GC28-1348-0
File No. S370-34

MVS/Extended Architecture
Systems Overview

1"'!

First Edition (March, 1984)
This edition applies to:

MV S/System Product - JES2 Version 2 (5740-XC6)
MV S/System Product - JES3 Version 2 (5665-291)
MV S/XA Data Facility Product (DFP) (5665-284)

and to all subsequent releases until otherwise indicated in new editions or Technical
Newsletters. Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest IBM
System/370 Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to makes these available in all countriesin which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program products may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 920-2, PO Box 390, Poughkeepsie, New Y ork
12602. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

Preface

The MV S/Extended Architecture Overview is an introduction to MV S/Extended
Architecture (MV S/XA), the operating system that manages IBM System/370-XA
computers. This book expects readers to have a general understanding of how
computers work. That is, it assumes some background knowledge of the
components of a computer system, the role of an operating system, and computer
programming concepts.

Chapter 1 describes the environment in which MV S/ XA runs and the attributes
that allow MV S/XA to govern complex computer configurations. It presents
MV S/XA interpretations of computer terms and concepts.
The remaining chapters give an overview of how MV S/ XA works. Chapters 2 and
3 explain how MV S/XA manages and makes use of two key system resources:
real storage and virtual storage. Subsequent chapters explain how MV S/XA
accomplishes the primary operating system functions of:
» Chapter 4: Managing the hardware
» Chapter 5: Monitoring system resource use
* Chapter 6: Processing units of work
* Chapter 7: Reading and writing code and data
» Chapter 8: Identifying, tracking, and all ocating resources to jobs
» Chapter 9: Preventing and tracing system errors

Chapter 10: Recovering from system errors
» Chapter 11: Initializing the system
There are no prerequisite MV S/XA reading materials for using this book.
Additional documentation of MV S/ XA appearsin the MVS/XA library. The

MV S/XA Library User's Guide, GC28-1339, gives a complete list of related
publications.

Preface iii

iv MV S/Extended Architecture Overview

Contents

Chapter 1. Introduction to MVS/Extended Architecture 1-1
The MVS/XA Environment 1-1
Virtual Storage 1-2
Address Spaces 1-3
Task Management 1-3
Control Blocks 1-4
Program Status Word 1-5
Interruptions 1-6
Macro Instructions 1-6
Resource Management 1-6
System Parameters 1-7
Exit Routines 1-7
Operator Console 1-7
1/0 and Data Management 1-8
Job Management 1-8
Recovery Management 1-9
Summary 1-9

Chapter 2. MultipleVirtual Storage 2-1
Addressing Mode and Residence Mode 2-1
Virtual and Real Storage 2-3
Dynamic Address Trandation (DAT) 2-4
Virtual Address 2-5
Segment and Page Tables 2-5
Two-Level Lookup 2-6
The Paging Process 2-7
Page Stealing 2-9
Swapping 2-11
Storage Protection 2-11
Storage Protect Keys 2-11
Key Assignments 2-12
Key Switching 2-13
MV S/XA Storage Managers 2-13
Real Storage Manager (RSM) 2-13
Auxiliary Storage Manager (ASM) 2-14
Virtual Storage Manager (VSM) 2-14

Chapter 3. MVS/XA Address Spaces 3-1
Virtual Storage Areas 3-1
Prefixed Save Area 3-2
The Private Area and Extended Private Area 3-2
System Region 3-3
User Region/Extended User Region 3-3
Authorized User Key (AUK)/Extended AUK 3-4
Scheduler Work Area (SWA)/Extended SWA 3-4
Local System Queue Area (LSQA)/Extended LSQA 3-5
The Common Area and Extended Common Area 3-5
Common Service Area (CSA)/Extended CSA 3-5
Pageable Link Pack Area (PLPA)/Extended PLPA 3-5
Fixed Link Pack Area (FLPA)/Extended FLPA 3-5
Modified Link Pack Area (MLPA)/Extended MLPA 3-6
System Queue Area (SQA)/Extended SQA 3-6
Nucleus/Extended Nucleus 3-6
MVS/XA System Component Address Spaces 3-7
Inter-Address Space Communication 3-9
Cross Memory 3-9

Chapter 4. Multiprocessing 4-1
Types of Multiprocessing 4-1
Loosely-Coupled Multiprocessing 4-1
Tightly-Coupled Multiprocessing 4-2
Configuring a Tightly-Coupled Processor 4-2
Dyadic Tightly-Coupled Multiprocessing 4-4
Control of Processing in a Tightly-Coupled MP System 4-4
Communication Among Processors in an MP System 4-5

Contents

MV S/XA-Initiated Communication 4-5
Hardware-I nitiated Communication 4-6

Chapter 5. Managing System Resources 5-1
SRM Decisions 5-1
Functional Areas of SRM 5-1
Communicating with SRM 5-2
SRM Control 5-3
Swap Analysis 5-3
The Workload Manager 5-4
The Resource Manager 5-4
Storage Management 5-5
1/0 Management 5-6
Processor Management 5-6
Resource Monitoring 5-7

Chapter 6. Supervising the Execution of Work 6-1
Interruption Processing 6-1
The Program Status Word 6-2
The Interruption Handlers 6-3
Creating Dispatchable Units of Work 6-5
Task Control Blocks (TCBs) 6-6
Service Request Blocks (SRBs) 6-7
Dispatching Work 6-8
Serializing the Use of Resources 6-9
Enqueuing 6-9
Global Resource Serialization 6-10
Locking 6-10
Lock Hierarchy 6-10

Chapter 7. Satisfying 1/0 Requests 7-1
How 1/0O Data Moves Through the System 7-2
How an /0 Request Moves Through MV S/XA 7-5
A Closer Look at How an I/0O Request Moves Through MV S/ XA 7-7
User Program Functions 7-8
OPEN Processing 7-8
Requesting I/O0 7-9
Access Method Exit Appendages 7-9
CLOSE Processing 7-10
Access Method Functions 7-10
Building the Channel Program 7-11
Building Control Blocks 7-11
Invoking EXCP 7-11
EXCP and |OS Functions 7-12
EXCP Processor Front End 7-13
IOS1/O Initiation 7-13
Channel Subsystem Functions 7-14
|OS Interruption Handling 7-14
EXCP Exit Processing 7-14
|OS Post Status 7-15
EXCP Processor Back End 7-15
Summary 7-15
Virtual Input/Output (V10O) 7-16
Virtual Fetch 7-18
Access Methods 7-18
Access Techniques 7-18
Access Method Categories 7-19
Conventional Access Methods 7-19
Telecommunication Access Methods 7-20
Virtual Storage Access Method (VSAM) 7-21

Chapter 8. Entering and Scheduling Work 8-1
The Role of the Job Entry Subsystem 8-1
Job Entry/Output Processing 8-2
Entry 8-2
Conversion/Interpretation 8-3
Device Allocation 8-3
Job Step Allocation 8-4

vi MV S/Extended Architecture Overview

JES3 Device Allocation 8-5
Dynamic Allocation 8-6
Scheduling a Job for Execution 8-6
JES2 Job Scheduling 8-6
JES3 Job Scheduling 8-7
Additional Job Scheduling Functions 8-8
Output 8-9
Purge 8-9
Job Entry Subsystemsin a Multi-System Environment. 8-9
Job Networking 8-12
Comparing JES2 and JES3 Features 8-14

Chapter 9. Monitoring System Activity 9-1
System Management Facilities 9-2
Resource Measurement Facility 9-4
Dumping Facilities 9-7
SNAP Dump 9-8
ABEND Dump 9-9
SVC Dump 9-10
Stand-Alone Dump 9-10
Trace Facilities 9-13
System Trace 9-14
Generalized Trace Facility 9-16
Master Trace 9-19
Serviceability Level Indication Processing (SLIP) 9-20
Program Event Recording Events 9-21
Error Events 9-21
SLIP Actions 9-22
Using SLIP Traps 9-22
SY S1.LOGREC Error Recording 9-24

Chapter 10. Recovering From Errors 10-1
Software Recovery: Recovery Termination Manager 10-1
Recovery Routines 10-1
Task Recovery Routines 10-2
Functional Recovery Routines 10-2
Hardware Recovery Facilities 10-3
Machine Check Handler 10-3
Alternate CPU Recovery 10-3
Subchannel Logout Handler 10-4
Dynamic Device Reconfiguration 10-5
Missing Interruption Handler 10-5

Chapter 11. Initializing the System 11-1
Loading the Nucleus 11-2
Initializing System Resources 11-2
Initializing the Resource Managers 11-3
Initializing the Master Scheduler Address Space 11-3
Initializing a Job Entry Subsystem 11-3
The Initialization Process 11-3
Required Resources 11-5
Initial Program Load (IPL) 11-6
The IPL Program 11-7
The Work of the IRIMs 11-7
Loading the Nucleus 11-7
Initializing Virtual Storage 11-8
Initializing Real Storage 11-9
Initializing the IPL Device 11-10
Nucleus Initialization Program (NIP) 11-10
Establishing the Master Scheduler Address Space 11-11
Processing System Parameters 11-11
System Parameter Lists 11-12
System Operator 11-12
Initializing System Resources and Resource Managers 11-13
Initializing 1/0O Devices 11-13
Initializing the Master Catalog 11-14
Initializing the Auxiliary Storage Manager 11-15
Initializing Page Data Sets 11-16
Initializing Swap Data Sets 11-16

Contents

Vii

viii

Initializing the Master Scheduler 11-17
Initializing the Master Scheduler Base 11-18
Initiating the Master Scheduler 11-18
Initializing the Master Scheduler Region 11-18
Initializing the Job Entry Subsystem 11-19
Creating an Address Space for JES 11-19
Initializing the Region Control Task 11-19
Initiating JES 11-19
Initializing the Time Sharing Option (TSO) 11-19
Creating User Address Spaces 11-20

Index X-1

MV S/Extended Architecture Overview

Figures

1-1. The 3081 Processor Complex 1-2
1-2. A Queue of Task Control Blocks 1-5
1-3. The MVS/XA PSW 1-6
2-1. The MV S/XA Address Space 2-1
2-2. AMODE and RMODE Attributes 2-2
2-3. Valid AMODE and RMODE Combinations 2-3
2-4. Virtual Storage Page Movement 2-4
2-5. Virtual Storage Address 2-5
2-6. Segment Table and Page Tables 2-6
2-7. Dynamic Address Translation 2-7
2-8. Page-Out and Page-1n 2-9
2-9. Page Frame Table 2-11
2-10. The Key in Storage 2-12
2-11. Storage Protect Key Assignment 2-13
3-1. A Logical Representation of Virtual Storage 3-1
3-2. Virtual Storage Layout 3-2
3-3. V=R Storage Mapping 3-4
3-4. The DAT-on Nucleus 3-7
3-5. Virtual Storage Layout For Key MV S/ XA Components. 3-8
4-1. Loosely-Coupled Processing 4-2
4-2. Tightly-Coupled Multiprocessing 4-3
4-3. Dyadic Processor Complex 4-4
6-1. The Use of Program Status Words (PSWSs) in Interruption Processing 6-3
6-2. Summary of Interruption Processing 6-5
6-3. Address Space Task Control Block (TCB) Dispatching Queues 6-7
6-4. Definition and Hierarchy of Locks 6-11
7-1. Components of the I/0O Request 7-2
7-2. Conventional Input/Output 7-2
7-3. Telecommunication | nput/Output 7-3
7-4. Multiple I/0O Channel Paths 7-4
7-5. Logical Control Units 7-5
7-6. MV S/XA 1/0O Services 7-6
7-7. Relationships Established by OPEN 7-9
7-8. CLOSE Processing Summary 7-10
7-9. Control Block Structure for the EXCP Processor 7-11
7-10. Some 10S Drivers 7-12
7-11. MVS/XA 1/O Processing 7-16
7-12. VIO Window 7-17
8-1. Job Entry Subsystem Configurations 8-12
8-2. Job Networking 8-13
8-3. JES2 and JES3 Features 8-14
9-1. System Management Facilities - Overview 9-4
9-2. Summary of RMF 9-7
9-3. Summary of MV S/ XA Dumping Services 9-12
9-4. The HOOK Concept 9-14
9-5. System Trace Overview 9-16
9-6. Generalized Trace Facility - Summary 9-18
9-7. Master Trace Overview 9-20
9-8. Serviceability Level Indication Processing Summary 9-24
9-9. SYS1.LOGREC Error Recording Overview 9-26
10-1. Control Flow for MCH and ACR 10-4
11-1. The Initialization Process 11-2
11-2. The Subsystem Interface 11-3
11-3. System Initialization Summary 11-4
11-4. Loading the IPL Control Program 11-7
11-5. Virtual Storage at Exit from the IPL Phase of Initialization 11-9
11-6. Real Storage at Exit from IPL 11-10
11-7. Virtual Storage at Exit from NIP 11-11
11-8. Initializing Channel Paths 11-14
11-9. Locating the Master Catalog 11-15
11-10. Master Scheduler Initialization 11-17
11-11. Creating an Address Space 11-21

Figures

x MV S/Extended Architecture Overview

Chapter 1. Introduction to MV SExtended Architecture

The MVS/'XA Environment

An operating system is a group of related programs that govern the computer
system. The operating system controls the execution of programs and provides
services they need to make use of the computer system hardware. MV S/XA isthe
operating system that takes advantage of the IBM System/370 extended
architecture (System/370-XA).

A computer's architecture consists of the functions the computer system provides.
It is distinct from the physical design, and, in fact, different machine designs may
conform to the same computer architecture. In a sense, the architecture is the
computer as seen by the user such as a system programmer. For example, part of
the architecture is the set of machine instructions that the computer can recognize
and execute.

System/370-XA, asits name implies, is an extension of the System/370 computer
architecture. Similarly, MV S/XA is an extension of the MV &/370 operating
system that supports the System/370 architecture. Thus, MV S/XA, despite the
fact that it supports significant changes to System/370 architecture, includes much
that isfamiliar to MV S/370 users.

The differences between MV S/370 and MV S/XA center on taking advantage of
the continuing high performance enhancements to computer system hardware and
improving the reliability, availability, and serviceability of the system. The two
most significant changes are:

e 31-bit addressing

MV S/370 provides a 24-bit addressing scheme. MV S/XA provides both a
31-bit and a 24-bit addressing scheme. This change extends the storage
available to any one user from 16 million bytes (16 megabytes) to two billion
bytes (two gigabytes).

» The channel subsystem

The channel subsystem handles input and output (I/O) operations
independently of the processorsin the MV S/ XA system. MV S/370 also
allows overlap of 1/0O operations with instruction processing, but the MV S/ XA
channel subsystem increases the amount of overlap and allows all of the
processors to access all of the 1/O devices without the need for multiple tasks
or for switches.

Neither of the changes, however, creates the need for usersto change existing
application programs. Application programs written for 24-bit addressing can run
under MV S/XA, and there have been no changes to the way programs invoke 1/0O
operations.

To understand how and why MV S/XA functions as it does, it isimportant to
understand the environment in which it functions. The special features that make
MV S/XA unique reflect the features of the computer environments that MV S/ XA
manages.

Chapter 1. Introduction to MV S/Extended Architecture 1-1

Virtual Storage

By way of contrast, consider a simple, single user, computer system. Its operating
system is a simple one that reads in one job, finds the data and devices it needs, lets
the job run to completion, and then reads in another job.

The computer systems that MV S/ XA manages are capable of multiprogramming, or
executing many programs concurrently. By means of multiprogramming the system
can, for example, run hundreds of jobs simultaneously for users who might be at
distant geographical locations.

MV S/XA can also manage multiprocessing, which is the simultaneous operation of
two or more processors that share the various system hardware devices. Figure 1-1
illustrates the IBM 3081 Processor Complex; two central processors share main
storage and the channel subsystem. Chapter 4, "Multiprocessing” gives more
detail on the MV S/ XA multiprocessing environment.

Main
Storage
System Channel -
Controller Subsystem :

[]

Processor Processor
00 02

Figure 1-1. The 3081 Processor Complex

Many users running many separate programs means that, along with large amounts
of complex hardware, MV S/ XA users need large amounts of storage to ensure
suitable system performance. They run sophisticated application programs that
access large data bases and program modules. Such applications require the
operating system to provide routines to protect privacy as well as routines for
sharing the data bases and software services.

Thus, multiprogramming, multiprocessing, and the need for large amounts of
storage mean that MV S/X A must provide function beyond simple job-to-job
transition. The following introduction describes, in a general way, the attributes
that enable MV S/XA to manage complex computer configurations. Subsequent
chapters explain these features in more detail.

The MVSin MV S/XA stands for multiple virtual storage to indicate that each user
has access to virtual, rather than only real (physical), main storage. Virtual storage
means that each running program can assume it has access to all of the main
storage that the addressing scheme allows. The only limit is the number of bitsin a
storage address. This ability to use alarge number of storage locations isimportant
because a program may be long and complex and, both the program'’s code and the
data it requires must be in main storage in order for the processor to access them.

1-2 MVSExtended Architecture Overview

Address Spaces

Task Management

The 31-bit address supported by MV S/XA allows a program to address up to
2,147,483,648 (two gigabytes) storage locations. In contrast, the system has much
less real storage. How much less depends upon the model of computer and the
installation's configuration.

To allow each user to behave as though he had much more real storage than really
existsin the computer system, MV S/XA keeps only the active portions of each
program in real storage and the rest of its code and data in special data sets, usually
on high-speed direct access storage devices (DASDS).

Virtual storage, then, isthis combination of real and auxiliary storage. MVS/XA
requires billions of bytes of auxiliary storage to make virtual storage possible. It
uses a system of tables and bit settings to relate the DASD locations to real storage
locations and keep track of the identity and authority of each program. Chapter

2, "Multiple Virtual Storage,” explains how MV S/XA manages virtual and real
storage.

A complete two-gigabyte range of 31-hbit virtual storage addressesis known as an
address space. MV S/XA provides each user (batch job initiator, TSO user, or
started task) with a unique address space and maintains the distinction between the
code and data belonging to each address space. MV S/XA also includes cross
memory services, that permit a single user to access other address spaces when
necessary.

The ability of many users to share the same resources implies the need to protect
users from one another and to protect the operating system itself. Along with such
methods as "keys' for protecting real storage and code words for protecting data
files and programs, separate address spaces ensure that users programs and data do
not overlap. Chapter 3, "MV S/XA Address Spaces," describes the virtual storage
areas within each address space and which address spaces are created during

system initialization.

MV S/XA breaks each job into separate units of work known as tasks and attempts
to process each one as efficiently as possible. The tasks for one job compete with
one another, and with tasks related to other jobs, for use of system resources.
Responsibility for controlling the progress of tasks through the system lies with the
supervisor, a component of the operating system. The supervisor allocates
resources (other than 1/0 devices) and maintains current information about each
task so that processing can resume from the appropriate point in case of an
interruption.

MV S/ XA includes several mechanisms to enable the supervisor and other system
components to maintain control. This section describes four control mechanisms:
control blocks, the program status word, interruptions, and macro instructions.
Chapter 6, "Supervising the Execution of Work," describes other key features of
MV S/XA task management.

Chapter 1. Introduction to MV S/Extended Architecture 1-3

Control Blocks

MV S/XA modules normally store the information needed to control a particular
unit of work or manage a resource in defined storage areas called control blocks.
Generally speaking, there are three types of MV S/XA control blocks:

e System

Each system-related control block represents one MV S/XA system. These
contain system-wide information such as how many processors are functioning.

* Resource

Each resource-related control block represents one resource such as a
processor or auxiliary storage device.

o Task
Each task-related control block represents one unit of work.

Control blocks work as vehicles for communication throughout MV S/XA. Such
communication is possible because the structure of a control block is known to all
of its users, and thus all can find needed information about the unit of work or
resource. The MV S/XA system control blocks, for example, are all documented in
the multi-volume MV S/XA Debugging Handbook.

Control blocks representing many units of the same type may be chained together
on queues, with each control block pointing to the next one in the chain. A
program can search the queue to find the data for a particular unit of work or
resource, which might be:

» An address (of acontrol block or arequired routine)
» Actua data, such as avalue, a quantity, a parameter, or a name
» Statusflags (usually single bitsin a byte, where each bit has a specific meaning)

All fieldsin a control block are defined and identified in the documented structure
of the specific control block.

Control blocks have many sizes and formats. Usually, a control block consists of a
series of fullword fields, but some fields can be longer (such as the name of a data
file) or shorter (such as aflag byte). Important points to remember about control
blocks are that they are structured, documented, and usually chained together.
Figure 1-2 illustrates a queue of task control blocks (TCBS).

1-4 MvS/Extended Architecture Overview

Program Status Word

TCB
Queue

Next TCB H Next TCB 4 Next TCB Next TCB
Task A Task B Task C Task D
Back Back - Back

Figure 1-2. A Queue of Task Control Blocks

The program status word (PSW) is a 64-bit data area in the processor that, along
with control registers, timing registers, and the prefix registers, provides details
crucial to both the hardware and the software. The current PSW includes the
address of the next program instruction and control information about the program
that is running, such as whether it is running in 24-bit or 31-bit addressing mode or
whether or it is running in the problem program state or supervisor state.

Supervisor state programs are authorized to issue all instructions, including those
that, for example, change the PSW. Problem programs may be |BM-distributed
programs, such as language tranglators, or user-written application programs. They
are not authorized to use all operating system instructions. Only when the problem
state bit in the PSW is off can the program execute all instructions.

Each processor has only one current PSW. Thus, only one task can execute on a
processor at any one time. Multiprogramming is possible, however, because an
interruption causes the processor to save the contents of the current PSW and insert
new PSW information in order to process the interruption. Figure 1-3 illustrates
the MV S/ XA PSW and some of its most important bits.

Chapter 1. Introduction to MVS/Extended Architecture 1-5

THE PSW

15

Problem State Bit Addressing Mode Bit

32

Address
of the next instruction to be executed

24-BIT ADDRESSING MODE 31-BIT ADDRESSING MODE

0 1

Figure 1-3. The MV S/XA PSW

Interruptions

Macro Instructions

Resour ce M anagement

Aninterruption is arequest for attention from a processor. It indicates that an
event, such as the completion of an 1/O operation, expiration of atime interval, a
program error, or arequest for high-priority system services has taken place, and
the system must reassess the mix of work to be done. When an interruption occurs,
the processor temporarily ceases execution of the current task and begins executing
an MV S/XA interruption handler.

First level interruption handlers (FLIHS) store the crucial information (such as the
contents of the PSW) about the status of the interrupted task and give control to
second level interruption handlers (SL1Hs), which actually respond to the reason for
the interruption.

After the interruption handlers complete their processing, a system component
called the dispatcher might be called to select the highest priority ready unit of work
(not necessarily the one that had been interrupted) and give it control until it
completes or until another interruption occurs. An interruption thus allows the
dispatcher to reassess the priorities of the tasks at hand.

Communication between MV S/XA programs occurs because system programmers
follow established programming conventions and use common macr o instructions.
These instructions invoke segments of program code that map frequently used
control blocks or perform frequently used system functions. MV S XA macros,
many of which are available to application programmers, exist for such functions as
opening and closing data files, loading and deleting programs, and sending
messages to the computer system operator.

Multiprogramming and multiprocessing create the need to measure the activity of
the system and to adjust the workload to fit changing conditions. MV S/XA, for

1-6 MVS/Extended Architecture Overview

System Parameters

Exit Routines

Operator Console

example, monitors how much each active address space uses the processors, 1/0
devices, and real storage locations. The system resour ces manager, the MV S/XA
component known as SRM, uses this information when it determines whether an
address space should remain resident in real storage or whether a new address
space should 'be created.

The system resources manager also takes into account the workload goals and
priorities for users and equipment that the installation specifiesin the installation
performance specification (1PS). SRM, described in Chapter 5, "Managing System
Resources," is the primary means by which the system and the installation manage
the system resources.

MV S/XA provides other tools that allow the installation to control use of system
resources. These include system parameters, exit routines, and the operator
console.

System parameters are values specified by IBM or the installation and stored in the
system data set named SY S1.PARMLIB. Each member of this data set contains
parameters that the operator selects to control processing. For example, member
IEASY S00 contains the default system parameters that tailor MV S/XA at start-up;
the system uses these parameters and other values during the system initialization
process.

An exit is adefined point in system processing where a system program calls
another program. The called program that IBM supplies performs standard default
processing; it is designed to be replaced by a user version of the exit routine. The
user exit routine performs user-defined functions appropriate to that particular
point in MV S/XA processing.

Theinstallation controls MV S/XA by entering system commands through one or
more devices defined to MV S/XA as operator consoles. There is also a system
console for use by IBM customer engineers in diagnosing and correcting hardware
problems.

Through system commands issued at the operator console, the operator or system
programmer can control MV S/XA or respond to a condition MV S/ XA detects.
System commands cab:

» Change the status of hardware units, such as devices, between online
(available) and offline (not available) to the system

« Monitor the status of various units of work in the system

« Change those system parameters that can be referenced after system
initialization

» Start and stop system functions

« Setatrap for arecurring error condition

Chapter 1. Introduction to MVS/Extended Architecture 1-7

I/0 and Data M anagement

Job M anagement

Nearly all tasks involve some amount of data input or data output. The channel
subsystem manages the use of 1/0 devices, such as disks, tapes, and printers, while
MV S/XA, through software, associates the data for the task at hand with a device.

MV S/XA manages data by means of data sets. Data sets can hold information
usually thought of asfile data like the patients records in a doctor's office. Or,
data sets can hold information the computer needs, like parameters or programs.

The records in data sets may be organized in various ways, depending upon how
the information will be accessed. Data sets can be organized for sequential access
or direct access.

In asequential data set organized for sequential access, records are data items that
are stored consecutively. To retrieve the tenth item in the data set, for example,
the system first passes by the preceding nine items. Data items that must all be
used in sequence, like the alphabetical list of names in a seating chart, are best
stored in sequential access data sets.

In adata set organized for direct access, also called random access, records are
dataitems stored with control information so that the system can retrieve an item
without searching all preceding items in the data set. Data items that are used
frequently and in an unpredictable order are best stored in direct access data sets.

Partitioned data sets combine the features of sequential and direct access. The data
set consists of adirectory and members. The directory holds the address of each
member and thus makes it possible to access each member directly. A member,
however, consists of sequentially stored records.

Partitioned data sets are often called libraries. Programs are stored as members of
partitioned data sets so that, even though they generally execute sequentially when
running, the operating system can access them directly when selecting one for
execution.

MV S/XA supports many different devices for data storage. Disks or tape are most
frequently used for storing data sets on along term basis. Disk drives are known as
direct access storage devices (DASDs) because, even though some of the data sets
on them might be stored sequentially, these devices can handle direct access. Tape
drives are known as sequential access devices because data sets on tape must be
accessed sequentially.

To enable the system to locate a specific data set quickly, MV S/XA includesaa
data set known as the master catalog that permits access to any of the data setsin
the computer system or to other catalogs of data sets. MV S/XA requires that the
master catalog reside on a DASD that is always mounted on a drive that is online to
the system. Certain other key data sets needed by the operating system reside on a
particular DASD known as SY SRES, or the system residence volume, and must
also always be on line. Chapter 7, "Satisfying I/O Requests,” gives more details
on how MV S/XA manages |I/O operations and the transfer of data within the
computer system.

MV S/XA provides several ways to enter work into the computer system. With
batch processing, a user enters ajob through alocal terminal or, by means of

1-8 MVS/Extended Architecture Overview

Recovery M anagement

Summary

remote job entry (RJE), through a remote terminal, or from tape, card reader, or
disk, and the system processes the job at a later time. The operating system follows
installation-defined guidelines as it chooses the time and resources for the job.

With interactive job entry, such as the time sharing option (TSO), the system
responds to terminal users while they are actually logged-on to the system.

MV S/XA also permits the computer operator to enter ajob by means of the
START command; such jobs are called started tasks.

For MVS/XA, ajob is more than the Work to be done; it is the work to be done
embedded in a stream of job control language (JCL) statements supplied by the
user or the installation. JCL identifies such things as the system resources and data
the job needs. The job entry subsystem (JES) processes the JCL, organizes the
necessary programs, data, and resources, and presents MV S/ XA with ajob that is
ready to be processed. Upon completion of the job, JES rel eases resources used
for processing and schedules job output.

There are two |BM-supplied job entry subsystems: JES2 and JES3. Chapter
8, "Entering and Scheduling Work," describes how each one manages jobs.

A data processing system must be available for use when it is needed. For alarge
system, this means that the system can function even if one component fails and
can, possibly, diagnose the cause and correct or compensate for the failure.

MV S/XA includes recovery mechanismsto prevent a user error from causing the
failure of the computer system, to isolate and recover from operating system errors,
and to protect the system from hardware errors. It also has programs that trace
system activity and display the status and contents of various system resources.
Chapter 9, "Monitoring System Activity," describes how MV S/ XA monitors
system activity; Chapter 10, "Recovering From Errors,” describes the recovery
mechanisms.

The operating system called MV S/XA is a combination of program and data
modules. Large groups of modules that make a particular MV S/XA function
possible are known as system components. Other groups of modules that provide
added function that is dependent on MV S/XA are known as subsystems.

MV S/XA includes a subsystem interface (SSI) for communication with IBM
subsystems (such as the job entry subsystems) or user-supplied subsystems.

The motto, "divide and conquer”, aptly describes how MV S/XA manages a
computer configuration. MV S/ XA gets work done by dividing it into pieces and
giving portions of the job to components and subsystems that function
interdependently. At any point in time, one component or another gets control of
the processor, makes its contribution, and then passes control along to a user
program or another component. There is no one entity that isM VS/XA. Rather,
what existsis a collection of specialists acting according to accepted guidelines to
get work done.

The remainder of this book describes important aspects of MV S/XA processing
and gives an overview of what various components do and how they do it. It
finishes with Chapter 11, "Initializing the System," which shows how components
work together.

Chapter 1. Introduction to MV S/Extended Architecture ~ 1-9

1-10 MV S/Extended Architecture Overview

Chapter 2. Multiple Virtual Storage

The two gigabytes of storage in an MV S/XA address space are shared between
user programs and MV S/XA system programs. System areas include the prefixed
save area (PSA), which holds critical information unique to each processor in the
system, the nucleus portion of the system control program that must always bein
storage, and the commonly used system programs and subsystems. The map of an
address space showing the addresses allocated for these areasis the same for all
users. It isshown in Figure 2-1.

The organization of the MV S/XA virtual storage address space map arose from the
need to maintain compatibility with programs written for MV $/370. Because of its
24-bit addressing scheme, MV S/370 provides address spaces with a maximum of
16 million bytes of virtual storage to be shared among user and system programs.
Thus, maintaining compatibility means that MV S/XA must provide portions of
each region at addresses below 16 megabytes as well as extended portions of these
regions above the 16-megabyte line.

Virtual Storage Map

2GB

Extended
Private
(User)

Extended Common
(System)

------- Nucleus - - -----| 16MB

Common

(System)

Private
(User)

PSA 0

Figure 2-1. The MVS/XA Address Space

Addressing Mode and Residence Mode

To maintain compatibility with MV S/370, MV S/XA recognizes 24-bit addresses.
Whether it interprets an address as 24 or 31 bit depends upon the setting of the
addressing mode bit in the current PSW at the time an instruction executes. If this
bit, bit 32, is set on, all addresses are interpreted as 31-bit addresses. Programs
running in 31-bit mode can access locations zero to two gigabytes of virtual
storage.

If the addressing mode bit is zero, the processor uses the 24 right-hand bits of an
address. Programs running in 24-bit addressing mode can address the first 16
megabytes of virtual storage. MV S/XA allows programs to switch from one mode
to another during execution in order to access data or call modules running in the

Chapter 2. Multiple Virtual Storage 2-1

other mode. Thus, new programs can take advantage of 31-bit addressing and still
be compatible with ones written for 24-bit addresses.

All MV S/XA program modules have an addressing mode (AMODE) attribute that
indicates which addressing mode is to take affect when amodule is given control.
The AMODE attribute is assigned to an MV S/XA program module by the
programmer, as input to the assembler or the linkage editor, or by default. The
default is 24-bit addressing mode.

MV S/XA modules also have a residence mode (RMODE) attribute that indicates
whether they must be loaded below the 16-megabyte address line or can be loaded
anywherein virtual storage. RMODE=24 modules require residency below
16-megabytes. RMODE=ANY allows the operating system to load a module
anywherein virtual storage.

A program that must be directly addressable by 24-bit callers must reside below the
16-megabyte line. A program that does not have 24-bit callers, or whose 24-bit
callerscall it indirectly, can reside anywhere. The RMODE attribute is assigned as
input to the assembler or linkage editor, or established by default. RMODE=24 is
the default residence mode.

Figure 2-2 shows the meaning of the AMODE and RMODE program attributes.

RESIDENCY MODE

RMODE

PROGRAM ATTRIBUTES

ADDRESSING MODE

2GB
r
AMODE
16MB VIRTUAL ADDRESS
7
/ 24 BIT
Z
/ 31 BIT
\ 0 V]

VIRTUAL STORAGE

Figure 2-2. AMODE and RMODE Attributes

2-2

The AMODE and RMODE attributes can be assighed to modules in various
combinations depending on the location of the code and data they use. Not all of
the possible combinations make sense, however. The combination of AMODE=24
and RMODE=ANY, for example, isinvalid because a program using 24-bit
addresses cannot function in locations above the 16-megabyte line where more
than 24 bits are needed to denote an address. The AMODE=ANY and
RMODE=ANY combination can be specified, but the system translatesit to

MV S/Extended Architecture Overview

Virtual and Real Storage

AMODE=31, RMODE=ANY at execution time. Figure 2-3 shows the possible
combinations of program attributes and indicates which are ones are valid.

AMODE | RMODE
24 ANY
24| valid invalid
31 valid valid
ANY valid invalid

Figure 2-3. Valid AMODE and RMODE Combinations

Virtual storage isthe MV S/ XA mechanism that makesit possible for a user to
access the maximum amount of storage that can be addressed in 31 bits even
though the system might have much lessrea storage. Virtual storage works
because MV S/ XA keeps active portions of each addressspace inreal storage
and inactive portions on high-speed DASD (auxiliary storage). It moves them back
and forth as necessary to ensure that the program code and data for each user are
inreal storage when they are needed.

To enable the parts of aprogram in virtual storage to move between real storage
and auxiliary storage, MV S/ XA breaksreal storage, virtual storage, and auxiliary
storage into blocks:

» A Dblock of real storageisaframe.
» A block of virtual storage isa page.
» A block of auxiliary storageisa slot.

A page, aframe, and adlot are all the same size: each is 4096 (4K) bytes. An
active virtual storage page residesin areal storage frame; avirtual storage page
that becomesinactive residesin an auxiliary storage slot.

Moving pages between real storage frames and auxiliary storage slotsis called
paging. Figure 2-4 shows how MV SXA performs paging for a program that has
been running in virtual storage. At point 1 , partsA, B, and C of athree-page
program arein virtual storage. Page A is active and executing in areal storage
frame, while pages B and C are inactive since they have been moved to auxiliary
storage dots. At point 2 , page B isrequired; the system brings Bin from auxiliary
storage and putsit in an available real storage frame. At point 3 , page Cis
required; the system brings C in from auxiliary storage and putsit in an available
real storage frame. If page A had not been used recently and the system needed its
frameinreal storage, page A would be moved to an auxiliary storage slot, as shown
at point 4 .

Chapter 2. Multiple Virtual Storage ~ 2-3

Auxiliary
Storage

Virtual
storae Olm E

ale|c

©

A

Figure 2-4. Virtual Storage Page Movement

Thus, the entire program residesin virtual storage; the system copies pages of the
program between real storage frames and auxiliary storage slots to ensure that the
pagesthat are currently active arein real storage as they are required. Note also
that neither the frames nor the slots allocated to a program need to be contiguous;
thus, a page could occupy several different frames and several different slots during
the execution of aprogram. That is, if page A in the example became active again,
MV S/XA would move it to any available frame.

Each address space competes with all other active address spaces for the use of real
storage and other system resources, and the work being performed in each address
space is paged between real and auxiliary storage. In order for this paging activity
to take place quickly and efficiently, the system must be able to trandlate a virtual
address (the address of a specific instruction or dataitem in virtual storage) into a
real address (the address of the corresponding location in real storage). The
solution is dynamic address tranglation.

Dynamic Address Trandation (DAT)

Dynamic addresstransation (DAT) is a hardware feature that plays an important
role in making virtual storage possible. The DAT hardware feature works with
MV S/XA system software to translate a virtual address into areal address.

2-4 MVS/Extended Architecture Overview

Virtual Address

In order to denote alocation in virtual storage (create a virtual address), MVS/XA
breaks the two gigabytes of virtual storage into 2048 segments, numbered O
through 2047. Each segment consists of 1,048,576 bytes (one megabyte). The
bytes in each segment are further broken down into 256 pages, numbered O
through 255. Each page, as stated earlier, consists of 4K bytes. Within each page,
a specific location is addressed by its byte displacement, that is, the number of
bytes between the page origin and the specific location.

A virtual address, therefore, consists of the segment number, the page number
within that segment, and the byte displacement within that page. Figure 2-5 shows
how virtual storage is broken down to provide a 31-bit virtual address that consists
of an eleven-bit segment number, an eight-bit page number and a twelve-bit byte
displacement.

2MB

IMB

Virtual Storage

2, 147, 483, 648 Bytes

Page 0 [

| Page 255

Segment 2047

2047 MBA,
.. Segments 2 to 2046

-

(o]
A Virtual Address:

Segment 1

Page 0 l

Y
Page 255 Hex: 0.0 & F F 0 0 4
A 01 12 20 31
{[] 00000000001 | 11111111 [000000000100
Segment 1 Page 255 Byte 4

Segment 0

Page 0 I

lPage255 .

Figure 2-5. Virtual Storage Address

Segment and Page Tables

To translate a virtual addressinto a 31-bit real address, the DAT feature uses a
control register, the segment table origin register (STOR) and one segment table and
2048 page tablesfor each address space. The segment table has one entry for each
of the 2048 segments in the address space; each entry contains, among other
things, a pointer to the page table for that particular ssgment. When address
translation occurs, the STOR points to the segment table for the address space.
This provides the distinction between a virtual address for one address space and
the same virtual address for any others.

