BLDL list 2-23

initializing 4-23
BLDLF system parameter use 4-23
block multiplexer channels 1-4
bottlenecks

device allocation 1-12

multiplelocks 1-13

reductionin 111

servicerequests 1-13

virtual input/output 1-12
BPAM (basic partitioned access method) 8-3
BSAM (basic sequential access method) 8-2
building atest system phase of MV S system IPO 3-12

C

CAW (channel address word) 8-12

CCH (channel check handler) 1-7,9-5

CCW (channel command word) 8-9

change, bit 2-4,2-11,2-12

changes, identifying prerequisite PTF or user 3-18
changing

Index I-1

the hardware configuration 10-2 interval 8-18

the MV'S machine configuration 3-4 within an MP 10-5
channel control blocks
logical 4-16 ASCB and ASXB in TCB structure 6-8
malfunction recovery 9-6 ASCB containing dispatching priority 6-10
rolein I/O operation 8-1 for an 1/0O operation 8-8
scheduler 8-12 locksfor 6-11,6-12
channel address word (CAW) 8-12 representing dispatchable units of work 6-1
channel check handler (CCH) 1-7,9-5 use of SVRB in interruption processing 6-4
channel command word (CCW) 8-9 control program
channel program generating the MV S system 3-7
definition 8-9 options, selecting system 3-4
dynamically modifying (see also PCI) control statements
dynamically modifying 8-10,8-11 SMP function 3-15,3-16,3-18
channel reconfiguration hardware (CRH) 1-7,9-5 syntax checking 3-18
channel statusword (CSW) 8-13 converter 5-6
channdl use, planning for 3-3 creating
channel-to-channel (CTC) adapter 5-10,10-1 an address space 4-27,5-3
checkpoints, installation planning 3-3 dispatchable units of work 6-7
CLASS parameter 5-3 overview of 6-1
classes of jobs 5-2 SRBs 6-9
clearing storage during initialization 4-3 TCBs6-7
CLOSE macro instruction processing 8-7 CRH (channel reconfiguration hardware) 1-7,9-5
closing the system catalog during initialization 4-14 cross-memory services (CMS), locks for 6-11,6-12
CLPA system parameter usage 4-17 CSA (common service area) 2-18
cluster 8-18 CSW (channel statusword) 8-13
CMD system parameter use 4-26 CTC (channel-to-channel) adapter 5-10,10-1
CMS (cross-memory services) current MPL (see target MPL)
locksfor 6-11,6-12 CVIO system parameter usage 4-18
cold start
page data set initialization 4-17
PLPA initialization 4-19 D o) _
V10 data set initialization 4-18 DASD volum_es, initializing prior to system generation 3-5
command list (COMMNDXxx) use during initialization DAT (dynamic address translation) 2-6
4-26 data control block (DCB) 8-4
COMMNDXxx use during initialization 4-26 data extent block (DEB) 8-6
common area data management 8-1
of virtual storage ~ 2-17 dataset
space alocation 4-6 definition 8-1
common service area (CSA) 2-18 organization 8-1
common workload queue 5-9 data space 8-18
communication between processors 10-3 DCB (data control block) 8-4
clock synchronization 10-4 DD statement 5-12 _ _
during initialization 103 DDR (dynamic device reconfiguration) 1-7,9-6
during operation 10-4 DDR swap 9-6
during reconfiguration 10-4 deadline scheduling 5-11 _
during recovery 10-4,10-5 deadlocks, role of locksin preventing 6-11
hardware-initiated 10-4 DEB (data extent block) 8-6
MV S-initiated 10-3 defects, correcting program 3-15
shoulder-tapping 10-4 defining performance objectives, instructionson 3-3
storage control 10-5 deleting |nfo_rmati on from SMPCDS 3-18
communications task initidization 4-26 demand paging 2-10
concatenating demountable volumes, initializing 4-13
libraries during initialization 4-21 dependent job control 5-11 _
PAGE parameter values 4-17 DEQ macro instruction (see enqueuing)
concepts of job scheduling 5-2 device
configurability commands 10-5 alocation 1-125-12
configuration dynamic 5-13
changing the MV S machine 3-4 major functions 5-13
control panel 10-2 checkl_ ng for accgessable 4-12
for multiprocessor 10-2 checking for available 4-11
configuration-validity indicator ~ 10-3 fencing 51l
configuring generation
hardware components 10-2 /O 343738
1/O devices 10-3 unallocation, major functions 5-13
storage 103 DIE (disabled interruption exit) of EXCP driver 8-13
control direct o
and status information 10-5 data set organization 8-2
area 8-19 specification of system parameters 4-9
functions disabled state 6-2
SMP 3-16,3-17 dispatcher (see also dispatching work)

-2 OS/IVS2 MV S Oerview

locksfor 6-11,6-12
dispatching priorities

establishing arange of 4-16

under control of SRM 7-6
dispatching work 6-10

after interruption processing 6-7

creating dispatchable units of work 6-7

SRBs 6-9
TCBs6-7

functions of dispatcher 6-10

order of dispatching 6-10

role of dispatcher 6-1

when dispatcher receives control 6-10
distributed free space 8-20
distribution libraries ~ 1-16

creating new 3-15

modifying 3-4

modifying with SMP 3-13

MV'S system IPO 3-8

ordering IBM 3-4
DJC (dependent job control) 5-11
DLIBs (see distribution libraries)
document, installation planning 3-1
documentation

