
File No. S360-33
GC28-6543-5

Sixth Edition (November 1968)

This is a major revision of, and obsoletes C28-6543-4 and
Technical Newsletter N28-2323. This revision adds discus-
sions of sequence distribution techniques in general,
balanced direct access sequence distribution technique on the
2314, spanned records for sort input and output, blocked
input on SYSIN, advanced checkpoint/restart, and standard
System/360 Operating System collating sequence. A flow chart
describing how to set up a simple sort or merge is also
included. Other changes to the text, and small changes to
illustrations, are indicated by a vertical line to the left
of the change; changed or added illustrations are denoted by
the symbol • to the left of the caption.

This edition applies to release 17 of the IBM System/360
Operating System, and to all subsequent releases until other-
wise indicated in new editions or Technical Newsletters.
Changes are continually being made to the specifications
herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM 360 SRL New-
sletter, Form N20-0360, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Technical Com-
munications, Vesslevagen 3, Lidingö, Sweden.

©

 Copyright International Business Machines Corporation 1965,1966,1967,1968 ©

Section 4: Efficient Program Use -- This
section describes the factors that contri-
bute to efficient use of the sort/merge
program.

Appendixes -- These sections contain a flow
chart summary of how to use the sort/merge
program, a summary of considerations for
MVT users, the standard operating system
collating sequence, and sort/merge
messages.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System :

Introduction , Form C28-6534

Concepts and Facilities , Form C28-6535

SUGGESTED READING

IBM System/360 Operating System :

Sort/Merge Timing Estimates , Form C28-
6662 for information about sorting
speeds with a variety of work devices,
input data set sizes, main storage
sizes, blocking factors, etc.

Supervisor and Data Management Services ,
Form C28-6646 for descriptions of link-
age conventions, program and task man-
agement, data organization and access
features, and the use of macro
instructions.

Job control Language , Form C28-6539 for
a thorough discussion of job control
language statements.

Checkpoint/Restart Planning Guide , Form
C28-6708.

The following additional publications
are referred to in text:

IBM System/360 Operating System :

Linkage Editor, Form C28-6538

Storage Estimates , Form C28-6551

Supervisor and Data Management Macro
Instructions , Form C28-6647

System Generation, Form C28-6554

Preface

This publication is a guide for users of
the System/360 Operating System Sort/Merge
program. It contains a general description
of the program and specific information
about control statement formats, program
operation, the inclusion of user-written
routines, efficient use of the program, and
program generated messages. Merging tech-
niques used by the program are briefly
described. General information about basic
sorting and merging methods is contained in
the IBM publication Sorting Techniques ,
Form C20-1639.

ORGANIZATION AND USE OF THIS PUBLICATION

If you want to set up a simple sort or
merge quickly, fold out the chart in Appen-
dix A at the back of the book and refer to
Section 2 for details as you follow the
chart. Eventually, however, you should
plan to read the entire publication, which
is organized as follows:

Section 1: Sort/Merge Program -- This sec-
tion describes sorting and merging specifi-
cations, control fields, sorting and merg-
ing techniques used by the program, and
error correction facilities.

Section 2: How to Use Sort/Merge -- This
section is divided into four main topics:
"Defining the Sort or Merge" which
describes the format and use of sort/merge
control statements and contains a number of
complete sorting and merging examples;
"Determining Intermediate Storage Require-
ments" which describes how to calculate the
amount of intermediate storage for a given
application; "Required Job Control Language
Statements" which describes the JOB, EXEC,
and DD statements necessary for sort/merge
execution and contains a number of complete
JCL and sort/merge statement examples; and
"Invoking the Sort/Merge Program" which
describes initiating sort/merge via the
system input stream and via a macro
instruction in another program.

Section 3: Program Modification -- This
section describes sort/merge program exits
and the requirements for user-written rou-
tines that use them ,. Users who do not
include their own routines to modify rec-
ords or handle errors during sort/merge
program execution can skip this section.

Follow Tabs

Sort/Merge Control Statements

Intermediate Storage Assignment

JCL Statements

Examples

Initiating Sort/Merge

Modifying the Program

Using the Program Efficiently

Preparing a Sort/Merge Job -- Flowchart

Operating System Collating Sequence

Sort/Merge Messages

Contents

Illustrations

Figures

Tables

Introduction

This publication explains how to use the System/360 Operating System Sort/Merge
Program to fulfill the sorting and merging requirements of System/360 installa-
tions that use magnetic tape and direct access input and output devices.

The sort/merge program can arrange data sets into a predesignated order. The
program places the records of a data set in sequence according to the contents of
a control word which is contained in each record. The program is generalized to
perform a variety of sorts and merges. Because of this ability, the sort/merge
program can simplify many data processing applications that require the sequential
updating of previously created data sets.

Input to and output from the program can be any data set that consists of
fixed-length or variable-length, blocked or unblocked records (except U format)
and can be accessed by the queued sequential access method (QSAM). Any I/O device
that operates with QSAM can be used for input and output.

The program uses sorting and merging techniques that take advantage of machine
configurations and data set sizes. These techniques are designed to provide eff i-
cient operation for a great variety of sorts and merges. The technique used by
sort/merge depends upon information supplied to the program through control state-
ments which define the application to be performed. These statements can be sup-
plied to the program in the operating system input stream or as parameters passed
by another program.

User-written routines can operate in conjunction with the sort/merge program to
perform many functions during sort/merge execution. The program gives control to
user-written routines at various exits in the program. When they receive control,
the routines can insert, summarize, delete, and alter the records being sorted or
merged.

Relationship to the Operating System

The sort/merge program is part of the System/360 Operating System and operates
under the supervisory control of the operating systems control program. Sort/merge
execution must be initiated according to operating system conventions, and any
data sets used by the program must be defined according to operating system stan-
dards. At the user's option, the checkpoint and label checking (standard and non-
standard) facilities of the operating system can be used during a sort/merge pro-
gram execution. Information about operating system label checking facilities can
be found in the publication IBM System/360 Operating System: Supervisor and Data
Management Services , Form C28-6646.

The sort/merge program also makes extensive use of the operating system data
management facilities. All data sets necessary for program operation must be
defined in data definition statements; these statements must be placed in the
operating system input stream with the job step that initiates sort/merge execu-
tion. DD statements are described in the publication IBM System/360 Operating
System: Job Control Language , Form C28-6539.

The sort/merge program can be tailored to the needs of a particular installa-
tion when the operating system for that installation is generated.

Introduction 9

Minimum Machine Requirements

The sort/merge program requires:

• For main storage, a System/360 model that is large enough to use the operating
system and provide at least 15,500 bytes of main storage for sort/merge execu-
tion. (Sort/merge uses 12,000 bytes; system functions use 3,500 bytes.)

• At least one selector channel or one multiplexor channel.

• For intermediate storage, at least one IBM 2311 Disk Storage Drive, or one IBM
2301 Drum Storage Drive, or one drive of an IBM 2314 Direct Access Storage
Facility or three magnetic tape units.

MAIN STORAGE REQUIREMENTS

Sort/merge performance usually improves as the amount of main storage available to
the program increases. Approximately 44K bytes of main storage are required for
efficient operation. Refer to "Section 4: Efficient Program Use" for more infor-
mation about main storage requirements.

Determining Region Size

Use the following formula to estimate the region size required when the sort/merge
program is run under MVT:

Region size = 1.2 (sort size) + 8K

Sort size is the amount of main storage assigned to the sort/merge program at sys-
tem generation time. If the user overrides the SYSGEN value at execution time,
then the overriding value is used for sort size. The constant 1.2 provides for
space lost through fragmentation, and the additional 8K is used by the system.

If the formula yields a region size less than the minimum allowed, use the
minimum. If calculated region size is not a multiple of 2K, round up to the near-
est 2K multiple.

INTERMEDIATE STORAGE REQUIREMENTS

The amount of intermediate storage needed to perform sorting applications depends
upon the size of the input data set. This storage may be allocated on either mag-
netic tape or direct access devices. The program needs at least three magnetic
tape units or one direct access device for intermediate storage.

The amount of main storage available to the sort/merge program affects the size
of records that the program can handle. Figure 1 shows the maximum record size
that the program will accept for a given amount of main storage when fixed- or
variable-length unspanned records are used. Figure 2 gives sizes for variable-
length spanned records. (Spanned records, also referred to as VRE records, are
records that can have fractional blocking factors such as one third, two and one
half, etc. Thus a record may "span" blocks and/or direct access tracks.)

Figures 1 and 2 assume that the minimum number of intermediate storage data
sets are assigned, and no control fields are to be extracted (placed in a work
area and modified by user-written routines). Minimum record size is 18 bytes.
Conditions such as control field extraction, or large numbers of intermediate
storage data sets require additional main storage. Since a work area is used for
VRE records, the available storage space for buffers and sorting is decreased and
therefore, the maximum record lengths for VRE records are somewhat smaller than
for unspanned records.

1 0

• Figure 1. Estimated Maximum Record Sizes for Input and Output with Fixed-Length
or Variable-length Records

• Figure 2. Estimated Maximum Record Sizes for Input and Output with Variable-
Length Spanned Records (VRE)

Introduction 11

Section 1: Sort/Merge Program

This section discusses control fields, sort and merge requirements, the sorting
technique used by sort/merge, the sort/merge sequence distribution techniques, and
error correction facilities.

Control Fields

Each record in a data set is sorted or merged on the basis of control information
contained in the record's control word. A control word, which can be up to 256
bytes long, has from 1 to 64 control fields. Control fields can overlap; the end
of one control field can share data with the beginning of another control field.
Figure 3 shows a control word with five control fields.

• Figure 3. Control Word With Five Fields

Each control word, along with the record in which it appears, is sorted into
either ascending or descending order, using standard IBM System/360 collating
sequences.'

Nonstandard collating can be achieved without physically changing the control
fields. A user-written routine can modify one or more of the control fields each
time the sort/merge program collates a record. The modified control fields are
used for collating purposes only; they do not replace the fields in the records.
User-written routines can be entered at sort/merge program exits. (These exits
and the requirements for user-written routines that use them are discussed in
"Section 3: Program Modification.")

The maximum control field lengths for the various control field data formats
accepted by the sort/merge program are:

• Character, fixed-point, or normalized floating point data -- 1 through 256
bytes.

• Packed or zoned decimal data -- 1 through 16 bytes.
• Binary data -- 1 bit through 256 bytes.

Control fields must be contained within the first 4,092 bytes of a record.

'The collating sequence for character data and binary data is absolute; that is,
character and binary fields are not interpreted as having signs. (Refer to Appen-
dix C: Collating Sequence.) For packed decimal, zoned decimal, fixed point, and
normalized floating-point data, collating is algebraic; that is, each quantity is
interpreted as having an algebraic sign.

Section 1: Sort/Merge Program 13

Sort Requirements

Control fields for a sorting application are defined in a SORT control statement
such as

SORT FIELDS=(10,30,A),FORMAT=CH

(described in "Defining the Sort or Merge" in Section 2). Input, output, and
intermediate storage data sets are defined on standard job control language DD
statements such as

//SORTOUT DD DSNAME=OUTPUT,UNIT=2400,DISP=(NEW,CATLG), X
// DCB=(RECFM=FB,LRECL=90,BLKSIZE=900)

(described in "Job Control Language for Sort/Merge" in Section 2).

INPUT : Sort input can be a blocked or unblocked sequential data set containing
fixed- or variable-length records on any I/O device that can be used with QSAM.

OUTPUT: Output from the sort can be a blocked or unblocked sequential data set
containing fixed- or variable-length records. The output device can be any device
that can be used with QSAM. It need not be related in any way to the input
device.

INTERMEDIATE STORAGE : All intermediate storage for a particular sort/merge appli-
cation must be on the same type of device. Up to 32 tape units, 17 modules of a
2314 storage facility, six 2311 disk storage drives, or six 2301 drum storage
devices can be used for intermediate storage. The amount of intermediate storage
required is based primarily on the size of the input data set. The amount of main
storage available to sort/merge is also a factor in determining intermediate
storage requirements. Intermediate storage is discussed in greater detail and
formulas for the amount of storage needed are given in "Determining Intermediate
Storage Requirements" in Section 2.

USER MODIFICATIONS : User-written routines can summarize, insert, delete, shorten,
lengthen, or otherwise alter records while they are being sorted. A detailed dis-
cussion of exits in the sort/merge program that permit control to be transferred
to user-written routines is given in "Section 3: Program Modification."

INVOKING THE SORT : Execution of the sort is initiated by control statements in
the operating system input stream, or by another program through the use of an
ATTACH, LINK, or XCTL macro instruction.

Merge Requirements

Control fields for a merging application are defined in a MERGE control statement
such as

MERGE FIELDS=(10,30,A),FORMAT=CH

(described in "Defining the Sort or Merge" in Section 2). Input and output data
sets are defined on standard job control language statements such as

//SORTIN01 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=OLD,
// LABEL=(,NL),UNIT=2400,DCB=(RECFM=FB,
// LRECL=80,BLKSIZE=240)

(described in "Job Control Language for Sort/Merge" in Section 2).

X
X

INPUT : Input to the merge can be up to 16 blocked or unblocked sequential data
sets containing fixed- or vainput devices records. For a given . application, all
records must be of the same format (only blocking factors may differ). The rec-
ords in the input data sets must be in proper sequence. The input - devices must be
acceptable for use with QSAM.

14

OUTPUT : Output from the merge can be a blocked or unblocked sequential data set
containing fixed- or variable-length records. The output device must be accept-
able for use with QSAM. It need not be related in any way to the input device
type.

INTERMEDIATE STORAGE : Not needed for a merge-only operation.

USER MODIFICATION : The merge provides exits for user-written routines to sum-
marize, insert, delete, lengthen, shorten, or otherwise alter output records. A
detailed discussion of these exits and the requirements for routines that use them
is given in "Section 3: Program Modification."

INVOKING THE MERGE : Execution of the merge can only be initiated by control
statements in the operating system input stream.

Sorting Technique

The sort/merge program uses the replacement selection technique to sort records.
Figure 4 shows in general how this technique works.

• Figure 4. Replacement Selection Sorting Technique

Section 1: Sort/Merge Program 15

The input data set is almost always too large to be brought into main storage
and sorted all at once. Instead, it is broken up into sections. Each section is
placed in sequence and stored on an intermediate storage device. The sorted sec-
tions of the input data set are called sequences.

Sequence Distribution Techniques

The sort/merge program selects one of five sequence distribution techniques based
on information it has about a specific sorting application. The object of all
five techniques is to enable the intermediate merge phase of the program to com-
bine the many small sequences of records produced by the sort phase into a few
longer sequences. The number of sequences must be reduced to the point where the
final merge phase of the sort/merge program can combine them into a single
sequence in one pass.

TAPE TECHNIQUES

If the intermediate storage medium is tape, the program chooses the balanced tape
technique, the polyphase tape technique, or the oscillating tape technique.

DIRECT ACCESS TECHNIQUES

If the intermediate storage medium is direct access, the program chooses either
the balanced direct access technique or the crisscross direct access technique.

Table 1 lists the basic requirements for the five sequence distribution tech-
niques and their major advantages and disadvantages.

FORCING A TECHNIQUE

If you find that for a particular sort/merge application, the sort/merge program
does not choose the most efficient technique, you can request sort to use another
technique. The program will comply if you provide enough main storage and work
areas to meet the technique's requirements (see Table 1). If the requirements
cannot be met, sort will use another technique rather than terminate the program.

Caution : Be extremely cautious about forcing a technique. The sort/merge program
attempts to choose the most efficient technique for a given application. If it is
forced to use another technique, performance is usually not as efficient.

Refer to the discussion of the EXEC statement PARM field in "Job Control Lan-
guage Statements for Sort/Merge" in Section 2 for information on how to force a
sequence distribution technique.

16

•Table 1. Sequence Distribution Technique Requirements

Section 1: Sort/Merge Program 17

Error Correction Facilities

The sort/merge program provides exits where control can be transferred to user-
written error routines. (Refer to "Section 3: Program Modification.") These rou-
tines may be able to correct:

• I/O errors that cannot be corrected by the operating system.
• Errors that arise because the input data set is larger than the intermediate
storage capacity estimated by the program. for a given application.

I/O ERRORS

The sort/merge program passes control to a user-written I/O error routine only
when the operating system cannot correct the error condition. In the case of a
permanent read error the user-written routine can accept the block as is, attempt
to correct the error, skip the block, or request termination. For an uncorrect-
able write error, the user-written routine can perform any necessary abnormal end-
of-task operations before the program is terminated.

If no user-written routines are supplied, the sort/merge program issues the
message IER061A-I/O ERR xxx, where xxx represents the number of the unit on which
the error occurred. Then the program terminates.

EXCEEDING INTERMEDIATE STORAGE CAPACITY

The sort/merge program estimates a maximum intermediate storage capacity (Nmax)
from the information supplied to it at the beginning of the sorting operation.

You can supply an actual or an estimated input data set size to the program.
(This is done via the SIZE parameter on a SORT control statement described in
"Defining the Sort or Merge" in Section 2.) If you supply an actual data set
size, and the size is larger than Nmax, the program terminates before starting to
sort. If you supply an estimated data set size, or if you do not give a data set
size, and the number of records processed while sorting reaches Nmax, the program
gives control to a user-written Nmax routine, if one is supplied. The Nmax rou-
tine can take one of the following actions:

• Indicate to sort/merge that it should continue sorting the entire input data
set with available intermediate storage. (If the estimated input data set
size was high, there may be enough intermediate storage left to complete the
application.)

• Direct sort/merge to continue sorting with only part of the input data set.
(The remainder of the data set could be sorted later and the two results
merged to complete the application.)

• Terminate the program without any further processing.

If an Nmax routine is not supplied, sort/merge continues to process records
beyond Nmax. If the intermediate storage capacity is sufficient to contain all
the records in the input data set, the sort completes normally; when intermediate
storage is not sufficient, the program terminates.

The sort generates a separate message for each of the three possible error con-
ditions. These messages are:

IER041A-N GT NMAX : Generated before sorting begins when the exact data set size
supplied on a SORT control statement is greater than Nmax.

IER046A-SORT CAPACITY EXCEEDED : Generated when the sort has used all available
intermediate storage while processing.

IER048I-NMAX EXCEEDED : Generated when the sort has exceeded Nmax and has trans-
ferred control to a user-written Nmax routine for further action.

(A full description of all program messages is contained in Appendix D.)