The page table for each segment has one entry for each of the 256 pagesin the
segment. If apageis currently in areal storage frame, the entry includes the page
frame real address (PFRA) for the frame that corresponds to that page. If a copy
of apageisnot currently in aframein real storage, the entry indicates this; the

Chapter 2. Multiple Virtual Storage ~ 2-5

invalid bit is set on, and the system must copy the page from auxiliary storage to
real storage and update the page table before the virtual address can be successfully
translated. The MV S/ XA page table also contains a page protection bit that, when
set, marks the corresponding frame as read-only. The system uses this bit to

protect against unexpected modification of code and data. Figure 2-6 shows the
relationship between the segment table, the page tables, and the pagesin real

storage.
Segment and Page Tables
Segmenl)
Page Table \2047 Real Storage Frames
Page 255 12 9 13
™~ ~ 8 14
Segment Table Page 0 e —— — — = () 255 107
Segment 2047 — 1| 84
Segment 2046
A ~ ~ A
~,~ La o4 L Pt
Segment 1
Segmenl)
Segment 0 Page Table \0 12 37 1
Page 255 255 5 10
~ - 3 156
i
Page 0 — — — — —| 2

Figure 2-6. Segment Table and Page Tables

Two-Level Lookup

To trandate avirtual addressinto areal address, DAT looks in two tables.

Figure 2-7 illustrates this process. The first table lookup 1 adds the address of the
start of the segment table, in the segment table origin register (STOR), to the
segment number from the virtual address (multiplied by 4 bytes, the length of each
segment table entry) to locate the proper segment table entry. This entry contains
the origin address of the page table for that segment. The second table lookup 2
adds the page table origin to the page number in the virtual address (also multiplied
by 4 bytes, the length of each page table entry) to locate the required entry in the
page table. Unless the page isinvalid, the page table entry contains the address of
the real storage frame that holds the page specified in the virtual address. The final
step 3 in dynamic address tranglation adds the address of the real storage frame to
the byte displacement within the frame. The byte displacement is the 12 rightmost
bits of the virtual address. The result of this addition is the 31-bit real address.

2-6 MVS/Extended Architecture Overview

STOR

0 Virtual Address 12 20 a1

LSegment I Page l Byte Displacement

Segment Table Origin

Segment Table

ADD

Page Table
o

Page Frame Number

Page Table Origin

r Real Storage Address

Figure 2-7. Dynamic Address Translation

The Paging Process

Each time avirtual address is successfully translated into areal address, the system
saves the address of the real storage frame in a specia hardware buffer called the
trand ation lookaside buffer (TLB). The TLB contains, an address space identifier,
the segment number and page number from the virtual address, and the
corresponding real storage address for the most active virtual pages. The DAT
hardware checks the TLB before beginning the process of address translation, and,
because a very high percentage of addresses can be found in the TLB, address
trandation time is significantly reduced by bypassing the two-level table lookup
process most of the time.

When the first step of the table look up process encounters a segment table entry
that has no corresponding page table in real storage, the DAT cannot translate the
virtual address and a segment tranglation exception, or segment fault occurs. If the
page table for the segment exists, paging is required to bring the page table into
real storage. If the page table does not exist, one is built before paging occurs.

Similarly, when the second step of the table lookup process encounters an invalid
page table entry, it means the required pageisnot in areal storage frame . The
DAT hardware thus cannot tranglate the virtual address, and a page-trandlation
exception, known as a page fault, occurs. If the page has been defined in the page
table, demand paging - the transfer of aslot in auxiliary storageto apagein real
storage on demand - is required to bring the page into real storage. If the pageis
not backed by aframe, aframe is assigned to the page and demand paging occurs.

In addition to the DAT hardware and the segment and page tables required for
address tranglation, paging activity involves a number of system components to

Chapter 2. Multiple Virtual Storage ~ 2-7

2-8

handle the movement of pages and several additional tables to keep track of the
most current version of each page at any particular time.

To understand how paging works, assume that DAT encounters an invalid page
table entry during address translation, indicating that a page is required that is not
in areal storage frame. To resolve this page fault, the system must bring the page
in from auxiliary storage. First, however, it must locate an available real storage
frame. If there is no available frame, the request must be saved and an assigned
frame must be freed. To free aframe, the system copiesits contents to auxiliary
storage and marks its corresponding page table entry asinvalid. This operation is
called a page-out. Actually, the system performs a page-out only when the
contents of the frame have been changed since the page was copied into real
storage. If the contents have not changed, the frame is freed by simply setting on
the page table entry invalid bit.

After aframeislocated for the required page, the contents of the page are copied
from auxiliary storage to real storage and the page table invalid bit is set off. This
operation is called a page-in. Actually, in order to avoid unnecessary 1/0, the
processor checks, before doing a page-in, to see if the frame that previously held
the contents of the page has the same information and ownership as the slot on
DASD indicating that the frame has not been changed. If so, the frame is reclaimed
by setting the page table invalid bit off, and no actual datatransfer occurs.

Figure 2-8 summarizes the paging process, showing how pages move between real
and auxiliary storage in response to a page fault or to fill the need for an adequate
supply of real storage frames.

MV S/Extended Architecture Overview

VIRTUAL STORAGE

Segment 2047
(Page O to 255)

J

L34

16M

L

Virtual ~
storage

within
segments

Nucleus

1
1¢

Segment 1
(Page 0 to 255)

Segment 0
(Page O to 265)

AUXILIARY STORAGE
-\
Slots REAL STORAGE
Pageable = (containing ~
> Virtual inactive pages
Storage of instructions
and data)
Frames
=~ {containing active s
pages of executing
Page-in \\
~ -
-\
Contents of
pageable
Pageable virtual storage
Virtual ~ o
Storage
J

Figure 2-8. Page-Out and Page-In

Page Stealing

Paging can aso take place when the program loader loads a program into virtual
storage. The program loader brings an entire program into virtual storage.

MV S/XA obtains virtual storage for the user program, and allocates areal storage
frame to each page. Each page is then active and subject to the normal paging
activity; that is, the most active pages are retained in real storage while the pages
not currently active might be paged out to auxiliary storage.

MV S/XA triesto keep an adequate supply of available real storage frames
constantly on hand. When a program refersto a page that is not in real storage,
the system uses areal storage page frame from a supply of available frames. When
this supply becomes low, the system uses page stealing to replenish it.

Page stealing occurs when the system takes a frame assigned to an active user and
makes it available for other work. The decision to steal a particular page is based
on the activity history of each page currently residing in areal storage frame.

Pages that have not been accessed for arelatively long time are good candidates for
page stealing.

Chapter 2. Multiple Virtual Storage 2-9

To determine which pages are to be stolen, MV S/ XA examines the activity history
of the pages that are currently in real storage. Thisinformation is held in the page
frametable. There is one page frame table for the entire system, and it has an
entry for each frame of real storage. Each entry identifies a page frame and
includes the address space identifier and the virtual address within the address
space for the page that is currently using the frame.

Other information in the entry describes the activity history of the page. The
available frame field indicates whether the frameis currently in use or is available.
Two additional bits associated with the frame, the reference bit and the change bit,
arerelevant when the frameisin use. (Note: These bits are actually part of a
control field associated with each 4K block of storage. They are maintained by the
hardware and used by the software to make paging decisions; they are therefore
described here asif they were physically part of the page frame table.)

The unreferenced interval count indicates how long it has been since a program
referenced the frame. The reference bit is set on by the hardware whenever a page
frame isreferenced. At regular intervals, the system checks the reference bit for
each page frame. If the reference bit is not on -- that is, the frame has not been
referenced -- the system adds to the page frame's unreferenced interval count. It
adds the number of seconds since this address space last had the reference count
checked. If the reference bit is on, the frame has been referenced and the system
turnsit off and sets the unreferenced interval count for the page frame to zero.
Those page frames with the highest unreferenced interval counts are most likely to
be stolen.

The change bit is set to zero when apage isinitially brought into areal storage
frame. When the contents of the page are changed the change bit is set on. Setting
the change bit on tells the system that it must copy the contents of the frame to
auxiliary storage before making the frame available for other work. Checking the
change bit ensures that no changes made during program execution are lost during
the paging process.

Figure 2-9 shows a portion of the page frame table and illustrates how the entries
are set up and how the reference, change information, and unreferenced interval
count are used to determine which pages will be stolen. All example frames arein
use; the available frame bits are set to zero. The system checks the unreferenced
interval count and finds two pages that have not been referenced recently. These
two pages will be stolen. Thefirst page 1 has not been changed since it was
brought in from auxiliary storage; therefore, no physical page-out is required to
save its contents because the copy of the page in real storage isthe same as the
copy of the page in auxiliary storage. The second page 2 has been changed,
therefore the system performs a page-out before it steals the page, and the contents
of the page are written to auxiliary storage. The system is thus able to steal two
pages, only one of which requires a page-out. (The first page will be the first one
selected for stealing because of its higher unreferenced interval count.)

2-10 MVS/Extended Architecture Overview

Swapping

Storage Protection

Storage Protect Keys

Page Frame Table
Part of Storage
Protect Key
Address Avail- Unreferenced Ve — \
Space Segment & Page able Interval Reference Change
Identifier Number Frame Count Bit Bit
0 0 1 1
0 0 1 0
(1) 0 5 0 0
0 0 1 1
(2] 0 2 0 i
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1]
This page has not been recently
referenced, but it has been changed
since page-in. Before page stealing
occurs, it must be paged-out.

Figure 2-9. Page Frame Table

Swapping is the process of transferring all of the most recently valid private pages
of an address space between virtual storage and auxiliary storage. This has the
effect of moving an entire address space into or, out of, virtual storage. It is one of
several methods MV S/XA employsto balance the system workload, as well asto
ensure that an adequate supply of available real storage frames is maintained.
Address spaces that are swapped-in are active, having pagesin real storage frames
and pages in auxiliary storage slots. Address spaces that are swapped-out are
inactive; the address space resides on auxiliary storage and cannot execute until it is
swapped in. Swapping is performed in response to recommendations from the
system resources manager (SRM), described in Chapter 5, "Managing System
Resources."

Figure 2-4 showed how virtual storage works for one program; in reality, of course,
many programs or users would be competing for use of the system. MV S/XA uses
two techniques to preserve the integrity of each user's work: (1) a private address
space for each user, as described in Chapter 3, "MV S/ XA Address Spaces,” and
(2) multiple storage protect keys, as described in the following topic.

Under MV S/XA, theinformation in real storage is protected from unauthorized
use by means of multiple storage protect keys. A control field in storage called a
key is associated with each 4K frame of real storage. Thisfield, or key, is not itself
addressable except by special operating system instructions.

The key in storage contains the protect key that the user of the frame must have as
well as afetch protect bit. The protect key controls which, if any, users can modify
the frame. (A bit in the page table, the protection bit, makes the frame read-only

and thereby prevents modification by any user.) The fetch-protect bit also protects

Chapter 2. Multiple Virtual Storage 2-11

Key Assignments

aframe. When it is set, a program must have the same key as the frame or have
key 0. Otherwise, it can neither modify the frame nor read, or fetch, its contents.
Figure 2-10 shows the format of the key in storage.

Key F|IR|C]|U

Key — 4-bit protect key

F — Fetch protect
R — Storage has been referenced
C — Storage has been changed
Storage Key U — Reserved
l I S I |
LL
4K 4K 4K 4K 4K
Real
Storage
I 1
LY
\ J
S

Addressable Storage

Figure 2-10. The Key in Storage

When arequest is made to modify the contents of areal storage location, the key is
compared to the storage protect key associated with the request, which appearsin
the current program status word (PSW). If the keys match or the program is
executing in key 0, the request is satisfied. If the key associated with the request
does not match the storage key, the system rejects the request and issues a program
exception interruption.

When arequest is made to read (or fetch) the contents of areal storage location,
the request is automatically satisfied unless the fetch protect bit is on, indicating
that the frame is fetch-protected. When a request is made to access the contents of
afetch-protected real storage location, the key in storage is compared to the key
associated with the request. If the keys match, or the requestor isin key 0, the
request is satisfied. If the keys do not match, and the requestor is not in key 0, the
system rejects the request and issues a program exception interruption.

There are sixteen possible storage protect keys available. A specific key is assigned
according to the type of work being performed. Figure 2-11 summarizes the
assignment of storage protect keys.

Storage protect keys 0 through 7 are reserved for the MV S/XA control program
and various subsystems. Storage protect key 0 isthe master key. Itsuseis
restricted to those parts of the control program that require amost unlimited store
and fetch capabilities. With two limitations, a storage protect key of 0 associated

2-12 MVS/Extended Architecture Overview

Key Switching

with arequest to access or modify the contents of areal storage location means
that the request is satisfied. The limitations on the ability of key 0 to modify real
storage are: first, no program can store into real storage locations O to 511,
second, no program, can store into real storage frames for which the page table
protection bit is set on.

Storage protect keys 8 through 15 are assigned to users. Because all users are
isolated in private address spaces, most users - those whose programsrunin a
virtual region - can use the same storage protect key. These users are called V=V
(virtual=virtual) users and are assigned a key of 8. Some users, however, must run
in areal storage region. These users are known as V=R (virtual=real) users and
require individual storage protect keys because their addresses are not protected by
the DAT process that keeps each address space distinct. Without separate keys,
V=R users might reference each other's code and data. These keys arein the
range of 9 through 15.

Key Use

0 MV S/ XA system control program

1 Job scheduler and job entry subsystems
(JES2 or JES3)

2 Virtual Storage Personal Computing (V SPC)

34 Reserved

5 Data management

6 TCAM and VTAM

7 IMSand DB2

8 V=V usersrunning in virtual storage

9-15 V=R usersrequiring real storage

Figure 2-11. Storage Protect Key Assignment

Frequently, a user program requests a service from a system (or subsystem)
program; with the request the program passes the address of an areain storage to
be modified by the system program. This area should belong to the user.

However, if an error occurs and the area really belongs to the system instead of the
user, the system could be destroyed. Thus, the system program does a key switch
before performing the service for the user. A key switch means that the system
program uses the storage protect key of the user program rather than its own
storage protect key while performing the requested service.

MV S/XA Storage Managers

Real storage frames, auxiliary storage slots and the virtual storage pages that they
support, are managed by separate components of MV S/XA. They arethereal
storage manager, the auxiliary storage manager, and the virtual storage manager.

Chapter 2. Multiple Virtual Storage 2-13

Real Storage Manager (RSM)

The real storage manager (RSM) keeps track of the contents of real storage. It
maintains the entries in the system's page frame table, and in each address space's
page tables and associated exter nal page tables that relate the virtual storage page
to a page data set dot. It manages the paging activities described earlier such as
page-in, page-out, and page stealing. RSM also assists with swapping an address
space in or out, verifies the storage protect keys, and does page fixing (marking
pages as unavailable for stealing).

Auxiliary Storage Manager (ASM)

The auxiliary storage manager (ASM) keeps track of the contents of the page data
sets, the swap data sets and the V1O data sets (described in Chapter 7, " Satisfying
I/0 Requests"). Page data sets contain slots representing virtual storage pages
that are not currently occupying areal storage frame. They also contain slots
representing pages that do currently occupy areal frame but, because the frame's
contents have not been changed, the slots are still valid.

Swap data sets contain the working set of an address space. Generally speaking,
the working set is a subset of pages that were in real storage and associated with
the address space when the swap out occurred. The working set includes the most
recently referenced pages, pages fixed in real storage, and the segment and the
page tables.

When a page-in or page-out is required, ASM works with RSM to locate the proper
real storage frame and auxiliary storage slots. For a page-in, RSM reads the entries
in the external page table to determine the slot location of a page, locates an
available frame, and passes this information to ASM, which usesit to bring the slot
into real storage. For a page-out, ASM locates an available slot on auxiliary
storage, copies the page from real storage to auxiliary storage, and sends RSM the
information needed to update the external page table.

Virtual Storage Manager (VSM)

2-14

The virtual storage manager (V SM) responds to requests to obtain and free virtual
storage. It also manages storage allocation for any program that must run in real,
rather than virtual storage. Storage is allocated to code and data when they are
loaded in virtual storage. Asthey run, programs can request additional storage by
means of the GETMAIN macro; they request the release of storage with the
FREEMAIN macro instruction.

V SM keeps track of the map of virtual storage for each address space. In so doing,
it sees an address space as a collection of 256 subpools. Subpools are logically
related areas of virtual storage identified by numbers (O to 255). Being logically
related means the storage areas within a subpool share characteristics such as:

» Storage protect key

» Whether or not they are fetch protected

* Whether or not they are pageable

* Whether or not they are swappable

MV S/Extended Architecture Overview

Where they must reside in virtual storage (above or below the 16 megabyte
line)

Whether they can be shared by more than one task
Some subpools (with numbers 128 to 255) are predefined for use by system
programs. Subpool 252, for example, is for authorized programs from authorized
program libraries. Others (numbered O to 127) are defined by user programs.
Within an address space, VSM keeps track of:
» Unallocated areas:

Virtual storage that is not allocated to a subpool
» Allocated areas:

Virtual storage that is allocated to a subpool

* Freeareas:

Virtual storage within a subpool that is not being used

Chapter 2. Multiple Virtual Storage ~ 2-15

2-16 MVSExtended Architecture Overview

Chapter 3. MVS/XA Address Spaces

Conceptually, an MV S/XA address space consists of the two gigabytes of virtual
storage available to each user. Figure 3-1 shows an address space as the
rectangular description of virtual storage.

Virtual Storage

2 Gigabytes

16 Megabytes

0

Figure 3-1. A Logical Representation of Virtual Storage

An MV S/XA address space contains the system prefix save area, private areas,
and common areas. Each user has an entire address space and thus has access to
all three kinds of areas. MV S/XA effectively isolates one address space from
another by means of segment and page tables. Through the common areas of the
address space, users can share programs and data areas. Thus, MV S/ XA balances
both the need to share resources and the need to maintain users privacy.

Virtual Storage Areas

Program modules and data are located within an address space according to
characteristics such as whether:

» They can be shared among all address spaces
» They can be paged or must always be backed by real storage (fixed)
e They must reside below the 16-megabyte line

The mapping of an MV S/XA address space in Figure 3-2 shows the various areas
of an address space. It appears as it does because of the need to maintain
compatibility with MV S/370. Almost every area exists below the 16-megabyte
line and has an extended area above the line. As much as possible, MV S/XA
treats each area of virtual storage below the line and its extended portion above 16
megabytes as one logical area. For example, if you request areport (dump) of the
contents of the common service area (CSA), the system dumps both the CSA
below 16 megabytes and the extended CSA. The sections that follow describe the
areas of the virtual storage map.

Chapter 3. MVS/XA Address Spaces 3-1

Prefixed Saw Area

2GB

Extended L SQA/SWA/AUK
Extended Extended User Region
Private
Extended CSA
Extended Extended PLPA/FLPA/MLPA
Common
Extended SQA
Extended Nucleus
p 16Mb
Nucleus
(o
Common PLPA/FLPA/MLPA
U CSA
| LSQA/SWA/AUK
Private User Region
20K
System Region
4K
Common { PSA

Figure 3-2. Virtual Storage Layout

The PSA contains critical information about both the MV S/XA operating system
and the processor. It includes fixed storage locations for such things as the data
items that become the contents of the current PSW when an interruption occurs,
register save areas for system routines, and pointers to important control blocks. It
isawaysfixed in real storage and never paged out.

For a uniprocessor, the PSA occupiesthe first 4K, the first page, of virtual and real
storage. Each processor in a multiprocessing system running MV S/XA also
addresses its own PSA as though the PSA were fixed in the first 4K of storage.

MV S/XA uses the prefix register and atechnigque called prefixing to distinguish the
PSA of one processor from the PSA of another.

With prefixing, the processors do not use absolute locations 0-4095. Rather, each
processor has its own separate PSA and its own prefix register. When a processor
is brought on line, the real starting address of its PSA is stored in its prefix register.
Whenever the processor uses an address between 0 and 4095, the hardware adds
the the contents of the prefix register to the address and uses the result. With
prefixing, the address that normally would be the absolute address of the
information in the first page of storage becomes an offset from the start of the real
PSA. Because each processor's prefix register contains a different address, each
processor can address locations 0 to 4095 and reference its own data.

The Private Area and Extended Private Area

The private area contains modules and data not shared by other address spaces. It
consists of five sections:

1. Systemregion
2. User region/extended user region

3-2 MV S/Extended Architecture Overview

System Region

3. Authorized user key (AUK)/extended AUK
4. Scheduler work area (SWA)/extended SWA
5. Local system queue area (L SQA)/extended L SQA

The last three areas (AUK, SWA, and LSQA) are intermixed in the private area
virtual addresses and are separate from the system region and the user/extended
user regions.

The system region is the only section of the private areathat does not have a
counterpart above the 16M line. It is used by system functions performing work
for an address space. These system functions run under the region control task
(RCT). Theregion control task isthe highest level task in each address space; it
plays a key role when an address space must be swapped in or out. The system
region consists of four virtual pages (locations 4K to 20K) allocated from the
bottom of the private area.

User Region/Extended User Region

The user region is the section of the private areain which user programs run.
MV S/XA programmerstry to use the extended user region as much as possible
because it is vastly larger than the user region below the 16-megabyte line.

There are two types of user regions: virtual (V=V) and real (V=R). Thetwo
types are mutually exclusive; that is, a user region can be V=V or V=R, but it
cannot be both.

A virtual (V=V) user region can be any size up to the size of the private area
minus the size of LSQA, SWA, AUK, and the system region. Its size can be
limited by the REGION parameter on the user's JOB or EXEC statement or by
installation-written program exits.

V=V user regions are pageable and swappable. Only enough real storage frames
are allocated at any particular time to hold the recently accessed parts of the user
program.

Real (V=R) regions occur only below the 16 megabyte line. Each virtual address
in the region always corresponds to the same real address. Figure 3-3 illustrates
V=R storage mapping. Real storage for the entire region is allocated and fixed
when thereal region is created. Thus, a V=R job is hon-pageable and
non-swappable.

The installation must reserve sufficient real storage for all V=R regions that might
exist at any one time. During system generation, the REAL = parameter of the
CTRLPROG macro reserves real storage; during system initialization, the REAL =
system parameter establishes real region storage limits. The system uses storage in
the V=R areafor normal paging activity if the V=R storage is not being currently
used for V=R jobs. Particularly when system activity is high, a V=R job might not
be started immediately; it must wait until the system can free the storage the V=R
job requires.

Chapter 3. MVS/XA Address Spaces 3-3

Virtual Storage
Common Area
Real Storage
LSQA, SWA and LSQA, SWA and LSQA, SWA and
AUK AUK AUK
Pageable Area
*V=R Limit
V=R JOB3 V=R JOB3
V=R JOB2 V=R JOB2
V=R JOB1 V=R JOB1
System Region System Region System Region
PSA PSA
*Limit of storage available for running V=R jobs

Figure 3-3. V=R Storage Mapping

Real regions should be used only for jobs with time-dependent functions (that is,
jobsthat cannot wait for paging activity to take place) or for jobs that cannot run
in the virtual environment, such as jobs with channel programs that use the
program control interruption (PCI) to modify themselves dynamically. See,
"Satisfying I/0 Requests,” later in this book for more information about channel
programs.

The default V=R region size is controlled by the VRREGN parameter in the
IEASY Sxx member of SYS1.PARMLIB. It can be overridden by the REGION
parameter in a user JOB or EXEC statement.

Authorized User Key (AUK)/Extended AUK

The authorized user key (AUK) area of the private region contains system data
relating to a specific user. Protected user resources, such as the data extent block
(DEB) that describes a user data set, reside in this area.

Thisareais aso identified as subpools 229 and 230. Subpools 229 and 230 are
both protected by the user's storage key, that is, by the key in the PSW that is
associated with the program using the storage. In addition, subpool 229 is
fetch-protected, which means that its contents cannot even be read unless the key
in storage matches the key in the PSW.

The AUK also contains data for the LNKL ST lookaside (LLA) directory of
modulesin the system's LNKL ST libraries. Because this directory is alwaysin
storage, it provides fast access to system modules and reduces I/O operations that
consume time and channel paths.

Scheduler Work Area (SWA)/Extended SWA

The scheduler work area (SWA) contains the control blocks that exist from job
step initiation to job step termination. These contain the internal form of the job
control language (JCL) statements that accompany a job. The information in SWA
is created when ajob isinterpreted and used during job initiation and execution.

3-4 MVS/Extended Architecture Overview

(Chapter 8, "Entering and Scheduling Work," describes how MV S/XA processes a
job.) The SWA is pageable and swappable.

Local System Queue Area (L SQA)/Extended L SQA

The local system queue area (L SQA) contains tables and queues that are unique to
a particular address space. For example, L SQA includes the user's segment table
and private area page tables. L SQA also contains all the control blocks that the
region control task (RCT) requires. LSQA is swappable but not pageable. That is,
the LSQA for each address space that is swapped-in isfixed in real storage frames.

The Common Area and Extended Common Area

The common area holds system information, such as program code, control blocks,
tables, and data areas. It is common to all address spaces in the sense that any type
of data or code in this area has the same virtual addressesin all address spaces.

The common areaincludes:

Common service area (CSA) and extended CSA
Pageable link pack area (PLPA) and extended PL PA
Fixed link pack area (FLPA) and extended FL PA
Modified link pack area (MLPA) and extended MLPA
System queue area (SQA) and extended SQA

Nucleus and extended nucleus

SO0~ WNE

Common Service Area (CSA)/Extended CSA

The common service area is addressable by all active programs and is shared by all
swapped-in users. Data associated with an individual address space can be isolated
by a storage protect key, but the primary advantage of CSA isto enable
inter-address space communication.

CSA contains some fixed and some pageable system and user data areas, pageable
areas are paged in and out of real storage as required. The total amount of storage
for CSA is specified during system initialization and is allocated in 4K pages.

Pageable Link Pack Area (PLPA)/Extended PL PA

The pageable link pack area contains MV S/XA control program functions (SVC
routines), access methods, other read-only system programs, and selected user
programs. Because these modules are heavily used, and loading the PLPA isa
lengthy process, MV S/ XA normally saves its contents from one start-up to
another.

Asitsnameimplies, PLPA is pageable; however, no physical page-outs are
performed. PLPA pages that have not recently been used, however, might be
stolen.

PLPA spaceisallocated in 4K pages. The size of PLPA is determined by the
number of modulesincluded, and, once the size is set, PLPA does not expand
dynamically.

Fixed Link Pack Area (FL PA)/Extended FL PA

FLPA pages are fixed in real storage. They contain modules that could be in PLPA
but require the extremely fast response that comes from having fixed pages.

Chapter 3. MVS/XA Address Spaces 3-5

Because FLPA isfixed, it reduces the amount of real storage available for other
uses, such as running installation programs. Thus, the modules selected for FL PA
are chosen with care. The MV S/XA paging routines normally keep a heavily-used
PLPA modulein real storage. Therefore, the most likely candidates for FLPA are
modules that are infrequently used (those whose pages would be stolen) but require
rapid response when they are used. An installation determines the size and

contents of the fixed link pack area each time the MV S/XA system is started.

Modified Link Pack Area (ML PA)/Extended ML PA

The modified link pack area can be used for reentrant modules from selected
system or user libraries; it acts as an extension to PLPA, but exists only for the
duration of the current MV S/XA session. The system does not save the contents
of the MLPA from one MV S/XA start-up to another as it does for the PLPA.

MLPA modules are normally read-only. Because MV S/XA searches the MLPA
before it searches the PLPA, installations often use the ML PA to test modules
before adding them to the PLPA.

System Queue Area (SQA)/Extended SQA

Nucleus’Extended Nucleus

The system queue area (SQA) contains tables and queues that relate to the entire
system. For example, the page tables that define the system area and the common
areareside in SQA. The contents of SQA depend on an installation's configuration
and job requirements.

The installation specifies the amount of storage for SQA when the system is
initialized. If MV S/XA needs more storage for SQA, it uses CSA storage. If the
system then runs out of CSA, it stops creating address spaces. The SQA is aways
fixed inreal storage.

The nucleus and the extended nucleus hold the resident part of the MV S/ XA
control program. Aside from the control program load module, the nucleus and
extended nucleus contain the page frame table entries (PFTES), data extent blocks
(DEBSs) for the system libraries, recovery management support routines, and unit
control blocks (UCBSs) for the 1/O devices. The nucleus and extended nucleus
surround the 16-megabyte line in virtual storage. They actually comprise what is
known as the DAT-on nucleus. The hardware DAT feature translates their
addresses to real addresses.

MV S/XA, however, also includes a DAT-off nucleus that consists of modules that
must operate with the DAT feature off. It includes such routines as the recovery
processing that occurs when a hardware problem makes the DAT feature
inoperable. The DAT-off nucleus residesin real storage. It uses the highest real
addresses available at the time it isloaded. The DAT-off nucleusis not part of
virtual storage.

The DAT-on nucleusisfixed in real storage and is divided into four sections as
shown in Figure 3-4. These are the read-only and read-write sections for both the
nucleus and extended nucleus. While the size of the DAT-on nucleus varies
depending on the system configuration and the extensions and options an
installation chooses, the size of the nucleus does not change as additional jobs are
swapped in and out.

3-6 MVS/Extended Architecture Overview

Read-Write Modules
31-Bit Addressing Mode

Extended Nucleus
Read-Only Modules
31-Bit Addressing Mode
______________ 16Mb
Read-Only Modules
24-Bit Addressing Mode

Nucleus
Read-Write Modules
24-Bit Addressing Mode

Figure 3-4. The DAT-on Nucleus

MV S/ XA System Component Address Spaces

The master scheduler, a component of MV S/XA, interacts with operator
commands and system parameters to initiate required functions. For example, the
master scheduler controls the creation of address spaces.

When an MV S/XA system isinitialized, the master scheduler address space isthe
first one created. Then, key system component address spaces are created.
Because the master scheduler address space is the first address space, initializing its
common areas also initializes the common areas for all address spaces. Thus all
system components with their own address spaces have access to the following
areas:

1. The private area below the 16-megabyte line

2. The common area, which surrounds the 16-megabyte line and includes the
nucleus.

3. The extended private area above the 16-megabyte line
4. The prefixed save area (PSA), which resides at location 0

A system component can execute in the address space of afunction that requests
its services, or, if it has one, it can execute in its own address space. By creating its
own address space to hold some or all of its data and executable code, a system
component can reduce the amount of storage it requires in the common areas of
virtual storage. If a system component has its own address space, that address
space must be created and initialized to be capable of handling the requests of
other address spaces.

The following system components have address spaces created during system
initialization. They are listed in the order of their creation.

1. Program call/authorization (PC/AUTH address space) PC/AUTH isthe first
system component address space initialized. The PC/AUTH initialization
routines initialize all the cross-memory tables needed to establish
communication with other address spaces. As other system component address
spaces are established, their associated initialization routines use PC/AUTH
services to create and initialize their own cross-memory tables.

Chapter 3. MVS/XA Address Spaces 3-7

9.

System trace (TRACE address space).

Global resource serialization.

Dumping services (DUMPSRYV address space).
Communications task (CONSOL E address space).
Allocation (ALLOCAS address space).

System management facilities (SMF address space).
Primary job entry subsystem (JES2 or JES3 address space).

LNKLST lookaside (LLA address space).

Figure 3-5 shows the layout of the storage areas for the system address spaces that
are created during system initialization.

[LLA
| JES2 or JES3
| SMF
| ALLOCAS
| CONSOLE
{ DUMPSRV
I Global resource serialization
| TRACE

PC/AUTH
Extended LSQA/SWA/AUK

Extended

Private Area
Master Scheduler
Extended User Region
Extended CSA | LLA
Extended PLPA/FLPA/MLPA | JES2 or JES3
Extended SQA [SMF

| _ Extended Nucleus | ALLOCAS

Nucleus l CONSOLE
SQA | DUMPSRV
PLPA/FLPA/MLPA | Global resource serialization
CSA | TRACE
LSQA/SWA/AUK PC/AUTH
Master Scheduler
User Region Private Area
System Region
PSA

Figure 3-5. Virtual Storage Layout For Key MV S/XA Components.

3-8

MV S/Extended Architecture Overview

Inter-Address Space Communication

Cross Memory

There are two ways to communicate between address spaces: asynchronously and
synchronously. Asynchronous inter-address space is controlled by control blocks
known as service request blocks (SRBs) and is explained in Chapter

6, "Supervising the Execution of Work." The synchronous form of inter-address
space communication is known as cross memory.

Cross memory allows programs to pass control to programs in other address spaces
and to move data from one address space to another. Because a program using
cross-memory capabilities can directly access programs and data in the private area
of another address space, cross memory can reduce the amount of common area
needed in the virtual address spaces in the system. By using macro instructions to
define a program as having cross-memory capability it is possible to control access
to the shared data.

Chapter 3. MVS/XA Address Spaces 3-9

3-10 MVS/Extended Architecture Overview

Chapter 4. Multiprocessing

Types of Multiprocessing

Multiprocessing (MP) provides the solution to the need for increased computer
power and increased computer system availability. Uniprocessing (UP) isthe
traditional starting point for a computer installation, but, as applications grow and
online users proliferate, a single processor often becomes inadequate.

A uniprocessor is a single-processor system that contains its own main storage, is
controlled by a single operating system, and has no direct communication with
other processors. If it needs repair or maintenance, it must be removed from
service.

In contrast, a multiprocessing system has at least two processors that share at least
some of the system's resources. These processors can interchange tasks and
subtasks to maintain a steady flow of work. One processor might initiate an 1/0O
operation and another might handle the interruption that occurs when it has
completed. If one processor fails, another is usually available to pick up its work
and carry on.

There are two types of multiprocessing:

» Loosely-coupled multiprocessing, where processors operate under separate
operating systems yet share access to data such as a common workload queue.
The processors are connected by shared DASD or by channel-to-channel
(CTC) adapters and by shared DASD.

» Tightly-coupled multiprocessing, where at least two processors operate under
the control of a single operating system. Some tightly-coupled multiprocessing
systems consist of processor configurations that can be divided in half
(partitioned) to form two independent configurations. Other tightly-coupled
systems, known as a dyadic multiprocessor systems, cannot be partitioned.

L oosely-Coupled Multiprocessing

L oosely-coupled multiprocessing affords an easy growth path. The installation can
connect many combinations of UP or MP systems into a single configuration with
the following traits:

» The processors share a common workload queue.
» Each processor has its own operating system
« Jobs can, if necessary, be routed to a particular processor

Figure4-1 illustrates aloosely-coupled system.

Chapter 4. Multiprocessing ~ 4-1

LOOSELY-COUPLED
Uniprocessor Tightly-Coupled
Channel-to-Channel Adapter
3032 t-— —— — — — — —— —— — —#={ 3081 Processor Complex
MVS MVS/XA
A A
Shared
DASD
A \
Storage Storage

Figure 4-1. Loosely-Coupled Processing
Tightly-Coupled Multiprocessing

In atightly-coupled multiprocessing system, the two or more processors share main
storage, communicate directly with each other, and operate under the control of a
single operating system. The MP system presents a single system image to the
operator. The operator needs to communicate with and control only one operating
system. Even though there are two or more processors available for work, the
operator has one operational interface to the entire system, one job scheduling
interface, and one point of control for all the resources available. The operator
also can dynamically change the hardware configuration to meet various needs and
control the operation of the processors and yet keep their individual control and
status information separate.

Configuring a Tightly-Coupled Processor

A tightly-coupled MP configuration consists of many hardware components.
Reconfiguration is the process of adding or removing some of these components
from the configuration. The reconfigurable componentsin a system are:

1. Processors

2. Channel paths
3. Storage

4. 1/0O devices

Reconfiguration is usually initiated for one of three reasons:

1. A component, such as a segment of storage or a channel path, has
malfunctioned and is interfering with the operation of the system. Depending
on the circumstances, either the operator or the system can initiate the
reconfiguring of the failing component offline so the system can continue
processing without it.

2. One or more components are scheduled for maintenance

3. In larger systems, a change in workload necessitates the reconfiguring of a
single system into two separate systems. In this case, the operator would

4-2 MVS/Extended Architecture Overview

configure the appropriate processors, channel paths, storage, and devices
offline from the running system and configure them into the second system.
Figure 4-2 shows the 3084 Processor Complex, which usually runs with four
processors. Theillustration shows sides A and B, which are each composed of
two processors. The 3084 Processor Complex can be reconfigured to become
two independent MP systems with two processors each.

A-Side B-Side
i
Storage Storage Storage Storage
A A A A ' A A A A
Y v YV Yy v Yy v
Channel Channel
_ __ System o System
Subs;stem i Controller o Controller [> Subs:stern
1\) A A
Y Y) Y
Processar Processor Processor Processor
00 02 o 03

Figure 4-2. Tightly-Coupled Multiprocessing

The operator initiates reconfiguration with the MV S/ XA CONFIG and VARY
commands, specifying which elements to configure and whether they are to be
made online or offline to the system. Reconfiguration processing has two stages:

1. Logical reconfiguration, which makes the component online or offline to
MV S/XA. This process involves marking entriesin MV S/XA system resource
tables.

2. Physical reconfiguration, which makes the component online or offline to the
hardware. This process often involves the setting of hardware switches that
control whether access to the component is physically possible.

Both logical and physical reconfiguration are performed or initiated by the

MV S/XA reconfiguration command processor. The CONFIG command also
allows the operator to display which hardware components are presently online to

Chapter 4. Multiprocessing 4-3

the system and which items are available to be configured online or offline. The
DISPLAY M command provides the status of the hardware components.

Dyadic Tightly-Coupled M ultiprocessing

A dyadic processor consists of two processors sharing storage and the channel
subsystem. The processors are coordinated by a system controller that monitors
communication and controls data flow between the two processors. Although there
are two processors, the dyadic processor cannot be reconfigured into two
uniprocessors. Figure 4-3 illustrates a 3081 processor complex, which is a dyadic
processor.

If one processor failsin a dyadic multiprocessing system, which cannot be
reconfigured into separate systems, the work of the failed processor is switched to
the operative processor. The operator can remove the failing processor from the
configuration and continue processing (with some performance degradation) on the
remaining processor. However, repair of the failing processor must wait until the
entire processor complex can be shut down.

Storage
Channel
Subsystem
|
- |
T 1 ‘
I | System | __]
1 Controller [
r I
, I
| |
{ Processor Processor I
| 00 02 |
| T |
I _ — —J

Figure 4-3. Dyadic Processor Complex

Control of Processing in a Tightly-Coupled MP System

4-4

Although tightly-coupled MPs share all real storage and run under the control of a
single MV S/XA operating system, each processor must have a unique physical
address for identification purposes. Likewise, each processor must have its own
status and control information.