MV'S system PO 3-9

printing the MV S system |PO 3-11
domain, providing guidelines for SRM's swap decision 7-3
DSl (dynamic system interchange) S-12
duplex data set initialization 4-18
DUPLEX system parameter usage 4-18
duplicate VOL SER, scanning for during initialization 4-12
dynamic address trandation (DAT) 1-3,2-6
dynamic alocation 5-13
dynamic device reconfiguration (DDR) 1-7,9-6
dynamic system interchange (DSI) 5-12

E
ECB (event control block) 8-8
ECC (error checking and correction) 9-3
effective real storage, limiting sizeof 4-3
element of storage 10-3
emergency-signa (EMS) SIGP instruction 10-4
enabled state 6-2
enhanced function 1-14
job entry subsystem 1-14
system generation and initialization 1-15
system operation 1-16
virtual storage access method 1-16
ENQ macro instruction (see enqueuing)
enqueuing
overview of 6-1
SRM control of users enqueued on resources 7-7
ENTER CONFIG pushbutton 10-3
entering and scheduling work 5-1
entry-sequenced data set 8-17,8-21
ERP (error recovery procedure) in post status 8-14
error checking and correction (ECC) 9-3
error processing
of hardware failures 9-1
of software failures 9-1
error recovery 1-69-1
alternate CPU recovery 1-8
channel check handler 1-7
dynamic device reconfiguration 1-7
functional recovery routines 1-8
machine check handler 1-7
missing interruption handler 1-7
percolation 1-8,
procedurein post status 8-14
recovery management support 1-7

recovery termination management 1-8
task recovery 1-8
errors, recovering from 9-1
establishing recovery routines 1-8
ESTAE 1-8
macro instruction 9-2
recovery routine 9-2
ESTAI
parameter 9-2
recovery routine 9-22
event control block (ECB) 8-8
exclusive control of resources, requested on ENQ 6-10
EXCP driver
back end 8-14
disabled interruption exit (DIE) 8-13
frontend 8-11
EXCP macro instruction 8-9
EXCPVR macro instruction 8-12
execution batch scheduling 5-7
extended subtask abend exit 1-8
extension to MV S starter system 3-7
extensions and options 2-21
externa interruptions 6-2
enabled/disabled state 6-2
interruption handler 6-4
externa writer 5-7

F
failure of global processor 5-12
fetch protection 2-3,2-4
fix list (IEAFXxX), use during initialization 4-21
FIX system parameter use 4-21
fixed
BLDL list 2-23
link pack area (FLPA) 2-23
initialization 4-21
priority of APG 7-7
flexibility —1-6
FLPA (fixed link pack area) 2-23
initialization ~ 4-21
fragmentation 1-2
frame 1-3
definition 2-1
shortages
detected by SRM 7-5
front end of EXCP driver 8-11
FRRs (see functional recovery routines)
full production status, achieving 3-7,3-12
function control statements, SMP 3-15,3-16,3-18
functional recovery routines 1-8,9-2
SETFRR macro instruction 1-8
functions of job entry subsystem 5-1

G
generalized trace facility (GTF)
receiving control from program interruption handler
use during installation planning 3-3
generation
1/0O device 3-4,3-7,3-8
planning for system 3-4
system 3-3
verifying system 3-7
global
locks 1-13,6-11
priority SRBs 6-10
in dispatching order 6-10
processor 5-10
failure 512

Index

greater support for interactive users 1-9
GTF (see generaized trace facility)

H
hardware
configuration 10-2
error processing 9-1
instruction retry (HIR) 9-3
recovery, communication during 10-5
hardware-initiated communication 10-4
clock synchronization 10-4
during recovery 10-5
storage control 10-5
HASPII 1-15
hierarchical order of locks 6-11,6-12
HIR (hardware instruction retry) 9-3
host processor 1-6,10-6

I
IBM distribution libraries 3-3
modifying 3-4
ordering 3-4
IEAAPFxx list, use of 4-24
IEABLDxx use during initialization 4-23
IEAFIXxxX use during initialization 4-21
IEAIPSXx lists 4-16
IEALODOO use during initialization 4-20
IEALPAXX use during initialization 4-23
IEAOPTXxX list selection 4-16

|EAOPTxx member of SYSLPARMLIB, used to influence

SRM decisions 7-1

IEAPAKOO use during PLPA initialization 4-19
IEASY S00 4-9
IEAVNIPO, relocating during initiaization 4-4
IH routines (see interruption handler routines)
IMPL (initial micro program load) 4-2
improved performance 1-10

deviceallocation 1-12

multiplelocks 1-13

scheduler work area 1-12

service request blocks 1-13

system resources manager 1-10

virtual input/output 1-13
index set 8-20
indexed sequential access method (ISAM) 8-3
indexed sequential data set organization 8-1
initial micro program load (IMPL) 4-2
initial program loader (IPL) 4-1