18

Section 2: How to Use the Sort/Merge Program

There are three basic things you must do to use the sort/merge program:

1. Define your sorting or merging job with sort/merge control statements. (See
"Defining the Sort or Merge" in this section.)

2. If your job is a sort, determine the amount of intermediate storage your data
will require while it is being sorted and merged. (See "Determining Interme-
diate Storage Requirements" in this section.)

3. Prepare job control language statements for the job and combine them in prop-
er order with the sort/merge control statements. (See "Job Control Language
for Sort/Merge" in this section.)

Defining the Sort or Merge

The sort/merge program must know what to do with your input data. The program
needs a general description of the input data, information about the control
fields in the input records, and a description of your modification routines, if
any, that will be used during sort/merge execution. Sort/merge control statements
supply this information to the program.

Control statement formats for all System/360 sort/merge programs are constant
even though operating environments and data descriptions are different. Com-
patibility of control statements among System/360 sort/merge programs is discussed
later in this section. The five control statements that are acted upon by the
operating system sort/merge program are:

SORT Statement Provides information about control fields and data set size. Use
this statement if your job is a sort. Do not use this statement
for a merge-only job.

MERGE Statement Provides the same information as a SORT statement. Use this
statement if your job is a merge. Do not use this statement for
a sort operation.

RECORD Statement Provides record length and type information. This statement is
required only when your modification routines change record
lengths during sort/merge execution.

MODS Statement Associates your modification routines with particular sort/merge
program exits. This statement is required only when you supply
modification routines to be executed at sort/merge exits. ("Sec-
tion 3: Program Modification," describes these exits and the
requirements for routines that use them.)

END Statement Signifies the end of a related group of sort/merge control state-
ments. This statement is required when sort/merge statements are
not followed immediately in the input stream by a /* statement.

Each statement is checked for validity before it is acted upon by the sort/
merge program. If the program finds an error, it issues a diagnostic message.
(See Appendix D for descriptions of messages.) However, the program may not be
able to detect all errors or inconsistent combinations of entries so you should be
very careful in preparing control statements.

Section 2: How to Use the Sort/Merge Program 19

CONTROL STATEMENT FORMAT

All sort/merge control statements have the same general format:

The control statements are free-form; that is, the operation definer, operand(s),
and comments may appear anywhere in a statement, as long as they appear in the
proper order, and are separated by one or more blank characters. Column 1 of each
control statement must be blank.

Operation Field : This field must appear first on the card. It must not extend
beyond column 71 of the first card. It contains a word (SORT, MERGE, RECORD,
MODS, or END) that identifies the statement type to the sort/merge program. In
Figure 5, the operation definer SORT is in the operation field of the sample con-
trol statement.

Operand Field : The operand field is made up of one or more operands separated by
commas. This field must be the second field on the card and be separated from the
operation field by at least one blank. If the statement occupies more than one
card, this field must begin on the first card. Operands supply parameters to the
sort/merge program. Each operand is made up of an operand definer, or keyword (a
group of characters that identifies the operand type to the sort/merge program).
A value or values may be associated with a keyword. The three possible operand
formats are:

• keyword=(value1,value2,...,value)
• keyword=value
• keyword

Figure 5 contains an example of each of these formats.

Figure 5. Control Statement Example

Comments Field : This field may contain any information you desire. It is not
required, but if it is present, it must be separated from the operand field by at
least one blank. Message IER009I appears for each statement containing comments.

Continuation Column (72) : Any character other than a blank in this column indi-
cates that the present statement is continued on the next card. In Figure 5 , X
is used to specify that the next card contains more information pertaining to this
SORT control statement.

Columns 73-80 : This field may be used for any purpose you desire. It may be used
for identification, or as shown in Figure 5, for sequencing.

20

n

Continuation Cards

The format of the sort/merge continuation card is:

The continuation column and columns 73-80 of a continuation card fulfill the
same purpose as they do on the first card of a control statement. Columns 1
through 15 of a continuation card must be blank. The maximum number of continua-
tion cards allowed for each type of control statement is shown in the following
table:

Control Maximum Number of
Statement Type Continuation Cards

SORT 19
MERGE 19
RECORD 5
MODS 19
END none allowed

A continuation card is treated as a logical extension of the preceding card.
Either an operand or a comments field may begin on one card and continue on the
next. The following rules apply to continuing operands or comments fields:

• If an operand is continued through column 71, the next character of the
operand must appear in column 16 of the continuation card. Columns 1-15 must
be left blank. For example:

• If an operand field is broken between two cards without filling the first card
through column 71, it must be done in either of two ways:

1. At the end of a complete operand followed by a comma and a blank (or
blanks). For example:

2. At the end of any of the values in an operand of the type keyword= (value1,
value2 , ... ,valuen) , followed by a comma and a blank. For example:

Section 2: How to Use the Sort/Merge Program 21

The following rules apply to control statement preparation:

• Column 1 of each control statement must be blank.

• The operation field must be the first field on the first card of a control
statement and may not be carried over onto a continuation card.

• The operand field, if present, must begin on the first card of a control
statement. The last operand in a statement must be followed by at least one
blank.

• Embedded blanks are not allowed in operands. Anything following a blank is
considered part of the comments field.

• Values may contain no more than eight alphameric characters.

• Commas and blanks can be used only as field delimiters. They must not be used
in values.

• Each type of sort/merge control statement may appear only once for each execu-
tion of the sort/merge program.

• No more than 33 control statement cards, including continuation cards, are
allowed for a sort/merge program execution.

SORT CONTROL STATEMENT

The SORT control statement must be used when a sorting application is to be per-
formed. It describes the control fields on which the program will sort.

The format of the SORT statement is shown in Figure 6. The first field in the
statement must be the operation definer SORT, followed by at least one blank.

Figure 6. SORT Control Statement Format

Parameters

The FIELDS operand describes control fields. As shown in Figure 6, it can be
written in two ways. Use the FIELDS format shown at the top of Figure 6 to
describe control fields that contain different data formats. Use the format at
the bottom of the figure to describe control fields that contain data of the same
format. The format at the bottom of the figure is optional; you can always use
the top format if you prefer.

The sort/merge program requires four facts about each control field in the
input records: the position of the field within the record, the length of the
field, the format of the data in the field, and the sequence into which the field
is to be sorted. These facts are communicated to the program by the values of the
FIELDS operand which are represented by p, m, f, and s in Figure 6.

The major control field, the one sort examines first, is specified first. Suc-
cessive minor control fields are specified following the major control field. Up
to 64 control fields can be used. In Figure 6, p 1 ,m1 ,f1 ,s1 describe the major

22

specifies the beginning (high-order location) of a control field relative to
the beginning of the record which contains the control field. (For variable-
length records, the logical record includes the four-byte record length indi-
cator.) The first (high-order) byte in a record is byte 1, the second is
byte 2, etc. All control fields, except binary, must begin on a byte boun-
dary. Fields containing binary values are described in bytes and bits as
follows:

p

First give the byte location relative to the beginning of the record and
follow it with a period. Then give the bit location relative to the begin-
ning of that byte. The resulting notation is then -- bytes.bits. The
first (high-order) bit of a byte is bit 0; the remaining bits are numbered
1 through 7.

Thus, 1.0 represents the beginning of a record. A binary field beginning
on the third bit of the third byte of a record is represented as 3.2. When
the beginning of a field falls on a byte boundary, (say, for example, the
fourth byte) you can write it in one of three ways:

4.0
4.
4

f

specifies the length of the control field. All control fields except binary
must be a whole number of bytes long. The length of a control field that is
a whole number (d) bytes long can be expressed in one of three ways:

d.0
d.
d

Binary fields are expressed in the notation -- bytes.bits. The number of
bits specified must not exceed 7. A control field two bits long would be
represented as 0.2.

specifies the format of the data in the control field. f can be any one of
the following two-character abbreviations:

CH -- Character
ZD -- Zoned decimal
PD -- Packed decimal
FI -- Fixed-point
BI -- Binary
FL -- Floating-point

If all the control fields contain the same type of data, you can omit the f
parameters and use the optional FORMAT=xx operand.

Section 2: How to Use the Sort/Merge Program 23

m

The table below contains the data formats, indicates whether or not they are
signed, and shows the maximum control field length for each format.

specifies how the control field is to be ordered. One of the following one-
character codes must be used for s:

A -- Ascending sequence
D -- Descending sequence
E -- User modification

If you are including your own routine to modify control fields before the
sort/merge program sequences then, use E. After your program has modified
the control fields, the sort/merge program orders the fields in absolute
ascending sequence. (See "Exit E61", described in "Section 3: Program Modi-
fication," for further information about modifying control fields.)

Options

You can use the following optional operands with the SORT control statement.

FORMAT=xx : If all the control fields contain the same type of data, you can use
this operand instead of the f parameter of the FIELDS operand to specify the data
format. If all the control fields are not of the same type, you must use the f
parameter of the FIELDS operand. The possible values for xx are the same as those
for the f parameter.

SIZE=y

:

 This operand specifies the number of records in the input data set. The
value y can be either the actual data set size or an estimate of the size.

If you give an actual data set size, do not include any records inserted in the
input data set by one of your routines. If the number of records in the input
data set, as counted by the sort/merge program, does not agree with the value of
the SIZE parameter, the sort terminates. The value specified in the SIZE parame-
ter is placed in the IN field of message IER047A or IER054I . If you give an esti-
mated data set size, precede the value by E (for example, E5000).

If you omit the SIZE operand, the sort/merge program assumes that:

• If intermediate storage is tape, the input data set can be contained on one
volume at the blocking factor used by the sort.

• If intermediate storage is direct access, the input data set will fit into the
space you have allocated.

SKIPREC=z : If you want the sort to skip a certain number of records before start-
ing to process the input data set, use this operand. Substitute the number of
records you want skipped for z. On a preceding sort/merge program execution you
may have exceeded storage capacity and only part of your input data was sorted.
(The program prints a message specifying the number of records sorted in a partial
run.) Using this operand, you could request that sort skip over the records it
processed in the preceding run and sort the remaining records. You could then
merge the output from the two sort runs to complete the sort/merge operation.

If you were using a routine to insert or delete records in a run during which
sort capacity was exceeded, you will have to provide a routine that will reposi-
tion the modified data set before the second part of the data set can be sorted.

24

CKPT : This operand tells the sort/merge program to activate the checkpoint facil-
ity of the operating system. The program takes checkpoints at the start of the
sort phase and at the start of the final merge phase. In addition when the
balanced or polyphase tape techniques are used, the program takes a checkpoint at
the start of each intermediate merge phase pass. If the oscillating tape tech-
nique is used, the program takes checkpoints at intervals during the intermediate
merge phase.

In addition to those taken at the beginning of each pass, the balanced direct
access technique takes checkpoints at selected intervals during the intermediate
merge phase.

You can have the program restart from the last checkpoint taken or from the
checkpoint written at the start of the sort phase.

When you use the checkpoint/restart facility, you must define a data set for
the checkpoint records. The data set is described further in this section under
"Job Control Language for Sort/Merge".

The following rules apply to the control fields described on a SORT control
statement:

• All control fields must be located within the first 4,092 bytes of a record.

• The first byte of a floating-point field is interpreted as a signed exponent.
The rest of the field is interpreted as the fraction.

• All floating-point data must be normalized before the sort/merge program can
collate it properly. You can use your own routine to do this at execution
time. (See "Exit E61" in "Section 3: Program Modification.") Specify the E
option for the value of s in the FIELDS operand for each control field you are
going to modify.

• The total number of bytes occupied by all control fields must not exceed 256.
A binary field is considered to occupy an entire byte if it occupies any part
of it. For example, a binary field that begins on byte 2.6 and is 3 bits long
occupies two bytes.

Section 2: How to Use the Sort/Merge Program 25

SORT Statement Examples

SORT Statement Example 1. One Control Field and Size Option.

FIELDS operand
2.0 means that the control field begins on the second byte of each record in

the input data set.
5.0 means the control field is five bytes long.
CH means the control field contains character data.
A instructs the program to sort the fields into ascending order.

SIZE operand
The input data set contains exactly 29,483 records.

SORT Statement Example 2. Five Control Fields, Size and Checkpoint Options

FIELDS operand The first four values describe the major- control field. It
begins on byte 7 of each record, is 3 bytes long, contains
character data, and is to be sorted into descending sequence.
The next four values describe the second control field. It
begins on byte 1, is 5 bytes long, contains fixed-point data,
and is to be sorted into ascending sequence.
The third control field begins on bit 5 (bits are numbered 0
through 7) of byte 398. The field is 7 bytes and 6 bits long
(occupies 9 bytes), and contains binary data to be placed in
descending order.
The fourth control field begins on byte 99, is 230 bytes and 2
bits long, contains binary data, and should be sorted into
ascending order.
The fifth control field begins on byte 452, is 8 bytes long,
contains normalized floating-point data which is to be sorted
into ascending order. If the data in this field was not nor-
malized, you would specify E instead of A and include your own
routine to normalize the field, before sort/merge examines
them.

SIZE operand The input data set contains exactly 10693 records.

CKPT operand Instructs the sort/merge program to take checkpoints during
this run.

26

SORT Example 3. Two Control Fields, User Modification, Size Option

FIELDS operand The first four values describe the major control field. It
begins on byte 3 of each record, is 8 bytes long, contains
zoned decimal data that will be modified by your routine
before sort examines the field.
The second field begins on byte 40, is 6 bytes long, contains
character data and will be sorted into descending sequence.

SIZE operand The input data set contains approximately 30,000 records.

SORT Statement Example 4. Two Control Fields, Format Option

FIELDS operand The major control field begins on byte 25 of each record, is 4
bytes long, contains zoned decimal data (FORMAT=ZD), and is to
be sorted into ascending sequence.
The second control field begins on byte 48, is 8 bytes long,
has the same data format as the first field, and is also to be
sorted into ascending order.
The FORMAT=xx option can be used because both control fields
have the same data format. It would also be correct to write
this SORT statement as follows:

MERGE CONTROL STATEMENT

The MERGE control statement must be used when a merge-only operation is to be
performed. It provides essentially the same information to the sort/merge program
for a merge as the SORT statement does for a sort. As you can see from Figure 7,
the format of the MERGE statement is very much like that of the SORT statement.
There are the following differences:

• The operation definer is MERGE.

• The SKIPREC and CKPT options are not used.

• The value of the SIZE operand is the total number of records in all the input
data sets.

Section 2: How to Use the Sort/Merge Program 27

Figure 7. MERGE Control Statement Format

Parameters

The FIELDS operand is written exactly the same way for a merge as it is for a
sort. The meanings of p, m, f, and s were described previously in the discussion
of the SORT statement.

The SIZE operand is optional. Its value can be either exact or estimated. The
value refers to the total number of records in all the input data sets to be
merged.

MERGE Statement Examples

MERGE Statement Example 1. One Control Field, Size Option

FIELDS operand The control field begins on byte 2 of each record in the input
data sets. The field is 5 bytes long, and contains character
data that has been presorted into ascending order.

SIZE operand The input data sets contain exactly 29,483 records.

MERGE Statement Example 2. Two Control Fields, User Modification, Size Estimate

FIELDS operand The major control field begins on byte 3 of each record, is 8
bytes long, and contains zoned decimal data that will be modi-
fied by your routine before the merge examines it.

The second control field begins on byte 40, is 6 bytes long,
and contains character data that is in descending order.

SIZE operand The input data sets contain approximately 30,000 records.

28

MERGE Statement Example 3. Two Control Fields, Format Option

FIELDS operand The major control field begins on byte 25 of each record, is 4
bytes long, and contains zoned decimal data that has been
placed in ascending sequence.
The second control field begins on byte 48, is 8 bytes long,
is also in zoned decimal format, and is also in ascending
sequence. The FORMAT=xx option can be used because both con-
trol fields have the same data format.

RECORD CONTROL STATEMENT

The RECORD statement is required only when your routines change record lengths
during a sort/merge program run. The statement describes the format and lengths
of the records being sorted or merged. The format of the RECORD statement is
shown in Figure 8.

Parameters

The RECORD statement has two operands, TYPE and LENGTH. Both are required when
the RECORD statement is used.

TYPE : The TYPE operand specifies whether the input records to sort/merge are
fixed- or variable-length format.

TYPE=F indicates fixed-length records.
TYPE=V indicates variable-length records.

LENGTH : The LENGTH operand specifies the length in bytes of the input records,
the length in bytes of the records that enter the sort phase of the sort/merge
program, (you can include your own routine to change record lengths before the
records are sorted), and the length in bytes of the records in the output data
set. (You can change record lengths during the final merge phase of the program.)

The value 1 1 is required whenever the RECORD statement is used,. The values 1 2
and 1 3 are required only when your routines change record lengths before the sort
or during the final merge. The values 1, and 1 5 are used only for variable-length
records.

Figure 8. RECORD Control Statement Format

Section 2: How to Use the Sort/Merge Program 29

Defining Fixed-Length Records

If your input records are fixed-length, use l

1

, l2 and l

l

3

 as follows:

is the length of each record in the input data set. If you use the RECORD
control statement, you must include this value. The value should be the same
as the value you specified in the LRECL subparameter of the DCB parameter on
the SORTIN DD statement (discussed later in this section.) If the values are
not the same, sort/merge uses the value specified on the DD statement.

is the length of each record handled by the sort phase. If you do not speci-
fy a value for l2 , the program assumes that it is equal to l

1

. If you are
going to change record lengths in the sort phase, you must include a value
for l2 . You do not need l2 for a merging application.

is the length of each record in the output data set. If you do not specify a
value for l3 , the program assumes that l 3=l2 for a sorting application and
that 1 3=1

1

 for a merging application. If your routines change record lengths
during the final merge phase of the program, you must specify a value for l 3 .
This value should be the same as the value you specified for the LRECL sub-
parameter of the DCB parameter on the SORTOUT DD statement (discussed later
in this section). If the values are different, the sort/merge program uses
the value given on the DD statement.