Asexplained in Chapter 3, "MV S/ XA Address Spaces,” the hardware and

MV S/XA software maintain status and control information in specifically-assigned
real storage locations called the prefixed save area (PSA). Each processor views
the PSA as a 4096-byte block of fixed storage in the low-address range (storage
locations 0-4095) of real storage. However, because multiprocessors can execute
more than one job simultaneously, (one in each processor) each processor hasits
own PSA and uses a prefixing technique, also described in Chapter 3, to access its
own PSA.

MVS/Extended Architecture Overview

Communication Among Processorsin an MP System

To control the system resources, the processorsin an MP system must
communicate with each other. Communication between the processorsis called
interprocessor communication (IPC). The MV S/ XA software and system
hardware both provide support for 1PC.

MV S XA-Initiated Communication

MV S/XA establishes interprocessor communication for several purposes:

» To perform system initialization

* Todispatch work

» To stop or restart a processor during reconfiguration
* To attempt alternate CPU recovery (ACR)

To accomplish this communication, MV S/XA uses the signal processor (SIGP)
instruction. A SIGP instruction signals a processor and transmits a request to
perform afunction. The addressed processor decodes the request, performs the
requested function (if possible), and transmits a response to the calling processor.
The response contains a condition code and status information.

Some of the conditions that cause SIGP requests are:
» Initialization

During theinitialization of atightly-coupled MP system, MV S/XA can
determine whether other processors are online by issuing a SIGP sense
instruction to each of the other processors. Each processor responds with an
indication of its status. If the response indicates the processor is online,

MV S/XA can initialize it. When initialization is complete, multiprocessing
operations can proceed.

* Operation

Normal operation proceeds with each processor receiving work from the

MV S/XA dispatcher. The dispatcher normally gets control after a system
event occurs or when a unit of work is complete. However, if one processor
has entered the wait state because it had no work to perform, another
processor can tell the idle processor that new work has arrived. This kind of
communication is called shoulder-tapping. It is accomplished by a SIGP
instruction that causes an external interruption in the addressed processor.

* Reconfiguration

When the operator configures a processor offline or online, MV S/XA-initiated
interprocessor communication is necessary. For example, if the master
scheduler isrunning in processor A when a CONFIG command is received to
configure processor B offline, processor A issues a SIGP instruction to tell
processor B to stop. Processor B enters the stopped state just as it would had
the STOP key on the processor's system console been pressed. To configure
processor B back online, processor A issues a SIGP restart instruction to restart
processor B just as though the RESTART key had been pressed.

Chapter 4. Multiprocessing 4-5

* Recovery

When a processor fails due to a software malfunction the machine check
handler (MCH) issues a SIGP emergency signal (EMS) instruction to the other
processors. The EMS causes an external interruption on the functioning
processors. The first processor to receive the interruption initiates recovery
processing for the failing processor. As part of recovery processing, the
functioning processor might issue SIGP instructions to determine the status of
the failing processor. If the status can be obtained, the MV S/ XA recovery
routines have a better chance of succeeding. These recovery routines, known
as alternate CPU recovery (ACR) routines, are described in Chapter

10, "Recovering From Errors.”

Har dwar e-I nitiated Communication

In addition to the signals exchanged between processors through use of the SIGP
instruction, the hardware supports direct communication between the processors.
This communication is necessary to ensure:

» Clock Synchronization

In atightly-coupled MP configuration, there is more than one time-of-day
(TOD) clock. (Note that the 3081, a dyadic tightly-coupled processor, has
only one.) The TOD clocks must be synchronized when atightly-coupled MP
system isinitialized or when a processor is reconfigured to be online.

» Storage Control

Because storage is shared among the processors, the processors must
communicate with each other to ensure that all references to shared storage
refer to the most current data. Therefore, each processor (for example,
processor A) indicates when it modifies the contents of areal storage location.
Another processor (for example, processor B) can determine whether its
high-speed buffer currently contains the contents of that same real storage
location. If so, this copy of the storage is no longer current; processor B
invalidates the copy in its buffer.

* Recovery

When a processor experiences afailure that causes it to enter the check-stop
state, the failing processor generates a malfunction-alert (MFA) interruption
on the other processors, one of which then attempts recovery. Alternate CPU
recovery (ACR) routines, described in Chapter 10, "Recovering From Errors,”
receive control and remove the failing processor from the configuration so that
MV S/XA can continue running on an operative processor.

4-6 MVS/Extended Architecture Overview

Chapter 5. Managing System Resour ces

SRM Decisions

Functional Areas of SRM

An MV S/XA system, like other computer systems, has three broad categories of
computer system resources. processors, real storage, and I/O devices. Managing
system resources is the responsibility of the MV S/ XA component, the system
resources manager (SRM). SRM has two objectives:

To achieve optimal use of the system resources from the system point of view
(throughput)

To achieve optimal use of system resources from the point of view of the
individual address space (response and turnaround time)

This chapter describes how SRM attempts to meet these objectives, including the
decisionsit makes and the factorsit considersin making those decisions. The
installation can influence almost all of the decisions made by SRM routines by
means of member |EAIPSXxX, the installation performance specification (IPS), and
member IEAOPTxx of the SY S1.PARMLIB data set.

SRM's two objectives are contradictory. Optimizing throughput implies keeping
resources busy; meeting the installation's objectives for response and turnaround
time (as reflected in the IPS) implies the availability of any resource when it's
required. SRM makes decisions that represent trade-offs between its two
conflicting objectives.

The decisions SRM makes include the following:

Which address spaces should be permitted access to the system's resources
(that is, swapped in)

* When to steal pages and which pagesto steal

When to change the dispatching priority of address spaces

Which device should be allocated, when allocation routines have a choice of
devices

When to inhibit the creation of new address spaces

To reach its decisions, SRM is divided into three major functional areas:

* SRM control, which determines the processing required and routes control to
the appropriate SRM routines. SRM control decides when and which address
spaces will be swapped in or out. To make this decision, it obtains
recommendations from the other functional areas of SRM: the workload
manager and the resource manager.

* Workload manager , which monitors the use of resources by the various address
spaces. It gives swapping recommendations to SRM control. These
recommendations attempt to maintain each address space's use of system
resources as specified in the IPS.

Chapter 5. Managing System Resour ces 51

Resour ce manager, which monitors system-wide use of resources to determine if
they are over-utilized or under-utilized. It makes swapping recommendations
to SRM control that are intended to achieve a balance between throughput and
response time. In addition, the resource manager is responsible for
implementing other SRM controls related to the use of resources:

— Inhibiting the creation of new address spaces or stealing pages when certain
shortages of real storage exist

— Changing the dispatching priority of address spaces, which controls the rate
at which the address spaces are allowed to consume resources

— Choosing the device to be allocated, if a choice of devices exists, in order to
balance the use of 1/O resources.

Communicating with SRM

Other system components communicate with SRM by means of the SYSEVENT
macr o instruction. All SY SEVENTSs have a code, which indicates the processing
SRM isto do. These codesfall into one of two categories:

* SYSEVENTSsthat notify SRM of achangein status for a particular address
space or for the system as awhole. For example, a SY SEVENT isissued:

— when real storage has been configured into or out of the system

— when an address space isto be created (if a shortage of SQA or pageable
storage exists, SRM will prohibit the creation of an address space)

— when an address space has been deleted

— when an address space enters along wait (SRM will swap the address space
out of real storage)

— when aninitiator selects or terminates ajob
— when a swap-in starts or a swap-out completes.

* SYSEVENTSsthat invoke SRM's decision-making functions. Such a
SYSEVENT isissued:

— when allocation routines can choose the devices allocated to a request
(SRM will recommend one of the devices)

— when atimeinterval expires. (The timer-interval SY SEVENT isthe
exclusive means to invoke most of SRM's algorithms, which provide data
on which SRM bases its decisions.)

Most SY SEVENTs invoke SRM control which, in turn, calls the resource or

workload manager. The remainder of this chapter describesin greater detail SRM
control, the workload manager, and the resource manager.

5-2 MV S/Extended Architecture Overview

SRM Control

Swap Analysis

SRM control isthe dispatcher of SRM. It schedules actions and algorithmsto be
performed by other SRM routines and is responsible for the swapping of address
spaces.

The installation provides guidelines for SRM's swap decisions by defining a domain
for each distinct type of work (for example, batch work). For each domain, the
installation defines a minimum MPL and maximum MPL (multiprogramming level)
and the domain's importance relative to other domains. The MPLs state the
minimum and maximum number of address spaces in each domain that should be in
real storage (that is, swapped in) at the same time.

Within the boundaries of the minimum and maximum MPL and based on such
factors as the total utilization of system resources, SRM periodically computes an
optimal MPL for each domain, called the target MPL. The objective of the swap
analysis performed by SRM control isto maintain the MPL of each domain at its
target value.

Swap analysisistriggered by several events, such as when a user becomes ready to
execute or when atime interval expires. The swap analysis must answer two
questions. whether a swap is necessary; and, if so, which address space(s) to swap.

The are four types of swaps SRM considers necessary:
1. Unilateral Swap-Out

If SRM locates any domain(s) whose current MPL exceeds its target, SRM
control swaps out the required number of address spacesto lower the domain's
MPL to itstarget value.

2. ENQ Exchange

If a swapped-out address space is enqueued on a resource requested by another
user, SRM control swaps in the enqueued user. Note: enqueuing isa
technique for gaining control of aresource and is explained in Chapter

6, "Supervising the Execution of Work."

3. Exchange Swap

If SRM determines that an exchange of a swapped-in address space and
swapped-out address space will redress an imbalance in the use of resources,
the exchange swap occurs.

4. Unilateral Swap-In

If SRM locates any domain(s) whose current MPL isless than the target, SRM
control swaps in the required number of address spaces to raise the current
MPL to itstarget value.

To determine which address space(s) within a domain to swap in or out, SRM
control asks the workload manager and resource manager for swap
recommendations, which take the form of swap recommendation values (RVs). The
workload manager's RV's aim to maintain an address space's use of resources as

Chapter 5. Managing System Resources ~ 5-3

TheWorkload Manager

The Resour ce Manager

specified in the IPS. The resource manager's RVs aim to correct imbalancesin 1/0
or processor utilization. By combining the RV's of the workload manager and
resource manager, SRM control makes trade offs between its two objectives:
distributing resources as specified in the | PS and optimizing throughput.

The workload manager has three basic functions:

» To monitor service rates - the rates at which system resources are being
provided to individual address spaces

» To provide swapping recommendations requested by SRM control

e To collect datafor certain measurement tools such as the Resource
Measurement Facility (RMF)

The workload manager measures the rate at which resources are used in terms of
service units per second. Service units are computed as a combination of three
basic system resources: processor time used, 1/0 activity, and real storage frames
occupied. The service rate is the result of dividing the number of service unitsby a
time interval, which includes both the time an address space is swapped into real
storage and the time it is swapped out but otherwise ready to execute.

To arrive at a swapping recommendation, the workload manager measures the
service rates of different address spaces and compares them in light of factors
defined by the installation in the IPS (installation performance specification). By
means of these factors, the installation can instruct SRM to give certain users better
service at the expense of other users. For example, assume two address spaces
exist in real storage and one must be swapped out; the installation-defined 1PS
factors will dictate how the workload manager views measured service rates:

» Address space A has a higher service rate than address space B. Based on IPS
factors associated with these two address spaces, the workload manager
determines that address space B should be swapped out.

» Address space A has alower service rate than address space B. A different IPS
indicates that address space A is more important and, based on this, the
workload manager determines that address space B should be swapped out.

» Address space A and address space B have identical service rates. Again, IPS
factors indicate which address space is more important and which, therefore,
should remain in storage.

The workload manager passes its swap recommendations to SRM control, which
combines them with recommendations from the resource manager.

The resource manager employs algorithms that are concerned with improving the
system-wide use of resources (as contrasted to an individual address space's use of
resources, which is the concern of the workload manager). The resource manager's
routines can be divided into four functional areas:

» Storage management, which is concerned with SRM's decisionsto steal pages
and to prevent the creation of new address spaces

5-4 MVS/Extended Architecture Overview

Storage M anagement

» 1/O management, which is concerned with SRM's swap decisions and device

alocation decisions

» Processor management, which is concerned with SRM's swap decisions and

decisions to change an address space's dispatching priority

» Resource monitoring, which is concerned with adjusting the target MPLs of

individual domains based on the need to raise or lower the system-wide
multiprogramming level

SRM's storage management routines take action when shortages of the following

are detected: available framesin real storage; space in the system queue area

(SQA) that causes the SQA to expand into the common service area (CSA); slots

on auxiliary auxiliary storage; and pageable framesin real storage.

The system maintains an available frame queue, which indicates the number of

available framesin real storage. When the number of available framesfalls below a

"low" threshold, SRM storage management routines begin to steal the

least-recently used pages from the working sets of address spacesin real storage.

The storage management routines continue stealing pages until the count of

available frames plus the number of pages stolen exceeds an "OK" threshold for

the available frame queue.

SQA shortages are detected by the virtual storage manager (VSM), which calls
SRM's storage management routines when a shortage is detected. The storage

management routines prevent the creation of new address spaces until the shortage
isrelieved. The routines also write messages to the operator when the shortage is

detected and when the shortage is relieved.

SRM's storage management routines periodically verify that the number of

available auxiliary storage slots has not fallen below a certain limit. Shortages of
pageable real storage are detected by real storage management (RSM) when the

percentage of fixed frames to total frames exceeds a certain limit; RSM then
notifies SRM's storage management routines. The action taken by SRM for
shortages of auxiliary storage slots or pageable real storage is the same; SRM:
» Preventsthe creation of new address spaces

» Delays newly-initiated jobs

» Setsthe multiprogramming level in each domain to its minimum MPL

Swaps out the user who is acquiring slots at the greatest rate (for shortages of
auxiliary storage) or the user who has the most fixed frames (for shortages of
real storage)

Notifies the operator of the shortage and the identity of the swapped-out user

When the shortage is relieved, creation of address spacesis again allowed, the
operator is notified, and address spaces that were swapped out are again made
eligible for swap-in.

Chapter 5. Managing System Resources 5-5

/O Management

Processor M anagement

SRM's I/O management routines are called to:

« Choose adevice when allocation routines have a choice of devices to alocate
(device allocation)

» Give swap recommendations to SRM control (1/0 load balancing)

In both cases, the objective of 1/0 management is to balance I/O activity across
channel paths and, thereby, make optimal use of the channel subsystem. SRM uses
the concept of logical paths. A logical path isthe set of physical channel paths
leading to a single device. Any other devicesthat share the same physical paths,
share the same logical path. Channel paths are described in Chapter 7, " Satisfying
1/0 Requests."

When choosing a device for allocation, the device allocation algorithm seeks
candidates on the logical path that has the lowest utilization. For direct access
devices, it chooses the device with the least delays in accessing allocated data sets.
When it gives swap recommendations to SRM control, the 1/0 load balancing
algorithm bases its recommendations on the extent to which the swap-in or
swap-out of a user would correct a detected I/O imbalance: it recommends, via
swap recommendation values, that a significant user of an over-used logical path be
swapped out; or that a significant user of an under-used logical path be swapped in.

Processor management routines have three responsibilities:
» Controlling the APG (automatic priority group) subset of dispatching priorities

» Preventing the swap-out of users who are enqueued on resources required by
other users

» Making swap recommendations to correct under-utilization or over-utilization
of the processor

The APG isarange of dispatching priorities under the control of SRM.
Dispatching priority controls the rate at which address spaces are allowed to
consume resources after they have been given access to those resources. By
placing jobs in the APG range, the installation, viathe IPS and SRM, can alter the
dispatching priorities of address spaces as their execution characteristics change.
The APG is the primary means by which SRM controls nonswappabl e address
spaces.

The APG has at least one group of dispatching priorities. Each group is divided
into three categories. mean-time-to-wait (MTTW), rotate priority, and fixed
priorities.

« TheMTTW can be used to increase system throughput by increasing processor
and 1/O overlap (that is, the processor is not waiting while 1/O requests are
satisfied). Usersin the MTTW group have a dispatching priority based on the
user's mean execution time before entering a wait state; users who quickly
release the processor receive a high priority within the MTTW group.

5-6 MVSExtended Architecture Overview

Resour ce Monitoring

« Therotatepriority can be used to ensure that one address space does not
dominate the processor in relation to other address spaces also assigned the
rotate priority. Processor management routines periodically reposition the
address space that is highest in the rotate priority group to the bottom of the

group.

« SRM does not change fixed priorities. They are available so that the installation
can associate, viathe IPS, a different fixed priority with different periodsin the
life of ajob or transaction.

In the case of address spaces with users enqueued on resources in demand by other
USers, processor management routines prevent their swap-out until they have
released the resource or executed for a fixed period of time (whichever occurs
first). The installation can specify the execution time interval viaan SRM tuning
parameter.

If processor management routines determine that the processor is over- or
under-utilized, they search for heavy processor users and calculate swap
recommendation values for swap-out (to correct over-use) or swap-in (to correct
under-use). A heavy processor user is one that meets or exceeds a certain mean
execution time before entering the wait state. The processor is considered
over-utilized if, during the period under consideration, it did not enter the wait
state and any ready address space on the dispatching queue was not dispatched.
The processor is considered under-utilized when its use is less than a certain
percentage of total possible processor use. Processor management routines take
into account the extent to which the processor is over- or under-utilized when
computing swap recommendation values for SRM control.

The resource monitoring function of the resource manager periodically checks
several system resource use indicators such as processor use. |If measured resource
use (averaged over anumber of sample intervals) is greater than a"high" threshold
or lessthan a"low" threshold for that indicator, the resource monitoring function
recommends that the system-wide multiprogramming level (MPL) be lowered or
raised. (The system-wide MPL isthe total number of address spacesin the system
that are swapped in.)

If the system-wide MPL isto be raised or lowered, resource monitoring routines
then identify the individual domain whose MPL will be raised or lowered to achieve
the recommended system-wide MPL. The domain selected for MPL adjustment
depends on the relative importance of the domains, as defined by the installation in
the installation performance specification (1PS).

Chapter 5. Managing System Resources ~ 5-7

5-8 MV S/Extended Architecture Overview

Chapter 6. Supervising the Execution of Work

Interruption Processing

The MV S/ XA component known as the supervisor provides the controls needed for
multiprogramming. The supervisor takes control once work is brought into real
storage where it has access to the processor. This chapter describes the following
supervisor controls:

Interruption processing. In order to achieve multiprogramming, there must be
some technique to switch control from one routine to another so that, for
example, when routine A must wait for an I/O request to be satisfied, routine
B can execute. In MV S/XA, this switch is achieved by interruptions, which are
events that alter the sequence in which the processor executes instructions.
When an interruption occurs, the hardware gives control to the supervisor
which saves the execution status of the interrupted routine, analyzes the
interruption, and passes control to the appropriate routine to process the
interruption.

Creating dispatchable units of work. The supervisor requires some way to
identify and keep track of all the work in the system. It does this by
representing each unit of work with a control block. Two types of control
blocks represent dispatchable units of work in MV S/XA systems: task control
blocks (TCBs), which represent tasks executing within an address space; and
servicerequest blocks (SRBs), which represent high priority system services.

Dispatching work. After supervisor routines process interruptions, they either
return control to the routine that was interrupted or pass control to aroutine
called the dispatcher . Which action occurs is described in detail in the topic
"The Interruption Handlers." The dispatcher determines which unit of ready
work, of all the ready units of work in the system, has the highest priority and
passes control to that unit of work.

Serializing the use of resources. In a multiprogramming system, almost any
sequence of instructions can be interrupted, to be resumed later. If that set of
instructions manipulates or modifies aresource (for example, a control block or
arecord in adata set), the supervisor must prevent other programs from using
the resource until the interrupted program has completed its processing of the
resource.

In MV S/XA, the supervisor provides two techniques for serializing the use of
resources. enqueuing (viathe ENQ or, for shared DASD, RESERVE macro
instruction) and locking. All users can issue ENQ or RESERVE, but only
supervisor routines can use locking to serialize the use of resources.

An interruption is an event that alters the sequence in which the processor executes
instructions. An interruption may be planned (specifically requested by the
program the processor is currently executing) or unplanned (caused by an event
that may or may not be related to the task currently executing). There are six types
of interruptions:

SVC (supervisor call) interruptions, which occur when the program issues an
SVCinstruction. An SVC isarequest for a particular system service; for
example, to open adata set (SVC 19 - OPEN), or to obtain storage (SVC 4 -
GETMAIN), or to write a message to the operator (SVC 35 - WTO/WTOR).

Chapter 6. Supervising the Execution of Work ~ 6-1

The Program Status Word

* |/Ointerruptions, which occur when the channel subsystem signals a change of
status. For example, an 1/O operation completes, an error occurs, or adevice
becomes ready.

» External interruptions, which indicate any of several events. For example, a
time interval expires, or the operator presses the interrupt key on the console,
or one processor receives a signal from another processor.

* Redtart interruptions, which occur when the operator selects the restart function
at the console or when arestart SIGP (signal processor) instruction is received
from another processor.

* Program interruptions, which are caused by program errors (for example, the
program attempts an invalid operation), page faults (the program references a
page that isnot in real storage), or requests to monitor an event.

* Machinecheck interruptions, which are caused by machine malfunctions.

The supervisor includes six first level interruption handler (FLIH) routinesto
process the six types of interruptions: an SVC FLIH, I/O FLIH, external FLIH,
restart FLIH, program FLIH, and machine check FLIH. When an interruption
occurs, the hardware saves the key information about the program that was
interrupted and, if possible, disables the processor for further interrupts of the same
type. It then routes control to the appropriate first level interruption handler
routine. The PSW is a key resource in this process.

The program status word (PSW) controls the order in which instructions are
executed and indicates the status of the system in relation to the program currently
being executed. Even though each processor has only one PSW, it is useful to think
of three types of PSWs in order to understand interruption processing. The three
PSWs are: the current PSW, new PSWs, and old PSWs.

The current PSW is the hardware location in the processor that indicates the next
instruction to be executed. It also indicates whether the processor is enabled or
disabled for 1/O interruptions, external interruptions, machine check interruptions,
and certain program interruptions. When the processor is enabled, these
interruptions can occur. When the processor is disabled, these interruptions are
ignored or remain pending. A pending interruption is processed when the unit of
work that is executing in the disabled state completes. (The processor is never
disabled for SVC, restart, certain program interruptions, and certain machine
checks.)

Thereisanew PSW and an old PSW associated with each of the six types of
interruptions. The new PSW contains the address of the first level interruption
handler routine that can process its associated interruption. If the processor is
enabled for interrupts when an interruption occurs, the MV S/ XA hardware
switches PSWs by:

1. Storing the current PSW in the old PSW associated with the type of interruption
that occurred

2. Moving the contents of the new PSW for the type of interruption that occurred
into the current PSW

6-2 MVSExtended Architecture Overview

Thelnterruption Handlers

The current PSW, which indicates the next instruction to be executed, now contains
the address of the appropriate FLIH routine to handle the interruption (see

Figure 6-1); this switch has the effect of transferring control to the appropriate first
level interruption handling routine.

New PSWs Oid PSWs
Contains address of Provides a save area for
routine within supervisor PSW that was current at
to handle interruption time of interruption
| RESTART | [RESTART |
[EXTERNAL | [EXTERNAL |

| SUPERVISOR CALL \\‘I Current PSW K,[SUPERVISOR CALL |

[PROGRAM CHECK | Hardware switches PSWs | PROGRAM CHECK |
[MACHINE CHECK | [MACHINE cHECK |
[0 | [70 |

Figure 6-1. The Use of Program Status Words (PSWSs) in Interruption Processing

Thefirst level interruption handler (FLIH) that receives control saves the status
(general registers and the old PSW) of the unit of work that was interrupted,
analyzes the interruption, enables the processor for further interruptions, and
determines the control program action required. Specifically:

» The SVCfirst level interruption handler determines the type and location of the
requested SV C routine and, if the requested routine requires that the caller be
authorized, checks that the caller has the appropriate authorization. (The
request is denied if the caller lacks the required authorization.) There are
several types of SV C routines, and each type has different execution
characteristics. For example, some types of SV C routines reside in the nucleus,
othersin the link pack area; some types can issue other SV Cs, other types
cannot. If the requested SV C routine is atype that can issue other SV Cs, the
SVC FLIH builds a control block called an SV C request block (SVRB) for the
requested routine. The SVRB is needed to save status information about the
routine so that it can be resumed after the additional SV C interruption has
been processed. After checking for proper authorization and, if necessary,
building an SVRB, the SVC FLIH passes control to the requested SVC
routine.

» Thel/Ofirst level interruption handler passes control to the input/output
supervisor (10S). 10S performs all processing for 1/0 requests and controls all
I/O error processing.

e Theexternal first level interruption handler determines the cause of the external
interruption and passes control to the appropriate external service routine.

Chapter 6. Supervising the Execution of Work ~ 6-3

6-4

» Therestart first level interruption handler routes control to the recovery

termination manager (RTM). RTM isthe focus of Chapter 10, "Recovering
From Errors."

* The machine check first level interruption handler records al machine checks

(hardware problems) and, if the machine check cannot be corrected by
hardware, calls the recovery termination manager (RTM).

* The program first level interruption handler determines the cause of the program

interruption and, depending on the cause, passes control to one of the

following:

Real storage manager (RSM), if the program interruption was caused by a
page or segment fault. RSM determines if the fault isvalid and, if it is,
starts the processing necessary to either build the page table or bring the
referenced page into real storage.

System trace (TRACE), if the program interruption was a trace table
exception. Thisindicates afull buffer condition, which system trace
handles before using another buffer. System trace is described in Chapter
9, "Monitoring System Activity,"

Generalized trace facility (GTF), if the interruption occurred as the result
of arequest to monitor aclass of events. GTF, also described in Chapter
9, "Monitoring System Activity," records the event.

Serviceability level indication processing (SLIP) if the interruption occurred
as aresult of arequest to monitor an instruction fetch, successful branch,
or storage alteration event. SLIP, described in Chapter 9, "Monitoring
System Activity," performs a diagnostic action for such an event.

A user-provided program-interruption exit routine, if the program
interruption was caused by an error in user code such as using an incorrect
address or attempting to execute privileged instructions, and the user issued
a specify program interruption element (SPIE) macro instruction to provide
an error-handling routine.

The recovery termination manager (RTM), if the program interruption was
caused by an error in system code or in user code that does not also include
SPIE.

The routine that receives control after the interruption is processed depends on
whether the interrupted unit of work was non-preemptive. A non-preemptive unit
of work can be interrupted but must receive control after the interruption is
processed. All SRBs are non-preemptive; a TCB is non-preemptiveif it is
executing a non-preemptive SVC (the installation identifies which SV Cs will be
non-preemptive during system generation). If the interrupted unit of work was
preemptive, the dispatcher receives control and determines which unit of work
should be performed next.

Figure 6-2 summarizes the processing of interruptions; for more information on the
dispatcher, see "Dispatching Work."

MV S/Extended Architecture Overview

MVS/XA
loads new PSW

Unit of Work - executing Interruption-handling Routine

« Analyzes interruption

Interruption
occurs

‘\ » Routes control to appropriate part

of control program

« Determines action required

\ Routine that Performs Requested
\ Service

Some services might require another
\ service and, therefore, cause an

interruption, which causes the supervisor
Highest Priority Ready \ cycle to be restarted.
Unit of Work

Is
interrupted unit

of work non- preemptive
?

Dispatcher

The dispatcher dispatches the highest
priority ready unit of work, which might
be the unit of work that was interrupted
or might be another task or SRB.

Figure 6-2. Summary of Interruption Processing

Creating Dispatchable Units of Work

In MV S/XA, dispatchable units of work are represented by two different control
blocks:

Task control blocks (TCBs), which represent tasks executing within an address

space, such as user programs and system programs executed to support the user
programs.

Service request blocks (SRBs), which represent requests to execute a service
routine. SRBs are typically created when one address space detects an event

Chapter 6. Supervising the Execution of Work 6-5

Task Control Blocks (TCBs)

that affects a different address space; they provide one mechanism for
communication between address spaces.

Task control blocks (TCBs) are created in response to an ATTACH macro
instruction. By issuing ATTACH, a user or system routine causes the supervisor to
begin the execution of the program specified on the ATTACH macro as a subtask
of the caller's task. As a subtask, the specified program can compete for processor
time and may use certain resources already allocated to the caller's task.

The ATTACH macro instruction causes an SVC interruption. The SVC
interruption handler branches to the ATTACH SVC routine to perform the
requested service. The ATTACH routine does the following:

» Obtains storage for anew TCB
» Placesin the new TCB information needed to control the subtask
» Placesthe new TCB on the chain of TCBsfor that address space

Branches to program management routines to locate the first program to be
executed for the new subtask and, if necessary, fetches the program from a
program library.

The region control task (RCT), which is responsible for preparing an address space
for swap-in and swap-out, is the highest priority task in an address space. All tasks
within an address space are subtasks of the RCT. The RCT's TCB is pointed to
from the address space control block extension (ASXB) and points to the next
TCB in the address space. Figure 6-3 illustrates the address space dispatching
queue of the TCBs for batch jobs, operator-started jobs, and TSO users.

6-6 MVS/Extended Architecture Overview

System Area — SQA Private Area — LSQA
Batch job
ASCB ASXB TCB TCB TCB TCB TCB
/ RCT DUMP STC INIT JOB
= -1 - — — — STEP
Operator-started job
ASCB ASXB TCB TCB TCB TCB
/ RCT DUMP STC Started
p— et P] p— .
job
TSO User
ASCB ASXB TCB TCB TCB TCB
/ RCT DUMP STC T™P
— —l —] — —
Legend:
ASCB — address space control block
ASXB — address space control block extension
DUMP — dump task
INIT — initiator
LSQA - local system queue area
RCT — region control task
SQA — system queue area
STC — started task control
TCB — task control block
T™MP — terminal monitor program

Figure 6-3. Address Space Task Control Block (TCB) Dispatching Queues

Service Request Blocks (SRBS)

An SRB represents a request to perform a service in a specified address space.
Typically, an SRB is created when one address space is executing and an event
occursthat affects a different address space.

Only supervisor state, key O functions create an SRB. They obtain storage and
initialize the control block with such things as the identity of the target address

Chapter 6. Supervising the Execution of Work ~ 6-7

Dispatching Work

space and pointers to the code that will process the request. The component
creating the SRB then issues the SCHEDUL E macro and indicates whether the
SRB has global (system wide) or local (address space wide) priority. SCHEDULE
places the SRB on the appropriate dispatching queue where it will remain until it
becomes the highest priority task on the queue.

SRBswith aglobal priority have a higher priority than that of any address space,
regardless of the actual address space in which they will be executed. SRBswith a
local priority have a priority equal to that of the address space in which they will be
executed, but higher than that of any TCB within that address space. The
assignment of global or local priority depends on the "importance” of the request;
for example, SRBsfor 1/O interruptions are scheduled at a global priority, to
minimize 1/0 delays.

SRBs are non-preemptive. Thus, if aroutine represented by an SRB is interrupted,
it will receive control after the interruption has been processed. In contrast, a
routine represented by a TCB is preemptive. If it isinterrupted, control returns to
the dispatcher when the interruption handling completes. The dispatcher then
determines what task, of all the ready tasks, executes next. Any, TCB, except one
representing atask issuing a non-preemptive SV C, can be preempted.

An SRB can execute concurrently and in a different address space from the task
that created it and issued the SCHEDUL E macro. This means, among other
things, that an SRB provides the means for asynchronous inter-address space
communication. Such communication improves the availability of resourcesin a
multiprocessing environment.

As an example, consider that, when address space A is executing, an I/0O
interruption occurs because an 1/0O operation requested by address space B has
completed. The I/O interruption handler collects the necessary information about
the interruption and creates and schedules the SRB to control the final processing
of the completed I/O operation. The I/O interruption handler then starts any
other 1/0 requests waiting for the I/O path used by the just-completed request and
can accept any additional pending interruptions. Building the SRB allows faster
re-use of the I/O path and less time when the processor is disabled for
interruptions.

The SRB identifies the routine to process the completed 1/0 request and the
address space in which the routine should execute. In the preceding example, the
SRB would be executed in address space B, because that address space had
requested the I/O operation.

Dispatching work consists of routing control to the highest priority unit of work
that is ready to execute. The dispatcher, a supervisor routine, dispatches work in
the following order:

1. Special exits. These are exits to routines that have a high priority because of
specific conditions in the system. For example, if one processor in a
tightly-coupled multiprocessing system fails, alternate CPU recovery (ACR)
will be invoked by means of a special exit to recover work that was being
executed on the failing processor.

6-8 MVSExtended Architecture Overview

2. SRBsthat have global priority. If aglobal SRB cannot be dispatched (for
example, the address space in which it will execute is swapped out), the
dispatcher reschedulesit at alocal priority.

3. Ready address spaces in order of priority. An address space is ready to execute
if it is swapped in and not waiting for some event to complete; an address
space's priority is determined by the dispatching priority specified by the user
or the installation. The address space control block (ASCB) contains the
address space's dispatching priority; ASCBs that represent ready address
spaces are queued in storage according to their dispatching priority. To select
an address space, the dispatcher selects the first ready ASCB on the chain of
ASCBs.

After selecting the highest-priority ASCB, the dispatcher first dispatches SRBs
with alocal priority that are scheduled for that address space and then TCBsin
that address space.

If there is no ready work in the system, the dispatcher loads an enabled wait PSW.

The dispatcher receives control after atask isinterrupted or becomes
non-dispatchable, after an SRB completes or is suspended, (that is, an SRB is
delayed because arequired resource is not available), and from other supervisor
routines that want higher priority work dispatched without waiting for an
interruption to occur. The dispatcher saves the status of the unit of work
relinquishing control, selects a unit of work, builds a program status word (PSW)

for the selected unit of work, and issues aload PSW (LPSW) instruction, which
causes the selected routine to receive control. That routine executes until an
interruption occurs or until the routine voluntarily gives up control (for example, by
issuing aWAIT SVC).

Serializing the Use of Resour ces

Enqueuing

The supervisor provides two techniques for serializing the use of resources:
enqueuing and locking. The primary function of these techniquesisto provide
orderly access to system resources needed by more than one user in a
multiprogramming or multiprocessing environment.

To protect system resources from unauthorized users, IBM makes available the
Resource Access Control Facility (RACF). RACF controls access by permitting
only authorized users to perform authorized actions on protected resources. These
resources include DASD data sets, DASD and tape volumes, display terminals,
system and user programs, and application program transactions.

Enqueuing is accomplished by means of the ENQ (enqueue) and DEQ (dequeue)
macro instructions, which can be used by both user and system programs; or, for
devices shared between systems, by means of the RESERVE and DEQ macro
instructions. On ENQ or RESERVE, a user specifies the name(s) of one or more
resources and requests shared or exclusive control of those resources. If the
resources are to be modified, the user must request exclusive control; if the
resources are not to be modified, the user should request shared control, which
allows the resource to be shared by other users that do not require exclusive
control. If the resource is not available, the requestor is suspended until it becomes
available. The DEQ macro instruction is used to release control of aresource.

Chapter 6. Supervising the Execution of Work 6-9

Global Resour ce Serialization

L ocking

Lock Hierarchy

The global resource serialization component of MV S/ XA processes the requests
for resources that programs issue. It serializes access to resources to protect their
integrity. An installation can connect two or more systems with

channel-to-channel (CTC) adaptersto form a global resource serialization complex
to serialize access to resources shared among the systems in the complex. Chapter
8, "Entering and Scheduling Work"illustrates the use of global resource
serialization in a multiprocessing configuration.

In acomplex without global resource serialization, a RESERVE macro instruction
applies to the entire shared DASD volume on which the resource resides; no other
system can access any resource on the volume. With a global resource serialization
complex, an installation can improve the availability of resources on shared DASD
volumes by converting RESERV Es to apply to only the requested resource; other
systems can then access other resources on the volume.

Locking serializes the use of system resources by supervisor routines and, in a
tightly-coupled multiprocessing system, by processors. A lock is simply a named
field in storage that indicates whether a resource is being used and who is using it.
In MV S/XA, there are two kinds of locks: global locks, for resources related to
more than one address space, and local locks, for resources assigned to a particular
address space. Global locks are provided for non-reusable or non-shareable
routines and various resources.

To use aresource protected by alock, a routine must first request the lock for that
resource. A part of the supervisor called the lock manager acquires and maintains
all locks. If the lock is unavailable (that is, already held by a different program or
processor), the action taken by the program or processor that requested the lock
depends on whether the lock is a spin lock or a suspend lock:

» If aspinlock isunavailable, the requesting processor continues testing the lock
until the other processor releasesit. As soon asthe lock isreleased, the
requesting processor can obtain the lock and, thus, control of the protected
resource. All of the global locks except the cross-memory-services locks are
spin locks.

» If asuspend lock is unavailable, the unit of work requesting the lock is delayed
until the lock is available; other work is dispatched on the requesting processor.
The cross-memory-services global locks and all local locks are suspend locks.

A deadlock is the situation where two users request locks held by each other and
simultaneously wait for the other to release its lock first. The result is a stalemate.

To avoid deadlocks, locks are arranged in a hierarchy, and a processor or routine
can unconditionally request only locks higher in the hierarchy than locks it
currently holds. For example, a deadlock could occur if processor 1 held lock A
and required lock B; and processor 2 held lock B and required lock A. This
situation cannot occur because locks have to be acquired in hierarchical sequence.
Assume, in the preceding example, that lock A precedes lock B in the hierarchy.
Processor 2, then, cannot unconditionally request lock A while holding lock B. It
must, instead, release lock B, request lock A, and then request lock B. Because of

6-10 MVS/Extended Architecture Overview

the hierarchy, a deadlock cannot occur. Figure 6-4 identifies the locks MV S/XA
provides and lists them in hierarchical order.

Lock Name Category Type Description (See note 1.)

RSMGL Global Spin - Real storage management global lock - serializes RSM global resources.

VSMFIX Global Spin - Virtual storage management fixed subpools lock - serializes VSM global queues.

ASM Global Spin Auxiliary storage management lock - serializes ASM resources on an address space level.

ASMGL Global Spin Auxiliary storage management global lock - serializes ASM resources on a global level.

RSMST Global Spin Real storage management steal lock - serializes RSM control blocks on an address space level
when it is not known which address space locks are currently held.

RSMCM Global Spin Real storage management common lock - serializes RSM common area resources (such as page
table entries).

RSMXM Global Spin - Real storage management cross memory lock - serializes RSM control blocks on an address
space level when serialization is needed to a second address space.

RSMAD Global Spin - Real storage management address space lock - serializes RSM control blocks on an address
space level.

RSM Global Spin Real storage management lock (shared/exclusive) - serializes RSM functions and resources on
a global level.