bringing into storage 4-2

functions of 4-3
initial program loading 4-3
initialization

clearing storage during 4-3

functions, preliminary 4-4

instructions, list containing 4-9

of thelink pack area (LPA) 4-18

process overview 4-1

relocating IPL during 4-4

viaRIMs 4-10
initializing

ALPAQ 4-20

an address space 4-6

an aternate console 4-13

APF table 4-23

ASCB 4-27

ASM, rulesfor 4-18

authorized program facility 4-23

automatic priority group 4-16

auxiliary storage manager 4-17

BLDL list 4-23
communications task 4-26
DASD prior to system generation 3-5
duplex datasets 4-18
fixed link pack area 4-21
FLPA 4-21
installation performance specification 4-16
1/0 devices 4-11
LSQA 4-5
master console 4-13
master scheduler 4-1,4-24
master scheduler base 4-26
master scheduler region 4-26
modified link pack area 4-23
MVS system 4-1
NIP transient area 4-5
nucleus 4-1,4-4
optional system tuning parameters 4-16
page data sets 4-17
page frametableentry 4-5
pageable link pack area 4-19
permanently resident volumes 4-12
primary job entry subsystem 4-1
private volumes (PRV) 4-13
program manager 4-18
public volumes (PUB) 4-13
real storage 4-5
region control task 4-27
reserved volumes 4-13
SQA 4-5
storage volumes (STR) 4-13
subsystem interface 4-26
SVC table 4-23
swap data sets 4-18
system catalog 4-14
system console 4-2
system consoles 4-13
system pack list 4-19
system resources 4-1
system resources manager 4-16
TOD clock 4-26
VIO data sets 4-18
volume attribute 4-12
initiating
JES 4-27
the load procedure 4-2
initiator 52
associating classes with 5-2
attaching during initiaization 4-26
attaching job steps 5-3
subroutine, and address space creation 5-5
input
processing 5-6
stream 5-1
input/output (see 1/0)
input/output block (I0B) 8-8
input/output supervisor (see |OS)
INSTALL
macro 3-13
options 3-15
SMP 3-15
installation
considerations, preliminary 3-1
planning 3-1
document 3-1
facilities 3-3
phases 3-2
productivity option 3-7
staffing 3-3
standards and MV S system | PO 3-11
tasks 3-2

verification procedure (IVP) 3-7
installation performance specification (IPS) 111
initialization 4-16
used to influence SRM decisions 7-1
installation plan
MVS system |PO 3-10
phasel 111
phase2 3-12
phase3 3-12
phase4 3-12
phase5 3-12
installing
PTFs 3-13,3-15
selectable units
SUs 3-13
the MV S system 3-1
user modifications 3-13,3-16
integrating and testing phase of MV S system IPO 3-12
integrity 1-13
use of address space 2-3
use of storage protect keys 2-3
interactiveusers ~ 1-9
internal
JCL useduringinitialization 4-27
text 56
internal readers
allocating during initiaization 4-26
definitionof 51
IBM-supplied RDR 5-2
STCINRDR 5-2
TSUINRDR 5-2
interpreter 5-6
interprocessor communication (IPC) 10-3
MV S-initiated 10-3
interruption handler routines 6-2,6-4
switching control to 6-4
interruption processing 6-2
definition of interruption 6-2
enabled/disabled for interruptions 6-2
interruption handler routines 6-2,6-4
overview of 6-1
role of PSWs 6-2,6-4
summary of 6-7
types of interruptions 6-2
interruptions
(see also interruption processing)
definition 6-2
invalid page tableentry 2-8
invoking
the JES procedure 4-27
the virtual storage manager during initialization 4-27
1/0 allocation switches 10-3
I/O device
checking for accessabie 4-12
checking for available 4-12
configuration 10-3
generation 3-4,3-7,3-8
initialization 4-11
1/O interruption handler 8-13
1/0 interruptions 6-2
enabled/disabled state 6-2
interruption handler 6-4
1/0 loads, establishing 4-16
I/0 management function of SRM 7-6
1/O operation summary 8-14
1/0 request
in user program 8-6
processing 8-1
10p (input/output control block) 8-8
10S (input/output supervisor)
channel scheduler 8-12

3-13,3-15

drivers 8-11

function 8-10

I/O interruption handler 8-13

locksfor 6-11,6-12

post status 8-14

receiving control from 1/O interruption handler 6-4
recovery 9-6

IPC (see interprocessor communication)

IPL (initial program loader) 1-16,4-1,4-3
bringing into storage during initialization ~ 4-2
functionsof 4-3
relocating during initialization ~ 4-4

IPO (installation productivity option) ~ 3-7
documentation 3-9
installation plan 3-11

phasel 311

phase2 3-12

phase3 3-12

phase4 3-12

phase5 3-12
memo to users documentation 3-9
planning an installation documentation 3-9
system and installation guide 3-10
system contents documentation 3-9
tuning guide 3-10
usesfor 3-8

IPS (seeinstallation performance specification)

ISAM (indexed sequential access method) 8-3

isolate and protect 1-14

IVP (installation verification procedure) ~ 3-7

J
JCL usage with MV S system I PO 3-8
JES (seejob entry subsystem)
JES2 (job entry subsystem 2)
features 57
JES3 (job entry subsystem 3) 1-15,5-1
channel-to-channel adapter 5-10
deadline scheduling 5-11
dependent job control 5-11
devicefencing 5-11
dynamic system interchange 5-12
features 5-95-11
global processor 5-10
failure 512
local processor 5-10
main processor 5-10
network job processing 5-11
priority aging 5-11
remote job processing 5-12
support for ASP 5-10
job
input 5-6
input stream 5-1
management (see job entry subsystem)
output 5-7
jobclass 5-2
job entry subsystem (JES)
access method 5-6
and address space creation 5-5
as an acronym 5-1
automatic commands 5-8
basic functions 5-1
communication with 5-6
concepts 5-1
execution batch scheduling 5-7
externa writer 5-7
initializing 41
initiating 4-27
internal reader 5-2

1-1451

1-145-1

Index

JES2 115
JES3 1-15
multi-access spool 59
output processing 5-7
print-punch routines 57
priority 56
priority aging 5-7
procedures, invoking 4-27
purge processing 5-7
queues 5-6
stages of processing S5-6
execute 5-6
input 56
output 5-7
purge 5-7
start-up 4-27
subsystem interface 115
terminology 5-i
job entry subsystem 2 (see JES2)
job entry subsystem 3 (see JES3)
jab steps
alocation 513
attached by initiator ~ 5-3
undlocation 5-13