Defining Variable-Length Records

If your input records are variable-length, use l

1

, l 2, l3 , l4, and l5 as follows:

is the maximum length of the records in the input data set. If you use the
RECORD statement, you must specify a value for l

1

. The value should be the
same as the value you specified in the LRECL subparameter of the DCB parame-
ter on the SORTIN DD statement (discussed later in this section). If the
values are not the same, the program uses the LRECL value.

is the maximum length of the records handled by the sort phase. If you do
not specify a value for l 2 , the program assumes it is equal to l1 . If you
change record lengths in the sort phase, you must provide a value for l 2 .
You do not need l2 for a merging application.

is the maximum length of each record in the output data set. If you do not
specify a value for l3 , the program assumes l 3=l2 for a sort and l3=l1 for a
merge. If you include a routine that changes record lengths in the final
merge phase, you must specify a value for l3 . The value should be the same
as the value you provided for the LRECL subparameter of the DCB parameter on
the SORTOUT DD statement. If it is not, the program uses the LRECL value.

is the minimum length of records in the input data set. If you do not speci-
fy a value for l4 , the program assumes it is equal to the minimum record size
necessary to contain the control fields defined on the SORT or MERGE control
statement, or the minimum record length allowed by the operating system,
whichever is greater. You need not specify this value for a merge.

is the record length that occurs most frequently in the input data set (modal
length). You should use this value to help define a data set biased toward a
particular length. If you do not specify a value for l 5 , the program assumes
it is equal to the average of the maximum and minimum record lengths in the
input data set. If, for example, your data set contains mostly small records

30

1 3

l

l

l

1

2

3

1

l

l

l

l

l

1

2

3

5

4

and just a few long records, the program would assume a high modal length and
would allocate a larger record storage area than necessary. Conversely, if
your data set contains just a few short records and many long records, the
program would assume a low modal length and night not allocate a large enough
record storage area to sort your data.

When you use the RECORD statement, consider the following:

• The lengths you specify for variable length records must include the 4-byte
count field that the operating system places at the beginning of each record.

• When you use a direct access device for intermediate storage, record length
cannot exceed the capacity of one track.

• The minimum record length of records in the input data set is 18 bytes.

• The record format you specify in the TYPE operand must be the same as the for-
mat you used in the RECFM subparameter of the DCB parameter on the SORTIN and
SORTOUT DD statements (described later in this section.) If the formats are
not the same, the program uses the one you specified in the DD statement.

• When you use an operand like the LENGTH operand of the type, keyword=(value

1

,
value2 ,...,valuen), you can omit values that are equal to those assumed by the
program. The following rules apply to omitting values from the LENGTH
operand:

1. You can drop values from right to left. If all the values after 1 2 are
equal to the values assumed by the program, you could write --
LENGTH=(l ,l).

1,l

2

2. If you drop values from the middle or from left to right, you must use
commas to indicate their omission. If 1 2 is equal to the value assumed
by the program, you could write -- LENGTH=(l 1,,l3).

RECORD Statement Examples

RECORD Statement Example 1. Fixed-length, Three Length Values

TYPE operand The input records are fixed-length.

LENGTH operand The records in the input data set are each 60 bytes long. You
change the records to 40 bytes in the sort phase and to 50
bytes in the final merge phase.

RECORD Statement Example 2. Variable-length, Five Length Values

Section 2: How to Use the Sort/Merge Program 31

1 2

TYPE operand The records in the input data set are variable-length.

LENGTH operand The maximum length of the records in the input data set is 200
bytes. In the sort phase, you reduce the maximum record
length to 175 bytes. You add five bytes to each record in the
final merge phase, making the maximum record length in the
output data set 180 bytes. The minimum record length in the
input data set is 50 bytes and the most frequent record length
in the input data set is 100 bytes.

RECORD Statement Example 3. Fixed-length, Two Length Values

TYPE operand

LENGTH operand

The records in the input data set are fixed-length.

The input records are 76 bytes long. You do not change record
length in the sort phase so you omit 1 2 because sort/merge
will assume the proper value for it. In the final merge
phase, you change the record length to 50 bytes.

MODS CONTROL STATEMENT

The MODS statement is required only if you want the sort/merge program to transfer
control to your routine(s) at various points during sort/merge execution. The
statement associates your routines with specific exits in the sort/merge program
and provides the program with basic descriptions of your routines. For details
about exits in the sort/merge program and how to use them, refer to "Section 3:
Program Modification."

Figure 9 shows the format of the MODS statement.

Figure 9. MODS Control Statement Format

Parameters

The sort/merge program provides seventeen exits at which control can be trans-
ferred to your routines. These exits are described in detail in "Section 3: Pro-
gram Modification." The exits have three-character names such as E11, E15, E16,
E28, etc. To use one of these exits, you substitute its three-character name for
the word "exit" in the MODS statement format example. The values associated with
the three-character name describe your routine. These values are:

n
the name of your routine (member name if your routine is in a library). If
your routine has been link edited previously and you do not want to have it
link edited again, its name must be the same as the three-character exit name
with which it is associated.

32

s

m
the number of bytes, exact or approximate, of main storage that your routine
occupies.

either the name of the DD statement in your sort/merge job step that defines
the partitioned data set in which your routine is located, or SYSIN if your
routine is in the input stream. If your routines are in a concatenated data
set the value of s for all the routines must be the ddname of the data set.

N
S

indicates the linkage editor requirements of your routine.

N means that your routine has already been link edited and can be used in
the sort/merge run without further link editing.

S means that your routine requires link editing but that it can be link
edited separately from the other routines you are using in a particular
sort/merge program phase. Only routines at exits E11, E21, and E31 are
eligible for separate link editing; see Section 3.

Absence of these parameters means that your routine must be link edited
together with the other routines you are using in a particular sort/merge
program phase.

Refer to the topic "Bypassing the Linkage Editor" in "Section 3: Program
Modification" for details on how to design your routines.

When you are preparing your MODS statement, consider the following:

• The sort/merge program must know the amount of main storage your routine needs
so that it can allocate main storage properly for its own use. If you do not
know the exact number of bytes your program requires, make a slightly high
estimate. The value of m in the MODS statement is written the same whether it
is an exact figure or an estimate. In other words, you do not precede the
value by E for an estimate as you did on the SORT or MERGE statement.

• If the routines you are using for a particular sort/merge run are in several
system libraries, you need a DD statement for each library. DD statements
required for sort/merge are described later in this section.

• If your routines are in the system input stream (SYSIN), you must arrange them
in numerical order (the E11 routine before the E15 routine, etc.). If you use
the same routine in several sort/merge program phases, you must provide a
separate copy of the routine for each use.

• Your routines can also reside in private libraries. The use of private
libraries is described in the publication IBM System/360 Operating System:
Job Control Language , Form C28-6539.

MODS Statement Examples

MODS Statement Example 1. Two Routines in a Library, No Link Editing

Section 2: How to Use the Sort/Merge Program 33

E15 At exit E15, the sort/merge program will transfer control to your routine.
Your routine is in the library defined by the MODLIB DD statement. Its
member name is E15, it is 554 bytes long, and has been link edited previous-
ly, and does not require further link editing.

E35 At exit E35, the program will transfer control to your routine. Your rou-
tine is in the library defined by the MCDLIB DD statement, its member name
is E35, it is 11032 bytes long and has been link edited previously.

MODS Statement Example 2. One Routine in SYSIN, Link Editing is Needed

E17 At exit E17, the sort/merge program will transfer control to your routine
which is named CLSE. Your routine is in object form in the system input
stream and will be link edited together with other routines in the sort
phase of the sort/merge program.

MODS Statement Example 3. Four Routines

E16 The sort/merge program will transfer .control to your routine at exit E16.
Your routine is named NMAXERR, is located in the library defined by the
MYLIB DD statement, and is approximately 1000 bytes long.

E21 At exit E21, the program will transfer control to your routine which resides
in the library defined by the MODLIB DD statement under the member name E21.
Your routine is 550 bytes long and does not require additional link editing.

E31 Another of your routines in the library defined by the MODLIB DD statement
will gain control at exit E31. Its member name is E31, it is 450 bytes long
and does not require additional link editing.

E35 You have placed a routine named SUNUP in object form in the input stream.
It is approximately 5000 bytes long, must be link edited together with other
routines in its phase, and will receive control at exit E35.

34

MODS Statement Example 4. One Routine, Separate Link Editing

E11 At exit E11 on the sort phase, the sort/merge program will transfer control
to your routines. Your routine, named E11, is located in a library defined
on a statement with the ddname MYLIB, is 500 bytes long, and can be link
edited separately from other routines in the sort phase. After the sort
phase is initialized, your E11 routine will be overlaid. Becuase you have
specified S for separate link editing, your routine can have no external
references.

END CONTROL STATEMENT

The END statement marks the end of all sort/merge control statements and continua-
tion statements for a particular sort/merge run. The END statement must be used
whenever the sort/merge control statements are not immediately followed in the
input stream by a /* statement. For example, if you include you own routines in
the input stream, they are placed between the sort/merge control statements and
the /* statement, so you must use an END statement.

The format of the END statement is shown in Figure 10. The statement has no
operands.

Figure 10. END Control Statement Format

CONTROL STATEMENT COMPATIBILITY

There are eight control statement types used by System/360 sort/merge programs.
The System/360 Operating System sort/merge program acts upon the SORT, MERGE,
RECORD, NODS, and END statements described above. The three remaining control
statement types, INPFIL, OUTFIL, and OPTION, are used only by other System/360
sort/merge programs. The operating system sort/merge program recognizes INPFIL,
OUTFIL, and OPTION as valid control statements, but does not act upon them.

The information contained in INPFIL and OUTFIL statements is supplied to the
operating system sort/merge program in DD statements. The information contained
in the OPTION statement is specified at system generation time.

The operating system sort/merge program accepts SORT, MERGE, RECORD, and END
statements used by other System/360 sort/merge programs. If these statements con-
tain parameters not recognized by the operating system sort/merge program, the
program ignores those parameters. However, because of differences in the way
parameters are specified, the operating system sort/merge program will not accept
MODS statements used by other System/360 sort/merge programs.

Section 2: How to Use the Sort/Merge Program 35

Summary of Sort/Merge Control Statements

SORT and MERGE Statement Parameters

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT

P Control field position within record. All fields except binary must start on a
byte boundary. No field may extend past
byte 4092.

4.2 - a binary field starting on the
3rd bit of the 4th byte.

m Control field length. Character 1 - 256 bytes
Zoned Decimal 1 - 256 bytes
Packed Decimal 1 - 16 bytes
Fixed - Point 1 - 256 bytes
Floating - Point 1 - 256 bytes
Binary - 1 bit - 256 bytes

16 - a maximum length packed decimal
field

f Control field data format. Must be one of the following:
CH, ZD, PD, F1, FL, or BI.

ZD - the code for a zoned decimal field

s Sequencing desired Must be one of the following:
A - ascending
D - descending
E - user modification then absolute

ascending

E - exit E61 will modify the control field
to achieve a unique sequencing.

FORMAT = xx Optional. Used when all control field
data formats are the same.

XX must be CH, ZD, PD, FI, FL, or BI . FORMAT = PD - all control fields are
packed decimal.

SIZE = y Optional. The number of records
in the input data set. May be an
estimate.

If y is an estimate, precede value with
the character E.

E40200 - an estimate of 40200 records.

SKIPREC = z Optional. Program wil l skip z
records before sorting.

Not valid for a merge. SKIPREC = 900 - the first 900 input
records are ignored.

CKPT Optional. Checkpoints are taken. Not valid for a merge. CKPT

36

MODS Statement Parameters

RECORD Statement Parameters

PARAMETER EXPLANATION LI MITATIONS EXAMPLE DEFAULT

exit = xx The name of an exit to be
activated.

Must be a valid exit name. E28

n Name of the routine. Member
name if routine is in a library.

CHANGE1

m Size, in bytes, of the routine. 514

s Location of the routine. Either the ddname of data set
containing routines, or SYSIN.

USERLIB - the routine is in a data set
defined by the DD statement named
USERLIB.

N Tells if no additional link
editing or separate link

editing is required.

Must be the character N or S. N - no additional link editing is
required.

If not used, assumes ,

link editing together.

Section 2: How to Use the Sort/Merge Program 37

Sort/Merge Control Statement Examples

Following are a number of examples showing groups of sort/merge control state-
ments. Each example shows all the sort/merge control statements that are neces-
sary to accomplish a particular job. However, these control statements must be
accompanied by job control language statements before the job can be run. Later
in this section the JCL required for sort/merge execution is discussed. At the
end of that discussion is a group of complete JCL and sort/merge control statement
examples. The operands and values of the sort/merge control statements shown
there are the same as the ones in these examples.

Example 1 - Simple Sort

This example shows a simple sorting application. No modification routines are
included so neither the RECORD nor the MODS statement is required.

SORT FIELDS= (1.0,6.0,A,28,5,D),FORMAT=CH,SIZE=E10000
END

SORT statement The FIELDS operand describes two fields. The first begins on
byte 1 of each record, is 6 bytes long, contains character data,
and is to be sorted into ascending order. The second field
begins on byte 28, is 5 bytes long, contains character data, and
is to be sorted into descending order. The optional FORMAT
operand is used because both fields contain data of the same
format.

END statement This statement is shown for completeness. It is not necessary
since no modification routines which would come between the SORT
statement and the /* statement are included.

Example 2 -- Simple Merge

This example shows a simple merge application. The values of the FIELDS operand
are the same as those on the SORT statement in Example 1. No modification rou-
tines are included in this application.

MERGE FIELDS=(1.0,6.0,A,28,5,D),FORMAT=CH,SIZE=E10000
END

Example 3 -- Sorting With Modification Routines

This example shows a more complicated sorting application. Modification routines
are included, therefore a MODS statement is r0,CH red. Some of the modification
routines change record lengths during sort/merge program execution, therefore a
RECORD statement is required.

SORT FIELDS=(3.0,8.0,ZD,E,40.0,6.0,CH,D),SIZE=E30000

RECORD TYPE=F,LENGTH=(120,100,80)

MODS E15=(E15,780,MODLIB,N),E16=(E16,1024,MODLIB,N), X
E35=(ADDUP,912,SYSIN),E61=(CHGE,1000,SYSIN)

END

SORT Statement The FIELDS operand describes two control fields. The first will
be changed by a modification routine (at exit E61, see the MODS
statement) before sort/merge orders it into absolute ascending
sequence. The second control field will not be modified and will
be placed in descending sequence.

38

RECORD Statement
long. A modification routine (at exit E15) changes them to 100
bytes during the sort phase. A modification routine at exit E35)
changes them again during the final merge phase (to 80 bytes
each) .

MODS Statement The statement describes four modification routines. The first
two are in a library that is defined on the MODLIB DD statement
with member names of E15 and E16 respectively. Neither routine
requires additional link editing. The next two routines are in
object form in the input stream. Their names are ADDUP and CHGE,
respectively. They must be link edited together with other rou-
tines in their phases that require link editing.

END Statement This statement is required because of the modification routines
in the input stream.

Example 4 - Merging With Modification Routines

This example is a merging application. Modification routines that change record
lengths and control fields are included.

MERGE FIELDS=(1,6,CH,E),SIZE=8150
RECORD TYPE=V,LENGTH=(240,,200,,160)
MODS E35=(CALC,800,USERLIB),E61=(E61,450,MCDLIB,N)
END

MERGE Statement The FIELDS operand describes one control field that will be modi-
fied (by the routine at exit E61) before it is examined by the
merge. The exact size of the input data sets is given.

RECORD Statement All the records in the input data sets are variable-length. The
maximum record length in the input data sets is 240. A modifica-
tion routine (at exit E35) shortens all records by 40 bytes mak-
ing the maximum record length in the output data set 200 bytes.
The most frequent record length in the input data set is 160
bytes.

MODS Statement A routine named CALC receives control at exit E35. CALC is
approximately 800 bytes long, resides in the library defined on
the USERLIB DD statement and must be link edited together with
other routines in its phase which require link editing. At exit
E61, the sort/merge program transfers control to a routine from
the library defined by the MODLIB DD statement. The member name
of this routine is E61. This routine is 450 bytes long and does
not need further link editing.

END Statement The END statement is not required because there are no modifica-
tion routines in the input stream, but it is shown here for
completeness.

Section 2: How to Use the Sort/Merge Program 39

The fixed-length records in the input data set are 120 bytes

Example 5 - Sort

This example shows a one-field sort with fixed-length records whose length is
changed during the course of sort/merge execution by a routine at exit E35.

SORT FIELDS=(10,5,CH,A),SIZE=10000

RECORD TYPE=F,LENGTH=(80,,50)

MODS E35=(E35,534,SYSIN)

END

SORT Statement The FIELDS operand describes one control field that begins on
byte 10 of each record, is 5 bytes long, contains character data,
and is to be sorted into ascending order. The optional SIZE
operand indicates that there are exactly 10,000 records in the
input data set.

RECORD Statement This statement indicates that the input data set contains 80-byte
fixed-length records and that the records will be shortened to 50
bytes each as they leave the final merge.

MODS Statement The statement describes a modification routine that will receive
control at sort/merge program exit E35. The name of the routine
is E35, it is 534 bytes long, appears in object form in SYSIN,
and must be link edited together with other routines in its phase
which require link editing.

END Statement This statement is required because the sort/merge control state-
ments are not followed immediately by a /* statement. (The E35
object deck follows the END statement in the input stream.)

Example 6 -- Sort

This example shows a one-field sort with variable-length records. Modification
routines receive control at exits E11 and E16.

SORT FIELDS=(20,5,CH,A),SIZE=E25500

RECORD TYPE=V,LENGTH=(120,,,60,80)

MODS E11=(E11,500,USERLIB,S),E16=(E16,554,USERLIB,N)

END

SORT Statement The FIELDS operand describes one control field that begins on
byte 20 of each record, is 5 bytes long, contains character data,
and is to be sorted into ascending order. The optional SIZE
operand indicates that there are approximately 25,500 records in
the input data set.

RECORD Statement This statement indicates that the input data set contains
variable-length records with a maximum record length of 120
bytes, a minimum record length of 60 bytes and a modal (most fre-
quent) length of 80 bytes. The RECORD statement is not required
for this example, but without it, sort/merge would assume a mini-
mum record length of 24 bytes (large enough to contain the speci-
fied control field) and a modal length of 72 bytes (the average
of maximum and minimum lengths).

MODS Statement The statement describes two modification routines. One will
receive control at exit E11. It is named E11, is 500 bytes long
and can be link edited separately. (See "Bypassing the Linkage
Editor" in "Section 3: Program Modification," for a description
of the requirements for separate link editing.) The E11 routine

40

is in a library described on a DD statement with the ddname USER-
LIB. The other modification routine, named E16 will receive con-
trol at exit E16. The routine is 554 bytes long and the library
in which it resides is described on the DD statement USERLIB.
The E16 routine has been link edited previously and does not
require further link editing prior to its use in this
application.

END statement This statement is not required in this example. It is shown for
completeness only.

Example 7 - Sort

This example shows a two-field sort. A modification routine at E35 places part of
the output data set on a device other than SORTOUT.