VSMPAG Global Spin - Virtual storage management pageable subpools lock - serializes the VSM work area for VSM
pageable subpools.

DISP Global Spin - Global dispatcher lock - serializes the ASVT and the ASCB dispatching queue.

SALLOC Global Spin - Space allocation lock - serializes receiving routines that enable a processor for an emergency
signal or malfunction alert.

IOSYNCH Global Spin 1/0 supervisor synchronization lock - serializes, using a table of lockwords, IOS resources.

I0SUCB Global Spin - 1/0 supervisor unit control block lock - serializes access and updates to the UCBs. There is one
IOSUCB lock per UCB.

SRM Global Spin - System resources management lock - serializes SRM control blocks and associated data.

TRACE Global Spin - Trace lock (shared/exclusive) - serializes the system trace buffer.

CPU Global Spin - Processor lock - provides system-recognized (legal) disablement. (See note 2.)

CMSSMF Global Suspend - System management facilities cross memory services lock - serializes SMF functions and control
blocks. (See note 3.)

CMSEQDQ Global Suspend - ENQ/DEQ cross memory services lock - serializes ENQ/DEQ functions and control blocks.
(See note 3.)

CMS Global Suspend - General cross memory services lock - serializes on more than one address space where this
serialization is not provided by one or more of the other global locks. The CMS lock provides
global serialization when enablement is required (See note 3.)

CML Local Suspend Local storage lock - serializes functions and storage within an address space other than the
home address space. There is one CML lock per address space. (See note 4.)

LOCAL Local Suspend - Local storage lock - serializes functions and storage within a local address space. There is one
LOCAL lock per address space. (See note 4.)

Notes:

1. All locks are listed hierarchical order, with RSMGL being the highest lock in the hierarchy. (See also notes 2, 3, and 4.)

2. The CPU lock has no hierarchy in respect to the other spin type locks. However, once obtained, no suspend locks can be obtained.
3. The cross memory services locks (CMSSMF CMSEQDQ, and CMS) are equal to each other in the hierarchy.

4. The CML and LOCAL locks are equal to each other in the hierarchy.

Figure 6-4. Definition and Hierarchy of Locks

Chapter 6. Supervising the Execution of Work ~ 6-11

6-12 MVS/Extended Architecture Overview

Chapter 7. Satisfying I/O Requests

An input/output (1/O) operation involves the movement of data between main
storage and an 1/O device. Input isthe movement of data from the device to main
storage. Output is the movement of datain the reverse direction: from storage to
the device. The 1/O device may be atape, a disk, printer, or atelecommunication
device (such as alocal display terminal or telecommunication control unit).

An MV S/XA system configuration can include more than 4000 1/O devices and
can run many programs concurrently. To manage the I/O operations that these
programs request, MV S/XA works with a separate processor dedicated to handling
1/O operations. The I/0O processor and its components are the channel subsystem.

MV S/XA initiates an I/O operation by signaling the channel subsystem. The
channel subsystem, executing independently of the central processor, moves data
between storage and the 1/O device. The subsystem's ability to execute
independently of the processor allows an I/O operation to overlap with central
processor activity. Thisoverlap is particularly important because an 1/0 operation
takes along time to complete compared to the time the central processor requires
to execute a series of instructions. The overlap of 1/0O operations with processor
activity is then one of the key waysthat MV S/ XA achieves efficient use of both
the central processor and the computer system's 1/O resources. Figure 7-1
illustrates the components involved in an 1/O operation.

Chapter 7. Satisfying I/0O Requests /-1

How |I/O Data M oves Through the System

7-2

MAIN STORAGE

Y

A

Processor

00

A

)

Y

Processor
02

A

[

T

T —

CHANNEL SUBSYSTEM

cu

cu

0P

Subchannels

Control Units

1/O Devices such
as DASD or tape

Figure 7-1. Components of the I/O Request

An 1/O path can either be a conventional direct line 1/O path or a
telecommunication I/O path. The conventional 1/0O path consists of main storage,

the channel subsystem, a control unit, and 1/O devices such as disks and tapes used

for local long-term storage of computer users data and programs. Output data
moves from storage to the device. Input data moves from the device to main
storage. Figure 7-2 illustrates conventional 1/0.

Data

A

DASD

Control
Unit

. Data
Channel
Sub- Storage
system

MVS/Extended Architecture Overview

Figure 7-2. Conventional Input/Output

The telecommunication /O path consists of storage, the channel subsystem, a
communications controller, adata link, a control unit, and a device (usually a
terminal). Input data moves from the terminal to the control unit to the data link.
In the data link, the data is changed by a modem (modulator/demodulator) into a
form that is transmitted over the communication line (such as atelephone line) to
the processor location. At the processor location, another modem receives the data
and convertsit back to its original form. The data then moves through the
communications controller and the channel subsystem to storage. Figure 7-3
illustrates telecommunication 1/0.

Transmitted
Data

Display

o e Received
Data
c I . Channel p
U?-,Tro L1 Modem 1 Modem |— garrlmlin}mcatnons - sub- - s:gce;:or
]
ontroller System rag
Communication
Line
|—Data Link—l

Figure 7-3. Telecommunication Input/Output

Output data uses the same path in reverse order; it moves from storage through the
channel subsystem to the communications controller. From the communications
controller, the data moves to the data link. In the data link, the data is changed by
amodem into aform that is transmitted over a communication line to the terminal
location. At the terminal location, another modem receives the data and converts it
back to its original form. The terminal at the remote location then receives the
data. Telecommunication I/O paths are used in an interactive computing
environment where terminal users work with applications (such as TSO and IMS)
that are executing on a processor at another location.

The 1/O paths in the preceding figuresillustrate, in a general way, the route data
travels within an MV S/XA system. For the channel subsystem, the term channel
path refersto a precise path of data transmission among specific components. For
either conventional or telecommunication transfer, MV S/XA allows the definition
of multiple I/O paths to asingle device. That is, there can be more than one
physical channel path to a specific device. Multiple paths enable the channel
subsystem to schedule /O requests to balance the load over physical channel paths
and devices and also to allow continued access to a device if one of the multiple
pathsisinoperative.

Figure 7-4 shows the use of multiple channel paths to devices. Data can move
between storage and disk A, disk B, and the tape device by using the path over
channel path 01 or the path over channel path 02. If an input operation is under
way from disk A through channel path 01, then channel path 02 can be used for an
input operation from disk B or the tape device without having to wait for the input
operation on disk A to complete. Data can move between storage and the
communications controller (and subsequently to terminals C, D, and E by way of

Chapter 7. Satisfying /0 Requests ~ 7-3

the data link) by using the path over channel path 01 or the path over channel path
03. If terminal C and terminal D are using channel path 03 to interact with an
application, terminal E can use another application and channel path 01 without
affecting the response time of terminal C and terminal D.

5 Channel
Path 01
- g S
& <
cu cu cu
- Disk Disk Tape
© s A B
g gy ‘ !
= o g > |Channel
= <8 |Patho2
Z T
< o3 Data
= Link
Channel Communications | :
.)
5 Path 03 Controller Vq
- 8> q
g
s I Terminal C

Figure 7-4. Multiple I/O Channel Paths

Controlling the 1/O processing for jobs where multiple pathsto an I/O device are
available is a complex process. To manage this process the channel subsystem
views groups of up to four channel paths and up to four physical control units as
logical control units. The channel subsystem controls 1/O processing (not only for
one job, but for the many jobs that run concurrently in the system) by polling the
possible channel paths to a device and assigning an available one to the next 1/0O
request on the queue for the logical control unit. Figure 7-5 illustrates the
relationship among logical control units, physical control units and channel paths.

7-4 MVS/Extended Architecture Overview

| Logical Control Unit.‘l—!

Channel I
Path 01

Physical
Control
Unit 1

I Device
A

I

I Logical Control Unit 2 ||
I Channel Channel Channel Channel |
Path 05 Path 07 Path 02 Path 04
Physical Physical |
Control Control I
Unit 2 Unit 3
Device Device Device
B Cc D

Figure 7-5. Logical Control Units

The channel subsystem identifies each device by a unique subchannel 1D number.
Usually, MV S/XA installations assign their own device number to each of the I/O
devices. The MV S/XA component that initiates I/O requests, 1/O supervisor
(109), relates these two numbers to ensure that each I/0O request is directed to the
proper device. If that device is active with a previous |OS request when the current
request is made, 10S holds the current request on a queue for that device.

The channel subsystem makes it possible for any one central processor in a
multiprocessor system to access any of the 1/O devices in the computer system.
Each processor communicates with the channel subsystem, and the channel
subsystem communicates with all of the 1/0O devices. The channel subsystem also
protects against I/O delays and bottlenecks in the event of the failure of one
processor in a multiprocessing system.

How an 1/0 Request Moves Through MVSXA

MV S/XA isaflexible operating system that includes services that allow
programmers to ignore the many details of 1/0O operations or to bypass or add to
some phases of the I/O operations. Figure 7-6 illustrates the MV S/ XA 1/0
services - access methods, an 10OS driver, and 10S - and shows how they relate to
one another when an 1/0 request is made by a user program. The discussion that
follows describes how these services function in the typical situation where a
programmer makes an 1/0 request by means of an access method that uses the
EXCP processor as an |OS driver.

Chapter 7. Satisfying 1/0 Requests 7-5

User Program

S A
0]
F
T @
W Access Method
A
R ©
E h

\

EXCP Processor
A
Y
108
A
|- ---------------------- S ettt

H \
A
4 (5]
D Channel Subsystem
W
A
R
E

Figure 7-6. MV S/XA 1/O Services

(1) The user program begins an 1/O operation by issuing an OPEN macro
instruction and asking for either input or output of data using an I/O macro
instruction like, GET, PUT, READ, or WRITE, and specifying atarget 1/0 device.
An /0O macro instruction invokes an access method that interprets the 1/0 request
and determines which system resources are needed to satisfy the request. The user
program could bypass the access method, but it would then need to consider the
many details of the 1/O operation, such as the transmission characteristics of the
path over which the data is to move, and the order in which to move the data
between the I/O device and storage. The program would also have to create a

7-6 MVS/Extended Architecture Overview

channel program, composed of instructions for the channel subsystem, and invoke
the EXCP processor, an 10S driver, to handle the next phase of the 1/O process.

(2) There are several MV S/XA access methods, each of which offers differing
functionsto the user program. These access methods fall into three categories:
conventional access methods, telecommunication access methods, and the virtual
storage access method (VSAM).

Conventional access methods move data between storage and 1/O devices such as
disks or tape; the program uses the 1/0 device to hold data the program would not
normally keep in main storage. Telecommunication access methods move data over
telecommunication 1/0 paths between storage and 1/O devices such as display
terminals; the 1/0 device is normally used to communicate and interact with the
program rather than to hold data. The selection of an access method in either
category (conventional or telecommunication) depends on how the datais currently
organized and how the program plans to access it (randomly or sequentially, for
example). VSAM is particularly designed for use with virtual storage. The final
section of this chapter describes the various access methods in detail.

(3) Torequest the movement of data, either the access method or the user program
presents information about the operation to the EXCP processor by issuing the
EXCP macro instruction. EXCP translates this information into a format
understandabl e to the channel subsystem and invokes the 1/0 supervisor (10S).

(4) 10S places the request for 1/0 on the queue for the chosen 1/O device, if
necessary, and initiates the channel subsystem. Then, the central processor usually
does other work until the channel subsystem indicates that the I/O operation has
compl eted.

(5) The channel subsystem selects the best channel path for data transmission
between storage and the device and controls the movement of data. When 1/O is
complete, the channel subsystem signals the completion by causing an 1/0O
interruption and indicating exactly what occurred during the 1/O operation.

(6) 10S evaluates the interruption, and returns control to EXCP.

(7) EXCPindicatesthat 1/O is complete by posting the event control block (ECB)
(created by the access method) and calling the dispatcher.

(8) When appropriate, the dispatcher re-activates the access method.

(9) The access method returns control to the user program which can then continue
its processing.

A Closer Look at How an 1/0 Request Moves Through MV S/XA

As MV S/XA processes an |/0 request, several software components communicate
using MV S/ XA macro instructions and programming conventions. Both the
software and the hardware rely upon information stored in control blocks as the
1/0 process progresses. The following sections describe the role of each
component involved in an I/O request and the control blocks and instructions they
use.

Chapter 7. Satisfying I/O Requests ~ 7-7

User Program Functions

OPEN Processing

The user program that issues the 1/O request must describe the data set to be used
and the specific operation to be performed on the data set. It suppliesthis
information in a DD statement in the program's JCL and in a data control block
(DCB), which the program creates. When the program issues an OPEN macro
instruction, the DCB isfilled in with all the relevant data set information.

When the user program issues an OPEN macro instruction, it invokes the system
OPEN routines. These routines merge information from various sources to build a
complete description of the data set. The information used comes from:

* The job file control block (JFCB), which contains data set and device
information from the DD statement included in the JCL for the user program.
After the device for the the data set has been allocated, the task 1/0 table
(TIOT) entry points to the unit control block (UCB) for the required device
and to the JFCB.

The data set control block (DSCB) that describes the data set in great detail. It
indicates, for example, how the data is organized, whether it it password
protected, and when it was last referenced. For data sets on a direct access
device, for example, the DSCB comes from the volume table of contents
(VTOC) for the volume containing the data set.

The data control block (DCB) built by the user's program. When OPEN
processing begins, the DCB contains information about the data set
organization and location that can be augmented by information from the JCL
for the current job step.

When OPEN processing is complete, the DCB contains all of the information
about the data set merged during OPEN processing. This information includes
the address of the access method routines which usually perform 1/0
operations. VSAM, and some subsystems use an equivalent of the DCB
known as the ACB, or access method control block.

The OPEN routines can acquire the information they need from any of these
sources, giving the user a great deal of flexibility in specifying 1/O operations. To
achieve device independence, for example, a user can specify a minimal amount of
DCB information in the program and supply the rest of the information on the JCL
for a particular execution of the program.

The OPEN routines build a data extent block (DEB), which, for DASD, specifies
the device on which the volume is mounted and the physical extent of the data set
on that volume. If the user program needs access method appendages or user exits
to perform such functions as analyzing data errors or processing end-of-data
conditions, the address of the user program and the required routines are also built
into the DEB. Figure 7-7 summarizes the relationships the OPEN routines
establish between the control blocks and between the user program and the access
method.

7-8 MVS/Extended Architecture Overview

Requesting 1/0

Access Method Exit Appendages

A
DEB
UCB
Y \
Access Access
Method Method

Appendages

Figure 7-7. Relationships Established by OPEN

Once the data set to be used for the operation is successfully opened, it isready to
be used. The program can then issue an I/O request.

To transfer data between a data area in storage and an 1/O device using an access
method, the user program issues a macro instruction. GET and PUT are used for
queued input and output requests; the access method does not return control to the
user program until the 1/O operation is complete. READ and WRITE are used for
basic input and output requests; control returns to the user program once the I/0
operation isinitiated, and the user program must test for the completion of the
operation.

Either type of request causes a branch to the access method. If the access method
cannot satisfy the request because of a specification error in the request, the access
method immediately returns control to the user with indicators set to describe the
nature of the error. If the request was made correctly, processing of the I/O
operation continues as described later in this chapter under "Access Method
Functions."

Appendages are routines that enable an access method (or a user program
functioning as an access method) to get control at various points during the
execution of an I/O operation. Some are entered before execution of the 1/0O
operation, others after execution, and one, the program controlled interrupt (PCI)
appendage, enables a an access method to get control during an 1/O operation in
order to modify the channel program while it is executing.

Chapter 7. Satisfying I1/0O Requests 7-9

CL OSE Processing

Access M ethod Functions

To establish these exits, authorized routines from authorized libraries identified
during system generation can be loaded during OPEN processing for authorized
users. The DEB contains the pointers to the appendage routines.

When all of the user program's requests for 1/O are complete, the program must
invoke the system CL OSE routines by issuing the CLOSE macro. These routines
complete the final steps of the 1/0O operation, such as writing out the contents of
the file buffer and marking the end of the file data. They also modify the DCB to
break the logical connections between control blocks and between the user
program and the access method. The CLOSE routines free any storage acquired
by the OPEN routines.

Once the data set is closed, the user program can free the data set and the 1/O
device from its control with explicit JCL or program instructions. Or,the user can
rely upon the the system to automatically free them at the end of the job step.

For DASD, the CLOSE routines also rewrite the DSCB for the data set to the
volume. Because the DSCB can be modified during OPEN processing, a user
program can change the specifications for the data set by opening and closing it.

Figure 7-8 summarizes the control blocks used as input to the CL OSE routines, the
functions the CLOSE routines perform, and the control blocks that are modified
during CLOSE processing.

Input Process Output

e Write DSCB*

o Restore DCB
DEB

o Release storage
acquired by OPEN

l I

*For DASD data sets

Figure 7-8. CLOSE Processing Summary

Because the OPEN routines place the address of the required access method in the
DCB for the data set, the access method gets control when the user program issues
an 1/0 macro instruction. The access method uses the control block structure built
by the OPEN routines to build control blocks for the EXCP processor and a
channel program for the 1/0 request. The access method then issues an EXCP
macro instruction to pass control to the EXCP processor.

7-10 MVS/Extended Architecture Overview

Building the Channel Program

Building Control Blocks

Invoking EXCP

The access method builds a channel program for the I/O operation. A channel
program consists of a string of channel command words (CCWSs) that describe the
operation to the channel subsystem. Channel command words provide the channel
subsystem with all of the information that it needs to perform the operation, such
as the address of the data area and the number of bytes of datato be transferred.

The access method builds two control blocks: the input/output block (10B) and
the event control block (ECB). The IOB points to the DCB; through the DCB, the
EXCP processor can access the contents of the DEB and the UCB. The IOB also
points to the ECB and to the channel program. The |OB thus contains pointers to
all of the information EXCP and 10S need about the 1/0 request.

EXCP posts the ECB when the I/O operation is complete. The access method or
the user program can thus test the contents of the ECB to find the outcome of the
1/O operation.

When the IOB and ECB have been built and initialized and the channel program
has been created, the access method issues an EXCP macro instruction. The
EXCP macro instruction causes an SV C interruption to occur. As aresult of this
interruption, the SV C interruption handler causes control to be passed to the
EXCP processor.

Figure 7-9 summarizes the control block structure, the channel program built, and
the pointers the access method establishes before it passes control to the EXCP
processor.

Access Method EXCP
Processor
EXCP L
SVC —
d
ioB|] |pcB | | DEB | ucs
ECB
y
Channel
Program

Figure 7-9. Control Block Structure for the EXCP Processor

Chapter 7. Satisfying /O Requests ~ 7-11

EXCP and |OS Functions

Control returns to the access method when EXCP has sent the request to 10S. If
the request used a GET or PUT macro instruction (queued access technique), the
access method issues a WAIT macro against the ECB for the operation. In this
case, the access method waits until the ECB is posted complete, and then it returns
control to the user program. If the request used a READ or WRITE macro
instruction (basic access technique), the access method returns control to the user
program, which issues the WAIT macro instruction against the ECB and waits until
the request is completed.

I0S is the interface between I/O requests from system components and the
channel subsystem. EXCP, and other 1/O drivers, pass control to 10S, and I0S, in
turn, passes control to the subsystem by issuing the Start Subchannel (SSCH)
instruction. |OS monitors the progress of each 1/O request and the status of the
I/0O devices. It notifiesits drivers of successful completion of arequest. And, if
errors occur in the channel subsystem, 10S initiates appropriate recovery actions.
Because the standard access methods use the execute channel program (EXCP)
processor as an interface to 10S, this chapter describes the relationship between
IOS and the EXCP processor.

Figure 7-10 shows some other |OS drivers that meet the special needs of various
|OS users.

10S USER DRIVER 108
IUser Program
\
| Access Method EXCP
[iEs2
e
RSM | ASM »
VSAM
[vsam —"""| sp)
Program »| FETCH >—- 108
Manager
[vram
FE » oLTEP |
Diagnostics
——]
[ess F———s mss]

Figure 7-10. Some 10S Drivers

7-12 MVS/Extended Architecture Overview

EXCP Processor Front End

IOS1/0 Initiation

The EXCP processor has three major parts: front end, exit processing, and back
end. These parts function in response to the needs of the I/O request to interact
with the three major parts of 10S: I/O initiation, I/O interruption handling, and
post status. The EXCP processor, like other 10S drivers, is separate from 10S,
acting primarily as an interface between the access method and 10S. However,
because the drivers and 10S work together to process a request, their functions are
presented in chronological order to show the steps involved in satisfying asingle
1/0 request.

EXCP and |OS communicate by means of the 1/O supervisor block (I0SB).
Created by EXCP, the IOSB contains information needed to start an 1/0
operation such as:

» The address of the UCB for the device required by the 1/O operation
» The address of the channel program translated by EXCP.

Most user programs and the standard access methods run with virtual addresses.
Thus, user data areas, control blocks, and the channel programs built by the
standard access methods are in virtual storage, use virtual addresses, and are
pageable. However, the channel subsystem transfers data into and out of real
storage locations. Therefore, the data areas, the control blocks, and the channel
program for the 1/O operation must be fixed and use real addresses. User
programs running in virtual storage use the EXCP macro to invoke EXCP. EXCP
translates the channel program and data areas to real addresses and performs page
fixing (marks the pages as not available for page-out). Users that invoke EXCP
with the EXCPVR macro provide a channel program with real addresses but use
the EXCP page fixing functions.

Usersthat runin areal region do not require address translation or page fixing.
The EXCP processor recognizes such a user and bypasses the address translation
and page fixing functions.

Whether or not it performs address translation and page fixing, the EXCP front
end processing constructs the control blocks |OS requires and issuesa STARTIO
macro instruction to activate |OS.

IOS communicates with the channel subsystem by means of instructions like SSCH
(Start Subchannel). The channel subsystem communicates with 10S by means of
I/O interruptions. Before passing a request to the channel subsystem, 10S disables
the current central processor for 1/O and external interruptions and builds an 1/0
queue (10Q) control block for the device requested. It also isolates the device
from other 1/0O requests by obtaining the appropriate unit control block (UCB)
lock.

I0S verifies that the subchannel for the device is usable and creates the operation
request block (ORB) containing information the channel subsystem needs to
process the /O request. This information includes the address of the channel
program and 1/O operation control information. When 10S invokes the channel
subsystem by issuing the SSCH instruction, it gives the address of the ORB as an
instruction operand.

Chapter 7. Satisfying 1/0 Requests 7-13

Channel Subsystem Functions

[OS Interruption Handling

EXCP Exit Processing

The channel subsystem executes the channel program, transfers data, updates
control blocks, and when the 1/O operation is complete, posts an VO interruption.
The subsystem places information about the status of the device in the subchannel
information block (SCHIB) and about the completed I/O request in the interrupt
response block (IRB). 10S uses the information in the IRB to determine what
action to take as a result of the interruption.

The channel subsystem posts both solicited and unsolicited interruptions. Solicited
interruptions result from an active I/O request on a subchannel and occur when:

1. ThePCI bit in one of the channel command words of the channel program
indicates a branch to a user appendage.

2. Thel/O operation completes (successfully or unsuccessfully).
Unsolicited interruptions are not related to an active 1/O request and occur when:

1. A device changes from the not-ready to ready state.
2. A terminal user presses the attention key.

If the interruption is solicited, 10S returns control to EXCP exit processing. If the
interruption is unsolicited, |0S makes tests to determine how best to handle it.

If necessary, |OS can force a device offline by boxing which isreturning 1/0
requests for the device to the driver as permanent errors.

| OS operates to maintain system availability by monitoring the subchannels for:
+ Hotl/O

A Hot 1/O condition is a hardware malfunction that causes repeated
unsolicited interruptions from a device. IOS will either try to clear the
subchannel (with the Clear Subchannel, (CSCH) instruction), take the device
offline, or initiate channel path recovery routines.

* Missing Interruption Handler

At initialization, missing interruption handler (MIH) control statementsin
SYS1.PARMLIB assign atimeinterval at which |OS checks the device for
interruptions. If an interruption has not occurred when expected, |OS tries to
resolve the missing interruption and make the device usable again. It may clear
the subchannel, terminate the operation, or try the operation again.

During interruption processing, |OS also recognizes and gives control to driver exits
specified in the IOSB. EXCP will, in turn, give control to access method
appendages provided in the DEB.

Once an interruption has been evaluated, 10S issues the SCHEDUL E macro to
schedule the service request block (SRB) under which the 10S post status routines
run. The post status routines handle the final processing of the I/O operation.
After scheduling the post status routines, 10S issues atest pending interrupt

7-14 MVS/Extended Architecture Overview

10S Post Status

EXCP Processor Back End

Summary

instruction (TPI) to seeif other I/O interruptions have occurred while the current
one was being processed. If so, processing of the new interruption begins
immediately. This action saves the time required to enable the processor for I/0
interruptions, and then immediately disable it again.

MV S/ XA monitors the number of TPIsissued and, if it becomes excessive, the
system resource manager (SRM), might enable another processor for 1/0
interruptions. Thisfacility is known as selective processor enablement.

The 10S post status routines complete the processing of an 1/0 request after the
central processor has been enabled for interruptions and after EXCP exit
processing completes. 10S determines what processing should be done by
examining information in the |OSB about the completion of the I/O request. The
post status processing can include:

» Invoking an EXCP processor exit and then returning control to the EXCP back
end

» Invoking error recovery procedures (ERPs)

* Returning control to the EXCP back end

The back end of EXCP issues a POST macro to post the status of the completed
operation in the ECB and returns control to the dispatcher. The access method or
user program that is waiting for the ECB to be posted then becomes ready for
execution and is eventually dispatched. Control returns to the user program or
access method at the instruction immediately following the WAIT for the
completion of the I/O request.

Figure 7-11 presents an overview of the interaction between the user program, the
access method, the EXCP processor, |10S, and the channel subsystem. It shows the
function each performs in processing the I/O request, the instructions that pass
control from step to step, and the control blocks that permit the communication of
information about the 1/O request.

Chapter 7. Satisfying /0O Requests 7-15

USER PROGRAM ACCESS METHOD EXCP 108 CHANNEL SUBSYSTEM
OPEN
Request I/O - Create - Translate —» Queue Execute
Channel Channel Request Channel
Program Program On Device Program
GET/PUT —— EXCP STARTIO SSCH
10Q
|
DCB 108 10SB ORB Y
Transfer
| I I Data
DEB ECB SCHIB
| |
uce IRB
Y
Continue ~— WAIT - POST -+ Process ~— INTERRUPT
Processing for the Interruption
ECB ECB
l Channel Yes
RETURN DISPATCHER Subsystem
Error
?
Recovery
Processing
CLOSE

Figure 7-11. MV S/XA 1/0O Processing

Virtual Input/Output (VIO)

As ameans of improving system performance by eliminating much of the overhead
and time required to allocate a device and move data physically between main
storage and an 1/O device, MV S/XA provides virtual input/output (VI1O). As
described earlier, a physical input/output operation reads data from or writes data
to adata set on an 1/O device. In contrast, avirtual input/output (V10) operation
uses the system paging routines to transfer data. V1O can only be used for
temporary data sets that store data for the duration of the current job; it uses the
system paging routines to transfer datainto and out of a page data set.

Touse VIO, an installation specifies one or more 1/O unit names for VIO at

system generation time. Then, a user program or access method can build a
channel program to send data to a system-named temporary data set on a unit that

7-16 MVS/Extended Architecture Overview

was specified for VIO. The EXCP processor intercepts such a channel program
and branchesto VIO instead of invoking |OS to transfer the data over a channel to
adevice. VIO uses the move instruction to move that data from the channel
program buffersto a special buffer in the user's address space. This special buffer
is called awindow.

The window contains enough contiguous virtual storage pagesto hold all of the
datathat could be placed on atrack for areal device. For example, a 3330 or 2305
track requires a four-page window. Figure 7-12 shows the channel program buffer
and the V1O window.

User's
0 - Address » 2G

Space

€8 8 -

-] 5 s = I

5a @ 3 |

1

1

|

Move Long
Instruction

Figure 7-12. VIO Window

When the user program or access method determines that the track isfull, it builds
another channel program to place data on a second track. When V10O detects this
track switch, it writes the contents of the window to a page data set, using the
system paging routines. The system keeps VIO data set pages in real storage after
this page-out, whenever possible. VIO then disconnects the window from the
frames that contain the VIO data set pages. When VIO moves new data (the
second track) to the window, a page fault occurs, causing fresh framesto be
assigned to the window.

Asthe data set is created and auxiliary storage assigned, the system keeps track of
the locations of each page of the VIO data set. The paging data set slots, like the
real storage frames, are not necessarily contiguous; they are allocated dynamically
throughout auxiliary storage as the data set is used.

When dataisto be retrieved from the V1O data set, V10 locates the pages that
contain the required data. If the datais not currently in the window, V1O changes
the appropriate external page table entries to point to the required pagesin
auxiliary storage and turns on the invalid bit in the page table entries for the pages
in the window. Then VIO usesthe MV CL instruction to move data from the
window to the channel program buffers. This instruction causes a page fault, and
the proper page is either reclaimed or brought into real storage and made
addressabl e through the window.

Chapter 7. Satisfying 1/0 Requests ~ 7-17

Virtual Fetch

Access M ethods

Access Techniques

Thus, VIO uses paging rather than explicit I/0 to transfer data. VIO eliminates
the channel program translation and page fixing done by the EXCP driver as well

as some device allocation and data management overhead. It also provides
dynamic allocation of DASD space as it is needed. Another advantage of VIO is
that the data set can remain in real storage after it is created because RSM attempts
to keep the pagesin real storage aslong as possible.

Virtual fetch, like VIO, is a means of improving system performance. Its goals are
to streamline the process of 1oading modules and reduce the contention for channel
paths to I/O devices.

At system initialization time, a virtual fetch address space can be created containing
adirectory that points to ready-to-load modules which, when they are needed, must
be retrieved as quickly as possible. These modules are stored in special virtual

fetch data sets on a DASD volumein an "optimized" format that minimizes the
time needed to load and pass control to them. In a manner similar to VIO, virtual
fetch creates avirtual storage window in the user's address space equivalent to the
size of the load module so that a complete module can be loaded in one operation.
Jobs in users address spaces use cross memory services to read the virtual fetch
directory in the virtual fetch address space.

Virtual fetch is useful for modulesthat are part of interactive applications, such as
the Information Management System (IMS), where users query data files. Storing
these modules in a virtual fetch data set not only reduces the time for loading them
but also minimizes the competition for channel paths between the code and its
data. The time needed to respond to a user request is minimized.

An access method is a data management routine that moves data between storage
and an I/O device in response to requests made by a program. With an access
method, the program is insulated from 1/O details and need concern itself only with
using the proper access method to meet its needs. Although the access method
handles the actual 1/0 operation, the program using the access method still needs
to be concerned with the organization of the data and the access technique the
access method uses to move the data.

There are two techniques a program can use to access the records in a data set or
the contents of a message: the queued access technique or the basic access
technique. Some data sets can be accessed by either technique. The access
methods that support basic access and queued access techniques are logically
connected to the data when the program issues the OPEN macro instruction.

The queued access technique is used when the sequence in which records are to be
be processed is known to the access method. The system can anticipate which
records are needed and make them available. When an output buffer isfull, the
access method writes them to auxiliary storage; when an input buffer is empty, the
access method refillsiit.

With queued access, the program uses the GET and PUT macro instructions to
transfer data. The access method automatically groups records or messages in
anticipation of future 1/O requests. Records or messages are then generally
available when needed. Also, the access method does not return control to the

7-18 MVSExtended Architecture Overview

Access Method Categories

Conventional Access Methods

program that uses the GET and PUT macro instructions until the requested 1/0
operation has completed.

The basic access technique is used when no assumptions can be made beforehand
about the sequence in which records are to be processed. The access method does
not read or write arecord to an 1/O buffer until the program makes the 1/0
request.

With basic access, the program uses the READ and WRITE macro instructions to
transfer data. The basic technique allows access to any records in the data set or
messages from a telecommunications device. No grouping of records or messages
takes place. No anticipation of future 1/O requests occurs. Also, the program that
uses the READ and WRITE macro instructions must test for the completion of the
1/O operation because the access method returns control to the program before the
1/O operation is compl eted.

The access methods can be viewed as falling into three categories: the
conventional access methods, the telecommunication access methods, and the
virtual storage access method.

Conventional access methods move datathat residesin a data set. A data set isa
collection of related records that are associated with a particular device or group of
devices. If the device is atape or a disk, the data set occupies a specific areaon a
volume mounted on the device drive. An MV S/XA data set can be organized in
one of four ways:

» Sequential. Records are stored and retrieved according to their physical order
within the data set.

» Indexed sequential. Records are physically ordered according to akey. An
index or set of indexes maintained by the access method gives access to the
records. Indexed sequential data sets must reside on a direct access device.

» Direct. Therecordsin the data set, which must be on a direct access volume,
can be organized in any way that meets the user's needs. Records are stored
and retrieved according to the address of each record within the data set.

» Partitioned. The data set, which must be on a direct access volume, consists of
members. A member is an independent group of sequentially-organized
records that is accessed through its name in the directory of the data set.
Partitioned data sets are generally used to store libraries of similar things, such
as programs, macros, or procedures.

Access methods are usually identified by the technique they employ and the type of
data organization to which they apply. For example, QSAM, the queued sequential
access method, uses the queued access technique to retrieve sequentially organized
records. MV S/XA supports the following conventional access methods:

» Basic sequential access method (BSAM). Records in a data set processed by

BSAM are sequentially organized and are stored and retrieved in physical
blocks. The READ and WRITE macro instructions initiate I/O operations.

Chapter 7. Satisfying I/0 Requests ~ 7-19

The user's program must test for completion of the operation and perform any
required blocking or deblocking.

* Queued sequential access method (QSAM). Records in a data set processed by
QSAM are stored and retrieved as logical records; QSAM handles any physical
blocking or deblocking required. On input, QSAM anticipates the need for a
record based on its physical order; normally, the desired record isin storage,
ready for use, before the request for it is made. On output, QSAM holds the
logical recordsin abuffer and performs physical output only when the buffer is
filled.

« Basicdirect accessmethod (BDAM). Records in a data set processed by
BDAM can be organized in any manner chosen by the programmer. The data
set must reside on one or more direct access volumes. Records are stored and
retrieved by actual or relative addresses within the data set.

* Indexed sequential access method (ISAM). Recordsin a data set processed by
ISAM are arranged in sequential order according to the contents of akey.
ISAM maintains an index structure that is used to locate a particular record.
Access to the records can be either sequential (QISAM) or direct (BISAM).
Both the data set and the indexes must reside on a DASD volume.

» Basic partitioned access method (BPAM). A data set processed by BPAM
consists of anumber of members and a directory that holds the name and
location of each member. A member contains a group of records that are
organized sequentially. BPAM maintains and accesses the directory; once
BPAM locates the desired member, the records within the member are
processed by BSAM or QSAM. The data set, including the directory, must
reside on aDASD volume.

Telecommunication Access M ethods

7-20

Telecommunication access methods move data as messages. A messageisa
collection of related pieces of data sent and received as a single unit between the
remote device and storage. If the remote device is an interactive terminal, the data
in the message is the data the terminal user enters at the keyboard and sends to the
application, or the data that the application sends to the terminal for display or
printing. The terminal or access method turns this data into a message by
embedding in it standard communications line control information, and the modems
further convert the message characters into a form suitable for transmission over
the data link.

MV S/XA provides three access methods for moving data over telecommunication
1/0 paths between storage and the I/O device:

» Basictelecommunication access method (BTAM). The READ and WRITE
macro instructions move messages between storage and the device. BTAM
manages the messages it processes across al the various communication lines
being used.

e Telecommunication access method (TCAM). The GET or READ macro
instructions and the PUT or WRITE macro instructions move messages
between storage and the device. TCAM allows an application to perform its
own message routing, message editing, and error checking.

MV S/Extended Architecture Overview

* Virtual telecommunication access method (VTAM). Data transfer between the
application and the terminal occursin either record mode or basic mode. In
record mode, the application issues SEND and RECEIVE macro instructions to
transmit data between the terminal and storage. In basic mode, the application
issues READ and WRITE macro instructions to transmit messages between the
terminal and storage.

VTAM isthe primary access method used to support the system network
architecture (SNA), an overall system definition of the functional responsibilities of
telecommunication system components upon which new teleprocessing applications
can be planned and implemented.

Virtual Storage Access Method (VSAM)

The virtual storage access method (VSAM) is specifically designed to take
advantage of virtual storage. VSAM isfor accessto DASD data and runsin virtual
storage and uses virtual storage to buffer I/O operations. VSAM is one access
method that does not use the EXCP processor.

VSAM employs modified queued and basic access techniques and can process three
types of data sets: key-sequenced, entry-sequenced, and relative record. The
order in which the data set isinitially loaded and updated is different for each type.

For a key-sequenced data set, records are loaded, as the name implies, in key
sequence. Each record must have a key, and the ordering of the recordsis
determined by the collating sequence of the keys. Any new records subsequently
added to the data set are added in key sequence.

For an entry-sequenced data set, records are loaded in sequential order asthey are
entered. New records are added at the end of the data set.

For arelative record data set, records are loaded according to arelative record
number that can be assigned either by VSAM or by the user program. When
VSAM assigns the relative record number, new records are added at the end of the
data set. When the user program assigns the relative record number, new records
can be added in relative record number sequence.

Chapter 7. Satisfying 1/0 Requests ~ 7-21

7-22 MV S/Extended Architecture Overview

Chapter 8. Entering and Scheduling Work

MV S/XA processes an installation's workload as jobs. A job can be viewed as a
series of job control language (JCL) statements. JCL identifies the program to
run, and information such as what data sets, devices, or other system resources the
job needs when it runs. The input data needed by a job may be included with its
JCL, or the JCL may refer to data in existing data sets.

A collection of jobs presented to MV S/ XA inthisway is called an input stream.
Each user classifies ajob in an input stream by assigning it ajob class. A job class
is defined by the installation. Jobs of similar characteristics and processing
requirements are generally assigned to the same job class. For example,
long-running data processing programs may reguire setting up many DASD or tape
volumes and disrupt the turnaround time for a daily workload such as invoice and
accounts receivable processing. The long-running jobs can be assigned to asingle
job class, and MV S/XA can process them when the system is not busy and when
the resources they need are available.

A user also classifies each job's output by output class. An output class, whichis
defined by the installation, is used to describe the output on local or remote
printers or punches or to schedule output through the subsystem interface.
Grouping output with similar characteristics by output class allows MV S/ XA to
keep the existing system output devices as active as possible.