K
key switch 2-5
key-sequenced data set 8-17,8-20

L

layout of virtual storage 2-16

level of user service, establishing 4-16
limited production, proceeding into 3-12

link list (LNKLSTOO or LNKLSTxx) creation or

modification 4-21
link pack area (LPA)
fixed 2-23
initialization 4-18

library (SYS1.LPALIB) use during initialization 4-19

modified 2-23
ageable 2-17
list, volume attribute 4-12
LNK system parameter use 4-21
load list use during initialization 4-20
load procedure, initiating 4-22
loading
programsinto virtual storage 2-14
the nucleus 4-4
for initialization 4-1
local
job queue (see scheduler work area)
locks 1-13,6-11
priority SRBs 6-10
in dispatching order 6-10
processor 5-10
local system queue area (see LSQA)
locating the nucleus for initialization 4-1
lock manager 6-11
locking 6-10
definition of lock 6-10
global locks 6-10
hierarchical order of locks 6-11,6-12
local locks 6-11
overview of 6-1
spinlocks 6-11
summary of locks 6-12
suspend locks 6-11
locks (see also locking)
locks 1-13

global 1-13
loca 113
logical channel, definition of ~ 4-16
logical reconfiguration 10-2
LOGON command, and address space creation 5-3
loosely-coupled multiprocessing 15
definition 10-1
traitsof 101
LPA (seelink pack area)
LSQA (local system queue area) 2-18
initialization of ~ 4-5
pages 4-18

M
machine check handler (MCH) 1-7,9-3

control flow 9-5
machine check interruptions 6-2

enabled/disabled state 6-2

interruption handler 6-4
machine configuration, changing the MVS 3-4
machine-readable IPO 3-9
macro instructions

ATTACH 6-7,9-2

CLOSE 8-7

DEQ 6-1

ENQ 6-1

ESTAE 9-2

EXCP 8-9

EXCPVR 8-12

OPEN 8-4

RESERVE 6-1

SCHEDULE 1-13,6-9

SETFRR 1-8,9-

SPIE 1-8

STAY 9-2

SYSEVENT 7-2

system generation 3-5
main processor 5-10
main storage (see real storage)
malfunction-alert (MFA) interruption 10-5
master catalog 1-16,8-23
master console, initializing 4-13
master JCL load module (MSTRJCL) 4-26,4-27
master schedul er

and address space creation 5-3

initialization 4-1,4-24

initialization overview 4-24

initialization routine, attaching 4-26

preliminary set-up 4-17

region initialization 4-26
maximum MPL, providing guidelines for SRM's swap

decisions 7-3
MAXUSER parameter 5-5
MCH (see machine check handler)
mean-time-to-wait (MTTW) group of APG 7-7
memo to users documentation, MV S system | PO 3-9
merging system parameters 4-9
MFA (malfunction-alert) interruption 10-5
migrating installations, instructionsto 3-1
MIH (missing interruption handler) 1-7,9-6
minimum MPL, providing guidelines for SRM's swap
decisions 7-3

missing interruption handler (MIH) 1-7,9-6
MLPA (see modified link pack area)
model 158 or 168 multiprocessor 10-2
modified link pack area (MLPA) 2-23

initialization ~ 4-23

stem parameter use 4-2

modified LPA list (IEALPAXxx), use of during initialization

4-23

modifying IBM distribution libraries 3-4
MOUNT
attribute
initializing 4-12
purpose of 4-12
rulesfor inclusionin VATLSTxx 4-12
command 9-6
and address space creation 5-3
MP (see multiprocessing)
MP mode (see multiprocessing)
MPLs (multiprogramming levels)
providing guidelines for SRM's swap decisions 7-3
system-wide, monitored by resource monitoring function
of SRM 7-7
MSTRJCL (master JCL load module) 4-27
useduring initialization 4-26
MTTW (mean-time-to-wait) group of APG 7-7
multi-access spool 5-8
multiplelocks 1-13
multiple virtual storage 1-1
addressing 1-2,1-3
availability 15
levels of addressing 13
security and integrity 1-13
sharing real storage 1-3
summary 1-4
multiprocessing 1-4
ACR recovery 9-5
aternate CPU recovery 1-7
availability 15
CRH recovery 9-5
definition 101
flexibility — 1-6
job entry subsystem 1-5,1-15
loosely-coupled 1-5,10-1
MCH recovery 9-5
MP mode 10-3
tightly-coupled 1-5,10-1
locking, overview of 6-1
UP mode 10-3
multiprocessing systems, shared DASD, RESERV E macro
instruction (see enqueuing)
multiprocessor mode 10-3
multiprocessors 10-2
communication between 10-3
multiprogramming, controls provided by supervisor 6-1
multiprogramming levels (see MPLS)
multisystem unit ~ 10-1,10-2
MV S (multiple virtual storage)

ingtalling 31
servicing 3-1
tailoring 3-1,3-3

MVSinstalation

considerations, preliminary 3-1

planning phases 3-2

tasks 3-2
MV S machine configuration, changing the 3-4
MVS starter system 3-3

contentsof 3-7

extensionto 3-7

MV'S system
control program, generating the 3-7
initializing 41

producing a new 3-4
servicing 3-13

MV S system | PO 3-7
build atest system phase 3-12
contents documentation 3-9
contents of 3-8
distribution libraries 3-8
documentation 3-8

installation guide 3-10
installation plan 3-10
phasel 311
phase2 3-12
phase3 3-12
phase4 3-12
phase5 3-12
integrating and testing phase 3-12
JCL usage with 3-8
memo to users documentation 3-9
planning an installation documentation 3-9
planning and preparing phase 3-11
stabilizing the production system phase 3-12
tapes, printing 3-11
testing the production system phase 3-12
testing with 3-8
tuning guide 3-10
usesfor 3-8
MV S-initiated communication 10-3
during initialization 10-3
during operation 10-4
during reconfiguration 10-4
during recovery 10-4