SORT FIELDS=(1,10,CH,A,11,6,PD,D),SIZE=E15000

MODS E35=(SUBSET,1024,SYSIN)

END

SORT Statement The FIELDS operand describes two control fields. The first is a
10-byte field beginning on byte 1. It contains character data
which is to be sorted into ascending order. The second is a 6-
byte field which begins on byte 11 and contains packed decimal
data to be placed in descending order. The input data set con-
tains approximately 15,000 records.

MODS Statement A routine named SUBSET will receive control at sort/merge exit
E35. The routine is 1024 bytes long, must be link edited togeth-
er with other routines in the final merge phase of the program,
and will appear in object form in SYSIN.

END Statement This statement is required for this example because the SUBSET
routine will appear in the input stream between the sort/merge
control statements and the /* statement.

Determining Intermediate Storage Requirements

If you are performing a sorting application, you must calculate the amount of
intermediate storage the sort/merge program needs to sort your data. The basic
factors to consider are the type of device on which you assign intermediate
storage and the number of records in your input data set. Another factor which
must sometimes be weighed is the amount of main storage assigned to the sort/merge
program. In general, the less main storage sort/merge has to operate in, the more
intermediate storage it needs to complete a sorting application.

INTERMEDIATE STORAGE DEVICES

You can assign intermediate storage either on magnetic tape or direct access
devices, but not on a mixture of both.

IBM 2400 Series Magnetic Tape Units can be used for intermediate storage. The
sort/merge program can operate with a mixture of 7-track and 9-track tapes. If
the sort input data set is on 7-track tape, you can use any combination of 7-track
and 9-track tapes for intermediate storage and output, or intermediate storage and
output can be on 2311 disks, 2314 storage facilities, or 2301 drums. However, if
7-track tape is not used for input, it cannot be used for intermediate storage or
output. When 7-track tape is used for intermediate storage, variable length rec-
ords cannot be handled.

Section 2: How to Use the Sort/Merge Program 41

If you assign 7-track tapes for input, you can use the data converter. If you
assign 7-track tape for intermediate storage, you cannot use the data converter,
nor can you use the translation feature for anything but character data.

If you use direct access devices for intermediate storage, use only one type of
direct access device as intermediate storage for a given sorting application. The
types of direct access devices available for intermediate storage are:

• IBM 2311 Disk Storage Drive.
• IBM 2301 Drum Storage Drive.
• IBM 2314 Direct Access Storage Facility.

INTERMEDIATE STORAGE SPACE REQUIREMENTS

Use the following formulas to calculate the amount of intermediate storage neces-
sary for a given sorting application, device type, and sequence distribution tech-
nique. Unless you force a sequence distribution technique, you do not know which
one sort will use. This causes no difficulty, however. The amount of intermedi-
ate storage you assign may affect the sort/merge program's choice of a technique.
In other words, you may implicitly rule out one technique by not providing enough
intermediate storage for its use. To avoid this possibility, calculate the inter-
mediate storage required by all the techniques and provide the largest amount
needed.

Tape Intermediate Storage

If you use tape for intermediate storage, the following formulas give the number
of tapes needed to complete a tape sort for a given data set size and sequence
distribution technique:

Formula 1 n = 2(x+1) -- balanced tape technique -- maximum input is 15 reels.

Formula 2 n = x+2 -- oscillating tape technique -- maximum input is 15 reels.

Formula 3 n = 3 reels -- polyphase tape technique -- maximum input is 1 reel.

The x represents the number of volumes required to contain the input data set with
a blocking factor equal to that used for intermediate storage by the sort/merge
program. For an approximate sort blocking figure refer to the publication IBM
System/360 Operating System: Sort/Merge Timing Estimates , Form C28-6662, under
your particular configuration and record length.

The maximum number of tape units that can be used for intermediate storage are:

32 for the balanced technique.

17 for the oscillating technique.

17 for the polyphase technique.

These maximums permit the sorting of 15 reels of input with the balanced and
oscillating techniques. The polyphase technique allows only one reel of input.

42

Formula 4

2311, 2301, and 2314 (Balanced Technique) Intermediate Storage

Use the following formula to calculate the approximate number of tracks (T)
required to complete a direct access sort for a given data set size when interme-
diate storage is on 2311 or 2314 disk or 2301 drum. If the data set tends to be
ordered in reverse of the sequence you want the output to be in, more intermediate
storage may be necessary. Conversely, if the input data set tends to be ordered
in the desired sequence, less intermediate storage is necessary.

where:

N is the number of intermediate storage areas. You must have at least three,
but no more than six.

S is the number of records in the input data set, exact or approximate.

where:

B is 3,400 for the 2311
18,000 for the 2301
7,000 for the 2314

L is the length in bytes of each record in the input data set. For variable-
length records, L is the maximum length.

Only the integer portion of k is used for calculating T. Disregard the
remainder, whatever its value. If the formula yields k = 0, use the value 1.

You must make at least three intermediate storage areas available to the sort
and define each as a separate data set. Assign at least three tracks to the
smallest area (five for the 2314). All tracks in an area must be contiguous. You
can use up to six areas. Divide the number of tracks (T) among the areas you
select. The formula is based on areas of equal size. More tracks will be needed
if T is not divided equally.

Intermediate Storage Assignment Example

Determine T for 2301 using 4 intermediate storage data sets, variable-length rec-
ords; maximum length 120, estimated input data set size 25500 records.

T = 25500(4) + 8 = 102008 = 227
18000(3) 450
120

Divide T among the 4 data sets: 57, 57, 57, 56.

If the sort/merge program has less than 44E bytes of main storage to execute
in, you may have to increase the value of T. If sort/merge has 12K bytes of main
storage, you should increase T by about 50%. If main storage is between 12K and
44K, the percentage of increase is correspondingly less.

For information on assigning intermediate storage for efficient program opera-
tion, refer to "Section 4: Efficient Program Use."

Section 2: How to Use the Sort/Merge Program 43

2314 (Crisscross Technique) Intermediate Storage

Use the following formula to calculate the approximate total number of tracks (T)
required to complete a sort when intermediate storage is on a 2314 and the criss-
cross sequence distribution technique is used:

Formula 5 T = 1.25S
k

where:

S is the number of records in the input data set, either actual or approximate.

k = B
L

where:

B is 7,000

L is the number of bytes in each record in the input data set.

For variable-length records, L is the maximum record length. Use only the
integer portion of k. Disregard the remainder, whatever its value. If
the formula yields k=0, use the value 1.

When the input data set is on 2314, and you know how much space it occupies,
you do not need to use the above formula to determine intermediate storage space.
Assign intermediate storage space that is at least 25% larger than the space occu-
pied by the input data set.

If the data set tends to be ordered in reverse of the desired output sequence,
more intermediate storage space is necessary. Conversely, if the data set tends
to be ordered in the desired sequence, less space is required. Also, if the sort/
merge program is assigned less than 44K bytes of main storage in which to execute,
you may have to increase the value of T. If sort/merge has 24K bytes of main
storage,, you should increase T by about 50%. If main storage is between 24K and
44K, the percentage of increase is correspondingly less.

The sort/merge program requires a minimum of six 2314 areas when the crisscross
technique is used and permits a maximum of 17. (When the balanced technique is
used, the minimum number of 2314 areas is three.) Each area must contain at least
five tracks. All tracks in an area must be contiguous.

Efficient assignment of 2314 space is discussed in "Section 4: Efficient Pro-
gram Use."

44

Intermediate Storage Assignment Formulas Summary

Device Types for Intermediate Storage

|

|

NUMBER OF TAPES REQUIRED FOR INTERMEDIATE STORAGE (N)

Formula 1 n = 2(x+1) -- for the balanced technique, maximum n=32, maximum input 15
reels.

Formula 2 n = x+2 -- for the oscillating technique, maximum n=17, maximum input
15 reels.

Formula 3 n = 3 -- for the polyphase technique, maximum n=17, maximum input 1
reel.

where:

x is the number of tapes that would be required to contain the input data set
at sort blocking.

TOTAL NUMBER OF TRACKS REQUIRED FOR DIRECT ACCESS INTERMEDIATE STORAGE

Formula for 2301, 2311 and 2314 with balanced technique

Formula 4 T = S (N) + 2N
k(N-1)

Formula for 2314 with crisscross technique

Formula 5 T = 1.25S
k

where:

N is the number of intermediate storage areas
3<N<6 for 2311, 2301 and 2314 with the balanced technique
6<N<17 for 2314 with crisscross technique

S is the number of input records

k = B
L

B is 3,400 for the 2311
18,000 for the 2301
7,000 for the 2314

L is the input record length (maximum length for variable-length records)

Note: Use only the integer portion of k. Never round upwards. If k = 0, use 1.

Section 2: Bow to Use the Sort/Merge Program 45

Job Control Language for Sort/Merge .

When the sort/merge program is initiated via the system input stream, it requires
a JOB statement, an EXEC statement, and DD statements.

JOB STATEMENT

The JOB statement for a sort/merge job is a standard System/360 Operating System
JOB statement.

EXEC STATEMENT

The EXEC statement identifies either a sort/merge cataloged procedure or the sort/
merge program. The statement

identifies the sort/merge program. The statement

identifies a sort/merge cataloged procedure. The procedures, SORT and SORTD are
shown later in this section under "Initiating Sort/Merge." The PROC= notation
merely serves as a reminder that a cataloged procedure is being used.

PARM Field Options

The first FARM field option specifies a sequence distribution technique to be used
by the sort/merge program. If the intermediate storage medium is tape, BALN means
use the balanced tape technique, OSCL means use the oscillating tape technique,
and POLY means use the polyphase tape technique. If the intermediate storage
medium is on a 2314 storage facility, BALN means use the balanced direct access
technique, CRCX means use the crisscross direct access technique.

Note: You cannot choose a sequence distribution technique if intermediate storage
is on 2311 or 2301; sort/merge always uses the balanced technique. There are cer-
tain restrictions on your choice of a technique for the 2314:

• If less than six work areas are provided, the sort/merge program always uses
the balanced technique.

• If more than six work areas are provided, the program uses the crisscross
technique.

• If exactly six work areas are provided, the program uses the balanced tech-
nique unless CRCX is specified in the PARM field.

Section 2: Bow to Use the Sort/Merge Program 47

//SORTIN16

//SORTWK32

48

You should be extremely cautious when forcing the sort/merge program to use a spe-
cific technique. The program tries to select the most efficient technique for a
given application. If it is forced to use another, performance may not be as
efficient. Refer to Table 1 in Section 1 for information about the requirements
of the sequence distribution techniques.

The second PARM field option is an optional main storage value which will tem-
porarily override the sort/merge storage allocation set up at system generation
time. Refer to "Altering the Main Storage Allocation" in Section 4.

You can use the third PARM field option to temporarily override the message
option specified at system generation time. The option is requested by MSG=xx.
Valid entries for xx are:

• NO - no messages are printed.

• CC - critical messages only are printed. They appear on the system console.

• CP - critical messages only are printed. They appear on the printer.

• AC - all messages are printed. They appear on the system console.

• AP - all messages are printed. They appear on the printer.

DD STATEMENTS

If you do not use a sort/merge cataloged procedure to invoke the sort/merge pro-
gram, you must include system DD statements in the input stream. These are the DD
statements that would be contained in the cataloged procedure. They are:

//SYSPRINT DD used by the linkage editor. Include this statement when your
routines that require link editing are included in the
application

//SORTWK01

//SORTWK32

 DD defines a data set that contains output from the linkage edi-
tor. Include this statement when your routines that need link
editing are included in the application.

//SYSUT1 DD used as a work area by the linkage editor. Use this statement
when your routines that must be link edited are included.

//SYSLIN DD defines a data set that contains input to the linkage editor.
Use this statement when your routines that require link edit-
ing are included.

//SORTLIB DD defines a data set that contains load modules for the sort/
merge program. Always include this statement.

//SYSOUT DD used as the system output data set. Always use this
statement.

The following DD statements are required whether sort is initiated directly or
through a cataloged procedure:

//SORTIN

//SORTIN01

//SORTWK01

DD defines the input data set for a sorting application. Not
required for a merge-only application.

DD define the input data sets for a merging application.
Not required for a sorting application.

DD

DD define intermediate storage data sets for a sorting
application. Not required for a merging application.

DD

//SORTOUT DD defines the output data set for sorting and merging
applications.

//SORTMODS DD defines a temporary partitioned data set large enough to con-
tain all of your modification routines that appear in the
input stream for a given application. If your routines are
not in the input stream, this statement is not required. If
your routines are on libraries, DD statements defining the
libraries must be included.

//SORTCKPT DD defines a data set for checkpoint records. If you are not
using the checkpoint facility this statement is not required.

REQUIRED DD STATEMENT PARAMETERS

The sort/merge program requires that certain parameters be included in the DD
statements described above. These parameters, the conditions under which they are
required, a summary of the information contained in then, and the value assumed
(default) if the parameter is not included are shown in Table 2. The parameters
and subparameters which are not required are not discussed

•Table 2. Summary of DD Statement Parameters Required by the Sort/Merge Program

Section 2: How to Use the Sort/Merge Program 49

A full description of other DD statement parameters and subparameters is con-
tained in the publication IBM System/360 Operating System: Job Control Language ,
Form C28-6539.

Table 3 is a summary of the DCB subparameters that are required by the sort/
merge program if the DCB parameter is used. A more detailed discussion of these
and other DCB subparameters is contained in the publication IBM System/360 Operat-
ing System: Supervisor and Data Management Macro Instructions, Form C28-6647.

• Table 3. Summary of DCB Subparameters Required by the Sort/Merge Program

Figure 11 illustrates the order in which control statements must be placed in
the input stream.

50

•Figure 11. Arrangement of Statements for Sort/Merge Execution

Each of the DD statement types required by the sort/merge program are discussed
in the following text. Examples of the statements are included.

SORTIN DD Statement

For a sort, the SORTIN data set may be cataloged or uncataloged, or it may be
inserted by your routine at exit E15 (see "Section 3: Program Modification").
The SORTIN data set may not be a DD DUMMY.

DD Example 1 : SORTIN DD Statement

DSNAME causes the system to search the catalog for a data set with the
name INPUT. When the data set is found, it is associated with the
ddname SORTIN. The control program obtains the unit assignment and
volume serial number from the catalog and types a mounting message
to the operator if the volume is not already mounted.

DISP indicates that the data set is passed or cataloged (OLD) and that
it should be deleted (DELETE) after the current job step.

DCB indicates that the data set contains fixed-length blocked records
(RECFM=FB) with a block size of 800 bytes and a record length of 80
bytes.

Section 2: How to Use the Sort/Merge Program 51

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate the seri-
al numbers of the tape reels. In the following volume parameter example, the
input data set is on three reels that have serial numbers 75836, 79661, and 72945.

DD Example 2 : Volume Parameter on SORTIN DD

When input to the sort/merge program is a concatenated data set, all data sets
in the concatenation must have identical attributes. If they do not, results are
unpredictable. This causes sort to terminate if an actual data set size appears
in in the SIZE parameter of the SORT control card because of the ensuing record
count off condition.

SORTIN01 -- SORTIN16 DD Statements

These DD statements define the input data sets for a merge operation. They must
be numbered in ascending sequence. SORTIN01 is the name of the first DD state-
ment; SORTIN02 is the name of the second DD statement, etc. No numbers can be
skipped. The maximum block size and the maximum record length of all the data
sets to be merged must be defined in the SORTIN01 DD statement. RECFM and LRECL
must be the same for all input data sets. Mixtures of fixed- and variable-length
records are not allowed. Fixed-length records must all be of the same length.

DD Example 3 : SORTIN01 -- SORTIN03 DD Statements for a Merge

DD Example 4 : SORTIN01 and SORTIN02 DD Statements for a Merge

SORTWK01 -- SORTWK32 DD Statements

These statements define the intermediate storage data sets for a sort operation.
For a merge-only operation, these statements are not required. Intermediate
storage data sets can be on tape or direct access devices but not on a mixture of
both. Your selection of an intermediate storage device type is not related to the
device types used for input or output with one exception: seven-track tape cannot
be used for intermediate storage unless the input device is also 7-track tape.
Refer to "Intermediate Storage Space Requirements" in this section for information
about how much intermediate storage is required for a particular application.

52

If you are using the checkpoint/restart facility and may be making a deferred
restart, you must make the following two additions to each of your SORTWK DD
statements so that the sort work data sets will not be lost:

DSNAME=anyname
DISP=(NEW,DELETE,KEEP)

Thus a complete SORTWK DD statement for deferred restart might be:

With this DD statement, the data set will be kept, if the job step aborts, and
will be in the system until the step has been successfully rerun or until the data
set has been deleted by some other means.

When the intermediate storage data sets are on direct access devices, only the
primary space allocation is used by sort/merge and the space must be contiguous.

The ddnames for intermediate storage data sets must be numbered in ascending
sequence. SORTWK01 must be the first, SORTWK02, the second, etc., and no numbers
can be skipped.

DD Example 5 : SORTWK01 DD Statement Defining a Tape Intermediate Storage Data Set

These parameters specify an unlabeled data set on a 2400 series tape unit. The
system assigns a unique name to the data set because the DSNAME parameter is
omitted. Because the DISP parameter is omitted, the system assumes DISP= (NEW,
DELETE); the data set has not been previously cataloged and it will be deleted at
the end of the current job step. The disposition PASS is not allowed for a SORTWK
data set.

DD Example 6 : SORTWK01 DD Statement Defining a Direct Access Data Set for Inter-
mediate Storage

UNIT specifies a 2311 disk. The LABEL parameter is omitted. The default is
standard labels.

SPACE specifies 200 contiguous tracks for the data set.

The omission of the DSNAME parameter causes the system to assign a unique name
to the data set. The DISP parameter is omitted; the system assumes NEW, DELETE.

Section 2: How to Use the Sort/Merge Program 53

SORTOUT DD Statement

This DD statement is used to define all the characteristics of the output data
set.

DD Example 7 : SORTOUT DD Statement

DSNAME The data set is to be called OUTPT.

DISP The data set is unknown to the operating system (NEW) and it is to be
cataloged (CATLG) under the name OUTPT.

UNIT indicates that the data set is on a 2400 series tape unit.

DCB specifies a fixed-length blocked data set with a record length of 90
bytes and a block size of 900 bytes.

SORTMODS DD Statement

This statement is required if your routines are included in the system input
stream. It must define a temporary partiticned data set large enough to hold all
your routines that appear in the input stream. The sort/merge program transfers
your routines to the SORTMODS data set before they are link edited for execution.
If all your routines are located in libraries, the SORTMODS DD statement is not
required, but DD statements defining the libraries must be included.