Other installation-specified job characteristics al'so help MV S/ XA use system
resources effectively. A job's priority is an important one. If MV S/ XA knows the
priority of each job, it can order its processing of jobs, running high priority jobs
before low priority jobs.

Therole of the Job Entry Subsystem

For reasons such as the efficient use of system resources, MV S/XA breaks a job
into tasks and processes each task separately. At any point in time, the computer
system resources are busy processing the tasks for various jobs. Other tasks are
queued awaiting resources. Actually, MV S/XA divides the management of jobs
and resources between the job entry subsystem and MV S/ XA components.
Generally speaking, the job entry subsystem manages jobs before and after
execution; MV S/ XA manages them during execution.

Thus, an MV S/XA installation requires ajob entry subsystem (JES) in order to
process jobs. Its function isto screen jobs before admitting them to the system and
to handle their termination when processing is done. JES ensures that the job
request has been properly made and tranglates it to the correct form and placesin
the right category for processing under MV S/XA.

The job entry subsystem reads an input stream. It reads each job and placesit on a
direct access device (or devices) known as the spool device. SPOOLing, or
simultaneous peripheral operations on-line, is the temporary storing of jobs and
job-related data in intermediate stages of processing so that they are readily
accessible. Because each job has ajob class, priority, and output class, the job
entry subsystem selects jobs from the spool device for execution in away that
encourages the effective use of other system resources.

This chapter describes in more detail what the job entry subsystem does, how it
ensures that system resources are allocated to the job, and how it works in various

Chapter 8. Entering and Scheduling Work ~ 8-1

MV S/ XA environments. The way MV S/XA specifically controls ajob onceit is
selected for execution is described in Chapter 6, " Supervising the Execution of
Work."

Job Entry/Output Processing

Entry

8-2

Even though each MV S/XA system uses only one job entry subsystem, there are
actually two IBM job entry subsystems available: JES2 and JES3. They differ in
three important respects: how they select ajob to be scheduled for execution, how
they allocate resources for ajob, and how they control the spool in multiprocessing
systems. These differences are described in more detail as this chapter proceeds.

Job entry subsystem processing includes the entry and output of jobs and occursin
Six stages:

* Entry

» Conversion/Interpretation

» Deviceallocation

» Scheduling ajob for execution
e Output

* Purge

The following descriptions of the stages of job entry and job output processing
generally apply to either MV S/XA job entry subsystem. When necessary, they
indicate any processing uniquely performed by either JES2 or JES3.

The job entry subsystem reads an input stream from a device such as a card reader,
remote terminal, another MVS or MV S/XA system, tape drive, or direct access
device.

Users at remote work stations as many as hundreds of miles from the job entry
subsystem can submit jobs by means of remote job entry (RJE). A work station
may be asingle /0O device, a number of separate devices, or one of a number of
allowable non-system/370 processors with their devices. The job entry subsystem
can write the output of aremotely submitted job on local devices or transmit it to
any work station connected to the job entry subsystem.

There are two methods for RJE communication: Binary synchronous
communication (BSC), where each device at awork station needs a separate
communication line; and system network ar chitecture (SNA) , where many devices
can share aline. JES2 and JES3 use both BSC and SNA for remote job
processing.

Jobs, themselves, can create input streams. Rather than being entered from a
device, job-created input streams are processed by a JES internal reader program.
An internal reader includes a special data set that other programs can use to submit
jobs, control statements, and commands to the job entry subsystem. Any job
executing in MV S/XA can use an internal reader to pass an input stream to the job
entry subsystem, and the job entry subsystem can receive multiple jobs
concurrently through multiple internal readers.

MV S/Extended Architecture Overview

Conversion /Interpretation

Device Allocation

During system initialization, for example, MV S/XA uses two internal readers, to
pass the JCL for started tasks, MOUNT commands, and TSO LOGON requests to
the job entry subsystem. They are:

» STCINRDR, which the started task control (STC) routine uses to process a
START or MOUNT command. When starting VTAM, for example, STC
creates the JCL to run the VTAM procedure and passes this JCL to the job
entry subsystem through the STCINRDR internal reader.

* TSOINRDR, which is used by the TSO LOGON command to initiate a TSO
terminal session. The LOGON command generates a job identifying the user's
logon procedure.. The job entry subsystem reads this job from the TSOINRDR
internal reader.

Asthe job entry subsystem reads the input stream, it assignsajob ID to each job
and places each job's JCL, optional JES control statements, and input datainto
spool data sets. Jobs are then selected from the spool for processing and
subsequent execution.

Batch jobs are selected by the job entry subsystem in response to request for work
from the initiator function of the MV S/XA job scheduler. They run in the
initiator's address space. Jobs created by TSO LOGON, the MOUNT command,
or the START command are selected for processing when they are entered by a
process known as demand select. These jobs run in their own address spaces. No
matter how they are selected, and regardless of the address space in which they
run, once they have been selected, al jobs are processed in much the same way.

The job entry subsystem uses a converter program to analyze each job's JCL
statements. The converter takes the job's JCL, mergesit with JCL from a
procedure library (usually SY S1.PROCLIB), and converts the composite JCL into
internal text (aform of datathat the job entry subsystem and the job scheduler
functions of MV S/ XA both recognize). If the converter detects any syntactic
errorsin the JCL, it issues diagnostic messages and places the job on the output
queue; the job won't be selected to run.

If the job has no syntactic errors, JES2 stores the internal text in a spool data set
and queues the job for execution according to its priority within its job class. When
JES2 finally selectsajob for execution by MV S/ XA, the interpreter function will
further analyze the JCL and build control blocks. JES3, in contrast, invokes the
interpreter at the outset and stores both the internal text and control blocksin the
spool data set. JES3 may also perform additional processing before scheduling the
job for execution. The sections that follow explain when this occurs.

Most jobs have auxiliary storage requirements. That is, ajob generally needsto
use I/O devices, such as tapes or DASDs, and data sets when it runs. MV S/XA
assigns these resources to jobs through a function called device allocation. Device
allocation uses the information in the job's JCL statements to assign the proper
resources — devices, volumes, and data sets — to the job.

Each job's JCL statements identify the job (JOB statement), each job step within

the job (EXEC statement), and the data sets to be used by the job (DD
statements). A job can have one step (single EXEC statement) or multiple steps

Chapter 8. Entering and Scheduling Work 8-3

Job Step Allocation

(multiple EXEC statements). Each EXEC statement is normally followed by DD
statements that identify the data sets that are to be allocated for use by the job
step. The parameters on the DD statement identify such things as:

* The name of the data set

* The name of the volume on which the data set resides
» Thetype of I/O device that holds the data set

» Theformat of the records on the data set

» Whether the data set exists or isto be created

» Thesize of the data set to be created

Device allocation uses this information to identify the devices, volumes, and data
sets to be used by the job steps and to assign them to the job step sothat 1 those
devices, volumes, and data sets that can be shared are available to other job steps
and 2 those devices, volumes, and data sets that cannot be shared are used only
by thisjob step. Through device allocation, MV S/XA tries to ensure that no job
step that is ready to execute has to wait for its devices, volumes, or data setsto be
assigned.

Device allocation performs the following general functions to allocate resources:

» Locating the volume and unit information for a requested data set
» Resolving relationships among two or more requests

» Creating, through data management, new data sets

» Assigning I/O devicesto the request

» Instructing the operator to mount necessary volumes

« Allowing dynamic concatenation and deconcatenation of data sets

Device allocation performs the following general functions to deallocate resources:

« Controlling what happens to a data set when a job step finishes using it
» Releasing a data set, reserved by an initiator, for use by other job steps
* Releasing I/O devices for use by other job steps

MV S/XA has three forms of device allocation to assign resources to jobs:

Job step allocation: The initiator allocates devices as part of initiating ajob step.
(Aninitiator isan MV S/XA system program that the operator starts or that
JES? or JES3 starts when the system isinitialized. Its function isto start
execution of ajob step. An initiator starts ajob step by allowing it to compete
for system resources with other jobs that are already running.) Job step
alocation is used by JES2 and JES3 and when the TSO LOGON, START, or
MOUNT command enters a job.

» JES3deviceallocation: JES3 allocates devices before passing ajob to the
initiator.

» Dynamic allocation: A job allocates devices as it executes.

Job step allocation consists of various system allocation routines that analyze the
DD statement information for each job step. JES2 is the primary user of job step
allocation; JES3, aswill be described later, can perform many allocation functions
itself before the job begins and the MV S/XA allocation routines execute.

8-4 MVS/Extended Architecture Overview

JES3 Device Allocation

After JES2 selects ajob to run and passes it to the initiator, the initiator invokes
the interpreter to create scheduler work area (SWA) control blocks that describe
the job's resource requirements. The initiator then passes control to the system
allocation routines for the first step in the job. The system allocation routines use
the SWA control block information to analyze the job's device, volume, and data
set requirements and allocate those resources needed by the program for that job
step. The initiator does not start the job step until the system allocation routines
assign all the resources the job step needs. When all resources are ready, the
system allocation routines return to the initiator, which starts the job step. After
the job step finishes running, the initiator uses the system deallocation routines to
rel ease those resources no longer needed; the initiator then repeats its use of the
system allocation routines for the next job step.

A user whose job is processed by JES3 can use JES3 device allocation to allocate
resources before the job is selected to run. The user controls the extent to which
JES3 allocates devices, volumes, and data sets to the job. At one extreme, the user
can bypass JES3 device allocation altogether. At the other extreme, the user can
have JES3 allocate devices, volumes, and data sets for all of the stepsin the job
before the job is selected to run. In either case, JES3 reads the SWA control
blocks for the job from the spool data set and passes them to the initiator when the
job is selected to run. Theinitiator invokes the system allocation routines of job
step allocation. These routines analyze the SWA control blocks and endorse the
allocation decisions already made by JES3, or they assign required devices,
volumes, or data sets that have not yet been allocated to the job.

Three categories of devices can be defined for the JES3 installation:

» JES3 devices, which are exclusively managed by JES3
* JES3 and MV S/XA devices, which are jointly managed by JES3 and MV S/ XA
« MVS/XA devices, which are exclusively managed by MV S/XA

JES3 can take an active role in assigning the devices it exclusively manages and the
devicesit jointly manages by:

» Selecting certain jobs over other jobs competing for resources in order to keep
each processor as busy as possible. For example, JES3 normally selects for
execution on a given processor the first job (within agiven priority) that can
acquire the resources it needs on that processor.

» Selecting an eligible processor in a multi-processing complex on which to
allocate devices for a selected job. JES3 compares each job's resource
requirements with the JES3-managed devices attached to each processor.
JES3 selects the processor with the best match of shareable devices. This
emphasis on shareable devices helps to increase the number of concurrent
device allocations that can be performed, thus increasing the number of jobs
that can be processed concurrently.

» Assigning devices, volumes, and data sets to jobs to maximize the use of the
devices and minimize the physical movement of volumes.

A JES3 installation can also define a pool of devices (called device fencing) to be

used exclusively by a set of jobsin ajob class group. In addition, the installation
can optionally allow this set of jobs to use devices not in this pool and have other

Chapter 8. Entering and SchedulingWork ~ 8-5

Dynamic Allocation

devices allocated as needed. Device fencing lets the installation tailor its device use
to its workload.

Because resource requirements might not be fully known before execution,
dynamic allocation routines are available to enable jobs and time-sharing users to
acquire resources as the need develops. Dynamic allocation also allows resources
to be used more efficiently because the resources can be acquired just before use
and released immediately after use.

A typical use for dynamic allocation occurs in a program that needs temporary use
of adevice, volume, or data set for which there is heavy contention. In such a case,
dynamic allocation provides the means for ajob to tie up the resource for only as
long as necessary rather than for the life of the job.

Another common use for dynamic allocation isin a job whose need for allocated
resources might vary according to its input. Dynamic allocation permits such jobs
to dynamically allocate and free only the data sets necessary to process the input,
so the specific resources supporting the required data set can be in use for the
minimum time. A job can use dynamic allocation to free a SY SOUT data set so
that the job entry subsystem can process it while the job is still executing. Such
data sets are called spin-off data sets.

Scheduling a Job for Execution

JES2 Job Scheduling

The execution phase of the job entry subsystem responds to requests for jobs from
the MV S/XA job scheduler initiator function. The job entry subsystem selects
jobs from ajob queue on a spool data set and sends them to this function. The job
queue contains jobs in the following stages of processing:

« Jobswaiting to run

» Jobscurrently running

» Jobswaiting for their output to be produced
» Jobs having their output produced

» Jobs (for which all processing has completed) waiting to be purged from the
system.

By distinguishing among jobs on the job queue, the job entry subsystem can
manage the flow of jobs through the system. JES2 and JES3, however, schedule
jobsin different ways.

To process the jobs on the job queue, JES2 communicates with an initiator. The
initiator asks JES2 for a job. JES2 knows what job class or job classes are assigned
to the initiator and in what order the job classes should be searched for ajob. If
the initiator, for example, is assigned two job classes, JES2 scans the job queue to
determine if any jobsin the first class are waiting for execution before scanning the
job queue for any jobsin the second class. Within a given class, JES2 selects jobs
according to their priority. JES2 selects the lowest priority job in the first class
ahead of the highest priority job in the second class. It selects jobs from the second

8-6 MVSExtended Architecture Overview

JES3 Job Scheduling

class only when there are no jobs in the first class. When JES2 selectsajob it
passesit to the initiator.

Associating each initiator with one or more job classes in this way allows an
installation to control job selection to encourage a more efficient use of available
system resources. Assume, for example, the following job class assignments exist:

Class B = jobs that need special devices
Class C = jobs with high instruction processing requirements
Class D = jobs with high I/O-request requirements

Assume also that the following initiator assignments apply:

Initiator 1 can process classes B, C, and D
Initiator 2 can process classes C, D, and B
Initiator 3 can process classes D, B, and C

Initiator 1 can accept jobsin classes B, C, and D, but will process class C jobs only
when class B is empty, and class D jobs only when classes B and C are empty. If
there are jobs on the queue in all three classes and all necessary resources (for
example, 1/O devices and data sets) are available, then three jobs (one from each
of the three different classes) can run concurrently Each initiator runs the highest
priority job in its highest priority class.

After JES2 selects the highest priority job in ajob class for the initiator and passes
thejob to it, the initiator invokes the interpreter to build control blocks from the
internal text that the converter created for the job. The interpreter builds these
control blocksin the scheduler work area (SWA) of the initiator's address space.

The initiator then allocates the input and output devices specified in the JCL for
the first step of the job. This allocation ensures that the devices are available
before the job step starts running. The initiator then starts the program requested
in the EXEC statement.

To process a job on the job queue, JES3, like JES2, communicates with an
initiator. While JES2 relies on the installation to control the job mix through its
assignments of job classes to initiators, JES3 job scheduling algorithms control the
job mix in order to provide the correct proportion of 1/0-bound and
processor-bound jobs. To control the job mix, JES3 uses predefined job class
groups.

JES3 associates ajob class group, a set of job classes, with one or more initiators
and also with specific devices and processors. The installation defines job class
groups during JES3 initialization; this definition allows JES3 to control:

» The maximum number of jobs of a given class that can be readied to run

* The maximum number of jobs that can run in the JES3 installation

* The maximum number of jobsthat can run on a given processor at one time

* Theresources ajob uses, such asinitiators, storage, and devices

Chapter 8. Entering and Scheduling Work ~ 8-7

» Thekind of job selection and job priority adjustments allowed for jobs waiting
to be selected to run

After JES3 prepares ajob to run, it passes the job to the initiator. The initiator can
normally activate the job immediately because JES3 has allocated the devices this
job needs. Once the job is running, the MV S/XA allocation routines perform any
additional device allocations that are needed.

Additional Job Scheduling Functions

8-8

When al initiators are busy, the progress of certain jobs through the system may
fall below normal expectations. To help in these situations, JES2 and JES3
perform additional scheduling functions that attempt to reduce the time required to
schedule jobs, that help to ensure that certain jobs are selected to run by a certain
time, and that schedule jobs dependent on the success or failure of other jobs.
These scheduling functions are:

» Execution batch scheduling (JES2)

» Deadline scheduling (JES3)

» Priority aging (JES2 and JES3)

» Dependent job control (JES2 and JES3)

Execution batch scheduling is an extension of normal JES2 job scheduling that helps
to increase throughput by reducing the job scheduling overhead for certain types of
jobs. Jobs eligible for execution batch scheduling are jobs of relatively short
duration, especially single-step jobs that have common device setup requirements
and jobs that are run frequently. Examples of such jobs are compile-and-go,
debugging, order-entry, and file-inquiry jobs.

To use the execution batch scheduling facility, an installation must write an
execution batch (XBATCH) processing program and a procedure to initiate it, and
assign the jobs a unique job class associated with the execution batch procedure.
Also the installation must include execution batch scheduling parameters when
initializing JES2.

When JES2 recognizes a job with the execution-batch-scheduling job class, JES2
builds and processes JCL to invoke the XBATCH procedure. Once the XBATCH
procedure initiates the XBATCH program, the program remains active aslong as it
has jobs to process. Thus execution batch scheduling involves gathering related
jobsinto a single input stream and passing them as an input data set to the
user-written XBATCH program. This process reduces the initiator's overhead
associated with setting up for and processing numerous individual jobs or job steps.

Deadline scheduling alows a JES3 installation to specify atime of day (deadline) by
which a given job should be selected to run or ajob's output should be scheduled.
A job requests deadline scheduling and specifies the deadline time through JES3
control statementsin its JCL. If the job remains in the job queue as the deadline
approaches, JES3 increases the job's selection priority — that is, the priority at
which the job is selected to run — until the job is selected to run or until a
maximum priority is reached. The operator can modify the parameters that affect
deadline scheduling in order to deal with unforeseen changesin the installation's
workload.

Priority aging ensures that jobs that have been waiting to run in the workload of
either a JES2 or JES3 installation have a chance of being selected to run before

MV S/Extended Architecture Overview

those jobs that just entered the system. JES2 and JES3, however, differ in how
they implement priority aging.

JES2 can increase the priority of ajob within its job class depending on the length
of time the job has been in the system. By using priority aging, a JES2 installation
can increase the priority of awaiting job. The longer the job waits, the higher its
priority becomes and the greater its chances of being selected to run. JES3, on the
other hand, increases the priority of ajob depending on the number of timesthe
job has been passed over for selection.

Dependent job control (DJC) isaJES3 function that allowsjobsto runin a
predefined order. That is, the user can specify that one set of jobs be completed
before another job or set of jobs. Also, devices used by a set of jobs under
dependent job control can be reserved for those jobs in that set, ensuring that
they'll be available when needed. The Chained Job Scheduler (CJS) isan IBM
program product that provides a similar function for JES2 users.

Output

The job entry subsystem controls all SY SOUT processing. While running, ajob
can produce system messages that must be printed, as well as data sets that must be
printed or punched. After the job finishes, the job entry subsystem analyzes the
characteristics of the job's output in terms of its output class and setup
requirements and processes its output accordingly. Specifically, the job entry
subsystem gathers the output data by output class, device availability, process
mode, and set-up characteristics, then queuesit in the SY SOUT data set on the
spool device for output processing.

MV S/XA includes an external writer program (XWTR) that uses the subsystem
interface for SY SOUT processing. An installation uses this external writer to write
to devices other than those supported by the job entry subsystem. Installation
written external writer programs can also control the output; these programs tailor
the output to the installation's needs.

Purge

When all processing for ajob is completed, the job entry subsystem releases the
spool space assigned to the job, making it available for allocation to subsequent
jobs. The job entry subsystem also issues a message to the operator to indicate that
the job has been purged from the system.

Job Entry Subsystemsin a Multi-System Environment.

For an installation with asingle MV S/XA system, JES2 and JES3 perform the
same basic functions. That is, they read jobs into the system, convert them to
internal form, select them for execution, process their output, and purge them from
the system. But, for an installation having more than one MV S/XA processor or
processor complex in the configuration, there are noticeable differences between
JES2 and JES3 processing. Figure 8-1 and the discussion that follows illustrate
these differences:

1. Control of job entry processing
JES?2 exercises independent control over its job processing functions. Each

JES?2 processor controlsits own job input, job scheduling, and job output
processing.

Chapter 8. Entering and Scheduling Work 8-9

8-10

Each JES2 multiple system configuration, also called a multi-access spool
configuration, or node, consists of two or more JES2 processors at the same
physical location, all sharing the same job queue and spool. Each JES2
processor can read jobs from local and remote card readers, select jobs from
the shared spool for execution, print and punch results on local and remote
output devices, and communicate with the operator.

The common job queue enables each JES2 processor to share in processing the
installation’'s workload; jobs can execute on whatever processor is available
and print or punch output on whatever processor has an available device with
the proper requirements. One JES2 processor can process a job's input while
another JES2 processor may schedule and execute the same job.

If one processor in the configuration fails, the others can continue processing
from the shared job queue. Only work in process on the failed processor is
interrupted; the other JES2 processors continue their processing.

JESS3, in contrast, exercises centralized control over itsjob processing functions.
JES3 controls the job input, job scheduling, and job output processing in a
single processor complex, called the global JES3 processor. Other JES3
processors attached to the global processor are called local processors and are
under the control of the global JES3 processor. The global JES3 processor and
each local JES3 processor form aloosely-coupled multiprocessing
configuration; they communicate over a channel-to-channel (CTC) adapter,
which carries control information between the global and local processors.
Together, the global and local processors comprise a JES3 node.

Aswith JES2, each JES3 processor can access the spool data set, which
consists of SYSIN and SY SOUT data, JCL, and the job queue for the entire
JES3 ingtallation. It is the JES3 global processor, however, that reads jobs
from local and remote input devices, places them on the spool, and selects them
to run on the global or any local processor; the global processor controls all the
processing of job output. The local processors access the spool only to read or
write data for jobs executing on the local processor.

The JES3 system operator can dynamically bring up alocal JES3 processor as
the JES3 global processor if the global processor fails. The relink of this new
JES3 global processor to the remaining local JES3 processors is performed
automatically. Jobs that were executing on the failed processor can be
recovered.

2. Selection of jobs for processing

Both JES2 and JES3 process jobs that have been read into the system and
placed on the spool. Each JES2 processor has access to the spool and
independently selects jobs for processing from the spool. In contrast, only the
global JES3 processor selects jobs from the spool for processing even though
all JES3 processors share the spool. As aresult, the JES3 environment can
control the integrity of shared data sets. A JES2 installation can provide a
similar degree of control by combining its JES2 systems into a global resource
serialization complex. As explained in Chapter 6, " Supervising the Execution of
Work," aglobal resource serialization complex with the systems connected by
channel-to-channel adapters can protect the integrity and increase the
availability of data on DASD shared among all of the processorsin the
complex.

MV S/Extended Architecture Overview

3. Multi-processor configurations

Both JES2 and JES3 multi-system configurations may combine avariety of
multiprocessors, such as a 3081 dyadic processor complex and a 3084 four-way
processor complex. For JES2, there can be no more than seven operating
systems in the configuration. JES3 is limited to eight operating systems
although the actual capacity might be less depending upon the work mix in the
configuration. A loosely-coupled configuration becomes more difficult to
manage as the number and speed of the MV S/XA systems within it increase.

4. System operation

JES3 presents the system operator with a single system image. Thereis one
JES3 console to which all of the 96 routing codes direct JES3 messages. (If a
JES3 console failure occurs messages can be routed to an MV S/ XA operator
console). The JES3 operator need not be concerned about where work comes
from or where it is processed.

JES?2 presents a less unified system image. JES2 system message traffic, for

example, is sent by means of 16 routing codes to various consoles according to
the functions they affect.

Chapter 8. Entering and Scheduling Work 8-11

JES2 (Independent Control)

JES2 (Independent Control)
with Global Resource Serialization

(on]

JES2

-3
c
[v]

SPOOL l Job D

JES2

I Job E
|

\i/ N/

\ 7/ lé/

Job F

Legend

- —— Ctc adapter

—Z- telecommunication line

— direct line

JES3 (Centralized Control}

Job A Job B Job C

GLOBAL
MVS/JES3
/] processor [\

// \ i N
el AN ™\

LOCAL LOCAL
MVS/JES3 / SPOOL I\, | Mvsises3
processor|” | y PROCESSOR

Figure 8-1. Job Entry Subsystem Configurations

Job Networking

8-12

Job entry subsystem nodes, each at different physical locations, can be joined
through communication lines (such as those used for telephone or satellite
communications) or channel-to-channel (CTC) adaptersto form a network. A job
entered at one location can be transmitted to another location in the network where
it can use, for example, special hardware, or software features, a centralized data
base, or special applications. Similarly, reports produced by an accounting
program, for example, can be distributed automatically to several locationsin the
network.

MV S/Extended Architecture Overview

JES2 nodes in a network use the network job entry (NJE) function that is a part of
JES? to process jobs. The NJE facility enables JES? to:

» Manage the paths between the JES2 nodes joined in a network so that work
moves from place to place, a process known as automatic path management.

« Transmit and receive input streams, commands, messages, and output among
JES2 nodes in the network.

» Allow the system operator at any node to control jobs throughout the network.

With NJE, each JES2 node in the network can process jobs from other JES2 nodes.
JES2 nodes can pass both jobs and job output among themselves for processing.
The installation can choose between either SNA or BSC communications protocols
for alink between two nodes within a JES2 network. For the network as awhole,
the installation can use a combination of SNA and BSC links.

London Washinﬁton D.C.
MVS/XA VSE/Power
JES2 /’-Z__’ Version 2
Networking
MVS/XA _CE___ VM/370
JES3 adapter RSCS
Networking
New York

Figure 8-2. Job Networking

A JES2 NJE network can also be extended to include VSE/POWER Version 2
with VM/370 and JES3. The remote spooling communications subsystem (RSCS),
for example, allows aVVM/370 node to participate in job networking with a JES2
NJE node. Figure 8-2 illustrates a network.

JES3, like JES2, also contains a network job entry function to allow job
networking. A network of JES3 nodes can be joined together by communication
lines. Each global JES3 processor in the network communicates with other global
JES3 processors at other JES3 nodes (there is no master-subordinate relationship),
offering advantages similar to those that JES2 NJE offers; jobs can be submitted at
one location and executed at another, and job output can be produced at any
location within the network. JES3 uses binary synchronous communications
(BSC). In addition to JES3 nodes, a JES3 network can also be extended to include
VSE/POWER Version 2 Networking with VM/370 and JES2. These non-JES3
nodes then participate with JES3 nodes in job networking.

Chapter 8. Entering and SchedulingWork ~ 8-13

Comparing JES2 and JES3 Features

FEATURE JES2 JES3
Device Allocation NO YES
Job Scheduling
Execution batch scheduling YES NO
Deadline scheduling NO YES
Priority aging YES YES
Dependent job control YES YES
SPOOL Management Independent Dependent
Off-line backup of JES2 on JES3
Release Release
RJE: Both SNA and BSC YES YES
Single System Image
Single job queue YES YES
Dataintegrity YES YES
Console NO YES
Device fencing NO YES
Networking
BSC YES YES
SNA YES NO
Automatic path management YES NO
Console Routing Codes 16 96
Automatic Operator Commands YES NO
Performance Monitoring NO YES
Maximum Component Systems 7 8

Figure 8-3. JES2 and JES3 Features

8-14 MV S/Extended Architecture Overview

Chapter 9. Monitoring System Activity

The first operating systems were simple to use and fix, yet inefficient in several
ways. Long-running jobs held up other jobs, and only those resources associated
with the active program were used. All other resources waited. This inefficiency
derived from the system'’s simple operation. On the other hand, the system's simple
operation had specific benefits. When there was a system error, it was generally
easy to determine what program was executing at the time. Also, accounting
algorithms for charging users involved simple computations (job stop time minus
job start time). Using the system efficiently was more a matter of establishing
efficient installation procedures for processing jobs rather than using sophisticated
operating system function to handle the job-to-job transition.

In contrast, MV S/XA isnot asimple system, yet its design keeps more work going
onin parallel. More interruptions occur. More task switches take place. More
resources are shared. More non-serial operation occurs. MV S/XA does these
things through sophisticated control programs - programs that dispatch work, that
save job status, that switch from one piece of work to another, that keep things
straight among the many programs that share common resources, and that read
jobsinto the system and produce their output in parallel with controlling the jobs
already in execution.

MV S/XA, like earlier operating systems, handles job-to-job transition. However,
MV S/’XA handles avariety of job types. A job can be part of a batch input
stream, an interactive terminal session, or an installation program that runsin the
background (low priority) or foreground (high priority) of the system's work.
Moreover, asingle job is generally not as easy to identify because MV S/ XA splits
each job into pieces. The job entry subsystem for example, processes ajob as
records on the spool, the dispatcher as address spaces, TCBs, and SRBs, the
interruption handlers as status save areas, and the system resources manager as
swapped-in or swapped-out address spaces.

As aresult, jobs lose much of their identity. The single job, started, executed, and
completed, is a collection of individual pieces of work efficiently dispatched,
interrupted, redispatched, and eventually completed. An MV S/XA jab, then,
equals all the completed pieces of work. So when ajob failsin MVS/XA, the
diagnosis must focus on locating the piece that failed. And, because of MV S/XA's
complexity, finding this piece can be difficult.

MV S/XA helps to make this diagnosis easier by providing various monitoring
mechanisms that can keep track of the individual pieces of work in the system.
These monitoring mechanisms condense the pieces of work into a processing
history the installation can use to isolate, diagnose, and fix program errors.

Other MV S/ XA monitoring mechanisms, or tools, enable the installation to
evaluate system performance and overall resource use. These mechanisms produce
reports the installation can use to adjust MV S/XA in order to maximize its
efficiency and, as aresult, improve its job processing capability.

Chapter 9. Monitoring System Activity ~ 9-1

The remainder of this chapter describes these monitoring mechanisms. They are:
* The system management facilities (SMF)

» The Resource Measurement Facility (RMF) Version 3 (program product
5665-274)

» Dumping facilities, specifically SNAP dump, ABEND dump, SV C dump,
stand-alone dump, and the dump reporting facilities: print dump and the
interactive problem control system (IPCYS)

» Tracefacilities, specifically system trace, generalized trace facility (GTF), and
master trace

» Serviceability level indication processing (SLIP)

» SYSL.LOGREC error recording

System M anagement Facilities

9-2

The system management facilities (SMF) collect information about MV S/ XA
processing that the installation can use to account for system use and to analyze
system performance. SMF receives this information from various system services
in the form of SMF records or obtains the information from various control blocks
and builds SMF records. It writes these records to SMF data sets. These records
describe system events, such as the start of TSO, the logon and logoff of TSO
users, the reconfiguration of hardware, and individual job starts and terminations.
SMF records also describe system status information, such as data set status
(opened, closed, or scratched), VSAM catalog information, and job output
statistics (cards punched and lines printed). An installation uses this recorded data
to measure its processing capabilities, charge its users for processing time and
resource usage, and make adjustments where necessary to provide better overall
service. Usually SMF begins processing when MV S/XA starts, but,if necessary,
the installation can stop or start SMF processing while MV S/XA runs.

Figure 9-1 presents an overview of SMF processing. The major elements of SMF
processing are as follows:

1. SMFispart of the MV S/XA control program that runsin its own address
space. It isinitialized along with MV S/XA using the SMFPRMxx member of
SY S1.PARMLIB which contains the parameters that define how SMF isto
operate. Some SMFPRMxx parameters are required. Others are optional.
Required parameters specify, for example, the identifier of the system on which
SMF is running. Optional parameters specify, for example, the record types
the installation chooses to have SMF write, whether the operator can modify
SMF parameters, and whether SMF exit routines are to be used.

2. Various MV S/XA components include routines that provide datato SMF.
Some components provide this data in complete records ready to be written to
the SMF data sets; other components provide unformatted data, which SMF
formats into records.

3. Some system routines that provide datato SMF also have interfaces with
installation-written SMF exit routines to perform additional processing for
certain events. The system routines invoke these exits at various times during
job and job step processing.

MV S/Extended Architecture Overview

Installation exit routines can, for example, enforce those standards of job
processing unique to the installation (such as supplying defaults for missing
JCL parameters), collect installation-dependent job information, or enforce the
installation's standards for resource usage.

SMF routines collect unformatted data and format this data into SMF records,

transfer records from the SMF buffer to the SMF data set, and issue messages
to the operator indicating the successful or unsuccessful completion of specific
SMF-related events.

SMF writes records to an SMF data set. When the data set is full, SMF writes
records to another data set. The datain the full data set can then be saved on

tape.

The installation can write analysis and report routines and use these to process
SMF data. These routines execute as ordinary jobs. The analysis routines can
collect SMF measurements into meaningful units of information by extracting
or sorting the data and analyzing it. The report routines can format and print
the results of the analysis. Reports on direct access volume activity, data set
activity, and resource use can help an installation assess its computing
efficiency.

Chapter 9. Monitoring System Activity ~ 9-3

—

@ System

Routines Providing
Data to SMF

.Z. \

_‘.".'-"i'f T
o @ System
Routines Providing
Data to SMF
and

Interfacing with
SMF Exits

—

MWVS/XA Control Program @

J
- _. - SMF
o | Routines
e }

Installation-Written
Exit Routines

C Installation-

Written
Analysis/Report

Routines

Figure 9-1. System Management Facilities - Overview

Resour ce M easurement Facility

94

The Resource Measurement Facility (RMF) Version 3 (program product
5665-274) is a measurement program the installation can use to analyze the
performance of its system. RMF measures the use of many system resources, such
as the processors, channel paths, devices, and real storage. Also, RMF measures
the resource contention that enqueueing causes, the processing service that the
system gives to different classes of users, the workflow (or speed) at which users
move through the system, and the interaction that takes place among real storage,
the processor, and the system resources manager (SRM).

MV S/Extended Architecture Overview

An execution of RMF is called a session. Some sessions are of long duration, while
others can be short. Some sessions are interactive, while others can be background
jobs. The installation selects the sessions that best meet its needs.

Within atime interval, RMF measures data by exact count or by sampling. RMF
makes an exact count measurement of a system indicator by computing the
difference between its value at the beginning of an interval and its value at the end
of the interval. RMF makes a sampling measurement of a system indicator by
recording its value at each cycle within the interval; acycle isasubdivision of an
interval. (For example, each minute in an interval can be divided into sixty cycles
that are one second long.) At the end of the interval, RMF gathers the data
collected at each cycle and prepares to report the results. The installation controls
the length of the interval and the cycle for the session.

Monitor | sessions measure a variety of system data over many intervals of time;
they generally produce printed reports spanning large amounts of processing time.
When each interval elapses, RMF summarizes the data it has measured, formatsit,
and reportsit in aform the installation has selected.

Monitor 11 sessions, in contrast, take snapshots of the system'’s performance and
produce either printed reports or reports on the screen for immediate inspection.
Interactive sessions (called display sessions) can be short in duration; the interval
of measurement is normally the time between two successive commands at the
terminal.

Monitor 111 sessions collect information about the activities of users (units of work)
and the delays they encounter when accessing system resources. Monitor 111 also
measures the workflow of users and resources, which reflects the speed at which
work moves through the system. Monitor |11 sessions are always interactive.

Through Monitor I, Monitor Il, and Monitor 111 sessions, RMF can measure
resource use in various system areas:

» Processor activity indicates the extent of wait time each processor experiences.

» Address space activity describes the status of address spaces and how they're
being used.

» Channel path activity, 1/O queuing activity and 1/O device activity describe the
use of the system's /O configuration.

» Paging activity shows the amount of paging and swapping taking place.

» Workload activity shows what system services are being provided to particular
users or groups of users.

» Page/swap data set activity describes the use of the paging data sets and swap
data sets.

« ASM/RSM/SRM trace activity traces the contents of various control block
fieldsthat ASM, RSM, and SRM use to perform swapping for address spaces.

» Enqueue activity shows the contention for serially-reusable resources.

» Real storage/processor/SRM activity gives an overview of system activity.

Chapter 9. Monitoring System Activity ~ 9-5

9-6

» Virtual storage activity describes the use of common storage and private area
storage.

« Transaction activity gives an overview of transaction activity by performance
group period.

« Domain activity provides information on current domain definitions. A domain
isagroup of resources defined by the installation.

» Workflow indicates how jobs use system resources, the speed with which jobs
move through the system, and how efficiently resources are serving job
requests.

» Delay showswhen ajob is not productive because of contention for, or the
unavailability of, some resource in the system.

The installation uses these measurements of system activity to identify use of
system components and resources, to relate how well service is provided to
different classes of users, to identify bottlenecks where contention for resourcesis
high, and to locate excessive users of particular resources. Special RMF exception
reports show when system performance reaches pre-sel ected thresholds.

RMF produces three forms of output: SMF records, printed reports, and display
reports. The type of output RMF can produce depends on the type of RMF
session. Monitor | and Monitor |l sessions can produce SMF records for all
activities measured. RMF can print reports either as a part of session processing or
at alater time as part of post processing. The post processor can produce printed
interval reports and various types of summary reports.

During Monitor 111 sessions, RMF produces screen displays of workflow and delay
measurements rather than SMF records or printed reports. However, copies of
individual screens can be printed.

The user starts an RMF session by issuing a START RMF command at a system
console or by issuing an RMFWDM or RMFMON TSO command at a TSO
terminal. During a non-display RMF session, the installation can use the M ODIFY
command to control RMF processing and display RMF status. An RMF session
ends when its time limit expires or when the operator or terminal user stopsthe
session.

RMF can invoke user exit routines at various points within a session; the type of
session dictates the number of exits available. An installation exit routine, for
example, can sample additional data at each cycle within a measurement interval,
format and write its own SMF records, and produce its own reports.

Figure 9-2 summarizes the functions RMF provides.

MV S/Extended Architecture Overview

START system command
RMFMON command
RMFWDM command

Resource Measurament Facility

ACTIVITY

Processor
Channel path
1/0 queuing

Workload
Paging

< sToP

Enqueue

DISPLAY

ASM/RSM/SRM
Virtual storage
Address space

Sessions

Real storage/processor/SRM
Transaction

Domain

1/Q device

User-specified
Workflow/exception

Delay

1\

RMF

Processor

SMF
records

Summary
Reports

}

Displays

Report

Figure 9-2. Summary of RMF

Dumping Facilities

Dumps are snapshots of what virtual storage looks like at a given instant in time;
they are hard copy listing of the contents of the system's virtual storage locations.
Dumps can include large areas of virtual storage or only afew locations. They can
contain control blocks and data areas used by programs, the pro grams themselves,
or both. While dumps can be taken to validate specific processing when the system
isrunning normally, they are most frequently used to solve system problems and

error conditions.