N
nanoseconds 1-4
network job processing (NJP) 5-11
NIP (nucleus initialization procedure) 4-1
preliminary initialization functions 4-4
transient area, initializing 4-5
NJP (network job processing) 5-11
non-preemptive units of work 6-5
nontrivial transaction 1-10
nucleus
initialization 4-1,4-4
initialization procedure (NIP) 4-1
loading 4-1,4-4
locating 41

(0]
obtaining system parameters 4-7
OPEN macro instruction processing 8-4
opening the system catalog during initialization 4-14
operator intervention, restrictions 4-10
operator-started jobs, TCB structurefor 6-8
operator-supplied system parameters 4-9
OPI= NO 4-10
OPT (optional system tuning parameter) initialization
4-16
optional system tuning parameter (OPT) initialization
4-16

options

installation productivity 3-7

selecting system control program 3-4

SMP 3-15

SMPINSTALL 3-15

SYSGEN 3-14

SYSGEN INSTALL 3-15
ordering IBM distribution libraries 3-4
organization of datasets 8-1
OUCB (user control block), building the 4-17
output

characteristics 57

processing 5-7
OUXB (user extension block), building 4-17
overriding

APG initialization values 4-16

system parameter values 4-9
overview of theinitialization process 4-1

Index

P
page 1-4
definition 2-1
fault 2-10
stealing 2-11
translation exception 2-10
page data sets 2-13
dynamically adding to the system 4-17
initialization 4-17
limiting the number of 4-17
page frametable 2-11
entry (PETE), initializing 4-5
PAGE system parameter usage 4-17
pagetable 2-8
initializing 4-6
ageable
BLDL list 2-23
link pack area (PLPA) 2-17
initialization 4-19
PAGEADD command usage 4-17
page-in 2-10
page-out 2-10
paging 2-10
concepts example 2-2
rates, planning for system 3-3
PAGNUM system parameter usage 4-17
parameter library 1-11
storing options 1-16
system initialization ~ 1-16
PARMLIB (see SY S1.PARMLIB data set)
partitioned data set organization 8-2
paths
checking for accessable 4-12
checking for available 4-11
PCI (program controlled interrupt) 8-10,8-13
pending condition 9-6
percolation 1-9,9-2
performance
expectations, documenting 3-3
planning prior to installation 3-3
permanent user libraries, modifying 3-13
permanently resident volume, initializing 4-12
phase plan, MV S system I1PO 3-11

physical
addresses 10-5
reconfiguration 10-2
planning

an MV S system IPO installation documentation 3-9
and preparing phase of MV S system IPO 3-11
document 3-1
for system generation 3-4
phases, installation 3-2
toinstall MVS 3-1
PLPA (pageable link pack area) 2-17
directory use during initialization 4-19
initialization 4-19
PLPAD (pageable link pack area directory) use during
PLPA initialization 4-19
post status 8-14
preallocated storage 1-1
predecessor jobs 5-11
preemptive units of work 6-5
prefixed storage area (PSA) 10-5
layout in virtual storage 2-21
prefixing 10-5
preparing the system for work 4-1
prerequisite PTF identification 3-18
PRES volumes, initializing 4-12
primary
job entry subsystem, initializing 4-1
system parameter list 4-9

1-8 OS/IVS2 MV S Overview

primeindex 8-20
printing the MV S system | PO tapes 3-11
print-punch routines 5-7

priority
aging 57511
in-TES 5-6
private

address space 2-6

area of virtual storage 2-18

area space dlocation 4-6

pagetable 2-8

segment table 2-8

volumes (PRV), initializing 4-13
problem program mode 9-2

processing 1/0 requestsin parallel (see device all ocation)

processor

addresses 10-5

enabled/disabled state 6-2

loads, establishing 4-16

management function of SRM 7-6

use, planning for 3-3

utilization monitored by SRM 7-7
production

status

achieving 3-7,3-12

system, stabilizing 3-12

testing, system availability for 3-12
productivity option, installation 3-7
profile preparation, workload 3-3
program address space 1-2
program controlled interrupt (PCl) 8-10,8-13
program interruptions 6-2

enabled/disabled state 6-2

interruption handler 6-4
program loading 2-14
program manager initialization 4-18
program status words (see PSWs)
program update tapes (PUT) 3-15
PSA (prefixed storage area) 10-5

layout in virtual storage 2-21
PSWs (program status words)

built by dispatcher 6-10

current PSW 6-2

indicating processor is enabled/disabled 6-2

new PSW 6-2

old PSW 6-2

roleof 6-2,6-4

switching 6-4
PTFs (program temporary fixes)

definition of 3-15

installing 3-13,3-15

removing changes from the system 3-18
public volumes (PUB), initidlizing 4-13
publications, MV'S system |PO 3-9
purge processing 5-7
PUT tapes 3-15