DD Example 8 : SORTMODS DD Statement Defining a SORTMODS Data Set on 2311

These parameters allot ten tracks of a 2311 disk to the SORTMODS data set.
Space for three directory blocks is also requested.

SORTCKPT DD Statement

The SORTCKPT data set may be assigned on any device that operates with BSAM. Pro-
cessing can be restarted from the last checkpoint taken. If the MOD disposition
is specified for the checkpoint data set, processing can be restarted from the
checkpoint taken at the start of the sort phase as well as the last checkpoint
taken.

DD Example 9 : SORTCKPT DD Statement

54

Job Control Language Statements for Sort/Merge—Summary

Section 2: How to Use the Sort/Merge Program 55

JCL and Sort/Merge Statement Examples

Following are a number of examples showing all the JCL and sort/merge statements
necessary to accomplish a particular job. The sort/merge control statements shown
have the same operands as those illustrated and explained at the end of the topic
"Defining the Sort or Merge" in this section.

Example 1 -- Sort

0

01 The JOB statement introduces this job to the operating system. The card
contains accounting information and programmer identification. Message
level 0, indicating that only incorrect control statements and associated.
diagnostic messages are to be printed, is specified by default.

02 The EXEC statement invokes the cataloged procedure SORTD. It can be
written as shown or as EXEC PRCC=SORTD. The contents of the two cata-
loged procedures supplied by IBM for sort/merge are shown in Section 2.
The SORT cataloged procedure could be used for this example, but it
causes allocation of linkage editor data sets which are not needed since
no user-written modification routines that require link editing are
included. The SORT procedure is therefore less efficient than the SORTD
procedure for this example.

The remaining DD statements are being added to the SORTD procedure for
this job step only. Therefore they are qualified by the stepname (SORT)
of the SORTD proceudre. The SORT procedure also has the stepname SORT.

03-06 The SORTIN DD statement describes an input data set named INPUT. The
data set is on a 9-track tape that has the serial number 000101. The
DISP parameter indicates that the data set is known to the operating sys-
tem and that it should be deleted from the system after this job step.
The DCB parameter shows that the data set consists of fixed-length rec-
ords with a record size of 80 and a block size of 800.

Section 2: How to Use the Sort/Merge Program 57

07-09 The SORTOUT DD statement describes the output data set. OUTPUT will be
recorded on a 9-track tape drive and will be cataloged after it is
created. The data set will be placed on tape volume number 102. OUT-
PUT's format, record length and block size are the same as those for
SORTIN.

10-13 These DD statements define temporary intermediate storage data sets. The
three data sets are on 9-track tape drives. No other parameters are
necessary since the standard system default options are acceptable for
this application.

14 The SYSIN DD * statement informs the operating system that a data set
follows in the input stream.

15-16 Sort/Merge control statements described in Example 1 at the end of the
topic "Defining the Sort or Merge."

17 The /* delimiter statement marks the end of the SYSIN data set.

58

Example 2 -- Sort

01 This EXEC statement initiates the sort/werge program and indicates that
it needs asort/merge n in which to operate.

02 This DD statement directs the system output to system output class A.

03 This DD statement defines the data set containing the sort/merge program
modules.

Section 2: How to Use the Sort/Merge Program 59

Example 3 -- Merge

01-02 The basic JOB and EXEC statements. The EXEC statement invokes the cata-
loged procedure SORTD.

03-14 These DD statements describe the merge input data sets. They are all on
9-track unlabeled tape and consist of fixed-length records with a block-
ing factor of three. The total number of records on all of the data
sets is about 10,000 as indicated by the SIZE parameter on the MERGE
statement.

15-17 The result of the merge is recorded on 9-track tape at the same blocking
factor and in the same format as the input data sets.

18 A data set follows in the input stream.

19-20 Sort/Merge control statements described in Example 2 at the end of the
topic "Defining the Sort or Merge."

21 Marks the end of the SYSIN data set.

60

Example 4 -- Sort

01-02 The basic JOB and EXEC statements. The EXEC statement specifies the SORT
cataloged procedure because user-written routines that require link edit-
ing are included in the application.

03-05 This DD statement describes an input data set that consists of fixed-
length blocked records on 9-track tape. Each record is 120 bytes long
and the blocking factor is 4. The data set, which is already known to
the operating system, will be deleted after this job step.

06-08 This DD statement describes the output data set. UNIT=AFF=SORTIN means
that the data set is to be placed on the same unit as the input data set.
The output records have the same format as the input records, but they
are each 40 bytes shorter. The blocking factor is the same.

09-11 The next three DD statements describe three intermediate storage areas on
2311 disk. Each area contains 540 contiguous tracks.

12 Defines the data set that contains the E15 and E16 modification routines.

13 Defines -a data set on which the ADDUP and CHGE routines will be placed.

14 A data set follows in the input stream.

15-19 Sort/Merge control statements described in Example 3 at the end of the
topic "Defining the Sort or Merge."

Objects decks for your modification routines must appear in the input stream in
numerical exit number order. ADDUP is the routine for exit E35, so it appears
first. CHGE, the routine used at exit E61, appears second.

20 Marks the end of the SYSIN data set.

Section 2: How to Use the Sort/Merge Program 61

Example 5 -- Sort

01 The basic JOB statement.

02 The EXEC statement specifies the cataloged procedure SORT. OSCL in the
PARM field directs the sort/merge program to use the oscillating tape
sequence distribution technique if it possibly can, whether or not it
considers the oscillating technique most efficient for this application.

03-06 Defines the input data set. Note that the SORTIN DD statement is pref-
aced by the step name of the SORT cataloged procedure because it and
other DD statements so prefaced are being added to the procedure for this
job step. The input data set consists of fixed-length blocked records on
two 9-track tape volumes numbered 000333 and 000343, respectively.

07-09 Defines the output data set. The output data set also consists of fixed-
length blocked records. It is on one 9-track tape.

10-13 Defines four intermediate storage data sets on 9-track tape. Since the
DSNAME parameter is omitted, the system will assign unique names to the
data sets.

62

14 Describes a data set that contains the E15 and E16 modification routines.

15 Defines a data set on which the ADDUP and CHGE routines will be placed.

16 A data set follows in the input stream.

17-21 Sort/merge control statements described in Example 3 at the end of the
topic "Defining the Sort or Merge".

22 The object deck for the ADDUP routine cores before the deck for CHGE.

23 The object deck for the CHGE routine.

24 SYSIN data. set delimiter.

Section 2: How to Use the Sort/Merge Program 63

Example 6 -- Sort

01-02 Standard JOB and EXEC statements. The EXEC statement invokes the SORT
cataloged procedure. The SORTD procedure would be more efficient for
this application since there are no modification routines that need link
editing, but the SORT procedure can be used.

03-06 The SORTIN DD statement defines the input data set. The data set is
named INPUT, it is on an unlabeled 7-track tape with a serial number
000101. The DCB subparameters indicate that the tape was recorded at
800 bpi, is composed of fixed-length blocked records. The TRTCH=ET sub-
parameter indicates that the tape was recorded with even parity and that
BCDIC to EBCDIC translation is required. The DISP parameter shows that
the data set is in existence and that it should be retained after this
job step. The data set is the first one or only one of this unlabeled
volume.

07-09 The SORTOUT DD statement defines the output data set. It is named OUT-
PUT, and is recorded on 7-track tape on a volume that has the serial
number 102. The other parameters on this statement are the same as
those on SORTIN, with the exception of DISP. DISP indicates that this
data set will be created in this job step and will be cataloged for
future reference by another job.

10-21 These DD statements define intermediate storage for the sort/merge pro-
gram. The storage is on six 7-track unlabeled tapes. These tapes are
to be recorded with even parity and BCDIC to EBCDIC translation.

22 A data set follows in the input stream

23-24 Sort/Merge control statements described in Example 1 at the end of the
topic "Defining the Sort or Merge."

25 Delimiter statement marks the end of the SYSIN data set.

64

Example 7 -- Sort

01 Standard JOB statement

02 The EXEC statement invokes the SORT cataloged procedure and specifies
that critical messages only are to be printed and they are to appear on
the console typewriter.

03-05 The input data set consists of fixed-length unblocked records on volume
INP214 on a 2311 disk storage drive. The data set will be deleted after
this job step.

06-09 The output data set is composed of fixed-length blocked records that
will require 500 tracks of 2311 disk. Each time space is exhausted, 5
additional tracks will be allotted. The data set will be retained for
future reference.

10-12 Intermediate storage consists of three 2311 areas of 120 contiguous
tracks each.

13 This DD statement defines a data set large enough to contain the E35
routine which appears in object form in SYSIN. Ten disk tracks are
reserved for the partitioned data set plus three blocks of the
directory.

14 A data set follows in the input stream.

15-18 Sort/Merge control statements described in Example 5 at the end of the
topic "Defining the Sort Merge."

19 Delimiter statement marks the end of the SYSIN data set.

Section 2: How to Use the Sort/Merge Program 65

Example 8 -- Sort

01 The standard JOB statement.

02 The EXEC statement specifies the SORT cataloged procedure. The options
in the PARM field indicate that the program is to use the crisscross
sequence distribution technique if possible, that critical messages only
are to be printed and that they are to appear on the printer.

03-05 The SORTIN DD statement describes the input data set. Its name is
PAY413, it is on volume 231401 on a 2314, and consists of variable
length blocked'records. The data set is known to the operating system
and is to be retained after use.

06-08 This statement describes the output data set. The data set, named
PAY414, will be on volume 231404 of a 2314, will consist of variable
length blocked records, is being created in this job step, and is to be
retained in the system.

09-14 These statements define intermediate storage data sets. There are six
data sets of 100 contiguous tracks each and they are on 2314. Six data
sets is the minimum required for the crisscross technique.

15 Defines a data set called JIMSMODS which contains the E11 and E16 modi-
fication routines described on the MODS statement. The data set is
known to the operating system and is not to be deleted after this job
step.

16 A data set follows in the input stream.

17-20 Sort/merge control statements described in Example 6 at the end of topic
"Defining the Sort or Merge."

21 Delimiter statement marking the end of the SYSIN data set.

66

Example 9 -- Merge

01-02 The basic JOB and EXEC stateMents.

03-05 The SORTIN01 DD statement describes one of two input data sets for the
merge. The data set, named WEEKLY, is on volume 000101 of a 2301. The
data set is known to the operating system and is to be retained. It
contains variable length blocked records with a maximum record length of
240 bytes and a blocksize of 2400.

06-08 The SORTIN02 DD statement describes the second of two inputs to the
merge. It is named DAILY, is on volume 000113 of a 2301, is old and
will be deleted after this job step, and contains records of the same
format, length and block size as the WEEKLY data set.

09-12 The output from the merge will be a data set named WEEKA. It is new and
will be retained in the system on volume 000111 of a 2301. The data set
will be recorded on 75 drum tracks. If this space is not sufficient,
additional space will be allotted in blocks of ten tracks. The data set
consists of variable-length blocked records with a maximum record length
of 200 (see 1 3 on the RECORD statement) and a block size of 2000.

13 Defines the library on which the CALC routine for exit E35 resides.

14 Defines the library on which the E61 routine for exit E61 resides.

15 A data set follows in the input stream.

16-19 Sort/merge control statements described in Example 4 at the end of the
topic "Defining the Sort or Merge."

20 Standard delimiter statement.

Section 2: How to Use the Sort/Merge Program 67

Example 10 -- Simple Merge

01-02 Standard JOB and EXEC statements.

03-06 Defines one of three inputs to the merge. The data set's name is FILE1.
It is on 7-track tape with a serial number of 000123, and consists of
fixed-length blocked records. The TRTCH=ET DCB subparameter indicates
that the tape was recorded with even parity and that BCDIC to EBCDIC
translation is required.

07-10 Defines another of the inputs to the merge, a data set named FILE2.

11-14 Defines FILE3, the third input to the merge.

15-18 Defines the output data set which is named FILE123. The data set is to
be recorded on 7-track tape, volume 000111. The other parameters are
the same as those for SORTIN01, with the exception of DISP, which indi-
cates that the data set is new and is to he retained for future
reference.

19 Data set follows in the input stream.

20-21 Sort/merge control statements described in Example 2 at the end of the
topic "Defining the Sort or Merge."

22 Delimiter statement.

68

Example 11 -- Sort

01-02 Standard JOB and EXEC statements.

03-05 Defines the input data set. It is named INPUT, is on 2314 volume
231401, consists of fixed-length, blocked records with a length of 80
bytes and a blocking factor of 10.

06-21 These statements describe eight 2314 work areas. Each area consists of
20 contiguous tracks.

22-25 Defines the output data set. The data set, named OUTPUT, will be on
volume 231410 of a 2314 and will contain fixed-length blocked records.
Two hundred tracks are requested for the data set; if the space is
exhausted, additional tracks are to be assigned in blocks of ten. When
the output data set is closed, unused tracks are to be released.

26 Defines a temporary data set on 2314 for the E35 routine

27 A data set follows in the input stream.

28-31 Sort/merge control statements described in Example 5 at the end of the
topic "Defining the Sort or Merge."

32 Delimiter statement.

Section 2: Bow to Use the Sort/Merge Program 69

Example 12 -- Sort

01-02 Standard JOB and EXEC statements.

03-05 Defines the input data set. It is named XFILE, resides on volume 000230
of a 2301, is known to the operating system and is not to be deleted,
and consists of variable-length unblocked records.

06-13 Define four intermediate storage areas on 2301. Each area consists of
60 contiguous tracks.

14-17 Defines the output data set. It is named YFILE, and is to be placed on
volume 230198 of a 2301. It will contain records of the same format as
the input data set. One hundred seventy tracks are requested for the
data set. If they are not sufficient to contain it, additional tracks
are requested in blocks of ten. The data set is being created in this
job step and is to be cataloged.

18 Defines the library that contains the E11 and E16 modification routines.

19 A data set follows.

20-23 Sort/merge control statements described in Example 6 at the end of the
topic "Defining the Sort or Merge."

24 Delimiter statement.

70

Initiating Sort/Merge

There are two ways to initiate a sorting operation:

• By including sort/merge control statements and job control language state-
ments in the input stream. You can use a cataloged procedure to supply some
of the job control language statements.

•

By using ATTACH, LINE, or XCTL macro instructions issued by another program.

There is only one way to initiate a merging operation: by placing sort/merge
control statements and JCL statements in the input stream. As with a sort, a
cataloged procedure can be used to supply some of the JCL.

USING THE SYSTEM INPUT STREAM

When sort/merge program execution is initiated by control statements in the input
stream, it is treated as an ordinary task being executed under operating system
control. You must provide a JOB statement, an EXEC statement and several DD
statements to communicate with the operating system and the sort/merge program.

The job that initiates sort/merge requires a JOB statement. Each job step
within that job requires an EXEC statement. (Other job steps may precede and
follow the sort/merge job step.) The EXEC statement that introduces the sort/
merge job step can initiate execution either directly or through a cataloged pro-
cedure. DD statements are required to define data sets used by the sort/merge
program, the system, and, if necessary, the linkage editor.

Cataloged Procedure SORT

The SORT cataloged procedure is designed to be used in sorting and merging appli-
cations that have modification routines that require link editing. You can use
this procedure for all sort/merge applications, but it is inefficient for those
that do not have modification routines that require link editing, because it
causes unnecessary linkage editor data sets to be allocated.

The SORT cataloged procedure is:

//SORT EXEC PGM=IERRCO00,REGION=98K 01
//SYSOUT DD SYSOUT=A 02
//SYSPRINT DD DUMMY 03
//SYSLMOD DD UNIT=SYSDA,SPACE=(3600,(20,20,1)) 04
//SYSLIN DD UNIT=SYSDA,SPACE=(80,(10,10)) 05
//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR 06
//SYSUT1 DD UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN)), X 07
// SPACE=(1000,(60,20)) 08

01 The stepname of the procedure is SORT. This EXEC statement initiates
the sort/merge program, which is named IERRCO00. A 98K region, large
enough to contain the largest linkage editor, is requested.

02 This DD statement defines an output data set for system use (messages).
It is directed to system output class A.

03 SYSPRINT is defined as a dummy data set because linkage editor diagnos-
tic output is not required.

04 This DD statement defines a data set for linkage editor output. Any
system direct access device is acceptable for the output. Space for 20
records that have an average length of 3,600 bytes is requested; this is
the primary allocation. Space for 20 more records is requested if the
primary space allocation is not sufficient; this is the secondary allo-
cation, which is requested each time space is exhausted. The last value
is space for a directory, which is required because SYSLMOD is a new
partitioned data set.

Section 2: How to Use the Sort/Merge Program 71

05 The SYSLIN data set is used by the sort/merge program to describe pre-
edited input to the linkage editor. It is created on any system direct
access device, and it has space for 10 records with an average length of
80 bytes. If the primary space allocation is exhausted, additional
space is requested in blocks large enough to contain 10 records. No
directory space is necessary.

06 The SORTLIB DD statement defines the data set that contains the sort/
merge program modules. It has the qualified name SYS1.SORTLIB, and it
is cataloged.

07-08 The SYSUT1 DD statement defines a work data set for the linkage editor.

Cataloged Procedure SORTD

The SORTD cataloged procedure is designed for sorting and merging applications
that have no modification routines, or have modification routines that do not
require link editing. It cannot be used for applications having modification
routines that need link editing.

The SORTD cataloged procedure is:

//SORT EXEC PGM=IERRCO00,REGION=26K 01
//SYSOUT DD SYSOUT=A 02
//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR 03

01 The stepname of the SORTD procedure is SORT. A 26K region is the small-
est in which the program can operate.

02 Sort output is directed to system output class A.

03 This DD statement defines the data set containing sort/merge program
modules.

USING ATTACH, LINK OR XCTL

You can use ATTACH, LINK, or XCTL macro instructions in another program to initi-
ate operation of a sorting application (but not a merging application). (For a
full description of ATTACH, LINK, and XCTL, see the publication IBM System/360
Operating System: Supervisor and Data Management Macro Instructions , Form
C28-6647.)

There are four differences between initiating sort in the input stream and
initiating it by a macro instruction:

1. Sort DD statements must be placed in the input stream with the job step that
issues the macro instruction.

2. Information normally contained on sort/merge control statements must be
passed to the sort/merge program in a parameter list.