Dumping system information when an error occurs requires precise timing. Asthe
system operates, the control blocks and data areas for both system and user

Chapter 9. Monitoring System Activity

SNAP Dump

programs keep changing. Because these control blocks and data areas are volatile,
taking a dump too early can reveal too little about a problem, and taking a dump
too late can mean that the pertinent information has been overlaid with new data.
A useful dump, then, is one that captures the contents of virtual storage when the
error occurs or as close as possible to when the error occurs. Being able to take
this kind of dump depends, to alarge degree, on whether the error isjob-related or
system-related.

Job-related errors are those that ajob can try to anticipate. That is, the user
program or programs that make up the job include logic that plans for the
occurrence of an error, such as an erroneous value in a control block or an
unsuccessful return code from a called routine. When such a job-related error
occurs, the program can immediately dump critical control blocks and data areas.
These dumps then represent an accurate view of the contents of virtual storage that
the problem solver can use to solve the problem.

System-related errors, on the other hand, are those that cannot be anticipated by a
user job. A system-related error can affect the system, a major subsystem like the
the job entry subsystem (JES) or the information management system (IMS), or
several components of MV S/XA. Thistype of error is generally not localized to a
specific job — although a specific job might be running at the time — and what
to dump is not obvious. The MV S/ XA dumping service, itself, might fail because
of the system error. And, unless system activity is reduced shortly after such an
error occurs, too much system information can change, rendering a dump of the
error less useful.

MV S/XA dumping facilities handle either kind of error; the dumps they produce
are the SNAP dump, ABEND dump, SV C dump, and stand-alone dump. SNAP
and ABEND dumps are generally taken for job-related errors. SV C dumps and
stand-alone dumps are generally taken for system-related errors.

Each of these dumps can contain two types of information: system data and
program data. System data includes the nucleus, system queue area (SQA), local
system queue area (L SQA), and control blocks associated with the units of work in
MV S/XA, such asthe TCBs, ASCBs, and SRBs. Program data includes the
program’'s PSW, its register contents, its TCB and associated RBs, its save areas,
and the program itself.

The remainder of this section presents more information about each of these
dumps, including when they're used, how they're taken, and what output they
produce.

The SNAP dump, asits name implies, is a snapshot of virtual storage requested by
aprogram. This dump is formatted and easy to read. A program can take a SNAP
dump at any time during its processing. During program testing, for example, a
program can take a SNAP dump to print intermediate results of certain
calculations. The programmer can analyze this dump to ensure that the program is
operating correctly. For ajob-related error, a program can take a SNAP dump to
capture critical program storage areas at the time it detects the error. The
programmer can then analyze this dump to determine the specific nature of the
error and the reason for it.

To take a SNAP dump, the program uses the SNAP macro instruction; its operands
identify the information to be dumped and the output data set for the dump. The

9-8 MVSExtended Architecture Overview

ABEND Dump

output data set can be sent to a printer for analysis of hard copy results, to adisk or
tape for printing and analysis at alater time, or to adisplay terminal for viewing on
the screen.

After the SNAP dumping service finishes processing the dump, it returns control to
the program that invoked it. The program can then take other SNAP dumps at
other pointsin its processing; the result is a comprehensive collection of
information.

An ABEND dump isadisplay of virtual storage that a program can request directly
when it can't circumvent an error and wants to terminate its processing. MV S/ XA
can also provide an ABEND dump indirectly when it detects job-related processing
errors that can be circumvented by terminating the job. In either case, the program
can't circumvent the error, and the only remaining action isto dump critical
program storage and terminate. The programmer can then analyze this dump to
determine what caused the abnormal termination.

To request an ABEND dump, the program uses the ABEND macro instruction with
the DUMP operand. The ABEND dumping service writes the dump to a data set
identified by a DD statement in the terminating job's JCL. This DD statement
must be named SY SUDUMP, SY SABEND, or SY SMDUMP.

A SYSL1.PARMLIB member exists for each of these names. Each member defines
default dump options, which specify the default system and program datato be
dumped to the SY SUDUMP, SY SABEND, or SY SMDUMP data set. The types of
information dumped to these data sets are:

+ SYSUDUMP - Storage associated with the failing task, such as its enqueue
control blocks. Thisinformation is formatted by the ABEND dumping service
and isready for printing.

» SYSABEND - Storage associated with the failing task (same as the storage for
the SY SUDUMP DD statement) with the addition of the local system queue
area and | OS control blocks. Thisinformation is formatted by the ABEND
dumping service and is ready for printing.

» SYSMDUMP - Storage used by the system to process the failing task, such as
the nucleus, the system queue area, the local system queue area, the scheduler
work area, and the private area of the address space for the failing task. This
information is not formatted by the ABEND dumping service. Analysis and
formatting programs can process this output to produce a readable dump. The
PRDMP MV S/XA service aid (called print dump) and the interactive problem
control system (IPCS) are such programs. |PCS allows the programmer to
format and view dumps at a display terminal without having to print them. The
dump analysis and elimination (DAE) function suppresses duplicate dumps that
come from the same problem.

The program requesting the ABEND dump can accept the default dump options or
alter them through other operands on the ABEND macro. The final contents of
the ABEND dump, however, might not be what the program requested because the
operator can alter the system default dump options through the CHNGDUMP
command. Also, any recovery routines (invoked by the recovery termination
manager as aresult of the program's abnormal termination) can alter these dump
options.

Chapter 9. Monitoring System Activity ~ 9-9

SVC Dump

Stand-Alone Dump

SV C dumps serve system programs in the same way as SNAP dumps serve user
programs. That is, SV C dumps are the control program'’s equivalent to the user
program's SNAP dump. Also, only authorized programs or those running in
control program key can request SV C dumps. Among these programs are:

* Programsthat arepart of MVS/XA. These programs take SV C dumps for
system-related errors they can anticipate.

* MVS/XA recovery routines (FRRs and ESTAES). These programstake SVC
dumps for unanticipated system-related errors that occur in the programs that
define them.

* Authorized installation programs and user modificationsto MVS/XA. These
programs can take SV C dumps both for system-related error conditions and as
part of normal processing. SV C dumps during normal processing help to test
the program before installing it in MV S/XA.

* Programsthat processthe DUMP operator command. The operator issues the
DUMP command for certain system error conditions, and these programs
request the SV C dump.

To take an SV C dump, the program issues the SDUM P macro instruction, either
specifying operands that identify the information that is to be dumped and a
specific data set to be used for the dump or accepting the system default options.
Aswith ABEND dumps, the operator can change the default SV C dump options
through the CHNGDUMP command.

SV C dump output data sets (named SY SI.DUMPxx) reside on disk or tape.
Because SV C dump output is unformatted on these data sets, an analysis and
formatting program must process this dump output to produce readable dumps.
Similar to the ABEND dump for the SY SMDUMP DD statement, the PRDMP
MV S/XA service aid and the interactive problem control program (IPCS) can be
used to format the SV C dump into a readable form. IPCS allows the programmer
to format and view dumps at aterminal without having to print them.

After the SV C dump service finishes producing the dump, it returns control to the
program that invoked it. The program can then take additional SV C dumps at
other pointsin its processing. This ability to take several SVC dumpsis helpful for
any recovery routine that handles system-related errors. By requesting SV C dumps
at various pointsin its recovery processing, the recovery routine can produce a
comprehensive collection of system program information reflecting its recovery
actions. If the system does fail, these SV C dumps can help to isolate the cause of
the failure. To avoid unneeded SV C dumps (those dumps of the same problem),
the dump analysis and elimination (DAE) function is used to suppress duplicate
dumps.

A stand-alone dump is a dump produced by a program that the operator executes.
When MV S/XA fails, the operator loads the stand-alone dump program into
storage from avolume where it resides. The program runs by itself and dumps all
of real storage and selected portions of virtual storage. The dump includes the
nucleus, the trace table of system events, the real storage contents and selected

9-10 MV S/Extended Architecture Overview

virtual storage contents of all address spaces, the prefixed storage area (PSA), and
the system queue area (SQA).

Thefirst step in running stand-alone dump program is to activate the store status
procedure that stores the processor time, current PSW, general purpose registers,
and other processor-type information into permanently assigned locationsin
storage. The store status procedure can be invoked by an operator command or by
an option of the stand-alone dump program. This procedure preserves in the dump
the processor status existing at the time the system failure was detected.

There are two forms of stand-alone dumps: a low-speed form and a high-speed
form. The low-speed form dumps storage and automatically formats it for printing.
The high-speed form merely dumps storage in unformatted form to tape or disk for
formatting and printing at alater time. (PRDMP and IPCS can be used to format
the high-speed stand-al one dump).

Figure 9-3 summarizes the MV S dumping facilities.

Chapter 9. Monitoring System Activity 9-11

SNAP Dump ABEND Dump SYS1.PARMLIB
CHNGDUMP
Use
P:O;ram Command SYSABEND
— User or SYSUDUMP
e System SYSMDUMP
_ Program members
— w -
: : Dump
SNAP ABEND
— —————»{ SNAP ::> - _—
N e i -
e Service —_—
- — A
: : Y
- - ABEND ——)
— —_— Dumping
— Service
SVC Dump Stand-alone Dump
System SYS1.DUMPxx 5
P - STORE rocessor
STATUS —
= IPL
SDUMP n
—_ — SV(C
— <&———{ Dumping :D Stand-alone
— Service Dump <:
_ Program
: ﬂ ~/ Storage
oo Dump
mp
CHNGDUMP Formatting \/-
Command Program
Dump

Figure 9-3. Summary of MV S/XA Dumping Services

9-12 MVS/Extended Architecture Overview

Trace Facilities

Tracing system events provides valuable information for performance analysis and
problem diagnosis. For example, a sequence of 1/0 interruptions from specific
devices can pinpoint high or low device use. Or, a sequence of program
interruptions can either eliminate programs as possible sources of an error or, in
fact, isolate the program that did cause the error. Any tracing mechanism must be
able both to capture the system event and to record pertinent information about
the event for later use.

There are three MV S/XA trace facilities: system trace, master trace and
generalized trace facility (GTF). System trace and GTF record the same internal
system events although GTF does so in more detail.

System trace is most useful when an unexpected problem occurs and GTF is most
useful when there is a known problem and a need to narrow it down. GTF uses
more system resources than system trace.

Master trace records external system activity such as the commands entered by the
operator, responses to these commands, and other system messages.

Aside from these three trace facilities which record system events, each installation
has either JES2 or JES3 traces to monitor job entry and output processing.

Installation-written programs, MV S/ XA system components, and first-level
interruption handlers activate the MV S/XA trace facilities by a mechanism known
as hook processing. A hook is a sequence of instructions that signal to the trace
facility that the event has occurred, capture the relevant system data, and either
pass this data to the trace facility directly or store the data until the tracing
mechanism records it. Figure 9-4 shows how a hook can capture information about
a program interruption. The sequence of eventsis asfollows:

1. Program A attemptsto store datain an area of storage that is protected from
access. This action causes a protection exception program interruption.

2. When the program interruption occurs, the processor immediately switches
control from program A to the program check first-level interruption handler
(PCFLIH), which saves the processing status of the interrupted program.

3. The PCFLIH contains a hook, a sequence of instructions that calls the tracing
mechanism to trace the program interruption.

4. Thetracing mechanism, after recording the program interruption event and the
relevant system data (such as processor identifier, time of the interruption,
PSW of program A) preserved by the PCFLIH, returns to the PCFLIH, which
finishesits processing of the interruption.

Each MV S/XA tracing mechanism is started and stopped by operator commands.
The operator uses the TRACE command with the ON or OFF operand to start or
stop system trace and master trace. The START GTF and STOP GTF commands
perform the same functions for GTF. All tracing mechanisms can be on at the
sametime.

Chapter 9. Monitoring System Activity ~ 9-13

System Trace

b
=]
&
]
3
b-3

ERROR —_|

Program Check

Program Status

Register
Contents

Program A's
PSW

Processor
Identifier

First-Level Interruption

Handler

B~/

Tracing

Mechanism

Figure 9-4. The HOOK Concept

Theinstallation can start or stop system trace and control trace options by means
of the TRACE command. Usually, the installation starts system trace when it
starts MV S/XA and, from that point on, system trace records the following types

of events:

» Start subchannel
e Modify subchannel
» Halt subchannel

e Clear subchannel

* Resume subchannel
» External interruption

» Emergency signal (EMS) external interruptions
» Servicesignal external interruption
» External call external interruption

» Clock comparator external interruption

0-14 MVS/Extended Architecture Overview

+ SVCinterruption

« SVCreturn

e« SVCerror

* Program interruption

e 1/Ointerruption

» Task dispatch

» Initial SRB dispatch

» Suspended SRB dispatch

* Wait task dispatch

* Machine check interruption

* Restart interruption

» Alternate CPU recovery

* Lock Suspension

* Trace options alteration

» User event trace

* Program Call (PC) control instruction

» Program Transfer (PT) control instruction

» Set Secondary Address Space Number (SSAR) control instruction
» Branchand Link (BALR) general instruction
* Branch and Save and Set Mode (BASSM) general instruction
* Branch and Save (BASR) general instruction

System trace logs each event in a system trace table in the TRACE address space
in virtual storage. The system trace table consists of a queue of buffersfor each
processor running under one MV S/XA system. The installation can control the
size of the trace table with the TRACE command. Each entry in the table includes
the following information for each event:

1. A unique code that identifies the event

2. Dataassociated with the program affected by the event, such as the processor
identifier, the address of the current TCB, and the contents of the PSW

Figure 9-5 illustrates the system trace function and the MV S/ XA components that
invokeit.

Chapter 9. Monitoring System Activity ~ 9-15

Time

Current
TCB Address

Interruption
Handlers
System Trace
Dispatcher - | Trace —— Table
Routine
A
10S
Current PSW
Registers
ASID

Figure 9-5. System Trace Overview

Stand-alone dumps always contain the system trace tables, and users can request
that the system trace tables be copied into their ABEND dumps, SNAP dumps and
SV C dumps. The print dump (PRDMP) service aid utility program includes a
TRACE verb to request formatting and printing of the trace table entries.

Generalized Trace Facility

9-16

The generalized trace facility (GTF) provides greater event and data selectivity
than system trace and produces trace output in more ways. GTF traces most of the
same events as system trace, and also traces events such as when the recovery
termination manager routes control to recovery routines (FRRs and ESTAES),

MV S/Extended Architecture Overview

when MV S/XA programs invoke the system resources manager, and the
processing activities associated with aVTAM network and subsystems.

GTF traces in two modes: internal mode or external mode. In internal mode, GTF
builds the trace records in virtual storage. Users of the MV S/ XA dumping
facilities can optionally request that these records be incorporated into their
ABEND dumps, SNAP dumps, and SV C dumps. (Stand-alone dumps always
contain GTF trace records.) In external mode, GTF provides the same function as
for internal mode but also writes each trace record to a data set that resides on an
external storage device (either atape or disk). The trace records on the external
storage device can be formatted, analyzed, and printed at a later time to produce
reports of system activity. The EDIT function of the PRDMP MV S/XA service
aid program is normally used to format these GTF trace records.

GTF is a started task. The system operator issues the START command to start
GTF and the STOP command to stop it. The options that govern its operation
reside in the GTFPARM member of SY SI.PARMLIB; these options define the
events GTF isto trace and the mode of tracing GTF isto use. The operator has
the ability to override these options.

Like system trace, GTF uses hooks to trace system events. The difference between
system trace hooks and GTF hooks, though, liesin how the hook causes tracing to
occur. System trace hooks invoke system trace directly, in contrast to GTF hooks,
which cause a program interruption that switches control to GTF. The monitor call
(MC) instruction, which is part of each GTF hook, selectively produces this
program interruption.

GTF uses this characteristic of the MC instruction to define classes of eventsthat it
can monitor. When GTF is started, these classes of events are specified as trace
optionsin GTFPARM or as responses to GTF prompt messages. Hooks for events
that match the initialized events cause the M C program interruption and switch of
control to GTF. Hooks for events that do not match the initialized events cause no
MC program interruptions; these events are ignored and not traced.

Programs use the HOOK or GTRACE macro instructions to set the hooks that
trace the system events. MV S/XA supervisor functions use the HOOK macros to
trace, for example, program interruptions, dispatches, and RTM routing to recovery
routines. User programs and subsystems use the GTRACE macro to trace events
unique to them.

Figure 9-6 summarizes GTF processing; the figure highlights the following
processing steps:

1. The system operator starts or stops GTF at the system console using the
START and STOP commands. The GTFPARM member of SYS1.PARMLIB
or operator repliesto GTF prompting messages define the system events GTF
isto trace.

2. GTF operatesin internal mode or external mode. In internal mode, GTF builds
the trace records in storage. In external mode, GTF builds the trace recordsin
storage and also writes the trace records to a data set for printing or analysis at
alater time. MVS/XA dumping facilities can include trace records in dumps
regardless of whether GTF is operating in internal or external mode.

Chapter 9. Monitoring System Activity ~ 9-17

3. User programs or subsystems use the GTRACE macro to define GTF hooks to
record events unique to them. Supervisor programs use the HOOK macro to
define GTF hooksto record system events.

These macros generate monitor call instructions that cause a program
interruption if the event defined by the hook matches an event in GTFPARM.
As aresult of the program interruption, the processor switches control to GTF
to trace the event defined by the hook. After GTF traces the event, control
returns to the program that invoked GTF.

User or Subsystem Program

GTRACE. .

X

TR

GTF Address Space Trace
7 Records,
/
n GTF
1 External
START or %1
STOP GTF ——
« | [Internsl
- Mode
Supervisory
Program
— Trace
— Records
HOOK. ..

B

T

Dumps

INERE RRRN

Figure 9-6. Generalized Trace Facility - Summary

9-18 MVS/Extended Architecture Overview

Master Trace

MV S/XA records console traffic through master trace. Unlike the tracing
functions of system trace and GTF, which preserve internal system activity (1/0
interruptions, dispatches, routing to FRRs, and so forth), master trace preserves
external system activity, such as mount messages, status displays, operator-issued
commands, system responses to commands, and other messages, recording this
activity when it occursin atable in storage.

When the master trace function is started, the communications task schedules the
tracing. Because the communications task normally handles message traffic within
MV S/XA anyway, it isin a perfect position to trace such traffic; it routes each
message to master trace, and master trace preserves each message in the master
trace table. (A hardcopy log function, separate from master trace, provides a
permanent record of the same kinds of console traffic that master trace preserves.)

A hard copy listing of the operator console message traffic can help in debugging a
system failure, especially if an 1/O device caused the failure. In reconstructing the
events that led up to such afailure, the system trace table (previously described in
this chapter) would contain entries for 1/0 errors that occurred when programs
accessed the faulty device. This information might be enough to pinpoint a device
problem, but alisting of console traffic showing when volumes were mounted
would also help. By comparing the time when a volume was mounted to the times
associated with the 1/O errors, the problem solver can pinpoint the problem as a
faulty device. Knowledge of console traffic, then, generally helpsto create a more
complete picture of the system environment and decreases the chance of
overlooking obvious causes of errors.

Because the master trace table residesin virtual storage, it can also be dumped.
That is, users of those MV S/ XA dumping facilities, described earlier in this
chapter, can request that the contents of the master trace table be included in their
dumps, thus providing a more complete collection of information regarding an error
condition. The installation sets the size of the master trace table with operands on
the TRACE command issued to start master trace.

Figure 9-7 illustrates the master trace function.

Chapter 9. Monitoring System Activity ~ 9-19

Operator
Commands

Command
Responses

System
Messages

Master
Scheduler

Communications
Task
A
Operator
Console
Y
Master Master
Trace > Vrace
Table
Dumps

Figure 9-7. Master Trace Overview

Serviceability Level Indication Processing (SL1P)

9-20

Serviceability level indication processing (SLIP) aidsin error diagnosis. Diagnosing
a problem requires information about the problem. This information includes the
events that led to the error and the contents of critical data areas and control

blocks at the time of the error. Dumps supply a picture of virtual storage when the
error occurs. Traces supply arecord of system events. SLIP joins these two
diagnostic mechanisms into a powerful debugging tool that associates a prescribed
diagnostic action, like dumping or tracing, with a specific event, like a program
interruption, ABEND, or storage reference.

The description of the system event that isto be intercepted and the action to be
taken asaresult iscalled a trap. At the operator console or an authorized TSO
terminal, the problem solver enters the SL 1P command to describe each trap.
Operands on the SLIP command specify the system event to be intercepted, the
action to take place when the event occurs, and whether the trap is to be enabled
or disabled. An enabled trap is one for which the action is taken if the system event
to be intercepted does, in fact, occur. A disabled trap, on the other hand, is
ignored; that is, no check is made for the system event. The problem solver can
enable and disable traps as system conditions change.

MV S/Extended Architecture Overview

SLIP traps can intercept two classes of system events: program event recording
(PER) events and error events.

Program Event Recording Events

Error Events

PER events take place because the processor can cause a program interruption
when certain system events occur. Specifically, the PSW, which controls the
processor's execution of instructions, contains a program event recording bit.
When this bit and the bitsin control register 9 that correspond to a particular
condition are on, a program interruption or PER interruption (asit is commonly
called) occurs. This may be for one of the following conditions:

« Theinstruction executed was fetched from a storage location that falls within a
specific range of addresses.

» Theinstruction executed is a successful branch instruction.
» Thealtered storage location falls within a specific range of addresses.

The PER interruption that occursin these cases is handled by the program check
first-level interruption handler (PCFLIH), which alters the sequence of processing
from the program that contains the instruction to SLIP. The processor, in effect,
recognizes an instruction fetch, a successful branch, or a storage alteration of a
program and gives control to SLIP. After SLIP processes the PER event, it
normally returns control to the interrupted program, (although SLIP traps can be
defined so that the program interrupted by PER eventsis abnormally terminated).

Error events are a subset of errors that cause recovery termination management
(RTM) processing. Chapter 10, "Recovering From Errors® lists the errors that
cause RTM processing. Some of the errorsthat SLIP can trap are:

» Program check interruptions. Programs cause errors, such as an addressing
exception and a storage protection check.

» Dynamic address transation errors. The DAT hardware fails or the contents of
the page tables become invalid.

» Machine checks. The machine check is not recoverable by the hardware, and
the software must try to recover.

» Abnormal address space termination. MV S/ XA components request RTM to
terminate an address space and clean up its resources.

+ ABEND. A task abnormally terminates.

* SVCerror. A locked, disabled, or SRB mode program issues a supervisor call
instruction.

« Restart interruption. The operator presses the restart key on the system
console.

Chapter 9. Monitoring System Activity 9-21

SLIP Actions

For either a PER event or an error event, SLI1P can perform one of the following
actions:

e Take an SVC dump tailored to the needs of the problem solver.
* Cause a GTF trace record to be written.

» Put the system into the wait state so that the problem solver can manually
display or alter storage or take a stand-alone dump.

* Ignore the event altogether.

» Override the suppression of a dump by the dump analysis and elimination
(DAE) facility.

For error events, SLIP can also suppress selected dumps.

Using SLIP Traps

The SLIP command can define atrap, alter the state of existing traps (that is,
enable or disable them) to meet new system conditions, or delete traps that are no
longer useful. SLIP traps can be defined so that they are automatically disabled
after they have been matched a specified number of times. Also, SLIP traps for
PER events can be defined so that they are automatically disabled when processing
the PER eventsidentified by these traps consumes a specified percentage of system
processing time.

The system interprets a sequence of SLIP trapsin a"last-in-first-out" (LIFO)
order. That is, the most recently-defined trap is processed first, then the next most
recent, and so on until the conditions specified in the trap match the system events.
When the match occurs, SLIP takes the action specified by the trap, and the
process of interpreting the traps begins again in LIFO order with the most
recently-defined trap. The problem solver uses this ordered processing of trapsto
control the way in which system events are intercepted. For example, assume that
aprogram is modifying location X, but JES2 is the only program that should
modify location X. To identify any other program that is modifying location X, the
problem solver setstwo trapsin the following order:

1. TRAP1: A SLIPtrap to intercept the PER event of storage alteration for
location X for all programsin all address spaces. Take an SVC dump if this
event isintercepted.

2. TRAP2: A SLIPtrap to intercept the PER event of storage alteration for
location X for only address space 2, which belongs to JES2. Ignore the event
when it's intercepted.

Because of the LIFO order in processing traps, TRAP2 is processed first. When

JES2 alterslocation X, the event isignored. TRAPL is not processed. When a

program running in an address space other than address space 2 alterslocation X,

TRAP2 is processed but does not match. TRAPL is then processed. TRAP1 does

match this event, and an SV C dump istaken. In this way, a sequence of SLIP traps
» can be designed to filter out known processing and expose unknown processing.

O-22 MVS/Extended Architecture Overview

Figure 9-8 summarizes the basic SLIP concepts and functions. The following
description highlights these concepts and functions:

1. The problem solver establishes a SLIP trap by entering the SLIP command at
the system console or an authorized TSO terminal.

2. A PER event SLIP trap interrupts the program when a PER event occurs. The
PER events are instruction fetch, successful branch, and storage alteration.

3. Anerror event SLIP trap intercepts error events. SLIP error events are a
subset of those errors that cause RTM processing. They include program
check interruptions, SVC errors, and DAT errors.

4. Each SLIP trap indicates actions that are to take place when a PER event or
error event isintercepted. These actions include dumping critical storage areas
and control blocks, writing GTF trace records to the SY S1. TRACE data set, or
ignoring the event altogether.

Chapter 9. Monitoring System Activity ~ 9-23

PSW

Control
Registers
9,10,11

SLIP
Command
E PER Event Trap n Error Event Trap
Program A Program B
*EVENT® SLIP - | —>] R™M | sLIp
- *ERROR* -
[|
| [
Dumps Dumps
SYS1.TRACE \/

Figure 9-8. Serviceahility Level Indication Processing Summary

SYS1.LOGREC Error Recording

9-24

Diagnosing errorsin MV S/XA can require more information than is supplied by
those monitoring and dumping mechanisms already described. In order to recreate
certain environmental conditions important to the solution of the problem, the
problem solver might need a knowledge of the system's complete history,
sometimes going back as far as when the system was initialized for operation. The
time when early system events occurred and the order in which they occurred can
help to reveal the cause or causes of system failures.

SY S1.LOGREC error recording creates such a history by recording hardware
failures, selected software errors, and other system events for the entire processing
life of the system — from initialization to shutdown. Various MV S/XA control

MVS/Extended Architecture Overview

programs write system error information to SY S1.LOGREC, a
permanently-resident system data set, creating, over a period of time, a system
history. The recovery termination manager (RTM), for example, records the error
analysis that the machine check handler does for a machine check interruption and
also records the data that error recovery routines supply about software errors.

SY S1.LOGREC is one of the data setsthat can be on the system residence

(SY SRES) volume or a user-specified volume. During the first stages of MV S/XA
initialization, SY S1.LOGREC error recording begins; it ends only when the system
stops operating (whether through normal shutdown or abnormal failure). The

SY S1.LOGREC data set, then, becomes a running log of valuable information
about errors -- such as hardware errors associated with failing storage or devices
and software errors associated with failing programs -- that occurred during the
system's operation. The installation can use this information to make configuration
changes and debug system problems.

Figure 9-9 illustrates the following stepsin SY S1.LOGREC error recording:

1. During system generation, the IFCDIPQO service aid program initializes the
SY S1.LOGREC data set. This program creates a time stamp record that
contains the time when MV S/XA was generated, the time of a forthcoming
IPL, and various other system-related data; this record is the starting point for
the history of MV S/XA processing. After IFCDIPQO finishes the initialization,
SY S1.LOGREC isready to receive error records.

2. During system operation, various MV S/XA routines format and write records
to SY S1.LOGREC about failing hardware (such as a device or a processor),
software errors (such as program errors, machine checks, ABENDS), and other
system events (such as device demounts, reconfigurations, and end-of-day or
shutdown events). For most of these situations, the recording routines write to
SY S1.LOGREC regardless of whether or not the system was able to recover
from the error. Each record, while identifying the error and the time it
occurred, also contains other information, such as the current device hardware
status, any results of software recovery, and statistical data on the number of
such errors that have occurred to date.

3. The environmental recording, editing, and printing program, EREP, retrieves
data from SY S1.LOGREC to (1) produce reports useful for diagnosing system
errors or to (2) dump the SY S1.LOGREC data to an auxiliary data set so that
SY S1.LOGREC can be used again. Many auxiliary data sets can be generated
as SY S1.LOGREC fills up, forming an archive of SY S1.L OGREC data that
the installation can use to extend the history of error activity beyond the
capacity of SY S1.LOGREC. To produce detailed reports of the system's error
activity, EREP can process any or all of the data sets in the archive, including
the data on SY S1.L OGREC itself.

Chapter 9. Monitoring System Activity ~ 9-25

Service

Aid
IFCDIPOO SYS1.LOGREC
Header
MVS/XA CONTROL PROGRAM Record
Time Stamp
Record
Routines
that record Ervor
Error Records
Information
-
EREP > 4

Archive of
auxiliary data
sets

Reports

Figure 9-9. SY S1.LOGREC Error Recording Overview

9-26

MV S/Extended Architecture Overview

Chapter 10. Recovering From Errors

A system is available when both its hardware and software are capable of
processing jobs. Error recovery in MV S/XA is designed to increase the availability
of the system and reduce the impact on users when errors occur in critical software
and hardware components. If recovery is not possible, MV SXA attempts to
continue without the damaged facility. In general, recovery is attempted in such a
manner that the recovery processes are transparent to the user.

Recovery routines have four objectives:

» Toisolate the error

» To assess the damage and attempt to confine it to one user or task
» Toindicate the actions, such as dumping, that should be taken

» Torepair the damage and perform clean-up processing so that the function can
be restarted

In MV S/XA, error processing of software failuresis handled by recovery
termination (RTM), and error processing of hardware failuresis handled by several
facilities. Asaresult, MV S/XA processing continues with minimal downtime.

Softwar e Recovery: Recovery Termination Manager

Recovery Routines

The recovery termination manager (RTM) monitors the flow of software recovery
processing by handling all abnormal termination of tasks and address spaces, and
passing control to recovery routines associated with the terminating functions. The
RTM enables user programs to establish their own recovery protection and system
programs to enhance system serviceability and reliability.

The RTM isinvoked for the following conditions:

» 1/O error during a page-in operation

» Program error not handled by a program interruption routine

* Machine error not handled by hardware recovery

» Supervisor cal that isinvalid

» Restart operation initiated by the console operator

+ CALLRTM macro instruction directed toward another task (ABTERM)
 CALLRTM macro instruction directed toward an address space (MEMTERM)
* ABEND macro instruction

* Dynamic address translation (DAT) error

» Branch entries for abnormal termination requests

* Reentry for abnormal termination requests

* Reentry for machine checks

Two types of recovery routines are identified by the RTM: task recovery routines
and functional recovery routines. These routines are described in the following
sections.

Chapter 10. Recovering From Errors 10-1

Task Recovery Routines

Functional Recovery Routines

Task recovery routines - extended specify task abnormal exit (ESTAE/ESTAI)

- provide recovery for those programs that run enabled, unlocked, and in task mode.
They are established by using the ESTAE macro instruction or the ESTAI
parameter of the ATTACH macro instruction.

A program can intercept an anticipated ABEND by issuing the ESTAE macro or
the ATTACH macro with the ESTAI option. Control is given to a user-specified
routine in which the user may perform pretermination processing, diagnose the
cause of the abend, and specify aretry addressif he wishesto avoid the
termination. The routines operate in the mode (problem program or supervisor)
that existed at the time the ESTAE request was made.

Note: STAE/STAI, specify task abnormal exit, are available with OS/V S2
Release 1 (SVS) and with OS/MVT and OS/MFT. Although STAE and STAI are
also availablein MV S/XA, it isrecommended that ESTAE or ESTAI be used in
MV S/XA. ESTAE or ESTAI provide increased capabilities over STAE or STAI;
they can schedule clean-up processing under certain instances for which STAE
routines do not get control and can provide defaults for the most commonly used
options.

If atask is scheduled for abnormal termination, the recovery routine specified by
the most recently issued ESTAE macro instruction gets control. If the ESTAE
routine cannot provide recovery for the error, the next higher-level ESTAE routine
(if any) associated with the task is gets control. This process of passing control
from arecovery routine to a higher-level recovery routine along a pre-established
path is called percolation.

Each ESTAE routine for the task is then given control, one at atimein LIFO
(last-in first-out) order, until retry is requested or all routines for the task are
exhausted. When ESTAE processing is exhausted, abnormal termination occurs.

Functional recovery routines (FRRS) provide recovery for those system programs
that run disabled, locked, or in SRB (service request block) mode, or less
frequently, for programsin supervisor state, key O, that run enabled and unlocked.
The system programs establish the FRR by using the SETFRR macro instruction.

The SETFRR macro instruction provides each system program with the ability to
define its own unique recovery environment. Each FRR established by a system
program is placed in an FRR LIFO (last-in first-out) stack that is used during RTM
processing. The SETFRR macro instruction can be used to add, delete, or replace
FRRsin the stack.

Each FRR stack used by the RTM contains the addresses of the FRRs established
to protect a single path through the system control program. When an error occurs
in a path, the RTM passes control to the last FRR in the associated stack. If the
FRR cannot provide recovery for the error, the previously-established FRR in the
stack is given control (percolation). Each FRR in the stack is eventually given
control, one at atimein LIFO order, until retry is requested or the stack is
exhausted. When FRR processing is exhausted, appropriate task recovery routines
(if any exist) are given control; otherwise, abnormal termination occurs.

10-2 MVS/Extended Architecture Overview

Any user-written routines outside the control program that are qualified to issue the
SETFRR macro instruction may add one, and only one, FRR to a stack. If more
than one FRR is added to a stack, abnormal termination may occur when SETFRR
isissued.

Hardwar e Recovery Facilities

M achine Check Handler

Alternate CPU Recovery

MV S/XA facilities gather information about hardware reliability and allow retry of
operations that fail because of processor, 1/0 device, or channel errors. The
facilities are designed to keep the system operational in the event of hardware
failures.

The hardware recovery facilities are:

* Machine check handler (MCH)

» Alternate CPU recovery (ACR)

» Subchannel logout handler (SLH)

» Dynamic device reconfiguration (DDR)
* Missing interruption handler (MI1H)

The machine check handler (MCH) minimizes the impact of machine malfunctions
on MV S/XA systems. It alerts the control program to any hardware failures that
could affect the successful execution of the control program.

Recovery from machine malfunctionsisinitially attempted by the hardware
instruction retry (HIR) and error checking and correction (ECC) facilities of the
hardware. If the hardware recovery attempts are unsuccessful, MCH gets control
to analyze the data and isolate the source of error.

When the MCH completes its analysis, it records the error analysis on the

SY S1.LOGREC data set and invokes the appropriate functional recovery routines
to attempt recovery from the machine check. If recovery is possible, RTM resumes
the interrupted program at the point of interruption; if recovery is not possible,
RTM terminates the interrupted program.

In a uniprocessing environment, if MCH determines that processing cannot
continue, it will terminate execution on the processor and place the processor in a
disabled wait state. In a multiprocessing environment, however, an irreparable
machine check causes an emergency signal (EMS) to afunctioning processor. On
this processor, MCH invokes the alternate CPU recovery routine.

The alternate CPU recovery (ACR) routine provides a multiprocessor complex
with the ability to recover system operations on an operational processor after
another processor fails. Where possible, it will take responsibility for all work in
progress on the failing processor.

In a multiprocessing environment, if MCH is unsuccessful because of arecursive
error or adamaged processor, MCH invokes ACR on an operative processor to
terminate execution on the failing processor. When ACR receives control, it
logically removes the failing processor from the system and attempts to transfer
work that was in progress on the failing processor to the operative processor. The
recovery termination manager then initiates recovery by invoking the appropriate
functional recovery routines to free resources associated with the failing processor.

Chapter 10. Recovering From Errors ~ 10-3

Figure 10-1 demonstrates the flow of control through the machine check handler
and alternate CPU recovery.

MALFUNCTIONING PROCESSOR FUNCTIONING PROCESSOR
—————
y
External
Task Executing at FLIH
Time of Malfunction

Machine Check

/ /

Rep,_ .
Ra
N MCH MCH
Ch Chine Processor Termination Emergency Signal
Sck Routine Processor
Terminating
Machine Check
EMS A
ACR
Y
System
Terminated RTM
Functional
Recovery
Routine

Figure 10-1. Control Flow for MCH and ACR

Subchannel Logout Handler

The subchannel logout handler (SLH) reduces the impact of subchannel
malfunctions on systems running MV S/ XA. It isan integral part of the 1/O
supervisor (10S) that aids in recovering from subchannel errors and informs the
operator or system maintenance personnel when errors occur.

SLH receives control after a channel malfunction is detected. It analyzes the type
and extent of the error using the information stored by the channel.

When an error condition occurs, SLH allows the device-dependent error recovery
procedures to retry the failing 1/0, forcing the retry on an alternate subchannel (if
oneis available). Records describing the error are written to the SY S1.LOGREC
data set. SLH performs no error recovery itself; it does not retry any operation or
make any changes to the system. Recovery from subchannel errorsis performed
only by the device-dependent routines.

10-4 MVSExtended Architecture Overview

Dynamic Device Reconfiguration

Dynamic device reconfiguration (DDR) allows the system and user to circumvent
an 1/O failure by, if possible, moving a demountable volume (tape or disk) from
one device to another or by substituting one unit record device (reader, punch, or
printer) for another. DDR requests are processed without shutting down the
system and might eliminate the need to terminate a job.

Either the system or the operator initiates a DDR swap. When a permanent 1/0
error occurs, MV S/XA initiates a swap along with a proposed alternate device to
take over the processing of the device on which the error occurred. The operator
accepts the swap and proposed device, accepts the swap but selects another device,
or refuses the swap. The operator can also initiate a swap (viathe SWAP
command). The ability of the operator to initiate a swap is useful if adevice
cannot be made ready, if there is a need to substitute one unit record device (such
as acard reader or printer) for another, or if, for example, a device must be taken
offline for some reason.

Missing Interruption Handler

The missing interruption handler, described in Chapter 7, "Satisfying 1/0
Requests" also contributes to recovery management in MV S/XA. The missing
interruption handler (MIH) checks whether expected I/O interruptions occur
within a specified period of time. If an interruption does not occur, MIH notifies
the operator so that corrective steps can be taken before system status is harmed.
The absence of interruptions might indicate, for example, that there is high
contention for a device that may have been reserved for a particular processor, that
there is a software problem, or that a device has malfunctioned.