8SAM (queued sequential access method) 8-2
queued access technique 8-2
gueued sequential access method (QSAM) 8-2
queues 5-6

common workload 5-8
quick start

page data set initialization 4-17

PLPA initidlization 4-19

VIO data set initialization 4-18

R
RCT (see region control task)
RDR internal reader 5-2
real (V=R) user region 2-18,2-20
real storage 1-2
addresses 1-3
initializing 4-5
limiting effective 4-3
shortages of available frames detected by SRM 7-5
shortages of pageable frames detected by SRM 7-5
rea storage management (RSM) 2-13
locksfor 6-11,6-12
receiving control from program interruption handler
6-4
RECEIVE function 3-18
reconfiguration 10-2
communication during 10-4
logica 10-2
physica 10-2
recovery
communication during 10-4,10-5
error 9-1
recovery management support (RMS) 1-7,9-3
nucleus extension 2-21
recovery routines
device-dependent 9-6
ESTAE 9-2
ESTAI 9-2
functional 9-2
objectivesof 9-1
STAE 9-2
STAI 9-2
task 9-2
typesof 9-1
recovery termination 9-1
recovery termination management (RTM) 1-8,9-1
extended subtask abend exit 1-8
functional recovery routines 1-8
percolation 1-8
receiving control from machine check interruption
handler 6-4
receiving control from program interruption handler
6-4
receiving control from restart interruption handler 6-4
specify program interruption exit 1-8
task recovery 1-8
when invoked 9-1
reference bit 2-4,2-11,2-12
region control task (RCT) 4-27
and address space creation 5-5
in LSQA 2-18
in system region 2-19
in TCB structure 6-7
initidizing ~ 4-27
region initialization routine 4-26
REJECT function 3-18
relative record data set 8-18,8-21
remote job processing (RJP) 5-12
removing changed from the system 3-18
RESERV E macro instruction (see enqueuing)
reserved volume, initializing 4-12
reserving devicesviaJES3 5-11
resource
alocation 512
initialization modules (RIM) 4-1
initialization viaRIMs 4-10
management facility, use during installation planning
33
monitoring function of SRM 7-7
resource manager function of SRM
description of 7-5
1/O management function 7-6

processor management function 7-6
resource monitoring function 7-7
storage management function 7-5
overview of 7-2
resources manager, initializing the system 4-16
restart interruption 6-2
enabled state 6-2
interruption handler 6-4
RESTORE function 3-18
restoring the MVS system IPO 3-11
restricted functions, locating users of 4-23
restricting operator intervention 4-10
RIM (resourceinitialization module) 4-1
initialization 440
tableand list initialization 4-23
RJP (remote job processing) 5-12
RMSS (see recovery management support)
rotate priority of APG 7-7
RSM (seered storage management)
RTM (see recovery termination management)
RV s (see swap recommendation val ues)

S
SAR (storage address register) 2-9
satisfying 1/0 requests and data management 8-1
SCHEDULE macro instruction 1-13
used to schedule SRB 6-9
scheduler, initializing 4-1,4-24
scheduler work area (SWA) 1-12,2-19
scheduling work 5-i
by deadline 5-11
secondary parameter list 4-9
security 1-13
isolate and protect 1-14
user responsibility 1-14
validate and authorize 1-14
segment table 2-8
initializing 4-6
origin register (STOR) 2-9
selectable units (SUSs)
installing 3-13
modifying distribution libraries to accommodate 3-4
selecting amaster console 4-14
sequence set 8-20
sequential data set organization 8-1
serializing the use of resources 6-10
enqueuing 6-10
locking 6-10
overview of 6-1
serially reusable resources, ensuring the freedon of 4-16
service
controlling the application of 3-13
rate
definition 7-4
establishing 4-16
request block (see SRBS)
requests 1-13
SCHEDULE macro instruction 1-13
servicerequest blocks 1-13
units, definition 7-4
servicing the MVS system 3-1,3-13
sessions and transactions 1-9
SETFRR macro instruction 1-8,9-2
shared control of resources, requested on ENQ 6-10
shared DASD, RESERV E macro instruction (see
enqueuing)
shared storage, controllingin MP 10-5
sharing real storage 1-3
shoulder-tapping 10-4
signal processor (see SIGP instruction)

Index

-9

SIGP (signal processor) instruction 10-3
emergency-signal 10-4
external-call ~ 10-4
program-reset 10-4
restart 10-4
sense 10-3
start 10-3
stop 10-4
stop-and-store-status 10-4
single system image 10-2
SIC) (start 1/O) instruction 8-12
dot 14
definition 2-1
shortages
detected by SRM 7-5
SMP (system modification program) 3-13
control dataset 3-18
aternate 3-18
control functions 3-16
function control statements 3-15,3-16,3-18
INSTALL options 3-15
option 3-15
SMPACDS control data set 3-18
SMPCDS control data set 3-18
deleting information from 3-18
software error processing 9-1
specia exits, in dispatching order 6-10
specify program interruption exit (SPIE) macro instruction
1-8

providing error-handling routine 6-4
specifying
ajobclass 5-2
device parameters 5-12
system parameters 4-9
SPIE macro instruction 1-8
providing error-handling routine 6-4
spinlocks 6-11,6-12
spool data set 5-6,5-10
reading and writingto S5-6
SQA (system queue area) 2-17
initialization 4-5
shortages
detected by SRM 7-5
SRB mode 92
SRBs (service request blocks) 1-13,6-9
in dispatching order 6-10
non-preemptive 6-5
representing dispatchable units of work 6-7
SRM (see system resources manager)
SSl (see subsystem interface)
stabilizing the production system phase of MV S system IPO
312
STAE
macro instruction 9-2
recovery routine 9-22
staffing during installation 3-3
STAI
parameter 9-2
recovery routine 9-2
standards, revising installation 3-11
START command, and address space creation 5-3
start 1/0 (SIO) instruction 8-12
START JES command
encountering during initialization 4-26
location of 4-26
started task control (STC) 4-27
routine, and address space creation 5-5
starter system
contents of 3-7
extension to MV S 3-7
MVS 3-3