3. Only two sort/merge program exits for modification routines (E15 and E35,
see "Section 3: Program Modification") can be used when the sort is
initiated by a macro instruction.

4. If ATTACH is used, checkpoints cannot be taken.

Supplying the Needed DD Statements

When you ATTACH, LINK, or XCTL to the sort/merge program, you must supply the
following DD statements in the input stream with the job step that issues the
macro instruction:

//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR

to define the data set that contains sort/merge program modules.

72

//SORTIN DD with appropriate parameters

(See the examples at the end of "Job Control Language for Sort/Merge") to
define the data set(s) to be sorted.

//SORTWK01

//SORTWK32

DD with appropriate parameters

DD with appropriate parameters

to define the intermediate storage data sets required by the sort.

//SYSOUT DD SYSOUT=A

to define an output data set (messages) for system use.

//SORTOUT DD with appropriate parameters

to define the sort/merge output data set.

Note: If you activate sort/merge exit E15, the SORTIN DD statement is not neces-
sary because your routine will supply all input for the sort. If you activate
exit E35, the SORTOUT DD statement is not necessary because your routine will
handle output from the sort. You may need DD statements to describe your sort
input and to set up a data set for your output, but they need not be called SOR-
TIN or SORTOUT .

Passing Parameters to the Sort

The parameters you pass to sort/merge consist of two control statement images --
SORT and RECORD -- in main storage, and the entry point addresses of your modifi-
cation routines (E15 and E35). These are the only modification routines per-
mitted when sort/merge is initiated by ATTACH, LINK, and XCTL, and they are
optional. You need not use any modification routines.

Your routine must construct the following parameter list and place a pointer
to it in general register 1 before issuing the control-passing macro instruction:

Section 2: How to Use the Sort/Merge Program 73

•
•
•

The address list is variable in length. The first halfword shown in the above
illustration is not considered part of the list. The next halfword, which is
pointed to by the parameter list pointer, contains the number of bytes in the
parameter list excluding the two bytes occupied by the number itself. The list
must contain at least 24 bytes because none of the addresses Can be omitted.
(The E15 and E35 routine addresses are zeros if the routines are not used.) The
list can be as long as 40 bytes if all the options are included.

The first address in the address list must begin on a fullword boundary. Each
address is contained in the low order three bytes of a fullword.

The following rules apply to the SORT and RECORD statement images whose start-
ing and ending addresses appear in the address list:

• The first and last bytes of each statement image must contain a blank, and a
blank (one only) must follow SORT and RECORD. .No other blanks are allowed.

• The contents and formats of the SORT and RECORD statements are the same as
those described in Section 2 under "Defining the Sort or Merge" except that
continuation characters are not allowed. In other words, the statement
images are not set up in card image format. Each statement image can be up
to 1,100 bytes long.

• No comments are permitted.

The six addresses (or four addresses and two words of zeros) must appear in the
order shown in the list. The options following the addresses can appear in any
order and any of them can be omitted. For example, to specify only the optional
main storage value, construct the list as follows:

To specify only the balanced sequence distribution technique,
construct:

74

OPTIONAL CHARACTERS FOR DDNAMES : You must select this option if you are opera-
ting in a multiprogramming environment and your task initiates two or more sort
applications via ATTACH, LINK, or XCTL. The four characters you place in this
word of the address list will replace the characters "SORT" in the DD names of
the standard DD statements that define input, intermediate storage, and output.
For the four characters, you can use any alphameric characters and the special
characters $, #, and @, but the first must be alphabetic. If it is not, the
characters are ignored. For example, if you use the characters ABC# as replace-
ment characters, the statements SORTIN, SORTWK01 - SORTWK32, and SORTOUT from the
input stream will be converted internally to ABC#IN, ABC#WK01 ABC#WK32, and
ABC#OUT.

Caution : Do not use characters that conflict with other ddnames; do not use the
characters BALN, OSCL, POLY, CRCX, or DIAG.

OPTIONAL MAIN STORAGE VALUE : This parameter serves the same purpose as the CORE
parameter in the EXEC statement PARM field. With it, you can specify the amount
of main storage sort/merge can use for this application: The value you specify
temporarily overrides the main storage assigned to the sort at system generation.
The value must be a binary number and must appear right justified in the last
three bytes of the field. As shown in the address list format, the high-order
byte must contain zeros. The new value must not be less than 12,000, the minimum
number of bytes needed for sort/merge operation. If it is, the number 12,000 is
chosen by default. Refer to the topic "Altering the Main Storage Allocation" in
Section 4 for further information.

OPTIONAL SEQUENCE DISTRIBUTION TECHNIQUES : This parameter takes the place of
another PARM field option. With it you can force the sort/merge program to
choose the balanced, oscillating, or polyphase technique for tape intermediate
storage or the balanced or crisscross technique for disk. The four valid entries
for this parameter are BALN, OSCL, POLY, and CRCX. Refer to the topic "Sequence
Distribution Techniques" in Section 1 for further information.

This parameter may be ignored under the following conditions:

Tape Sorting

• Only three intermediate storage tape drives are assigned. With only three
drives, the polyphase technique is always used.

No input data set size, exact or estimated, is specified on the SORT state-
ment. When the sort/merge program is not given an input data set size, it
always uses the balanced technique if more than three work tapes are
available.

The tape drive containing the input data set is also specified as an interme-
diate storage unit. In this case, the oscillating technique cannot be used,
so the sort/merge program chooses either the balanced or polyphase technique.

Disk sorting

• Technique forcing can occur only on a 2314 facility. All direct access sort-
ing on 2311 disks and 2301 drums uses the balanced technique.

• Whenever less than six work areas are available, only the balanced technique
can be used on the 2314.

• Whenever more than six work areas are available, only the crisscross techni-
que can be used on the 2314.

Section 2: How to Use the Sort/Merge Program 75

•

•

MESSAGE OPTION: This parameter takes the place of the third EXEC statement PARM
field option, MSG. The parameter temporarily overrides the message option
selected at system generation.

The high-order byte of this parameter must be X'FF'. The next byte is unused.
The last two bytes must contain one of the following codes:

NO -- no messages printed
CC -- critical messages only, printed on the system console
CP -- critical messages only, printed on the printer
AC -- all messages, printed on the system console
AP -- all messages, printed on the printer

Considerations When Using XCTL

When you initiate sort/merge via XCTL, you must give special consideration to the
area where the parameter list, address list, and optional parameters, and modifi-
cation routines (if you use them) are stored. This information must not reside
in the module that issues the XCTL because the module is frequently overlaid by
the sort/merge program.

There are two ways to overcome this problem. First, the control information
can reside in a task that attaches the module that issues the XCTL. Second, the
module issuing the XCTL can first issue a GETMAIN macro instruction and place the
control information in the main storage area it obtains. This area is not over-
laid when the XCTL is issued. The address of the control information in the area
must be passed to the sort/merge program in general register 1.

The following text contains two examples. The first illustrates passing pa-
rameters to the sort. The second is an assembler language coding example that
shows how to set up the parameter list, address list, and optional fields.

Example 1

Figure 12 shows how the parameter list, address list, and optional fields might
appear in main storage.

General register 1 contains a pointer to the parameter list, which is at loca-
tion 1000. The parameter list points to the address list which begins at loca-
tion 1006. The first halfword of the address list contains, right adjusted, in
hexadecimal, the number of bytes in the list (40 decimal).

The first two fullwords in the address list point to the beginning (location
1036) and end (location 105A) of the SORT control statement. The next two full-
words point to the beginning (location 105B) and end (location 1074) of the REC-
ORD statement.

The fourth and fifth fullwords in the list contain the entry point addresses
of modification routines for exit E15 (2000) and exit E35 (3000).

The next fullword in the list contains four characters to replace the letters
"SORT" in the DD names of standard DD statements.

The next three fullwords in the list specify a main storage value for this
application, a sequence distribution technique, and a message option.

The control statement images must be represented in EBCDIC. The symbol b in
the figure stands for a blank character.

76

|

•Figure 12. Passing Parameters to the Sort

Section 2: How to Use the Sort/Merge Program 77

Example 2

The following example shows, in assembler language coding, how to set up the pa-
rameters and card images in Example 1, and how to pass control to the sort/merge
program.

LA 1,PARLST
ATTACH EP=SORT,MF=(E,(1))
. . .

CNOP 0,8
PARLST DC X'80'

DC AL3(ADLST)
DC X'0000'

ADLST DC X'0020'
DC A(SORTCD)
DC A(STCDED)
DC A(RCDCD)
DC A(RDCDED)
DC A(MOD1)
DC A(MOD2)
DC C'ABC#'
DC X'0000'
DC X'6590'
DC C'OSCL'
DC X'FF00'
DC C' AC'

SORTCD DC C' SORT FIELDS= (10,15,CH,A),'
DC C'SIZE=4780'

STCDED DC C' '
RCDCD DC C' RECORD LENGTH=100,TYPE=F'
RDCDED DC C' '

CNOP 0,8
USING *,15

MOD1 routine for exit E15

.
CNOP 0,8
USING *,15

MOD2 routine for exit E35

Further Considerations When Using ATTACH, LINE, or XCTL

If you provide a modification routine for exit E15, sort/merge ignores the SCRTIN
data set. Your E15 routine must pass all input records to the sort/merge pro-
gram. This means that your routine can only issue a return code of 12 (insert
record) until the input data set is completed and then a return code of 8 (do not
return).

Similarly, sort/merge ignores the SORTOUT data set if you provide a modifica-
tion routine for exit E35. Your routine is responsible for disposing of all out-
put records. Your routine must issue a return code of 4 (delete record) for each
record in the output data set. When sort/merge has deleted all the records, your
routine issues RC = 8 (do not return).

When sort/merge completes execution, it passes control back to the routine
that invoked it or to the operating system.

78

Section 3: Program Modification

User--written routines can be used during a sort/merge program execution to per-
form a variety of functions, such as deleting, inserting, altering, and summariz-
ing records.

Control is passed to your routines at predesgnated places in the executable
code of the sort/merge program called sort/merge program exits. Because these
exits are located in particular program phases (and in one case, in a particular
module), a general understanding of how the sort/merge program operates is neces-
sary to understand sort/merge program exits.

Program Description

The sort/merge program is a segmented program; that is, it is composed of parts
that can operate independently. Generally, there are two levels of segmentation:

1. Phases -- large program components that accomplish a certain task.

2. Modules -- the independent routines of which phases are composed.

The sort/merge program is composed of five phases. All five phases are used
for sorting applications, but only the first two and the last phases of the pro-
gram are used for merging applications. The first two phases -- the definition
and optimization phases -- are strictly initialization phases. Each of the
remaining three phases -- the sort, intermediate merge, and final merge -- is
divided into two components:

1. An assignment component that initializes for the operation of the phase.

2. A running component that performs the actual sorting or merging.

Figure 13 is a phase-level flowchart of the program. Each phase is explained
in the following text.

DEFINITION PHASE

The definition phase reads and interprets sort/merge control statements and
decides which phases, and which modules of each phase, should be used. This
phase also decides which of your routines, if any, rust be link edited. This
phase has no exits for passing control to your routines.

Section 3: Program Modification 79

Figure 13. Phase-level Flowchart

OPTIMIZATION PHASE

The optimization phase, using information obtained from the operating system and
from. DD statements, determines the optimum method of using the CPU and I/O con-
figuration available.

This phase also generates special routines, if necessary, to perform record
comparisons. One of two routines -- the equals module or the extract module --
may be generated to make record comparisons. (Neither routine is used when sort-
ing or merging is based on a single control field containing character data or
binary data beginning and ending on a byte boundary.) If one of these routines
is used, it remains in main storage throughout execution of the program.

80

|

|

Equals Module

The equals module is used when there are from two to twelve control fields and
all control fields contain character data or binary data beginning and ending on
a byte boundary. It is executed to resolve the collating of records when an
equal comparison arises between two major control fields. This is done by com-
paring successive minor control fields until an unequal compare is made, thus
determining the proper order of the two records. If all control fields are
equal, the records are taken in the order which requires the least internal pro-
cessing time.

Extract Module

The function of the extract module is to extract and group all of the control
fields into one field so that a single compare instruction can be executed to
collate the record.

The extract module is loaded for one of two reasons:

1. If more than one control field is used and the equals module cannot be used
to resolve collating.

2. If specified by the user in either the SORT or MERGE control statement.
(User specification is accomplished by taking the E option for the s parame-
ters of the FIELDS operand. See the topic "Defining the Sort or Merge" in
Section 2 for further information.)

When the extract module is used, it is executed each time a logical record is
processed. This is done to avoid carrying the extracted information with the
records, which would increase I/O time and, therefore, total sort or merge time,.

SORT PHASE

The job of the sort phase is to order the input data set into sequences and dis-
tribute these sequences onto intermediate storage data sets. The method of dis-
tribution is determined by the sequence distribution technique being used.

If tape is being used as intermediate storage, the sequences may be put out in
both ascending and descending order. This enables the intermediate merge phase,
using the read-backward feature, to merge the sequences without rewinding tapes.

If direct access intermediate storage is used, the sequences are distributed
among the areas assigned to the program so that they may be merged in a minimum
number of passes.

This phase has a number of exits at which control can be passed to your
routines.

INTERMEDIATE MERGE PHASE

The intermediate merge phase is loaded and executed following completion of the
sort phase. It performs successive merges of the strings produced by the sort
phase. The merges are carried out from intermediate storage device to intermedi-
ate storage device, each successive merge decreasing the number of strings and
increasing the average string length. When one more merge is required to create
one long string (the output data set), control is given to the final merge phase.
There are several exits in this phase at which your routines can receive control.

Section 3: Program Modification 81

FINAL MERGE PHASE

The final merge phase has two uses:

1. It makes the final merge pass of a sorting application, thus creating the
output data set.

2. It merges the input data sets for a merging application to create the output
data set.

Output from this phase can be on any output device supported by QSAM. After
the execution of this phase, the sort system control component returns control to
the operating system via the RETURN macro instruction. Your routines can receive
control at a number of exits in this phase.

General Information

There are two types of exits available with the sort/merge program.

1. Assignment component exits, one each for the sort, intermediate merge, and
final merge phases.

2. Running component exits, a number of which are associated with the running
component of each program phase.

You can use assignment component exits to initialize your routines in each
phase or to open data sets needed by your routines. The sort/merge assignment
components are overlaid and used as buffer areas by the running components. Your
routines at assignment component exits are also overlaid unless you link edit
them together with the other routines in the phase.

You can use running component exits for a variety of purposes including the
deletion, summarization, insertion, or any other alteration of the records coming
into or out of the phase. You can also use running component exit routines to
correct some of the errors that may occur during sort/merge execution, including
I/O errors and exceeding Nmax. These exits also give you an opportunity to pro-
vide a routine that will close any data sets used by your other .routines. You
can use a running component extract module exit (E61) to alter control fields
before the program collates them. This is the exit you would use to normalize
floating-point control fields.

Figure 14 is a summary of the sort/merge program exits and their uses. The
first digit of the exit number represents the phase in which the exit is located
-- 1 for the sort phase, 2 for the intermediate merge phase, and 3 for the final
merge phase. The second digit represents the type of function your routine can
perform at the exit.

EFFICIENCY CONSIDERATIONS

When you consider using sort/merge program exits, you should weigh the following
factors:

• Your modification routines occupy main storage that would otherwise be avail-
able to the sort/merge program. Because its main storage is restricted, the
program may need to execute extra intermediate merge phase passes. This, of
course, increases sorting time.

• The execution of your routines adds time to the overall sort/merge program
execution time. Later, in the descriptions of exits, you will note that most
of the exits give your routine(s) control once for each record until you pass
a "do not return" return code to the program. You should design your modifi-
cation routines with this in mind.

82

To use sort/merge program exits, you must associate your routines with the
appropriate exits using the MODS control statement. (Refer to the topic "Defin-
ing the Sort or Merge" in Section 2.)

Note : If you use the 18K linkage editor with the minimum amount of sort/merge
main storage, your routines are limited to 10 external references.

Figure 14. Summary of Functions Permitted at Sort/Merge Program Exits

BYPASSING THE LINKAGE EDITOR

To save execution time, you should design your routines so that they do not
require link editing each time they are used in a sort/merge application. To
avoid use of the linkage editor at sort/merge execution time, your routines must
meet the following requirements:

• Each routine must be a load module on a partitioned data set (library). Its
member name must be the same as its exit number. e.g., E16. The value s on
the MODS statement that defines the routine must be the name of the DD state-
ment that defines the library. e.g.,

RODS E16=(E16,500,MYLIB,N)
//MYLIB DD DSNAME=MYRTN,etc.

• Each routine must have only one entry point which is the module name.

• The routines cannot have external references.

All routines must be on the same library or must be defined as a concatenated
data set with one ddname.

You should code the parameter N on the MODS statement for each routine that
meets the above requirements. This indicates that the routine was previously
link edited and does not require further link editing.

Section 3: Program Modification 83

•

If you use routines at assignment exits (E11, E21, and E31) that do not meet
the requirements for bypassing the linkage editor, you can still save execution
time by designing them for separate link editing. To be eligible for separate
link editing, your assignment component routines must meet the following
requirements:

• Each routine must be separate.

• The routines cannot contain external references.

• The routines can have several entry points, but one entry point must be the
same as the exit number e.g., E11.

• The routine must be designed so that it can be overlaid after assignment
time.

To indicate that the routine is eligible for separate link editing, code the
parameter S for that routine on the MODS statement. If your routine opens data
sets or communicates with running component routines, it will contain external
references and therefore cannot be link edited separately.

When your routine does not meet the requirements for bypassing the linkage
editor or for separate link editing, do not code a fourth parameter for that rou-
tine on the MODS statement. The routine is then link edited together with all
other routines in its phase which do not meet the requirements. In any phase,
you can mix routines that do not require additional link editing, routines that
can be link edited separately, and routines that must be link edited together.

OPERATING CONSIDERATIONS

Each of your routines must be assembled or compiled as a separate program and
placed in either a partitioned data set (library) or in the system input stream.
The sort/merge general assignment phase includes the names and locations of your
routines in the list of modules to be executed during each program phase. Your
routines are loaded and executed with their associated program phase.

None of your routines can appear more than once in a program phase, but the
same routine can appear in several phases. For example, you can use the same
read error routine in all three phases, but not twice in any one phase. If a
routine is to be used more than once and the routines are on SYSIN, you must
supply a copy of the routine for each use.

Only one load module is allowed at each sort/merge program exit. If you need
more than one routine at an exit, the routines must be assembled, compiled, or
link edited as one load module.