Chapter 10. Recovering From Errors ~ 10-5

10-6 MVSExtended Architecture Overview

Chapter 11. Initializing the System

Before MV S/XA can do work, it must beinitialized. Some starting values are
established during the one-time system generation process that occurs when an
MV S/XA system isfirst installed. Others are provided by the system operator
during theinitialization process that takes place each time the MV S/ XA system
starts. These values serve to tailor the MV S/ XA system to meet the installation's
needs.

The system isinitialized for several reasons:

* Because of achangeinthe MVS/XA system
» Because of the installation of a new product
» Toresume service after the system has been inoperative

Asshown in Figure 11-1 the initialization process consists of loading the nucleus,
initializing system resources and resource managers, initializing system component
address spaces, and initializing the primary job entry subsystem (usually JES2 or
JES3). Input to the process includes data sets initialized during system generation.
These data sets reside on the system residence volume (SY SRES) and other direct
access device (DASD) volumes. The process also requires the use of real storage,
paging data sets, and optional swap data sets. To provide additional system
tailoring, the system operator can interact with the various initialization routines
through the master console.

Chapter 11. Initializing the System 11-1

L oading the Nucleus

Initializing System Resour ces

(L SYSRES)

~——

S

Direct
Access

Volume .
N~ e Initialize System

Resources

¢ Load Nucleus

e Initialize System
Resource Managers

Master
Console

> e Initialize Master
Scheduler Address Space
Real
Storage e Create System
Component Address
Spaces
Page e |Initialize a Job Entry
Data Sets Subsystem
Swap
Data Sets

_/

Figure 11-1. The Initialization Process

System initialization begins when the system operator initializes the hardware. The
system operator performsthe initial microprogram load (IML) to start the
processor, mounts the necessary DASD and tape volumes, and readies the system
printers.

The system operator initiates the software load procedures after ensuring that the
system residence (SY SRES) volume is mounted. Then, using the master console,
the operator activates the LOAD function, which loads the first initialization
module into real storage and begins the MV S/XA initialization process.

The system resources initialized include real, virtual, and auxiliary storage, al 1/0
devices, consoles, and processors. The initialization of system resourcesisthe
process of describing what resources are available and in what quantities and
setting initial values in system data sets, so that resource managers can control their
use. For example, the initialization process provides a description of real storage
that the real storage manager (RSM) can use to control the use of real storage.

11-2 MVSExtended Architecture Overview

Initializing the Resour ce Manager s

Theinitialization processis a bootstrap operation. The first initialization control
modules must provide for themselves, and for the modules they control, the
essential system services that the uninitialized resource managers cannot yet
provide. Initialization of aresource manager means initializing the control blocks
and the data areas that the manager needs to provide service. When these areas
are initialized, the resource manager is ready to perform its tasks.

Initializing the Master Scheduler Address Space

Initializing a Job Entry Subsystem

The Initialization Process

Thetask of initializing the master scheduler address space continues throughout
system initialization. The first step is the mapping of two gigabytes of virtual
storage for the master scheduler. This address space will include both common
areas, which will be available to all system component and user address spaces, and
private areas, which will be available only to the master scheduler.

Subsystem initialization is the process of readying a subsystem for usein the
system; this process involves defining the subsystem's name and initializing the
subsystem so that the system recognizes it by name. In this manner, subsystems
such as the job entry subsystem (JES2 or JES3, for example) can be initialized.
Subsystems communicate with MV S/XA through a system component known as
the subsystem interface. Figure 11-2 illustrates how the subsystem interface acts as
aliaison between a subsystem and MV S XA.

SUBSYSTEM INTERFACE
MVS/XA

FUNCTIONS:

1. DETERMINE IF SUBSYSTEM
NAME IS VALID Subsystem

2. DETERMINE IF SUBSYSTEM -
IS ACTIVE JES 2 or JES3

3. DETERMINE IF SUBSYSTEM Interface
CAN PROCESS THE REQUEST
4. BRANCH TO SUBSYSTEM
TO PROCESS THE REQUEST

Figure 11-2. The Subsystem Interface

The remainder of this chapter describes the sequence of eventsin the MV S/ XA
initialization process. It begins with the loading of the initial program loader (IPL)
control program and ends when the system is ready to accept a LOGON command
or abatch job. MVS/XA initialization occurs in three phases. Figure 11-3
summarizes these phases, which are: IPL, NIP, and master scheduler initialization.

Chapter 11. Initializing the System 11-3

=

IPL

Y

» o Master
NIP Scheduler
IRIMs RIMs Initiate
—
JES
Last Last
Module Module

Figure 11-3. System Initialization Summary

11-4

IPL

Theinitial program load (IPL) phase is controlled by the IPL control program,
which is loaded when the operator activates the load function. The IPL control
program controls the initialization of system resources; however, the actual
initialization is done by IPL resour ceinitialization modules (IRIMs). Each IRIM
is part of the component that controls aresource. For example, the real
storage manager (RSM) IRIM initializes the control blocks that RSM uses and
maintains during normal system operation.

NIP

The nucleusinitialization program (NIP) phase continues the initialization that
IPL began. Again, the NIP control program invokes resourceinitialization
modules (RIMs) to perform the work of initialization. As with IRIMs, each
RIM is part of acomponent and initializes the control blocks that the
component is responsible for.

During NIP, the PC/AUTH, TRACE, global resource serialization, and
DUMPSRYV address spaces are initialized.

Master Scheduler

The master scheduler initialization routines initialize the master schedul er
address space. Once the master scheduler address space isinitialized, these
routines attach and initialize tasks that remain as permanent system tasks after
system initialization.

During this phase of initialization, the CONSOLE, ALLOCAS, and SMF
address spaces are created, and the subsystem interface isinitialized. Finally,
the master scheduler, itself, starts the job entry subsystem (JES2 or JES3),
creating the JES2 or JES3 address space.

MVS/Extended Architecture Overview

Required Resour ces

During initialization, the control program, the IRIMs, the RIMs, and the master
scheduler initialization modules require certain system resources:

The system residence volume (SY SRES) must be online and ready during system
initialization because it contains the IPL control program and some of the
system data sets needed during the initialization process. Some data sets that
must be on the SY SRES volume are:

— SYSL.NUCLEUS, which contains the resident nucleus, the IRIMs, the
RIMs, the NIP control program, and other initialization modules.

— SYSLSVCLIB, which is an authorized program library containing
supervisor routines that are not part of the resident nucleus but are invoked
during initialization.

Other required data sets, which reside on direct access devices that must be
online and ready, are:

— SYSL.LINKLIB, which contains system and user programs, including the
linkage editor, service aid programs, utility programs, and some of the
master scheduler initialization modules.

— The master catalog, which contains pointersto all system data sets.

SY S1.PARMLIB, which contains both IBM-supplied and user-supplied lists
of system parameter values that serve as input to system initialization. The
initialization process depends on values that are specified for the system
parameters. System parameters are' discussed later in this chapter under,
"Processing System Parameters".

— SYSI1.LPALIB, which contains the modules that are |loaded into the link
pack area.

— SYSL1.STGINDEX, which contains auxiliary storage management (ASM)
mapping tables for the pages of virtual input/output (V10) data sets that
must be saved across job steps and between system initializations.

- SYS1.LOGREC, which is used for recording hardware, software, and 1/0
errors. This data set is opened during initialization so that error recording
can take place.

The master console, which the operator uses to control system initialization.
During the NIP phase of initialization, the operator can specify system
parameters and override system parameters specified in SY S1.PARMLIB.
Because of its importance in operator-system communication, the master
console is one of thefirst devicesto beinitialized.

Real storage, which must be at least four megabytes. Generally speaking, the
more real storage there is, the greater the workload that the system can handle

Page data sets, which will make up the page space portion of auxiliary storage.

The auxiliary storage manager (ASM) uses this page space to store the
contents of pageable virtual pages and virtual input/output (V10) data set

Chapter 11. Initializing the System 11-5

pages. Each page data set is formatted in 4K-byte records called slots. A slot
isdynamically allocated whenever a page must be moved out of real storage.

ASM classifies page data sets based on data set content and use. The four
types of page data sets are:

- Pageablelink pack area (PLPA) data set, which contains system routines
and access methods

— Common page data sets, which provide space for the non-PLPA virtual
pages in the system common area

- Duplex page data set, which is an optional duplicate data set that an
installation supplies as a back-up for the common and PL PA data sets

— Local page data sets, which provide space for each address space's unique
pages, the virtual input/output (V10) data sets, and, if there are no swap
data sets available, private address space (L SQA) pages

+ Swap data sets, which make up the swap space portion of auxiliary storage.
ASM uses swap space to store and retrieve the set of pages that belong to a
swapped-out address space.

Swap data sets are optional. However, if none are supplied, swapping is done
to page data sets which, can degrade system performance.

Each page and swap data set must be defined and cataloged on a direct access
storage device (DASD). While the system is running, these data sets must
remain open.

Initial Program Load (IPL)

IPL isthefirst phase of the system initialization process. When the operator
initiates the load process, a bootstrap loader bringsthe IPL control program into
real storage starting at location zero, as shown in Figure 11-4. Then the IPL
control program receives control.

11-6 MVS/Extended Architecture Overview

Key

: Data transfer

‘ Program control (\/J\

Real storage

M
=
IPL
Console@ ﬁ

Figure 11-4. Loading the IPL Control Program

ThelPL Program

TheWork of thelRIMs

L oading the Nucleus

The IPL program prepares an environment in which the IRIMs can execute,
controls the loading and deleting of the IRIMs, and provides service routines for
the first phase of initialization. It handles page faults by assigning frames of real
storage to each page of virtual storage that the IRIMs request. It clearsreal
storage, and maps two gigabytes of virtual storage for the master scheduler address
space. It searches SY SRES for the SY S1.NUCL EUS data set,. which contains the
IRIMs, RIMs, and other modules needed for system initialization. The IPL control
program then passes control to the first IRIM.

As stated earlier, the IRIMs are the programs that actually do the work of the IPL
phase. They perform very basic initialization tasks; they load the nucleus, build
virtual and real storage areas, and initialize the device on which SY SRES resides.

As Chapter 2, "Multiple Virtual Storage" explains, some code in the nucleus must
run with dynamic address translation (DAT) turned off. Because of this
requirement, the nucleus consists of two load modules, which the first IRIM loads
into storage. The IRIM places the DAT-off nucleus in contiguous frames of the
highest available addresses of real storage; it is not mapped in virtual storage. The
IRIM loads the control sections (CSECTSs) in the four sections of the DAT-on
nucleus into virtual storage from low addresses upward in the order of: read-write,
read-only, read-only extended, and read-write extended.

An IRIM builds the DAT-off to DAT-on linkage table at the beginning of the
DAT-off nucleusin real storage. This table establishes addressability between
entriesin the DAT-off nucleusin real storage and entriesin the DAT-on nucleusin
virtual storage.

Chapter 11. Initializing the System 11-7

Initializing Virtual Storage

One of the IRIMs builds the nucleus map (NUCMAP), an address-sorted directory
of CSECTs and entry pointsin the DAT-on nucleus. NUCMARP residesin virtual
storage in the read-write extended nucleus.

During the IPL phase of initialization, the IRIMs initialize or reserve storage for
many system component control blocks, work areas, and programs. The IRIMs
also begin to initialize the private area of the master scheduler address space, the
first address space to be created. Some important areas initialized in this first
address space are:

The system queue area (SQA) and extended SQA

The VSM IRIM reserves storage for the tables and queues that relate to the
system.

The extended local system queue area (extended L SQA) for the master
scheduler

The VSM IRIM initializes the area above the 16-megabyte line that contains
tables and queues that the master scheduler will use.

The master scheduler segment table

An RSM IRIM initializes a segment table whose entries are the addresses of
page tables for the common area of virtual storage. This common segment
table is part of the master scheduler address space segment table. During the
NIP phase of initialization, an RSM RIM copies the common segment table
from the master scheduler's private areainto SQA for all address spacesto use.
Eventually, each address space also has a segment table for its own private
area

The RSM page frame table

An RSM IRIM initializes the tables that identify how the frames of real storage
are assigned. As Chapter 2, "Multiple Virtual Storage" explains, there is one
page frame table for the entire system, and it has one entry for each frame of
real storage. Thistable resides in the read-write extended nucleus. The IRIM
initializes those frames that have already been assigned and are permanently
resident.

Figure 11-5 shows the virtual storage map for the master scheduler address space

at the end of the IPL phase.

11-8 MVSExtended Architecture Overview

2 gigabytes Extended LSQA

Extended SQA
16 megabytes Extended Nucleus

Nucleus
SQA

IPL/NIP Interface Routine
0 PSA

Figure 11-5. Virtual Storage at Exit from the IPL Phase of Initialization
Initializing Real Storage

As previously described, the IPL control program zeroes each 4K-byte frame of
real storage. It then reserves space for permanent data areas and control blocks.
By the end of the IPL phase, the following areas have been permanently initialized
inreal storage:

» System data areas that are never paged out of real storage
o DAT-off nucleus

* DAT-on nucleus
» Prefix save area (PSA)

Figure 11-6 shows a schematic representation of real storage at the end of the IPL
phase of initialization. The figure illustrates the following points.

» Asthevirtual storage manager (VSM) initializes the DAT-on nucleus, the
SQA, the extended SQA, and the extended L SQA in virtual storage, RSM

allocates non-contiguous real storage frames to provide working copies of these
pages.

e The PSA resides at location zero.
« Only the DAT-off nucleus residesin contiguous real frames.

» The code for the last executing module (the last IRIM) isin real storage at exit
from IPL.

Chapter 11. Initializing the System 11-9

DAT-Off

DAT-On Nucleus

l] | 7 [INN K] |

Nucleus \

IPL/NIP

= o

Interface — ™

Routine

SQA
Extended

SQA
<

PSA

P ~ iniu

] Extended
7 LSQA

The Last

Figure 11-6. Real Storage at Exit from IPL

Initializing the IPL Device

One of the IRIMs initializes the unit control block (UCB) for the device on which
the IPL volume, SY SRES, resides. Note that the IPL deviceis only the first of
many devices to be initialized.

Nucleus I nitialization Program (NI P)

11-10

NIP processing is the second phase of the system initialization process. The NIP
control program prepares the environment that will allow the resource initialization
modules, the RIMSs, to perform their functions of initializing system components.
The NIP control program is responsible for the loading and deleting of the RIMs.
It also provides service routines that substitute for functions that are not yet
available in the system, as well as diagnostic support for software and hardware
failures that might occur during this second phase.

The RIMs depend on system parameters to tell them what initialization functions to
perform and which SY S1.PARMLIB members to use to initialize the system.
System parameter lists are contained in the IEASY Sxx member of SY S1.PARMLIB
or are specified by the operator during NIP. Based on the values in effect for the
system parameters, the RIMs perform three major functions:

» Continue to establish the master scheduler address space

» Process SY S1.PARMLIB-specified and operator-specified system initialization
parameters

» Continue to initialize the resource managers

MV S/Extended Architecture Overview

Establishing the Master Scheduler Address Space

NIP and the RIMs establish the master scheduler address space, completing the job
started during the IPL phase. As stated earlier, the master scheduler address space
contains private areas for the master scheduler (in which NIP and the RIMs
execute) and common areas for use by all address spaces. As shown in

Figure 11-7, VSM and ASM RIMs allocate virtual storage in the common area for
the common service area (CSA), the system queue area (SQA), and the link pack
area (LPA). All of these areas exist both below the 16-megabyte line (for
programs executing in 24-bit addressing mode) and above the 16-megabyte line
(for programs executing in 31-bit addressing mode). Figure 11-7 shows the
completed map of the master scheduler address space.

2 gigabytes

Extended L SQA

Extended
User
Region

Extended CSA

Extended L PA

Extended SQA
Extended Nucleus

16 megabytes
Nucleus

SQA
LPA
CSA

LSQA

User Region

PSA

0

Figure 11-7. Virtual Storage at Exit from NIP

The amount of storage allocated for the different areas of virtual storage depends
on values specified for system parameters. An example of how the VSM RIM uses
a system parameter appears in the following section on processing system
parameters.

Processing System Parameters

During NIP processing, the RIMs depend on system parameters to tell them how to
perform certain initialization functions. The RIMs obtain system parameters from
two sources: from system parameter lists, which reside in SY S1.PARMLIB B, and
directly from the system operator.

Chapter 11. Initializing the System 11-11

System Parameter Lists

System Operator

System parameter listsreside in SY S1.PARMLIB. The NIP RIMs always read the
default general parameter list (IEASY S00). Thislist contains basic initialization
instructions, installation-specified initialization defaults, and other initialization
values that will not change from one initialization to another. For example, if
IEASY SO0 contains

CSA=(400,2000)

aVSM RIM allocates 400K bytes for the CSA and 2000K bytes for the extended
CSA.

SY S1.PARMLIB may also contain alter nate system parameter lists (IEASY Sxx
members other than IEASY S00) that NIP merges with the default parameter list
during initialization. The alternate parameter lists, sometimes called secondary
lists, contain values that override corresponding values in the default list. They
may also contain additional values not originally specified in the default list.
Alternate lists normally contain parameters that are subject to change. For
example, they might contain parameters that, because of workload changes, must
change between shifts.

After console communication has been established, the system operator receives
the message:

SPECIFY SYSTEM PARAMETERS

If an installation wants NIP to merge one or more alternate parameter lists with the
default list, the system operator identifies them at this time. In addition, the system
operator may directly specify certain system parameters. Such a "direct
specification” would include parameters that are unique for a specific initialization.
If no alternate parameter lists or direct specifications are indicated by the system
operator, the default general system parameter list is the sole source of initialization
values.

The operator selects the type of initialization, which affects the data sets that are
opened and their starting values. The type selected depends upon the reason the
system has previously been shutdown:

» Thecold start, the most complicated initialization process, involves reloading
the link pack area, respecifying page and swap data sets, and deleting previous
V10 data set pages. It is performed (by specifying the CLPA system
parameter) under these circumstances:

— If thisisthefirst initialization after system generation
— If theinstallation is adding or modifying modulesin SY S1.LPALIB
— If the link pack area data set pages need to be restored

» Thequick start, the usual initialization performed after normal shut-down, uses
the link pack area from the previous system initialization without reloading it.
The VIO data set pages are deleted, page data sets can be added, and swap
data sets must be respecified.

» Thewarm start, the simplest initialization process, occurs after a system has
completed a cold start but then has a system failure. The VIO data set pages

11-12 MVSExtended Architecture Overview

are retained, page data sets can be added, and swap data sets must be
respecified.

Initializing System Resour ces and Resour ce Managers

Many resources and resource managers are initialized by the RIMs in the second
phase of system initialization — in fact, too many to describe here. To give
examples of the type of processing the RIMs perform, this chapter will describe the
initialization of:

* 1/Odevices
e System catalog
* Auxiliary storage management (ASM)

Initializing 1/0 Devices

To initialize the devices in the configuration the input/output supervisor (10S)
RIMs need to initialize two data areas: the unit control blocks (UCBs) and the
installed channel path table (ICHPT).

Each device isrepresented by a UCB that MV S/XA uses for device allocation and
for controlling input/output operations. The IOS RIMs initialize the UCB for each
device by setting status and condition flags. For direct access devices (DASDS),
the 1OS RIM also records volume information in the UCBSs. Initialization of the
UCBsrequires several steps:

» Initializing the channel subsystem

Every device has one subchannel in every system to which it is attached. An
IOS RIM initializes all valid subchannels by placing the subchannel number in
the UCB of the corresponding device and enabling the appropriate subchannel

Once the channel subsystem isinitialized, an |OS RIM initializes the installed
channel path table (ICHPT) to reflect the current state of each channel path,
such as whether or not the channel path is online.

a Testing the availability of adevice

The IOS RIM considers a device unavailable if it was (1) defined as offline
during system generation or (2) defined as online but does not now have an
available channel path.

Testing the accessibility of adevice

The I0OS RIM tests the accessibility of each available device on all defined
channel paths. Figure 11-8 illustrates a configuration in which 1/0 device X
has a single channel path, and devices Y and Z have multiple channel paths.
For a device to be accessible, there must be at least one channel path to that
device.

To test for accessibility, an 10S RIM requests an |/O operation on each
defined channel path. The results of these 1/O operations determine how a
device can be accessed. For aDASD, the IOS RIM first verifies that thereis
an available channel path by issuing a dummy (no-op) command to determine
whether it can communicate with the device. If so, the |OS RIM reads the
volume label to determine the volume serial number and the location of the

Chapter 11. Initializing the System 11-13

volume table of contents (VTOC). For ashared DASD, an 10S RIM requests
an 1/0 operation to determine if the device is actually shareable. Unavailable
devices are not tested for accessibility.

» Checking for duplicate volumes
Asthe DASD UCBsareinitialized, an |10S RIM scans the UCBs for online

DASDsto verify that there are no duplicate volume serial numbers. If any
duplicate volumes are found, a message asks the operator to remove one of

them.
Processor 00 Processor 02
Subchannels
Channel Subsystem

A A A 3 A
Channel Channel Channel Channel | Channel
Path 1 Path 2 Path 3 Path 4 Path 5

Y Yy Yy Y Y

Control Unit 1 Control Unit 2 Control Unit 3 Control Unit 4
Device Device
X Y

Figure 11-S. Initializing Channel Paths

Initializing the Master Catalog

The master catalog is used to locate cataloged data sets and other catalogs. An
entry for a cataloged data set contains the volume serial number and device type.
The master catalog can contain entries for VSAM and non-VSAM data sets and
VSAM and integrated catalog facility (ICF) user catalogs.

During NIP, initialization routines can open data sets residing on the system
residence volume whether or not the master catalog has been opened. However,
they must use master catalog pointers to locate system data sets residing on
volumes other than the system residence volume; and they cannot open or access
these data sets until the master catalog isinitialized. For example, before NIP can
complete the opening of SYS1.LINKLIB and read from SY S1.PARMLIB, NIP
must open the master catal og.

11-14 MVSExtended Architecture Overview

RIMs open, initialize, and close the master catalog at initialization time. The
system operator receives the message:

SPECIFY MASTER CATALOG PARAMETER

and must identify the SY SL.NUCLEUS member that contains the volume serial
number and the device type of the desired master catalog. As shownin

Figure 11-9 the RIM then locates the UCB representing the device on which the
volume is mounted. If the volume containing the master catalog is not mounted,
the RIM issues a message that asks the operator to mount it. A RIM builds the
necessary control blocks, then opens the data set and initializes it as the master
catalog.

SYSRES

AN
A

N

SYS1.NUCLEUS

VAN

Volume Device /’\
serial type UCBs _/
Volume serial \—’/

Master

w

vTOC

Figure 11-9. Locating the Master Catalog

After NIP processing finishes but before NIP terminates, it invokes a RIM to close
the master catalog. After system initialization is complete, the first reference to a
cataloged system data set causes the master catalog to be opened for normal use.

Initializing the Auxiliary Storage M anager

The auxiliary storage manager (ASM) controls the auxiliary storage the system uses
for paging and swapping and requests 1/O operations needed for paging and
swapping. To page efficiently, ASM divides paging requirements into pageable link
pack area (PLPA), common, local pages and duplex. During system generation,
the installation allocates, catalogs, and formats page data sets to meet its
requirements for the four types of page data sets. System generation places the
names of the data sets into the default system parameter list. Additional page data

Chapter 11. Initializing the System 11-15

Initializing Page Data Sets

Initializing Swap Data Sets

sets can be specified in the alternate system parameter lists or supplied directly by
the system operator at system initialization.

Optionally, the names of installation-defined swap data sets and/or duplex
(duplicate) data sets can be specified in the same manner. Also, the installation
can indicate whether it wants VIO data sets to be reestablished when a subsequent
system initialization is performed.

After initialization, additional page and swap data sets can be dynamically added to
the system. To do this, the system operator uses the PAGEADD command and
names the the page or swap data sets to be added.

The ASM RIM opens and initializes page data sets according to the type of IPL
start — cold, quick, or warm (described earlier in this chapter under " System
Operator™). During a cold start, the PAGE system parameter in the default system
parameter list specifies applicable page data set names. However, during IPL, the
operator also receives the message:

SPECIFY SYSTEM PARAMETERS
and can use the PAGE parameter to specify additional page data sets.

During aquick start, the link pack areais rebuilt, not reloaded. That is, the page
and segment tables are reset to match the last-created link pack area. The PAGE
system parameter in the default system parameter list, or the operator response to
system messages, supplies the applicable page data set names.

During awarm start, the page data set names are those used in the previous system
initialization, although the operator can use the PAGE parameter to specify
additional data sets.

Successful initialization of ASM requires that one PLPA, one common, and at least
one local page data set, be specified and available. Before initialization, however,
all page data sets (up to a maximum of 64) must be allocated, cataloged, and
formatted as VSAM data sets.

The installation can, optionally, define a duplex data set that holds a duplicate copy
of all pages written to the pageable link pack area (PLPA and extended PLPA) and
common page data sets. The DUPLEX system parameter, contained in a system
parameter list or specified directly by the system operator, specifies the duplex data
set name.

Swap data sets are optional, but their use can significantly improve performance.
(If no swap data sets are specified, and swapping occurs, ASM directs the L SQA
and working set pages of the swapped-out address space to alocal page data set.)
Swap data set names are specified by the SWAP system parameter in one of the
system parameter lists or supplied directly by the operator. Unlike the PAGE
parameter, the SWAP parameter is an overriding parameter that permits the
replacement of data set names specified in the system parameter lists.

11-16 MVS/Extended Architecture Overview

Initializing the Master Scheduler

Master scheduler initialization is the third and final phase of the system
initialization process. As shown in Figure 11-10, it consists of three steps:

1. Initializing the master scheduler base
2. Initiating the master scheduler
3. Initializing the master scheduler region

NIP

O} |

Master scheduler

Base initialization

®

I Subsystem interface

AT

SYS1.PARMLIB

Initiator

Master subsystem <

MSTJCLxx

COMMNDxx

- Device allocation t
|
®]

Master scheduler

Region initialization K

!

Master scheduler

Wait

Figure 11-10. Master Scheduler Initialization

Chapter 11. Initializing the System 11-17

Initializing the Master Scheduler Base

The master scheduler base initialization routine is entered from NIP processing. It
loads routines required by system-initiated cancel, SWA management, and resource
management routines. It creates and initializes the control blocks needed to invoke
the initiator, a system program that starts ajob step. Then, it locates and stores
entry points for certain job scheduler routines. It initializes the subsystem

interface, the communications task, and some TSO addresses and parameters. It
performs master trace initialization, sets the time-of-day clocks, and, finally, it
attaches the initiator to initiate the master scheduler.

Initiating the Master Scheduler

Before attaching the master scheduler region initialization routines that initiate the
master scheduler, master scheduler initialization starts tasks that remain as a
permanent system tasks. These include the missing interruption handler (MIH) and
error recovery routines. At this point, no JES readers are active and no procedure

libraries are open. So, theinitiator getsthe JCL necessary for attaching the master
scheduler region initialization routines from the MSTJCL xx member of
SYS1.PARMLIB.

To read and process MSTJCL xx, the initiator invokes, through the subsystem
interface, the master subsystem - a primitive job entry subsystem. The master
subsystem, reads MSTJCL xx and invokes job scheduler routines to process the
JCL and initialize the necessary control blocks. The last statement in MSTJCL xx
isacommand to START JES. This command is passed to the command processor
portion of the master scheduler and scheduled for execution.

The initiator uses the device allocation routines to allocate the data sets indicated in
MSTJICLxx and required by the master scheduler (data sets such as
SYS1.PROCLIB and SY S1.PARMLIB). These data sets are required when JES is
subsequently started. Two internal reader data sets are also allocated. They are
used later to pass JCL from system routines to JES. Lastly, theinitiator attaches
master scheduler region initialization as the job step task. The master scheduler is
now active.

Initializing the Master Scheduler Region

11-18

The region initialization routine attaches other tasks to be run in the master
scheduler region and passes commands found in SY S1.PARMLIB to the command
processor for execution or scheduling. These commands are contained in a
command list (COMMNDxx, a member of SY S1.PARMLIB). Because there can
be multiple command lists, the CMD system parameter is used to tell master
scheduler initialization which list to use.

After master scheduler initialization completes, control passes to the master
scheduler; the master scheduler waits for individual system commands to be issued
and then activates the processing of each command. When the START JES
command appears in MSTJCLxx, the master scheduler starts the initialization of
the job entry subsystem.

MV S/Extended Architecture Overview

Initializing the Job Entry Subsystem

The process of initializing the job entry subsystem (JES) consists of:
1. Creating an address space for JES

2. Initializing aregion control task (RCT) to ready the JES address space for
execution

3. Building JCL statements that the JES initiation procedure

4. Passing the JCL to an initiator

Creating an Address Space for JES

Creating an address space for JES is similar to creating any address space. The
master scheduler attaches the address space create routine. This routine asks the
system resources manager (SRM) if a new address space can be created, and, upon
receiving permission to proceed, builds LSQA in the private area and initializes
segment tables and page tables to represent the new address space. Lastly, the
address space create routine builds task control blocks for aregion control task
(RCT) and places the address space control block (ASCB) on the dispatching
queue. When JES3 is the primary job entry subsystem, a second JES3 address
space, JES3AUX, can be created after master scheduler initialization completes.

Initializing the Region Control Task

Initiating JES

The region control task (RCT) is the highest priority task in the new address space.
RCT controls the address space and prepares it for execution. It has responsibility
for attaching the started task control (STC) routine and managing the swapping
activity of the address space. Therefore, when the JES address space becomes
active, the first task dispatched isthe RCT. After the RCT isinitialized, it attaches
the STC to initiate JES.

The START JES command causes the STC routine to build the JCL necessary to
invoke the JES procedure. Then STC starts the job entry subsystem.

The initiator invokes the master subsystem, which uses job scheduler routines much
asit did when initiating the master scheduler. However, to start JES, the initiator
uses the internal JCL built by STC rather than MSTJCL xx.

After all JCL has been processed and after job scheduler control blocks have been
built in the SWA, the initiator calls device allocation to allocate the data sets
specified in the JES procedure. Then, using the program name from the EXEC
statement of the JES procedure, the initiator attaches the primary job entry
subsystem. JES is started and MV S/XA isready for work.

Initializing the Time Sharing Option (T SO)

When 1SO sessions are part of an installation's workload, TSO must be initialized
before 1SO logons can be accepted. TSO initialization requires two steps.

First, an operator START command starts the telecommunication access method

(TCAM or VTAM) selected by the installation. (These telecommunication access
methods are described in more detail in Chapter 7, "Satisfying 1/0 Requests") The

Chapter 11. Initializing the System 11-19

master scheduler recognizes the START command and creates an address space for
the access method.

For TCAM, the operator must next enter the MODIFY command to activate the
terminal 1/O controller (TIOC) as a subtask of TCAM.

For VTAM, the operator must enter a second START command to activate the
terminal control address space (TCAS). Once either of these commands has been
processed, TSO users can LOGON.

Creating User Address Spaces

Batch jobs, entered by means of card readers or similar unit record devices, the
TSO SUBMIT command, or other running jobs, run in an initiator's address space.
Jobs entered by means of the START, MOUNT or LOGON command run in their
own address space.

The operator issues a START command to run any of the user or IBM-supplied
programs whose JCL is stored in the system library, SY S1.PROCLIB. The
operator issues the MOUNT command to run programs that affect the attributes of
I/0O devices such as whether they are available for public or private access. All
system users with a TSO identification give the LOGON command to begin an
interactive computing session at aterminal.

When a START, MOUNT, or LOGON command is issued, the master scheduler
uses other system components to create a new address space and atask that
performs the requested function in the address space. Figure 11-11 summarizes
the process of creating an address space.

11- 20 MV S/Extended Architecture Overview

Master Scheduler’s
Address Space

I User issues — j

START, MOUNT, or
I LOGON command |

Y

Address space
creation routine

@ assigns ASID

e creates control
blocks

System Resources
Manager (SRM)

e notifies SRM

fr— — —— —

o if SRM rejects,

A

® approves or

User’'s Address Space

rejects new
address space

Region Control
Task (RCT)

unassigns ASID,
releases storage,
and informs
operator

e if SRM approves,
invokes VSM

Y
Virtual Storage
Manager (VSM)

® assigns virtual
storage

sets up addressability
builds an LSQA

e creates RCT
control blocks

® builds control
blocks

Y

Started Task
Control (STC)

determines which
command is being
processed

builds in-storage
JCL for job

Job Entry
Subsystem (JES)*

reads job

scans JCL and
writes it to spool

invokes converter

spooled JCL to

Converter*®

e transforms the

queues the job

assigns job 1D &
passes it to initiator

Y

Initiator subroutine
of STC

e asks JESto
prepare job for
execution

o invokes allocation
routines

e initiates the
job's execution

JES

internal text

Interpreter

e builds control
- p-|® invokes interpreter | o blocks from

internal text

*These functions run in the .

JES address space.

Figure 11-11. Creating an Address Space

Chapter 11. Initializing the System

11-21

11-22

The addr ess space creation routine, operating in the master scheduler's address
space, assigns an address space identifier (ASID) to the new address space and
creates control blocks for it. Then the routine notifies the system resources
manager (SRM) that a new address space is to be created. SRM decides (based on
the availability of system resources) whether the creation of an address space
should be allowed.

If system conditions are unfavorable for creating a new address space (such as
when there is a shortage of auxiliary storage, pageable frames, or SQA), SRM does
not allow the address space to be created. Instead, the address space creation
routine releases the ASID and frees the storage used by the control blocks. The
operator receives a message indicating that the address space could not be created.

If current system conditions are favorable to creating the new address space, the
address space creation routine invokes the virtual storage manager (V SM) to assign
virtual storage and set up addressability for the address space. VSM builds alocal
system queue area (LSQA) and calls RSM to set up a segment table, a page table,
and external page tablesin it. VSM also creates control blocks to operate the
region control task (RCT) for the address space.

Next, the RCT receives control in the new address space. Thereisone RCT in
each address space. When the address space is created, the RCT isthe only task
associated with it. The RCT builds control blocks that further define the address
space, then attaches the started task control (STC) routine.

STC determines which command is being processed (START, MOUNT, or
LOGON), builds in-storage JCL for the task associated with the command, then
passes the JCL to the job entry subsystem.

For a TSO user, the LOGON initialization routine verifies all the user-supplied
LOGON parameters, prompts the user for any additional ones, and builds the JCL
necessary to invoke the LOGON procedure. LOGON initialization then passes this
JCL to the job entry subsystem.

The job entry subsystem reads the job, scans the JCL and writesit on a spool data
set, invokes the converter to transform the spooled JCL into internal text, queues
the job on an internal queue, and assigns ajob 1D, which it returnsto STC.

Next, STC usesitsinitiator subroutine to passthisjob ID back to the job entry
subsystem with arequest to prepare the job for execution. The job entry
subsystem invokes the interpreter to build and initialize the scheduler control
blocks for the address space from the internal text created by the converter. Upon
return from the job entry subsystem, the initiator subroutine invokes the allocation
routines and then issues an ATTACH macro instruction for the task related to the
address space: any STARTed program, the MOUNT command processor
(MOUNT), or the terminal monitor program (TMP) for aLOGON request.

TMP isthe program that controls the interchange of user commands with TSO.
After the TMP starts, and you, the TSO user, have logged on, the READY message
appears;, MV S/XA awaits your command.