-10 0OS/VS2 MV S Overview

start-up, JES 4-27
statements, SMP function control 3-15,3-16,3-18
status and control information 10-5
STC (see started task control)
STCINRDR internal reader 5-2
stealing pages, initiated by SRM 7-5
STOR (segment table origin register) 2-9
storage
addressregister (SAR) 2-9
configuring 10-3
control, communication for 10-5
element 10-3
layout 2-16
management function of SRM 7-5
protect keys 2-3
assignment of 2-4,2-5
requirements, planning for 3-3
segments of 10-3
volumes (STR), initiaizing 4-13
stored record 8-19
subpools 229/230 2-19
subsystem interface (SSI) 1-15
initialization 4-26
successor jobs 5-11
supervising the execution of work (see supervisor)
supervisor
creating dispatchable units of work 6-7
interruption processing 6-2
mode 9-2
overview of functions 6-1
supervisor call interruption (see SV C interruption)
SUPERZAP statements 3-16
SUs (see selectable units)
suspend locks 6-11,6-12
SVC interruptions 6-2
enabled state 6-2
interruption handier 6-4
SVC request block (SVRB), used in SV C interruption
processing 6-4
SVC table, initializing 4-23
SV Cs, preemptive and non-preemptive 6-5
SVRB, used in SV C interruption processing 6-4
SWA (scheduler work area) 1-12,2-19
SWAP command 9-6
swap data sets 2-13
dynamically adding to the system 4-17
initialization 4-18
limiting the number of 4-17
swap recommendation values (RVs)
provided by I/0O management function of SRM 7-6
provided by workload manager function of SRM 7-4
used in SRM's swap analysis 7-3
SWAP system parameter usage 4-18
swapping 1-10,2-11
in reaction to storage shortages 7-6
influenced by 1/0O management function of SRM 7-6
influenced by processor management function of SRM
7-6,7-7
influenced by workload manager function of SRM 7-4
swap analysis done by SRM 7-3
the system resources manager 1-10
switching PSWs 6-4
synchronizing time-of-day (TOD) clocks 10-4
syntax checking control statements 3-18
SY SEVENT macro instruction, used to communicate with
SRM 7-2
SYSGEN INSTALL option 3-15
SY SGEN option 3-14
SY SIN data (see spool data set)
SYSJIOBQE, elimination of 1-12
SY SOUT data (see spool data set)

SY SP (system parameter) 4-9
SY SRES, mounting for initialization 4-2
system activity measurement facility, use during installation
planning 3-3
system and installation guide, MV S system IPO 3-10
system area
of virtual storege 2-17
space alocation 4-6
system catalog
closing during initialization 4-14
format of 8-22,8-23
initiglizing 4-14
opening during initialization 4-14
system components used in paging 2-13
system consoleinitialization 4-2,413
system parameters for 4-14
system constants, variables used to establish 4-16
system contents documentation, MV S system IPO 3-9
system control program
generating the MV S 3-7
options, selecting 3-4
system generation 1-16,3-3,3-4
distribution libraries 1-16
executing the 3-5,3-6
initializing DASD volumes prior to 3-5
macro instructions 3-5
assembling 3-5
option 3-14
planning for 3-4
stages 3-5
verifying 3-7
systeminitialization 1-16
system mode 10-3
system modification program (see SMP)
system operation 1-16
system operator
activity during initialization ~ 4-9
parameter specification 4-9
system pack list (IEAPAKOQ)
initialization ~ 4-19
use during PLPA initialization 4-19
system paging rates, planning for 3-3
system parameters
for system consoleinitialization 4-14
lists 49
merging 1O
obtaining 4-7
specifying 4-9
table 4-7
system queue area (see SQA)
system region 2-19
system residence volume, initializing 4-2
system resources, initializing 4-1
system resources manager (SRM) 1-10
and address space creation 5-5
communicating with SRM 7-2
control 7-3
description of 7-3
overview of 7-2
swap analysis 7-3
how SRM meets its objectives 7-1
improved performance 1-10
initiglizing 4-16
installation performance specification 1-11
locksfor 6-11,6-12
major functional areas of SRM 7-2
objectivesof 1-11,7-1
OPT member 1-11
overview 1-11
resource manager 7-5
1/0 management 7-6

processor management 7-6
resource monitoring 7-7
storage management 7-5
swapping 1-10
user control block, building the 4-17
workload manager 7-4
system/370 model 158 or 168 multiprocessor 10-2
SYS1.LOGREC
error analysis 9-3
SY SipebiQgRYiBing initiaization 4-2
, contents of 4-2
SYSL.PARMLIB
IEAOPTxx member, used to influence SRM decisions
71
usage during initialization 4-7,4-9
SYSI.SVCLIB 4-2