All your routines in a phase that require link editing can be placed in one
partitioned data set member. The member must have an entry point for each of the
routines you use. When the routines are arranged in one member, their individual
lengths specified on a MODS statement are not important, but the sum of the
lengths must be the total length of the module. All but one length can be speci-
fied as zero, with the total member length specified for the remaining routine.

ROUTINES IN THE SYSTEM INPUT STREAM

The routines that you place in the system input stream are copied into the SORT-
MODS data set; they then become input to the linkage editor. Under the MVT con-
figuration, the entire contents of SYSIN, including control statements, is first
moved to a system direct access data set. Sort/merge strips away the sort con-
trol cards and then copies your routines on SORTMODS.

When data follows your routines, it is also written on the system data set.
When one of your routines opens SYSIN to read the data, it will start reading
from the beginning of the SYSIN data set.

84

LINKAGE CONSIDERATIONS

Your routine must save and restore all general registers it uses at the modifica-
tion exit. The general registers used by the sort/merge program for linkage and
communication of parameters follow operating system conventions. The registers
used are:

• General register 1 -- used to pass the address of a parameter list to the
called routine.

• General register 13 -- contains the address of an area, set aside by the
sort/merge program, in which your routine may save the contents of any gener-
al registers it needs for operation.

• General register 14 -- This register contains the address of the sort/merge
program return point.

• General register 15 -- contains the address of your routine. your routine
can use it as a base register. General register 15 is also used as a return-
code register whereby your routine communicates information to the sort/merge
program.

The sort/merge program uses a CALL macro instruction expansion to enter your
routines. You can return control to the sort/merge program with a RETURN macro
instruction. You can also use the RETURN macro instruction to set return codes
when multiple actions are available at an exit. You can use the SAVE macro
instruction to save all general registers that the routine uses. If you save
registers, you must also restore them. You can do this with the RETURN macro
instruction.

All of your routines must contain an entry point defined by an ENTRY or CSECT
statement. The name of the entry point must be the number of the associated
sort/merge program exit.

Linkage Examples

The CALL macro instruction used by the sort/merge program to link to your rou-
tines is written as follows:

CALL E11

This macro instruction is expanded to form assembler language instructions and,
when executed, places the return address in general register 14 and your rou-
tine's entry point address in general register 15. The sort/merge program has
already placed the register save area address in general register 13.

Your routine for the sort phase assignment component exit could incorporate
the following instructions:

ENTRY E11

E11 SAVE (5,9)

RETURN (5,9)

This coding saves and restores the contents of general registers 5 through 9.
The macro instructions are expanded into the following assembler language code:

Section 3: Program Modification 85

•
•
•

•
•
•

ENTRY E11

• • •

E11 STM 5,9,40(13)

• • •

LM 5,9,40(13)
BR 14

If multiple actions are available at a sort/merge program exit, your routine
sets a return code in general register 15 to inform the sort/merge program of the
action it is to take. The following macro instruction could be used to return to
the sort/merge program with a return code of 12 in general register 15:

RETURN RC=12

to full explanation of linkage conventions and the macroinstructions discussed
in this section can be found in the publication IBM System/360 Operating System:
Supervisor and Data Management Macro Instructions , Form C28-6647.)

Assignment Component Exits (E11, E21, E31)

PHASE IN WHICH USED:

E11 -- Sort phase
E21 -- Intermediate merge phase
E31 -- Final merge phase

POSSIBLE USES OF ROUTINES: You might use routines at these exits to open data
sets needed by your other routines in the associated phases, or to initialize
your other routines.

RETURN CODES: None.

LINKAGE CONVENTIONS:

FURTHER CONSIDERATIONS: These are the only three routines you can design for separate
link editing. Refer to the topic "Bypassing the Linkage Editor" earlier in this section.

Running Component Exits

Each sort/merge program phase has a number of running component exits associated with it.
Many of these exits perform the same function in each of the program's three phases.
They are explained in the following text according to exit function.

86

•
•
•

•
•
•

RECORD CHANGE EXITS (E15, E25, E35)

The record change exits can be used to insert, delete, alter, or summarize records.

Exit E15

PHASE IN WHICH USED: Sort phase before any records are sorted.

POSSIBLE USES OF ROUTINE: Add records to the input data set, create the entire input
data set, delete records from the input data set, change records in the input data
set (except control fields). Use exit E61 for control field change.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your routine at exit E15 is
executed each time a new record is brought into the sort phase. Sort/merge places
the address of a parameter list in general register 1. The parameter list contains
the address of the new record. The parameter list starts on a fullword boundary and
is one fullword long. The high order byte of the word is not used; it is represented
by xx in the figure below. The format of the parameter list is:

When sort/merge reaches the end of the input data set, it passes an address of zero
in the parameter list. If there are no records in the input data set, sort/merge
passes a zero address the first time it uses exit E15.

RETURN CODES: Your routine must pass one of the following return codes to the sort
merge program informing it what to do with the record you have been examining or
changing:

0 -- Alter or no action
4 -- Delete record
8 -- Do not return

12 -- Insert record

0 - No Action: If you want sort/merge to retain the record as is, place the address
of the record in general register 1 and return to sort/merge with a zero return code.

0 - Alter Record: If you want to change the record before passing it back to sort/
merge, your routine must move the record into a work area, perform whatever modifica-
tion you desire, place the address of the modified record in general register 1, and
return to sort/merge with a zero return code. If your routine changes record size,
you must communicate that fact to the program on a RECORD statement. (See "Defining
the Sort or Merge" in Section 2 and the publication IBM System/360 Operating System:
Supervisor and Data Management Services for further information about the length
indicator and the Record Descriptor Word.)

4 - Delete Record: If you want sort/merge to delete the record from the input data
set, return with a return code of 4. You need not place the address of the record in
general register 1.

8 -- Do Not Return: Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not used again during the sort/
merge application. You need not place an address in general register 1 when you
return with RC = 8. Unless you are inserting records after end--of-data set, you must
pass a return code of 8 when sort/merge indicates end-of-data set by passing your
routine a zero address in the parameter list.

12 -- Insert Record: If you want sort/merge to add a record to the input data set,
before the record whose address was just passed to your routine, place the address of
the record to be added in general register 1 and return to sort/merge with a return
code of 12. Sort/merge then returns to your routine with the same record address as
before so that your routine can insert more records at that point or alter the cur-
rent record. You can make insertions after the last record in the input data set
(after sort places a zero address in the parameter list). Sort/merge keeps returning
to your routine until you pass a return code of 8.

Section 3: Program Modification 87

LINKAGE CONVENTIONS: Linkage conventions for exit E15 are shown in the following
table:

RESTRICTIONS: If you ATTACH, LINK, or XCTL to the sort/merge program, and use
exit E15, the sort/merge program ignores the SORTIN data set. Your E15 routine
must pass all input records to the program by placing their addresses one by one
into general register 1 and returning to sort/merge with RC = 12. When sort/merge
returns to your routine after you have passed the last record, return to sort with
RC = 8 indicating "do not return." Since exit E15 is associated with the sort
phase, it cannot be used during a merge-only operation.

Exit E25

PHASE IN WHICH USED: Intermediate merge phase, after the records have been
merged.

POSSIBLE USES OF ROUTINE: Change (except control fields) or delete records leav-
ing the intermediate merge phase.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your E25 routine is executed
each time sort/merge prepares to place a record (except the first record in each
sequence) in an intermediate merge output sequence. Sort/merge passes two record
addresses to your routine. These are:

• The address of the record leaving the merge, which would normally follow the
record in the output area.

• The address of a record in the output area.

In general register 1, sort/merge places the address of a parameter list that con-
tains these two record addresses. The parameter list starts on a full word boun-
dary and is two fullwords long. The high order bytes of both words are not used
(contain zeros) . The format of the parameter list is:

RETURN CODES: Your routine must pass one of the following return codes to the
sort/merge program informing it what to do with the record leaving the merge:

0 -- Alter or no action
4 -- Delete record or summarize and delete

88

0 - No Action: If you want sort/merge to retain the record as is in the interme-
diate merge sequence, load the address of the record leaving the merge into gener-
al register 1 and return to sort/merge with a zero return code. The next time
sort/merge transfers control to your routine, the record whose address you just
passed will be the record in the output area.

0 - Alter Record: If you want to change the record (except its control field)
before passing it back to sort/merge, move the record to a work area, make the
change, place the address of the modified record in general register 1, and return
to sort/merge with a zero return code.

4 - Delete Record: If you want to delete the record leaving the merge, return to
sort/merge with a return code of 4. You need not place an address in register 1.

4 - Summarize and Delete: You can summarize records by changing the record in the
output area and then deleting the record leaving the merge. Sort/merge then
returns to your routine with a new record (leaving the same record in the output
area so that you can summarize further.) If you want to perform summarization
without deletion, you should do it at exit E35 rather the E25 because it is more
efficient. The sort/merge program does not test for equal control fields before
taking exit E25. If you want to summarize records with equal control fields, you
must test the fields.

LINKAGE CONVENTIONS: Linkage conventions for exit E25 are shown in the following

RESTRICTIONS: You must not retain status information in the exit routine; you
must carry it in the records being merged. The entire intermediate merge phase
(including your E25 exit routine) is reloaded into main storage for each interme-
diate merge phase pass when the balanced tape or balanced direct access sequence
distribution techniques are used by the program. Your routine would not work
properly when sort/merge chooses either of the balanced techniques, if it depended
upon status information saved within it. Since exit E25 is associated with the
intermediate merge phase, it cannot be used during a merge-only operation.

Exit E35

PHASE IN WHICH USED: Final merge phase after the records have been merged.

POSSIBLE USES OF ROUTINE: Add records to, delete records from, or change records
in the output data set.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your E35 exit routine is
executed each time sort/merge prepares to place a record (including the first
record) in the output area after the final merge. Sort/merge passes two record
addresses to your routine. These are:

Section 3: Program Modification 89

• The address of the record leaving the merge which would normally follow the
record in the output area. (This address is zero at end-of-data set.)

• The address of a record in the output area. (This address is zero the first
time your routine is entered because there is no record in the output area at
that time.)

Sort/merge also passes your routine a third parameter which is used to control
sequence checking. In general register 1, sort/merge places the address of a pa-
rameter list that contains the two record addresses and the sequence check switch.
The list is three full-words long and begins on a full-word boundary. The high
order bytes of the first two words are not used. The format of the parameter list
is:

The sort/merge program tests the sequence check switch before each record is
written on the output data set. If the word contains all zeros, sort/merge per-
forms a sequence check. If the low order byte of the word contains a 4, sort/
merge does not perform a sequence check. This switch is initially set to zero.
Your routine can set it and reset it as necessary. If your routine is altering
control fields which would not collate properly in the output data set, it should
set the low order byte of the switch to 0100 to eliminate the sequence check for
the records whose control fields have been changed.

RETURN CODES: Your routine must pass one of the following return codes to sort/
merge informing it what to do with the record leaving the merge:

0 -- Alter or no action
4 -- Delete record
8 -- Do not return

12 -- Insert record

0 -- No Action: If you want the program to retain the record as is in the output
data set, load the address of the record leaving the merge into general register 1
and return to sort/merge with a zero return code.

0 -- Alter Record: If you want to change the record before having it placed in
the output data set, move the record to a work area, make the change, load the
address of the modified record into general register 1, and return to sort/merge
with a zero return code. If you change record size, you must communicate that
fact to sort/merge on a RECORD statement.

4 -- Delete Record: Your routine can delete the record leaving the merge by
returning to sort/merge with a return code of 4. You need not place an address in
general register 1.

8 -- Do Not Return: Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not used again during the
sort/merge application. When you return with RC = 8, you need not place an
address in general register 1. Unless you are inserting records after end-of-data
set, you must pass RC = 8 when sort/merge indicates end-of-data set by passing
your routine zero as the address of the record leaving the merge.

12 -- Insert Record: If you want to add a record to the output data set before
the record leaving the merge, place the address of the new record in general reg-
ister 1 and return to sort/merge with a return code of 12. Sort/merge returns to
your routine with the same addresses as before so that you can make more inser-
tions at that point, or delete the record leaving the merge, etc. Sort/merge does
not perform a sequence check on records that you insert unless you delete the

90

record leaving the merge and insert a record to replace it. If your new record
will not collate properly, set the sequence check switch to 0100 to eliminate the
sequence check for that record.

Summarize Records: You can summarize records in the output data set by changing
the record in the output area and then, if you desire, deleting the record leaving
the merge. Sort/merge returns to your routine with the address of a new record
leaving the merge and leaves the same record in the output area, so that you can
summarize further,. If you do not delete the record leaving the merge, that record
takes the place of the record in the output area and sort/merge returns with the
address of a new record leaving the merge. As with exit E25, sort/merge does not
check for equal control fields.

LINKAGE CONVENTIONS: Linkage conventions for exit E35 are shown in the following
table:

RESTRICTIONS: If you ATTACH, LINK, or XCTL to the sort/merge program and use exit
E35, the sort/merge program ignores the SORTOUT data set. Your E35 routine must
dispose of all the output records by writing them out on a data set (you must
supply a DD statement defining that data set,) and returning to sort/merge with RC

4. When sort/merge returns to your routine after you have disposed of the last
record, return to sort with RC = 8 indicating "do not return."

NMAX EXIT (E16)

PHASE IN WHICH USED: Sort phase.

POSSIBLE USES OF ROUTINE: You would use a routine at this exit to decide what to
do if sort exceeds its calculated estimate of the number of records it can handle
for a given amount of main storage and intermediate storage.

RETURN CODES: Your routine can choose among three actions, and must use one of
the following return codes to communicate its choice to sort/merge:

0 -- Sort current records only.
4 -- Try to sort additional records.
8 -- Terminate the program.

0 -- Sort Current Records Only: If you want sort/merge to continue with only that
part of the input data set it estimates it can handle, return with RC = 0. (Mes-
sage IER054I contains the number of records that sort is continuing with. You can
sort the remainder of the data set on another run, using the SKIPREC operand on
the SORT statement to skip over the records already sorted. Then you can merge
the two sort outputs to complete the operation.)

Section 3: Program Modification 91

4 -- Try to Sort Additional Records: If you want sort/merge to continue with all
of the input data set, return with RC = 4. (Enough space may be available for the
program to complete processing. If enough is not available, the program generates
a message and terminates. Refer to "Further Considerations" below.)

8 -- Terminate the Program: If you want sort/merge to terminate, return with RC =
8. The job steps following the sort step are executed.

LINKAGE CONVENTIONS: Linkage conventions for this exit appear in the following
table:

FURTHER CONSIDERATIONS: For variable-length input records, sort/merge calculates
Nmax using the maximum record length. Therefore, Nmax tends to be lower than the
actual number of records the program can handle. If the maximum record length is
much larger than the average record length, Nmax is considerably lower than the
number of records the program can handle.

Sort/merge can calculate Nmax very accurately for fixed-length records. When
Nmax is reached, usually little additional space remains.

If the input data set has no natural ordering, and if direct access devices
(balanced technique only) are used for intermediate storage, Nmax tends to be
larger than the number of records the program can handle.

Nmax is recalculated during the sort phase (balanced direct access technique
only) and the final value may be less than the original estimate.

EXITS FOR CLOSING DATA SETS (E17, E27, E37).

Your routines at these exits are executed once at the end of the phase with which
they are associated. They can be used to close data sets used by your other rou-
tines in the phase or to perform any housekeeping functions for your routines.

PHASE IN WHICH USED:

E17 Sort phase
E27 Intermediate merge phase
E37 Final merge phase

LINKAGE CONVENTIONS: The linkage conventions used with these exits appear in the
following table:

92

READ/WRITE ERROR ROUTINES

You can use the six read/write error exits to incorporate your own or your instal-
lation's I/O error recovery routines into the sort/merge program. When the sort/
merge program encounters an uncorrectable I/O error, it passes the same parameters
as those passed by QSAM. The following information is passed to your synchronous
error routine:

General Register 0: This register always contains X'10' in the high-order byte.
The remaining three bytes contain the address of the input/output block (IOB)
associated with the error, as follows:

General Register 1: The high-order byte of this register always contains zeros.
The remaining three bytes contain the address of the data control block (DCB)
associated with the error, as follows:

General Register 14: This register contains the return address of the sort/merge
program.

General Register 15: This register contains the address of your error routine.

Your read and write error routines can reside on a library, or can be placed in
SYSIN. Your library or SYSIN routines are brought into main storage with their
associated phases. (The E28 and E29 routines are reloaded for each pass of the
intermediate merge phase.)

Read Error Exits (E18, E28, E38)

PHASE IN WHICH USED:

E18 -- Sort phase
E28 -- Intermediate merge phase
E38 -- Final Merge phase

POSSIBLE USE OF ROUTINES: Your routines at these exits can pass a parameter list
containing the specifications for three data control block fields -- SYNAD, EXLST,
and EROPT -- to the sort/merge program. Your E18 exit routine can pass a fourth
DCB field -- EODAD -- to sort/merge.

Your routines are entered first during the assignment component of each phase
so that the sort/merge program can obtain the parameter lists. The routines are
entered again during the running components at the points indicated in the parame-
ter lists. For example, if you choose the EXIST option for your E18 routine,
sort/merge enters your E18 routine during the execution of the sort phase assign-
ment component. Sort picks up the parameter list, including the EXLST address.
During the running component, sort/merge enters your routine at the EXLST address
when the data set is opened.

Section 3: Program Modification 93

INFORMATION YOUR ROUTINE PASSES TO SORT/MERGE: Your routine passes the DCB fields
to sort/merge in a parameter list, the address of which it places in general
register 1 before returning to the sort/merge program. The parameter list must
begin on a fullword boundary and be a whole number of fullwords long. The high
order byte of each word must contain a character code that identifies the parame-
ter. One or more of the words can be omitted. A word of all zeros marks the end
of the list. The format of the list is:

Byte 1 Byte 2 Byte 3 Byte 4

A full description of these DCB fields is in the publication IBM System/360
Operating System: Supervisor and Data Management Macro Instructions. A brief
description of these fields follows:

SYNAD: This field contains the location of your read synchronous error routine.
This routine is entered only after the operating system has tried unsuccessfully
to correct the error. The routine must be assembled as part of your E18, E28, or
E38 exit routine. When the routine receives control, it must not store registers
in the save area pointed to by general register 13.

EXLST: This field contains the location of a list which contains pointers to your
routines that you want used to check labels and perform other functions not done
by data management. The list and the routines to which it points should be
included in your read error routine.