MV S/Extended Architecture Overview

I ndex

A

ABEND dump 9-2, 9-8, 9-16, 9-17
See aso Dumping facilities
ABEND macro 10-1
ABTERM
See CALLRTM macro
Access method 7-6, 7-7, 7-9
See also Access method categories
See also Access technique
See also Virtual storage access method (VSAM)
building control blocks 7-11
building the channel program 7-11
defined 7-18
exit appendages 7-9
functions 7-10
invoking EXCP 7-11
Access method categories
conventional 7-19
telecommunication 7-20
virtual storage access method (VSAM) 7-21
Access method control block (ACB) 7-8
Access technique 7-19
basic 7-18, 7-19
queued 7-18
ACR
See Alternate CPU recovery (ACR)
Address space 1-3, 2-1, 3-1, 5-1
See also CALLRTM macro
See also Initial program load (I1PL)
See also Master scheduler
See also Nucleus initialization program (N1P)
See also Resource measurement facility (RMF)
See also System component
See also System resources manager (SRM)
abnormal termination 10-1
changing dispatching priority of 5-2
defined 1-3
inhibiting creation of 5-2, 5-4
local service request block (SRB) 6-8
region control task (RCT) 6-6
TCB dispatching queue 6-6
Address space control block (ASCB) 6-9, 11-19
Address space control block extension (ASXB) 6-6
Address space creation routine 11-21
Address space identifier (ASID) 11-22
Address translation 2-4
See also Two-level lookup
Addressing mode 1-1
AMODE program attribute 2-1, 2-2
PSW bit (32) 2-1
Allocation (ALLOCAYS) address space 3-8, 11-4
Alternate CPU recovery (ACR) 4-5, 6-8, 10-3
Alternate system parameter list 11-12
AMODE
See Addressing mode
APG
See Automatic priority group (APG)
Architecture
defined 1-1
System/370 1-1
System/370-XA 1-1
ASCB
See Address space control block (ASCB)
ASM
See Auxiliary storage manager (ASM)

Assigning storage protect keys 2-12
ASXB
See Address space control block extension (ASXB)
ATTACH macro 6-6, 10-2
AUK
See Authorized user key (AUK)
Authorized user key (AUK) 3-4
Automatic path management 8-13
Automatic priority group (APG)
dispatching priority 5-6
Auxiliary storage
See Storage
Auxiliary storage manager (ASM) 2-14, 11-5, 11-6, 11-15
Available frame queue 5-5

B

Basic direct access method (BDAM) 7-20
Basic partitioned access method (BPAM) 7-20
Basic sequential access method (BSAM) 7-19
Basic telecommunication access method (BTAM)
READ macro 7-20
WRITE macro 7-20 I
Batch processing 1-8, 8-3, 11-20
See also Job entry/output processing
BDAM
See Basic direct access method (BDAM)
Binary synchronous communication (BSC) 8-13
See also Remote job entry (RJE)
Bootstrap operation 11-3
Boxing 7-14
BPAM
See Basic partitioned access method (BPAM)
BSC
See Binary synchronous communication (BSC)
BTAM
See Basic telecommunication access method (BTAM)
Buffer
channel program 7-17
VIO window 7-17

C

CALLRTM macro 10-1
Chained job scheduler (CJS)
See Scheduling ajob for execution
Change bit 2-10
Channel command word (CCW) 7-11, 7-14
Channel path 5-6, 7-3, 7-7, 11-13
See also Resource measurement facility (RMF)
Channel program 3-4, 7-7, 7-11, 7-13
VIO 7-17
Channel subsystem 1-1, 1-8, 7-1, 7-5, 7-12, 11-13
functions 7-14
Channel-to-channel (CTC) adapter 4-1, 6-10, 8-10, 8-12
CHNGDUMP command
See Operator commands
CJs
See Chained job scheduler (CJS)
CLOSE macro 7-10
CLOSE processing 7-10
data set control block (DSCB) 7-10
Cold start 11-12
COMMNDxx

Index

X-1

See SYSL.PARMLIB
Common area 3-1, 3-5
Common service area (CSA) 3-1, 3-5, 5-5

Communication task (CONSOLE) address space 3-8, 11-4

CONFIG command
See Operator commands
Control block
defined 1-4
queue 1-4
types 1-4
Conventional access methods
See also Data set
See also Partitioned data set (PDS)
basic direct access method (BDAM) 7-20
basic partitioned access method (BPAM) 7-20
basic sequential access method (BSAM) 7-19
function 7-19
queued sequential access method (QSAM) 7-20
Conversion/interpretation
See Job entry/output processing
Converter 11-22
Creating dispatchable units of work 6-5
Cross memory 1-3, 3-9
CSA
See Common service area (CSA)
CTC
See Channel-to-channel (CTC) adapter

DAE
See Dump analysis and elimination (DAE)
DASD
See Direct access storage device (DASD)
See Master catalog
DAT
See Dynamic address tranglation (DAT)
Data control block (DCB) 7-8, 7-10
Data extent block (DEB) 3-4, 7-8, 7-9
Data set 1-8
See also Entry sequenced data set
See also Key-sequenced data set
See also Relative record data set
See also Required data set
See also Spin-off data set
defined 7-19
direct access 7-19
directory 1-8
indexed sequential 7-19
sequential 7-19
temporary 7-16
Data set control block (DSCB) 7-8, 7-10
DD statement 7-8
function 8-3
parameters 8-4
SYSABEND 9-9
SYSMDUMP 9-9
SYSUDUMP 9-9
DDR
See Dynamic device reconfiguration (DDR)
Deadline scheduling 8-8
Deadlock 6-10
DEB
See Data extent block (DEB)
Default general parameter list 11-12
Delay
See Resource measurement facility (RMF)
Demand paging 2-7
Demand select 8-3

X-2 MVS/Extended Architecture Overview

Dependent job control 8-8, 8-9
DEQ macro 6-9
Device allocation 5-1, 5-6
See also Job entry/output processing
dynamic allocation 8-6
JES3 device alocation 8-5
job step allocation 8-4
Device fencing 8-5
Device number 7-5
Direct access 1-8
Direct access storage device (DASD) 1-8
device alocation 5-6
measuring use of 5-6
Disabled processor 6-2, 6-8
See also Functional recovery routine (FRR)
Dispatchable units of work
service request (SRB) 6-5
task (TCB) 6-5
Dispatcher 1-6, 6-1, 6-4, 6-8, 7-7
Dispatching priority 5-1, 5-6, 6-8, 6-9
address space 6-8
address space control block (ASCB) 6-9
aternate CPU recovery (ACR) 6-8
fixed priority 5-6
global SRBs 6-8
highest priority unit of work 6-8
mean-time-to-wait 5-6
rotate priority 5-6
special exits 6-8
Dispatching work
defined 6-8
described 6-9
D1SPLAY M command
See Operator commands
Domain 5-3, 5-7, 9-6
See also Resource measurement facility (RMF)
Dump
See also Dumping facilities
defined 9-7
Dump analysis and elimination (DAE) 9-9
DUMP command
See Operator commands
Dumping facilities 9-7
ABEND dump 9-9
job-related errors 9-8
program data 9-8
SNAP dump 9-8
stand-alone dump (SADMP) 9-10
SVC dump 9-10
system data 9-8
system-related errors 9-8

Dumping services (DUMPSRYV) address space 3-8, 11-4

DUPLEX system parameter 11-16
Dyadic processing 4-1, 4-4
See also Tightly-coupled multiprocessing
Dynamic address translation (DAT) 9-21, 10-1, 11-7
defined 2-4
Dynamic allocation
See Device allocation
Dynamic device reconfiguration (DDR) 10-3, 10-5

E

ECC

See Error checking and correction (ECC)
Emergency signal (EMS) 4-6, 9-14, 10-3
EMS

See Emergency signal (EMS)
Enabled processor 6-2, 6-9
ENQ exchange 5-3
ENQ macro 6-1, 6-9
Enqueue 5-3, 5-7, 6-9

See also Resource measurement facility (RMF)
Enqueuing 6-9

See also Enqueue
Entering a job

See Job entry/output processing
Entering and scheduling work 8-1
Entry-sequenced data set 7-21

Environmental recording editing and printing program (EREP) 9-25

Error checking and correction (ECC) 10-3
ESTAE
See Extended specify task abnormal exit (ESTAE) macro
ESTAI
See Extended subtask ABEND intercept (ESTAI) parameter
Event control block (ECB) 7-7, 7-11
Exchange swap 5-3
EXCP macro 7-7, 7-13
EXCP processor 7-7, 7-11, 7-12
back end 7-15
exit processing 7-14
front end 7-13
functions 7-12
V10 processing 7-17
EXCPVR macro 7-13
EXEC statement 3-3, 3-4, 8-3, 11-19
Execution batch scheduling 8-8
See also Scheduling ajob for execution
Exit routines
defined 1-7
Extended specify task abnormal exit (ESTAE) macro 9-10, 9-16,
10-2
Extended subtask ABEND intercept (ESTAI) parameter 10-2
External interruption 4-6, 6-2
External interruption handler 6-3
External page table 2-14
VIO data set 7-17
External writer (XWTR) 8-9

F

Fetch protect bit 2-12
First level interruption handler (FLIH) 1-6
saving status 6-3
six types 6-2
Fixed link pack area (FLPA) 3-5
Fixed priority
See also Dispatching priority
defined 5-7
Flag
defined 1-4
FLIH
See First level interruption handler (FLIH)
FLPA
See Fixed link pack area (FLPA)
Frame 2-3
FRR
See Functional recovery routine (FRR)
Functional recovery routine (FRR) 9-10, 9-16, 9-19, 10-2
SETFRR macro 10-2

G

Generalized trace facility (GTF) 6-4, 9-13
See also Tracing facilities

GET macro 7-6, 7-9, 7-11, 7-19, 7-20
Global processor 8-10, 8-13
Global resource serialization 6-10, 8-10
Global resource serialization address space 3-8, 11-4
GTF
See Generalized trace facility (GTF)
GTFPARM
See SYS1.PARMLIB
GTRACE macro 9-17

H

Hardware instruction retry (HIR) 10-3
HIR

See Hardware instruction retry (HIR)
HOOK macro 9-17
Hook processing 9-13, 9-17
Hot 1/0 7-14

1/0 and data management
introduction 1-8
1/O datatransfer
conventional 7-2
telecommunication 7-2
1/0 device
types 7-1
1/O interruption 6-2, 7-7, 7-13, 7-14
solicited 7-14
unsolicited 7-14
1/O interruption handler 6-3
1/0 load balancing 5-6
1/O process
summary 7-15
1/0 queue (100) 7-13
1/O request processing
access method exit appendages 7-9
CLOSE processing 7-10
OPEN processing 7-8
overview 7-5
requesting 1/0 7-9
user program functions 7-7
1/0 supervisor (10S) 7-7, 10-4, 11-13
functions 7-12
1/O interruption handling 7-14
initiation 7-13
interruption handling 6-3
post status 7-14
1/O supervisor block (I0SB) 7-13, 7-15
IEAIPSxx
See SYS1.PARMLIB
IEAOPTXxx
See SYS1.PARMLIB
IEASY Sxx
See SYS1.PARMLIB
IEASY S00
See Default general parameter list
See SYS1.PARMLIB
Indexed sequential access method (I1SAM) 7-20
Information management system (IMS) 7-3, 7-18
Initial microprogram load (IML) 11-2
Initial program load (I1PL) 11-3, 11-6
initializing real storage 11-9
initializing the IPL device 11-10
initializing virtual storage 11-8

Index

X-3

IPL program 11-7
IPL resource initialization module (IRIM) 11-4, 11-7
loading the nucleus 11-7
real storage manager (RSM) 11-8
Initialization process
See also Initial program load (I1PL)
See also Master scheduler
See also Nucleus initialization program (NIP)
phases of 11-3
required resources 11-5
Initializing the system 11-1
Initiator 8-4
Initiator subroutine
See Started task control (STC)
Input
defined 7-1
Input stream 8-1, 8-2
Input/output block (1I0B) 7-11
Installation performance specification (IPS) 1-7, 5-1, 5-4, 5-7
Installed channel path table (ICHPT) 11-13
Integrated catalog facility (ICF) 11-14
Inter-address space communication
See also Cross memory
asynchronous 3-9, 6-8
synchronous 3-9
Interactive problem control system (IPCS) 9-2, 9-9, 9-10
Interactive processing 1-8
Internal reader 8-2
STCINRDR 8-3
TSOINRDR 8-3
Interpreter 8-7, 11-22
Interprocessor communication (IPC) 4-5
hardware-initiated 4-6
MV S/XA-initiated 4-5
Interrupt response block (IRB) 7-14
Interruption
defined 1-6, 6-1
external interruption 6-2, 6-3
1/O interruption 6-2, 6-3, 6-8
machine check interruption 6-2, 6-4
processing 6-1
program interruption 6-2, 6-4
restart interruption 6-2, 6-4
supervisor call (SVC) interruption 6-1, 6-3, 6-6
types 6-1
Introduction to MV S/Extended Architecture 1-1
Invalid bit
See Page table
10S
See |/O supervisor (10S)
See Subchannel logout handler (SLH)
IPC
See Interprocessor Communication (1PC)
IPCS
See Interactive problem control system (1PCS)
IPL
See Initial program load (IPL)
IPL device
See Initial program load (IPL)
IPL resource initialization module (IRIM)
See|PL
IPS
See Installation performance specification (IPS)
IRIM
See |PL resource initialization module (IRIM)
ISAM
See Indexed sequential access method (ISAM)

X-4MV S/Extended Architecture Overview

JCL
See Job control language (JCL)
JES2 1-9
See also Job entry subsystem (JES)
chained job scheduler (CJS) 8-9
compared with JES3 8-14
converter 8-3
device allocation 8-4
execution batch scheduling 8-8
independent control 8-9
job networking 8-9
job scheduling 8-6
job step allocation 8-4
multi-access spool configuration 8-9
JES3 1-9
See also Job entry subsystem (JES)
centralized control 8-10
channel-to-channel (CTC) adapter 8-10
compared with JES2 8-14
converter/interpreter 8-3
deadline scheduling 8-8
dependent job control 8-9
device allocation 8-4, 8-5
device fencing 8-5
global processor 8-10
JES3AUX address space 11-19
job scheduling 8-7
local processor 8-10
single system image 8-11
Job
defined 8-1, 9-1
Job class 8-1
Job class group 8-5
Job control language (JCL) 1-9, 3-4
See also Data control block (DCB)
See also DD statement
See also EXEC statement
See also Job file control block (JFCB)
See also JOB statement
CLOSE processing 7-10
conversion 8-3
default parameters 9-3
execution-batch-scheduling 8-8
function 8-1
interpretation 8-3
OPEN processing 7-8
SYSLPROCLIB 8-3
XBATCH procedure 8-8
Job entry subsystem (JES) 1-9, 9-1, 11-22
See also Master scheduler
comparing JES2 and JES3 8-14
function 8-1
in amulti-system environment 8-9
initializing 11-3, 11-19
initiating 11-19
stages of 8-2
Job entry subsystem (JES) address space 3-8, 11-4, 11-19
Job entry/output processing
conversion/interpretation 8-3
device alocation 8-3
entry 8-2
output 8-9
purge 8-9
scheduling ajob for execution 8-6
stages 8-2
Job file control block (JFCB) 7-8
Job management

introduction 1-8
Job networking 8-12
control of job entry processing 8-9
multiprocessor configurations 8-11
node 8-9
selection of jobs for processing 8-10
system operation 8-11
Job queue 8-6
Job scheduling 8-8
See also Job entry/output processing
JOB statement 3-3, 3-4, 8-3
Job step allocation 8-4
See aso Device alocation

K

Key assignments 2-12

Key switching 2-13

Key 06-7, 10-2
Key-sequenced data set 7-21

L

Library
See also Partitioned data set (PDS)
See also SYS1.PROCLIB
SYS1.LINKLIB 11-5
SYS1.SVCLIB 11-5
Linklist lookaside (LLA) 3-4
LNKLST lookaside (LLA) address space 3-8
LOAD function
See System operator
Load PSW (LPSW) instruction 6-9
Local processor 8-10
Local system queue area (LSQA) 3-5, 11-6, 11-19
Lock 6-9
See also Spin lock
See also Suspend lock
global 6-10
hierarchy 6-10
local 6-10
Lock hierarchy 6-10
Locking 6-10
See also Lock
Logical control units 7-4
Logical path 5-6
balanced use of 5-6
LOGON
See Demand select
See Time sharing option (TSO)
L oosely-coupled multiprocessing 4-1
LSQA
See Local system queue area (LSQA)

M

Machine check handler (MCH) 4-6, 10-3
Machine check interruption 6-2
Machine check interruption handler 6-4
Macro instruction
defined 1-6
Managing system resources 5-1
Master catalog 11-5, 11-14
defined 1-8
Master console 11-1, 11-5
Master scheduler 3-7, 11-3
See also Nucleusiinitialization program (NI1P)

address space creation 11-21
address space initialization 11-4
creating an address space for JES 11-19
creating user address spaces 11-20
extended LSQA 11-8
initializing the job entry subsystem (JES) 11-19
initializing the master scheduler base 11-18
initializing the master scheduler region 11-18
initializing the time sharing option (TSO) 11-19
initiating 11-18
initiating JES 11-19
preparation by 1PL program 11-7
segment table 11-8
stepsininitializing 11-3, 11-17
Master subsystem 11-18, 11-19
Master trace 9-13, 9-20
See also Tracing facilities
Master trace table 9-19
MCH
See Machine check handler (MCH)
MCS
See Multiple console support (MCYS)
Mean-time-to-wait (MTTW)
See also Dispatching priority
defined 5-6
Member 7-19, 7-20
See also SYS1.PARMLIB
defined 1-8
MEMTERM
See CALLRTM macro
MIH
See Missing interruption handler (MIH)
Missing interruption handler (MIH) 7-14, 10-3, 10-5, 11-18
MLPA
See Modified link pack area (MLPA)
Modem 7-3
Modified link pack area (MLPA) 3-6
MODIFY command
See Resource measurement facility (RMF)
Monitor call instruction (MC) 9-17
Monitoring system activity 9-1
MOUNT command 8-3
See also Demand select
MP
See MP system
See Multiprocessor
MP system 4-1, 4-2, 4-3, 4-4, 4-5, 4-6
See also Multiprocessing
See also Multiprocessor
MPL
See Multiprogramming level (MPL)
MSTJICL xx
See SYS1.PARMLIB
MTTW
See Mean-time-to-wait (MTTW)
Multi-access spool configuration
See Job networking
Multi-system complex
See Job networking
Multiple console support (MCS) 1-7
Multiple virtual storage
See MV'S (Multiple virtual storage)
Multiprocessing 1-1, 4-1, 8-9
See also Dyadic processing
See also Loosely-coupled multiprocessing
See also Tightly-coupled multiprocessing
global resource serialization 6-10
inter-address space communication 6-8

Index

types 4-1
Multiprocessor 3-2
See also MP system
defined 4-1
Multiprogramming 1-1
See also Supervisor
controlling 6-1
Multiprogramming level (MPL) 5-3, 5-7
target 5-3
MV'S (multiple virtual storage) 2-1
defined 1-2
MV S/Extended Architecture Overview 1-1
MVS/XA
address spaces 3-1
entering and scheduling work 8-1
1/0 and data management 7-1
initializing the system 11-1
introduction 1-1
locks 6-11
monitoring system activity 9-1
multiprocessing environment 4-1
recovering from errors 10-1
resource management 5-1
storage management 2-1
supervising the execution of work 6-1
MV S/ XA Overview
See MV S/Extended Architecture Overview

N

Network job entry (NJE) 8-13
Networking 8-12
NIP
See Nucleusinitialization program (NIP)
Node
See Job networking
Non-preemptive unit of work
See Task
Nucleus 2-1, 3-6, 11-2
DAT-off 3-6, 11-7, 11-9
DAT-on 3-6, 11-7, 11-9
DAT-on, read-only 11-7
DAT-on, read-only extended 11-7
DAT-on, read-write 11-7
DAT-on, read-write extended 11-7
Nucleus initialization program (NIP) 11-4, 11-10

establishing the master scheduler address space 11-11

initializing I/0O devices 11-13
initializing page data sets 11-16
initializing swap data sets 11-16

initializing system resources and resource managers 11-13
initializing the auxiliary storage manager 11-15

initializing the master catalog 11-14

processing system parameters 11-11

system operator 11-12

system parameter list 11-12
Nucleus map (NUCMAP) 11-7

(0]

Offline
defined 1-7
Online
defined 1-7
OPEN macro 7-6, 7-8
OPEN processing
data control block (DCB) 7-8
data extent block (DEB) 7-8

X-6 MVS/Extended Architecture Overview

data set control block (DSCB) 7-8
job file control block (JFCB) 7-8
Operating system
defined 1-1
MVS/XA 1-1, 9-1
MV S/370 1-1
simple 9-1
Operation request block (ORB) 7-13
Operator commands 11-1
See also System operator
CHNGDUMP command 9-9
CONFIG command 4-3, 4-5
D1SPLAY M command 4-4
DUMP command 9-10
MODIFY command 11-20
MOUNT command 11-20, 11-22
PAGEADD command 11-16
START command 9-17, 11-19, 11-20, 11-22
START GTF command 9-13
STOP command 9-17
STOP GTF command 9-13
TRACE command 9-13
VARY command 4-3
Operator console
defined 1-7
Output
See Job entry/output processing
Output class 8-1

P

Page 2-3
Page data set 11-5
common 11-6
duplex 11-6
initializing 11-16
local 11-6
Page fault 2-7, 7-17
Page fixing 2-14, 7-13
Page frame table 2-10, 2-14
initializing 11-8
Page stealing 2-9, 5-1
PAGE system parameter 11-16
Page table 2-5, 2-14
invalid bit 2-8
protection bit 2-11
Page-in 2-8
Page-out 2-8, 7-13, 7-17
Pageable link pack area (PLPA) 3-5, 11-6
PAGEADD command
See Operator commands
Paging 2-7
See also Resource measurement facility (RMF)
defined 2-3
VIO 7-16, 7-17
Paging process
See Paging
Partitioned data set (PDS) 1-8
member 7-19
PC/AUTH
See Program call authorization (PC/AUTH)
PDS
See Partitioned data set (PDS)
Percolation 10-2
PLPA
See Pageable link pack area (PLPA)
Post status 7-15

PRDMP
See Print dump (PRDMP)
Preemptive unit of work
See Task
Prefix save area (PSA) 2-1, 3-2, 4-4, 11-9
Prefixing 3-2, 4-4
Print dump (PRDMP) 9-2, 9-9, 9-10, 9-16
EDAIT function 9-17
Priority 8-1
Priority aging 8-8
Private area 3-2
Processor activity
See Resource measurement facility (RMF)
Processor communication
See Interprocessor communication (IPC)
Processor complex 8-9
Program call authorization (PC/AUTH) 3-7, 11-4
Program check first-level interruption handler (PCFLIH) 9-13
Program controlled interrupt (PCl) 7-9, 7-14
Program interruption 6-2
generalized trace facility (GTF) 6-4
real storage manager (RSM) 6-4
recovery termination manager (RTM) 6-4
serviceability level indication processing (SLI1P) 6-4
specify program interruption element (SPIE) macro 6-4
user-provided exit 6-4
Program interruption handler 6-4
Program status word (PSW) 2-1, 2-12, 3-4, 6-2, 6-9, 9-21
current 1-5, 6-2

defined 1-5

interruption processing 6-2
new 6-2

old 6-2

switching 6-2

Protecting storage 2-11
Protecting system resources 6-9
Protection bit

See Page table
PSA

See Prefix save area (PSA)
PSW

See Program status word (PSW)
Purge

See Job entry/output processing
PUT macro 7-6, 7-9, 7-11, 7-19, 7-20

Queued sequential access method (QSAM) 7-20
Quick start 11-12

R

RACF
See Resource Access Control Facility (RACF)
RCT
See Region control task (RCT)
READ macro 7-6, 7-9, 7-11, 7-19, 7-20
Real storage 1-3
See also Initia program load (IPL)
See also Storage
Real storage manager (RSM) 2-14, 5-5, 11-2
See also Initial program load (IPL)
RSM control block initialization 11-4
RSM IRIM 11-4
RECE1VE macro 7-20
Reclaim 2-8
Reconfiguration 4-2

logical 4-3
physical 4-3
Recovering from errors 10-1
Recovery
See also Alternate CPU recovery (ACR)
See also Dynamic device reconfiguration (DDR)
See also Functional recovery routine (FRR)
See also Machine check handler (MCH)
See also Missing interruption handler (MIH)
See also Subchannel logout handler (SLH)
See also Task recovery routine
hardware 10-3
objectives 10-1
software 10-1
Recovery management
introduction 1-9
Recovery termination manager (RTM) 6-4, 9-21, 10-1, 10-3
reasons for invoking 10-1
Reference bit 2-10
Region control task (RCT) 3-5, 6-6, 11-19, 11-22
REGI1ON parameter 3-3
Relative record data set 7-21
Remote job entry (RJE) 1-8
binary synchronous communication (BSC) 8-2
system network architecture (SNA) 8-2
Required data set
IPL resource initialization module (IRIM) 11-5
master catalog 11-5
nucleus initialization program (N1P) 11-5
resource initialization module (RIM) 11-5
SYSL.LINKLIB 11-5, 11-14
SYS1.LOGREC 11-5
SYSL.LPALIB 11-5
SYSL.NUCLEUS 11-5
SYS1.PARMLIB 11-5
SYSL.STGINDEX 11-5
SYS1.SVCLIB 11-5
RESERVE macro 6-1, 6-9
Residence mode
RMODE program attribute 2-1, 2-2
Resource access control facility (RACF) 6-9
Resource initialization module (R1M) 11-4, 11-10
Resource management
initializing the resource managers 11-3
introduction 1-6
Resource measurement facility (RMF) 5-4, 9-2, 9-4, 9-6
address space activity 9-5
ASM/RSM/SRM trace activity 9-5
channel path activity 9-5
cycle 9-5
delay 9-5
domain activity 9-5
enqueue activity 9-5
exact count 9-5
MOD1FY command 9-6
monitor | session 9-5
monitor 1l session 9-5
monitor 111 session 9-5
page/swap data set activity 9-5
paging activity 9-5
processor activity 9-5
real storage/processor/SRM activity 9-5
RMFMON command 9-6
RMFWDM command 9-6
sampling 9-5
session 9-4
START RMF command 9-6
transaction activity 9-5

Index

X-7

virtual storage activity 9-5
workflow activity 9-5
workload activity 9-5
Resources
See aso Device alocation
See also Resource management
categories 5-1
initializing 11-2
protected 6-9
required during initialization 11-5
serializing 6-9
servicerates 5-4
service units 5-4
use threshold 5-7
Response time 5-1
Restart interruption 6-2
Restart interruption handler 6-4
RESTART key 4-5
R1M
See Resource initialization module (RIM)
RJIE
See Remote job entry (RJE)
RMF
See Resource measurement facility (RMF)
RMFMON command
See Resource measurement facility (RMF)
RMFWDM command
See Resource measurement facility (RMF)
RMODE
See Residence mode
Rotate priority
See also Dispatching priority
defined 5-6
RSM
See Real storage manager (RSM)
RTM
See Recovery termination manager (RTM)

S

SADMP
See Stand-alone dump (SADMP)
Satisfying 1/0 requests 7-1
Saving status 6-3, 6-9
SCHEDULE macro 6-7, 6-8, 7-14
Scheduler work area (SWA) 3-4, 11-19
Scheduling a job for execution
See also Job entry/output processing
chained job scheduler 8-9
deadline scheduling 8-8
dependent job control 8-9
execution batch scheduling 8-8
JES2 8-6
JES38-7
priority aging 8-8
SDUMP macro 9-10
Second level interruption handler (SLIH) 1-6
Segment fault 2-7
Segment table 2-5
See also Master scheduler
common 11-8
Segment table origin register (STOR) 2-6
Selective processor enablement 7-15
SEND macro 7-20
Sequential access 1-8
Serialization
function of 6-9
techniques 6-9
Serializing the use of resources 6-9

X -8 MVS/Extended Architecture Overview

Service aid
See also Dumping facilities
See also Print dump (PRDMP)
See also Stand-alone dump (SADMP)
IFCDIPO program 9-25
Servicerates
defined 5-4

Service request block (SRB) 6-1, 6-5, 7-14, 9-1, 10-2

defined 6-7
functional recovery routines 10-2
global 6-8
local 6-8
Service units
defined 5-4

Serviceability level indication processing (SL1P) 6-4, 9-2, 9-20

actions 9-22

error events 9-21

program event recording (PER) 9-21

SL 1P command 9-20

SL1Ptrap 9-20
SETFRR macro

See Functional recovery routine (FRR)
Shoulder-tapping 4-5
Signal processor (SIGP) instruction 4-5

emergency signal (EMS) 4-6, 10-3

restart function 4-5

restart instruction 6-2

sense instruction 4-5

shoulder tapping 4-5

stop function 4-5
SIGP

See Signal processor (SIGP) instruction
Single system image 4-2

See also Job networking
SLH

See Subchannel logout handler (SLH)
SLIH

See Second level interruption handler (SLIH)
SLIP

See Serviceability level indication processing (SLIP)

SLIP command

See Serviceability level indication processing (SLI1P)

SLIPtrap

See Serviceability level indication processing (SLIP)
Slot 2-3
SMF

See System management facility (SMF)
SMFPRMxx

See SYSL.PARMLIB
SNA

See System network architecture (SNA)
SNAP dump 9-2, 9-8, 9-16, 9-17

See also Dumping facilities
Special exits 6-8

Specify program interruption element (SPIE) macro 6-4

Specify task abnormal exit (STAE) macro 10-2
SPIE

See Specify program interruption element (SPIE) macro

Spin lock
global 6-10
Spin-off data set 8-6
Spool 8-1, 8-9
SQA
See System queue area (SQA)
SRB
See Service request block (SRB)
SRM
See System resources manager (SRM)

STAE GETMAIN 6-1

See Specify task abnormal exit (STAE) macro OPEN 6-1
STAI WAIT SVC 6-9
See Subtask ABEND intercept (STAI) parameter WTO/WTOR 6-1
Stand-alone dump (SADMP) 9-2, 9-8, 9-17 Suspend lock
See also Dumping facilities global cross-memory-services 6-10
high-speed 9-11 local locks 6-10
low-speed 9-11 svC
START command 9-17 See Supervisor call (SVC)
See also Demand select SVC dump 9-2, 9-8, 9-16, 9-17
See also Operator commands See also Dumping facilities
START GTF command SY S1.DUMPxx output data set 9-10
See Operator commands SVCinterruption 6-1, 7-11
START JES command 11-18 SVC request block (SVRB) 6-3
START RMF command SWA
See Resource measurement facility (RMF) See Scheduler work area (SWA)
Start subchannel (SSCH) 7-12 Swap analysis 5-3
Started task control (STC) 11-19, 11-22 See also System resources manager (SRM)
initiator subroutine 11-22 ENQ exchange 5-3
State exchange swap 5-3
problem 1-5 unilateral swap-in 5-3
supervisor 1-5, 6-7 unilateral swap-out 5-3
STCINRDR SWAP command 10-5
See Internal reader Swap data set 11-6, 11-16
STOP command 9-17 initializing 11-16
See also Operator commands Swap recommendation value (RV) 5-3
STOP GTF command Swapping 2-11, 5-1
See Operator commands See also Resource measurement facility (RMF)
STOP key 4-5 Switching storage protect keys 2-13
STOR SYSABEND
See Segment table origin register (STOR) See SYS1L.PARMLIB
Storage SYSEVENT macro
See also Address space categories 5-2
See also Initial program load (1PL) SYSMDUMP
See also Stand-alone dump (SADMP) See SYS1.PARMLIB
See also System resources manager (SRM) SYSOUT 8-9
auxiliary 1-3, 2-3 System command 1-7
auxiliary storage manager (ASM) 2-14 System component
frame 2-3 address spaces 3-7, 11-4
managers 2-13, 2-15 defined 1-9
page 2-3 System console 1-7
protection 2-11 System generation 11-1
real 1-2, 2-3 System management facilities (SMF) 9-2, 9-4
real storage manager (RSM) 2-14 System management facilities (SMF) address space 3-8, 11-4
slot 2-3 System network architecture (SNA) 7-21, 8-13
virtual 1-2, 1-3, 2-1, 2-3 See also Remote job entry (RJE)
virtual address 2-5 System operator 11-12
virtual storage manager (VSM) 2-15 LOAD function 11-2
Storage protect key 2-11, 2-12 loading the nucleus 11-2
assignments 2-12 System parameters
switching 2-13 defined 1-7
Storage protection 2-11 System queue area (SQA) 3-6, 5-5, 11-8
Subchannel 1D number 7-5, 7-13 System region 3-3
Subchannel information block (SCHIB) 7-14 System residence volume (SY SRES) 1-8, 9-25, 11-1, 11-5, 11-10
Subchannel logout handler (SLH) 10-3, 10-4 See also SY S1.LOGREC error recording
Subpool 2-14, 3-4 nucleus 11-5
Subpool 229 SYS1.NUCLEUS 11-5, 11-7, 11-15
See Authorized user key (AUK) SYSI|.SVCLIB 11-5
Subpool 230 System resources manager (SRM) 2-11, 11-19
See Authorized user key (AUK) available frame queue 5-5
Subsystem communicating with 5-2
defined 1-9 creating an address space 11-22
Subsystem interface (SSl) 1-9, 11-3, 11-18 decisions 5-1
Subtask ABEND intercept (STAI) parameter 10-2 defined 5-1
Supervising the execution of work 6-1 domain 5-3
Supervisor 1-3, 6-1, 6-6 functional areas 5-1
dispatcher 6-8 I/0 management 5-6
state 6-7 introduction 1-6

Supervisor call (SVC) 6-3
ATTACH SVC routine 6-6

Index X-9

multiprogramming level (MPL) 5-3
objectives 5-1
page stealing 5-5
processor management 5-6
resource manager 5-2, 5-4
resource monitoring 5-7
service rates 5-4
service units 5-4
SRM control 5-1, 5-3
storage management 5-5
swap analysis 5-3
workload manager 5-1, 5-4
System trace 9-13, 9-16
See also Tracing facilities
System trace table 9-15
SYSUDUMP
See SYS1.PARMLIB
SY S1.DUMPxx
See SVC dump
SYSL.LINKLIB
See Library
See Required data set
SYS1.LOGREC 10-3
See also Required data set
SY S1.LOGREC error recording 9-2, 9-24, 9-26
function 9-24
stepsin 9-25
SY S1.LOGREC data set 9-24
SYS1.LPALIB
See Required data set
SYSI| .NUCLEUS
See IPL Resource initialization module (IRIM)
See Required data set
See System residence volume (SY SRES)
SYSLPARMLIB 1-7, 7-14, 11-5, 11-11, 11-14
initialization parameters 11-5
member COMMNDxx 11-18
member GTFPARM 9-17
member |EAIPSxx 5-1
member IEAOPTxx 5-1
member |[EASY Sxx 3-4, 11-10
member IEASY S00 1-7, 11-12
member MSTJCLxx 11-18
member SMFPRMxx 9-2
member SY SABEND 9-9
member SY SMDUMP 9-9
member SY SUDUMP 9-9
SYS1.PROCLIB 8-3
SYSI1.STGINDEX
See Required data set
SYS1.SVCLIB
See Library
See Required data set
See System residence volume (SY SRES)

Task

See also CALLRTM macro

See also Service request block (SRB)

See also Task control block (TCB)

abnormal termination 10-1

defined 1-3

non-preemptive 6-4, 6-8

preemptive 6-4

subtask 6-6

subtask of region control task (RCT) 6-6
Task control block (TCB) 6-1, 6-5, 6-6, 9-1
Task I/O table (TIOT) 7-8

X-10 MVS/Extended Architecture Overview

Task management
introduction 1-3
Task recovery routine
extended specify task abnormal exit (ESTAE) macro 10-2
extended subtask ABEND intercept (ESTAI) parameter 10-2
TCAM
See Telecommunication access method (TCAM)
TCB
See Task control block (TCB)
Telecommunication 7-2, 7-3, 7-7
Telecommunication access method (TCAM) 11-19
terminal 1/0 controller (TIOC) 11-20
Telecommunication access methods
basic telecommunication access method (BTAM) 7-20
function 7-20
message 7-20
telecommunication access method (TCAM) 7-20
virtual telecommunication access method (VTAM) 7-20
Terminal control address space (TCAS)
See VTAM
Terminal 1/O controller (TIOC)
See TCAM
Termina monitor program (TMP)
See Time sharing option (TSO)
Test pending interrupt (TPI) instruction 7-14
Throughput 5-1
Tightly-coupled multiprocessing 4-2
configuring a system 4-2
control of processing 4-4
Time sharing option (1SO) 7-3, 11-19, 11-22
See also Resource measurement facility (RMF)
See also User
job control language (JCL) 11-22
LOGON command 11-20, 11-22
LOGON initialization routine 11-22
SMF records 9-2
terminal monitor program (TMP) 11-22
Time-of-day (TOD) clock 4-6
TLB
See Tranglation lookaside buffer (TLB)
TOD
See Time-of-day (TOD) clock
Trace address space 3-8, 11-4
TRACE command 9-14, 9-19
See also Operator commands
Tracefacilities
TRACE verb 9-16
Tracing
defined 9-13
Tracing facilities
generalized trace facility (GTF) 9-16
master trace 9-19
system trace 9-14
Track 7-17
Transaction activity
See Resource measurement facility (RMF)
Translation lookaside buffer (TLB) 2-7
TSO
See Time sharing option (TSO)
TSOINRDR
See Internal reader
Turnaround time 5-1
Two-level lookup 2-6

U

Unilateral swap-in 5-3

Unilateral swap-out 5-3
Uniprocessor 3-2
defined 4-1
Unit control block (UCB) 7-8, 7-13, 11-10, 11-13
Unreferenced interval count 2-10

upP

See Uniprocessor
UP system 4-1
User

batch job initiator 1-3, 6-6

started task 1-3, 6-6

time sharing option (TSO) 1-3, 6-6
User program

1/O macro instructions 7-9

responsibilities when doing 1/0O 7-8
User region 3-3

\%

V=R 2-13, 3-3, 3-4
V=V 2-13, 3-3
VARY command
See Operator commands
VIO
See Virtual Input/Output (V10)
Virtual address 2-5
Virtual fetch 7-18
Virtual Input/Output (V10O) 7-16, 11-6
See also Buffer
See also Channel program
See also External page table
See also Paging
See aso Window
Virtual storage 11-8
See also Initial program load (1PL)
See also Resource measurement facility (RMF)
See also Storage
defined 1-3
function 1-2
Virtual storage access method (VSAM) 11-14
See also Entry sequenced data set
See also Key-sequenced data set
See also Relative record data set
access techniques employed 7-21
function 7-21
SMF records 9-2
types of data sets 7-21
Virtual storage areas
See Address space

Virtual storage manager (VSM) 2-14, 2-15, 5-5, 11-9

See also Initial program load (I1PL)
creating an address space 11-22

Virtual telecommunication access method (VTAM) 8-3, 11-19

basic mode 7-21

record mode 7-20

terminal control address space (TCAS) 11-20
Volume tab' of contents (VTOC) 7-8
VSAM

See Virtual storage access method (VSAM)
VSM

See Virtual storage manager (VSM)
VTAM

See Virtual telecommunication access method (VTAM)

w

WAIT macro 7-11
Warm start 11-12
Window 7-17, 7-18
Work station 8-2
Workflow
See Resource measurement facility (RMF)
Working set 2-14
Workload activity
See Resource measurement facility (RMF)
WRITE macro 7-6, 7-9, 7-11, 7-19, 7-20

X
XBATCH procedure 8-8
XWTR (external writer) 8-9

1

16 megabyte line 2-1

2

24-bit address 1-1, 2-1

3

3081 processor complex 1-2, 4-4
3084 processor complex 4-3
31-bit address 1-1, 1-2, 2-1

Index

X-11

X-12 MVS/Extended Architecture Overview

GC28-1348-0

MVS/Extended Architecture Overview (File No. S370-34)

Printed in U.S.A.

GC28-1348-0

___“:__®

_ --t

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

MV S/Extended Architecture READER'S
Overview COMMENT

FORM
GC28-1348-0

|

l

I

|

I

I This manual is part of alibrary that serves as areference source for system analysts, programmers, and

| operators of IBM systems. Y ou may use this form to communicate your comments about this publication,

| its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

| Y our comments will be sent to the author's department for whatever review and action, if any, are deemed

| appropriate.

|

|

|

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your |BM representative or to the IBM branch office serving your locality.

Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish areply, give your name, company, mailing address, and date:

What is your occupation'?

How do you use this publication?

Number of latest Newsl etter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the addressin
the Edition Notice on the back of the title page.)

__ - —--—-—-——-——-— — — — — — — — — — (Cutor Fold Along Line

GC28-13480

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

aun 3uojy p|o4 10 0D

Reader’'s Comment Form
Fold snd tape Plsase Do Not Staple
BUSINESS REPLY MAIL
FIRST CLASS PERMIT 40 ARMONK, NEW YORK
POSTAGE WILL BE PAID BY ADDRESSEE:
International Business Machines Corporation
Department D58, Building 920-2
PO Box 390
Poughkeepsie, New York 12602
B o e e Plesse Do NotSwaple
[B]
?".—'—".—.'. =
- Bws
===

(¥E-0LES "ON 8]!4) M3lAIBAQ 2INVANYDIY PapUAIXT/SAW

'V'S'N ul pajuilg

0-8¥€1-8209D

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178