T
table and list initialization, RIM ~ 4-23
tailoring the MV S system 3-1,3-3,4-1

statementsto 3-5
target MPL

computed by SRM 7-3
aSkprovidi ng guidelines for SRM's swap decisions 7-3
t

control block (see TCBS)
mode 9-2
recovery 1-8
extended subtask abend exit 1-8
specify program interruption exit 1-8
recovery routines 9-2
tasks, MVSinstalation 3-2
TCBs (task control blocks) 6-7
in dispatching order 6-10
representing dispatchable units of work 6-7
structure 6-8
temporary data sets, handling 1-12
terminal 1/0 1-10
terminology of job scheduling 5-2
testing
for accessibility of devices 4-12
the production system phase of MV'S system 1PO 3-12
with MV S system | PO 3-8
tightly-coupled multiprocessing ~ 1-5
definition 10-1
locking, overview of 6-1
traitsof 10-1
time sharing option (TSO) 1-9
sessions and transaction 1-9
swapping 1-10
terminal 1/0 1-9
time-of-day (TOD) clocks, synchronizing 10-4
TLB (trand ation lookaside buffer) 2-10
TOD (time-of-day) clocks
initializing 4-26
synchronizing 10-4
transactions 19
planning for expected 3-3
transient area, initializing 4-5
trandation lookaside buffer (TLB) 2-10
trivial transactions 110
TSO (seetime sharing option
TSO users, TCB structure for 6-8
TSUINRDR internal reader 5-2
tuning guide, MV S system | PO 3-10
two-level table lookup 2-9

U
UCB (unit control block), initializing 1/0 device 4-11

Index 1-11

UCM (unit control module table), use during initialization
4-13

unallocation of devices, major functions 5-13

unavailable devices, description of 4-12

uniprocessing, MCH recovery 9-5

uniprocessor mode 10-3

unique physical addresses 10-5

unit control block (see UCB)

unit control module table (see UCM)

UP mode (see multiprocessing)

use attribute, initializing 4-12

user control block (OUCB), building the 4-17

user exits (see task recovery)

user extension block (OUXB), building the 4-17

user libraries, modifying with SMP 3-13

user modifications, installing ~ 3-13,3-16

user program functionsin I/O operation 8-4

user service, establishing the level of 4-16

Vv
VAL system parameter use 4-12
valid configuration 10-3
validate and authorize 1-14
VARY command 10-2
varying resources online and offline 10-2
VATLSTxx 4-12
verification procedure, installation 3-7
verifying the system generation 3-7
V10 (seevirtual input/output)
VIO data set initialization 4-18
virtual (V=V) user region 2-18,2-19
virtual addresses 1-3,2-6,2-7
virtual input/output 1-12
data set initialization 4-18
description 8-16
during system generation 1-12
virtual space alocation during initialization 4-6
virtual storage
access method (VSAM) 1-16
areas 2-15
inMVS2-1
virtual storage access method (see VSAM)
virtual storage manager (VSM) 2-13
and address space creation 5-5

1-12 OS/VS2 MVS Overview

invoking during initialization 4-27
locksfor 6-11,6-12
virtual telecommunications access method (VTAM), locks
for 6-11,6-12
volume attribute list (VATLSTxx) 4-12
volume attributes, initializing 4-12
volume serial nhumbers, scanning for duplicates 4-12
VSAM (virtual storage access method) 1-16
concepts 8-17
entry-sequenced data set 8-21
key-sequenced dataset 8-20
master catalog 8-23
relative record data set 8-21
VSM (seevirtual storage manager)
VTAM (virtual telecommunications access method), locks
for 6-11,6-12

warm start
page data set initialization 4-17
PLPA initialization 4-19
VIO data set initialization 4-18
window 8-16
work, scheduling 5-1
working set 2-11
workload
manager function of SRM
description of 7-4
overview of 7-2
profile preparation 3-3
writer, external 5-7

X
XBATCH 5-8

1
158 or 168 multiprocessor 10-2

2
24-bit addressing 1-2

Note: Staples can cause problems with automated mail sorting equipment,

Piease use pressure sensitive or other gummed tape to seal this form.

—_——— = — — — —— — == — —— -— — — (Cutor Fold Along Line

READER’'S
0S/VS2 MVS Overview . COMMENT
GC28-0984-0 FORM

This manual is part of alibrary that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. This form may be used to communicate your views about this
publication. They will be sent to the author’s department for whatever review and action, if any,
is deemed appropriate.

IBM shall have the nonexclusive right, in its discretion, to use and distribute ali submitted
information, in any form, for any and all purposes. without obligation of any kind to the sub-
mitter. Your interest is appreciated.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in ysing vour IBM system,
to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comments are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit

If you wish a reply, give your name and mailing address:

Please circle the description that most closely describes your occupation.

(0 (L8)) x)) @) (F) n (L) (0)

Customer | Install | System | System | System Applica.; System | /O Term. Other
Mgr. Consult.| Analyst { Prog. Prog. Oper. Oper. Oper.

(S) ®) (A) (B) © (D) ®) G) Q) (E) ™) (D

1BM System Prog. | System | System | Applica.| Dev. Comp. | System /O Ed. Cust. Tech.
Eng. Sys. Analyst | Prog. Prog. Prog. Prog. Oper. Oper. Dev. Eng. Staff
Rep. i Rep. Rep.

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

GC28-0984-0

Reader’s Comment Form

Fold and tape Please Do Not Staple

Fold and tape

auln duoly piod 40 IND

Business Reply Mail ‘
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department D58, Building 706-2

PO Box 390

Poughkeepsie, New York 12602

Fold and tape Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., US.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

First Class
Permit 40
Armonk
New York
]
[]
A
[]
[]
-
]
]
]
]

Fold and tape

{N7-N7CCY MAIAIBAN CAIN ZQA /RN

O/ L NAYN

A Lenn AP

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183