EROPT: The EROPT code is a means whereby you can specify what action sort/merge
should take if an uncorrectable read error is encountered. The three possible
actions and the codes associated with them are:

X'80' -- Accept the record (block) as is
X'40' -- Skip the record (block)
3020' -- Terminate the program

If you include this parameter in the DCB field list, you must place one of the
above codes in the low-order byte of the word. Bytes 2 and 3 of the word must
contain zeros.

When you use the EROPT option, the SYNAD field (and the EODAD field of exit
E18) must contain either of the following:

• The address of your read synchronous error routine (or end-of-file routine in
the EODAD field). These must be addresses within your exit routine.

• If you do not provide a read synchronous error routine or an end-of-file rou-
tine, the fields must contain 3001' in byte 4; bytes 2 and 3 must contain
zeros. You can use the instruction DC AL3(1) to set up the field.

EODAD: This field is the address of your end-of-file routine. You can specify
this parameter at exit E18 only. If you specify it, your end-of-file routine must
be included in your exit routine. The end-of-file routine is used only for the
SORTIN data set.

94

LINKAGE CONVENTIONS: Linkage conventions for these exits are shown in the follow-
ing table:

Write Error Exits (E19, E29, E39)

PHASE IN WHICH USED:

E19 -- Sort phase
E29 -- Intermediate merge phase
E39 -- Final merge phase

POSSIBLE USES OF ROUTINE: Your routines at these exits can pass a parameter list
containing the specifications for two DCB fields -- SYNAD and EXLST -- to the
sort/merge program.

Your routines are entered first during the assignment component of each phase
so that the sort/merge program can obtain the parameter lists. The routines are
entered again during the running components at the points indicated by the options
in the parameter lists.

INFORMATION YOUR ROUTINE PASSES TO SORT/MERGE: Your routine passes the DCB fields
to sort/merge in a parameter list, the address of which it places in general
register 1 before returning to the sort. The list must begin on a fullword boun-
dary and must be a whole number of fullwords long. The high-order byte of each
word must contain a character code that identifies the parameter. Either word can
be omitted. A word of all zeros indicates the end of the list. The format of the
list is:

Byte 1 Byte 2 Byte 3 Byte 4

Section 3: Program Modification 95

A full description of these DCB fields can be found in the publication IBM
System/360 Operating System: Supervisor and Data Management Macro Instructions.
A brief description follows:

SYNAD: This field contains the location of your write synchronous error routine.
This routine is entered only after the operating system has unsuccessfully tried
to correct the error. It must be assembled as part of your exit routine.

EXLST: The EXLST field contains the location of a list that contains pointers to
your routines that you want used to check labels and perform other functions not
done by data management. This list and the routines to which it points must be
included as part of your exit routine.

LINKAGE CONVENTIONS: Linkage conventions for these exits are shown in the follow-
ing table:

CONTROL FIELD MODIFICATION EXIT (E61)

You can use a routine at this exit to lengthen, shorten, or alter any control
field within a record. The E option for the s parameters on the SORT or MERGE
control statement must be specified for control fields changed by this routine.
(Refer to the topic "Defining the Sort or Merge in Section 2.")

PHASE IN WHICH USED: Your routine is loaded with the running portion of each
phase and is executed whenever sort/merge encounters a control field specified by
the E option.

POSSIBLE USES OF ROUTINE: Your routine can normalize floating point control
fields or change any other type of control field in any way that you desire. You
should be familiar with the standard data formats used in System/360 before modi-
fying control fields.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Sort/merge places the address
of a parameter list in general register 1. The list begins on a fullword boundary
and is two fullwords long. It contains the number (in hexadecimal) of the control
field in the low-order byte of the first word, and the address of the control
field in the three low-order bytes of the second word as follows:

96

Byte 1 Byte 2 Byte 3 Byte 4

Before it passes your routine the control field address, sort/merge moves the
control field to an extract area, an area apart from the record. Your routine, in
effect, changes an image of the control field and not the control field itself.
Because of internal manipulation by sort/merge, the control fields appear in the
extract area in the following format:

Binary: Unchanged.

Character: Unchanged.

Fixed-point: The sign bit is inverted.

Positive floating-point: The sign bit is inverted.

Negative floating-point: The sign bit is inverted and the numeric portion of the
number is in one's complement notation; that is, zeros become ones and ones become
zeros.

Packed decimal: The sign is considered a separate control field. It is inverted
and placed before the numeric portion of the number. If the records are to be
ordered in descending sequence, the numeric portion appears in one's complement
notation. For ascending sequence, the numeric portion is unchanged.

Zoned decimal: The control field is converted to packed decimal and treated as
above.

For all fields except binary, the number of bytes sort/merge passes to your
routine is equal to the length specified in the m parameters of the SORT or MERGE
statement. The field your routine returns to sort/verge must contain the same
number of bytes.

All binary fields passed to your routine contain a whole number of bytes. If a
binary field does not begin and end on a byte boundary, sort/merge pads it with
zeros at beginning and/or end.

Your routine cannot physically change the length of the control field. If you
must increase the length for collating purposes, you must specify that length in
the m parameter of the SORT or MERGE statement. If you must shorten the control
field, you must pad the field to the specified length before returning it to
sort/merge.

Sort/merge collates the modified control field in absolute ascending order.

LINKAGE CONVENTIONS: Linkage conventions for exit E61 are shown in the following
table:

Section 3: Program Modification 97

Register Conventions

Reference Data—Modification Routines

Section 3: Program Modification 99

Section 4: Efficient Program Use

Once you become familiar with the basic functions of the sort/merge program, you
will be concerned with program efficiency -- how to get a faster sort or merge.
In this section the following subjects involving program efficiency are discussed:

• Information you can supply to the sort/merge program to optimize its
operation.

• Intermediate storage assignment for optimum performance.

• Multiprogramming efficiency considerations.

• System generation options and requirements.

Supplying Information to the Program

The information you give the sort/merge program about the application it is to
perform helps the sort and merge phases to produce a fast, efficient sort or
merge. When you do not supply information such as data set size and record for-
mat, the program must make assumptions, which, if incorrect, lead to inefficiency.

DATA SET SIZE

The most important information you can give the program is an accurate data set
size using the SIZE parameter of the SORT or MERGE statement. If you know the
exact number of records in the input data set, use that number as the value of the
SIZE parameter. If you do not know the exact number, estimate it as closely as
you can.

When the sort/merge program has accurate information about data set size, it
can make the most efficient use of both main storage and intermediate storage.

BLOCKING INPUT RECORDS

Sort performance is improved if you block input records. Ideally, you should use
the same blocking factor that the sort/merge program uses internally. If your
machine configuration, main storage allotted to the program, and record size are
the same as one of those listed in the publication IBM System/360 Operating Sys-
tems: Sort/Merge Timing Estimates, Form C28-6662, use the figure given in the
sort block column. Otherwise, use the sort block figure corresponding to entries
that most closely describe your configuration.

RECORD FORMAT

When your input data set consists of variable length records, use the RECORD sta-
tement to supply maximum, minimum, and modal (most frequent) lengths to the sort/
merge program. This information allows the program to calculate the optimum sort.

Intermediate Storage Assignment

If you can, avoid assigning the bare minimum amount of intermediate storage for a
given application. When a small amount of intermediate storage is assigned to the
program, more intermediate merge phase passes are necessary because only a small
number of record sequences can be merged at one time. Naturally, these extra
passes increase sorting time.

Section 4: Efficient Program Use 101

Likewise, when the program has only a small amount of main storage to operate
in, more intermediate merge phase passes are necessary because only a small number
of records can be sorted internally and more sequences are produced.

The sort/merge program operates efficiently when at least two selector channels
are available. A tape switching device also improves program performance, if the
device is connected so that two channel paths exist between each device and the
central processing unit that is running the sort/merge program.

ASSIGNING DIRECT ACCESS INTERMEDIATE STORAGE

Program performance is improved if you use devices, storage areas, and channels
efficiently. If you use UNIT=2311, 2314, or 2301 on the DD statements that define
intermediate storage data sets, the program assigns areas, and some optimization
occurs automatically. But maximum performance is achieved if you follow these
recommendations:

• Use as many physical devices as you have available. (If you place more than
one intermediate storage data set on a disk, place them as close together as
possible to minimize access arm movement.)

• Use channel overlap whenever you can.

• On 2311 and 2301, assign as few data sets as possible. (You need at least
three. Three large data sets are more efficient than six smaller ones.) On
2314, assign as many data sets as possible, (17 maximum) but not more than one
for each device.

• Assign data sets of similar sizes.

Assigning more than three intermediate storage data sets (the minimum number)
on a 2311 disk or a 23O1 drum decreases program efficiency unless you assign the
data sets to different devices. Sometimes you may need the maximum (six for the
2311 and 23O1) number of data sets to handle a large input data set. To preserve
efficiency, assign them on separate physical devices.

For example, if a 1O0-track area is available on each of three 2311 disk
drives, you can handle more records if you define six data sets, each 50 tracks
long, two on each device, but you decrease efficiency. If the size of the input
data set permits, you can increase efficiency by defining fewer areas. For maxi-
mum efficiency, define three 1O0-track areas, each cn a different device.

If your intermediate storage is on 2314, you can obtain maximum efficiency by
assigning one data set per access arm. Also, efficiency decreases as the size of
your input data set approaches sort capacity.

If you use channel overlap program performance is improved because the program
can read input while writing output, etc.

Figure 15 shows a method for specifying channel overlap. The SEP parameter on
the SORTWK01 DD statement requests that the operating system assign that data set
to a channel other than the channel assigned to the SORTIN data set. The AFF pa-
rameter on the SORTWK03 and SORTOUT DD statements requests that the SORTWK03 , and
SORTOUT data sets, also be on a channel that is different from SORTIN. The chan-
nel assigned to SORTWK02 and SORTWK04 is not necessarily the same as the one
assigned to SORTIN.

The operating system will honor your channel assignment requests when the
necessary channel and device resources are available. If the requests cannot be
filled, the system assigns channels according to the resources it has. Therefore,
specifying channel overlap will never impair performance.

102

•Figure 15. DD Statements Illustrating Channel Overlap

ASSIGNING TAPE INTERMEDIATE STORAGE

You can use the timing tables in the publication IBM System/360 Operating System
Sort/Merge Timing Estimates, Form C28-6662 as guide lines for assigning tape
intermediate storage.

Multiprogramming the Sort/Merge Program

You should consider the following factors when you execute the sort/merge program
with other programs:

• The sort/merge program may use many I/O devices for input, output, and inter-
mediate storage. You should assign it a relatively high priority to be sure
that it gets control of the central processing unit frequently and does not
tie up the I/O devices while it waits for CPU time.

• The sort/merge program tends to be I/O limited. Therefore, you should multi-
program the sort with programs that are process limited.

• When a single task attaches two or more sort applications by ATTACH, LINE, or
XCTL, you must modify the standard DD names (SORTIN, SORTOUT, etc.) so that
they are unique. Do this by specifying four letters in the parameter list
passed to the sort/merge program. These characters replace the letters SORT
in the references to standard DD names in sort/merge program modules. (For
more information, see the topic "Passing Parameters to the Sort" in Section
2.)

System Generation Options and Requirements

When the operating system for your installation is generated, certain sort/merge
facilities may be included; others may not be. You should be aware of what is
available at your installation. The following list is a summary of the sort/merge
facilities that can be included when the program is generated:

• Sort or merge fixed-length records.

• Sort or merge variable-length records.

• Sort or merge records over 256 bytes long.

• Operate with any or all allowable intermediate storage devices. (Only one
type can be used for a specific sort run.)

Section 4: Efficient Program Use 103

• Sort or merge multiple control fields.

• Use sort/merge program exits.

• Print non-critical program-generated messages.

• Use (a specific number) of bytes of main storage as a maximum for sort/merge
execution.

Selecting only the required program facilities conserves library space. If you
attempt to execute an option that was not selected, the program terminates abnor-
mally. System generation is described in the publication IBM System/360 Operating
System: System Generation, Form C28-6554.

LIMITING MAIN STORAGE

If the maximum amount of main storage to be used by the sort/merge program was not
specified at system generation time, the program assumes a maximum of 15,500
bytes. The program requests 12,000 bytes leaving 3,500 bytes for system func-
tions, Performance usually improves as the program is given more main storage.
Approximately 44K bytes of main storage are needed for efficient execution of the
sort/merge program, and performance usually increases as more main storage is made
available.

The maximum amount of main storage that can be made available to the program
can be determined by subtracting the amount of storage required by system func-
tions from the total amount available. The amount of main storage required for
the execution of various operating components is given in the publication IBM
System/360 Operating System: Storage Estimates, Form C28-6551. The publication
IBM System/360 Operating System: System Generation, Form C28-6554, gives a formu-
la for calculating the maximum amount of main storage.

On an execution by execution basis, you can change two of the system generation
specifications: main storage size and types of messages printed.

ALTERING THE MAIN STORAGE ALLOCATION

You can override the amount of main storage specified at system generation time by
using the PARM field of the EXEC statement. Write the field as follows:

PARM='CORE=xxxxxx'

where xxxxxx is the amount of main storage in bytes that you want to operate with.
xxxxxx cannot be less than 12,000, and at this value, some combinations of I/O
devices and record lengths make a successful sort impossible. For MVT, the region
size must be bigger than the sort size. Region size should be approximately 1.2
times the sort size + 8K. The main storage value is changed only for the current
job step; afterwards, the value reverts to the one specified at system generation
time.

Changing the main storage allocation is useful when you are running a sort/
merge application in a multiprogramming environment. By reducing the amount of
main storage allocated, you impair sort/merge performance so that other programs
can have the storage they need to operate simultaneously. By increasing the allo-
cation, you can run large sort/merge applications efficiently at the expense of
other jobs sharing the multiprogramming environment.

104

ALTERING THE MESSAGE SPECIFICATION

You can override the message option selected at system generation by using the
PARM field of the EXEC statement. Write the field as follows:

PARM='MSG=xx'

where xx is a two-character code that specifies what kind of messages you want
printed and where you want them to appear.

NO means that you want no messages to be printed.

CC means that you want critical messages only to be printed and you want them to
appear on the console.

CP means critical messages only and that you want them to appear on the printer.

AC means that you want all messages (critical and informational) printed on the
console.

AP means that all messages are to be printed on the printer.

The time factor involved in printing messages is relatively small. The printer
is slightly faster that the console so you probably could save a few seconds by
specifying CP or AP rather than CC or AC.

Section 4: Efficient Program Use 105

Glossary

The following terms and phrases are defined
as they are used in this publication.

ascending sequence: A sequence of records
such that the control word of each succes-
sive record collates equal to or greater
than that of the preceding record.

assignment component: A sort/merge program
component that establishes the basic con-
stants needed for program execution and
initializes running components for a spe-
cific application.

block: A group of contiguous data read or
recorded by an I/O device as one unit.

collating sequence: A predetermined
sequence into which data can be sorted or
merged.

control field: A group of contiguous data
within a record that forms all or part of a
control word.

control word: A group of control fields
used to order records according to the
collating sequence during a sort or merge.

descending sequence: A sequence of records
such that the control word of each succes-
sive record collates equal to or less than
that of the preceding record.

input data set: The data set (or data
sets) used as input to the sort/merge
program

intermediate storage data set: A partially
sequenced data set that is either input to
or output from an intermediate merge phase
pass.

major control field: The control field
that is most significant in determining the
collating sequence of a record.

merge: The process used to form one sorted
sequence of records from two or more pre-
viously sorted sequences. Also, a program
or routine that performs this function.

merge pass: The passing of all the records
used as input to the sort/merge through a
program phase which merges previously
sorted sequences into fewer, longer
sequences.

minor control field: A control field which
is less significant than the major control
field in determining the collating sequence

of a record. Successive minor control
fields are considered to be in decreasing
order of significance.

modal length: The record length that
occurs most frequently in a variable-length
record data set used as input to the sort/
merge program.

nmax: The estimated maximum number of
records of a given length that can be
sorted using a given amount of intermediate
storage.

output data set: The sequenced data set
which is produced by a sort/merge program
execution.

phase: A portion of the sort/merge program
that is designed to perform one of the fol-
lowing functions: definition, optimiza-
tion, sorting, intermediate merging, or
final merging.

program exit: A place in the executable
code of the sort/merge program component at
which a user-written routine may be given
control to perform various functions.

record: A group of contiguous characters
which is processed as a unit by the sort/
merge program.

running component: A sort/merge program
component that performs a sorting or merg-
ing operation on the data set used as input
to the program. Running components are
initialized by assignment components.

sequence: A group of records that have
been collated into a predesignated order.

sequence distribution technique: One of
several methods used by the sort/merge pro-
gram to combine previously sorted sequences
of records into fewer, longer sequences.

sort: The process used to collate the
records in a data set of unknown order.
Also, a program or routine that performs
this function.

sort blocking factor: The blocking factor
used by the sort/merge program for interme-
diate storage data sets.

user written routine: A routine written by
the user to perform various functions at a
sort/merge program exit.

Glossary 107

Appendix A: Summary of How to Use the Sort/Merge Program

The following is a summary of what you need to do to use the sort/merge program:

• Prepare sort/merge control statements defining the sorting or merging applica-
tion. (Refer to the topic "Defining the Sort or Merge" in Section 2) .

• For a sorting application, determine the amount of intermediate storage the
sort/merge program will need for your data set. (Refer to the topic "Deter-
mining Intermediate Storage Requirements" in Section 2.)

• Prepare job control language statements to accompany the sort/merge state-
ments. (Refer to the topic "Required Job Control Language Statements" in Sec-
tion 2.)

The following chart shows the three points mentioned above in greater detail.

The chart does not cover the following points:

• EXEC statement PARM field options: forcing a sequence distribution technique
(Refer to "Sequence Distribution Techniques" in Section 1 for descriptions of
the techniques; and "Job Control Language for Sort/Merge" in Section 2 for how
to code the option), message option (refer to "Job Control Language for Sort/
Merge" in Section 2) , core value option (refer to "Job Control Language for
Sort/Merge" in Section 2.)

• The checkpoint option. (Refer to "Defining the Sort or Merge" in Section 2
for how to select the option, and "Job Control Language for Sort/Merge" for
information on the required SORTCKPT DD statement.)

• Achieving maximum sort/merge efficiency. (Refer to "Section 4: Efficient
Program Use.")

Appendix A: Summary of How to Use the Sort/Merge Program 109

Appendix A: Summary of How to Use the Sort/Merge Program 111

Appendix B: Considerations for MVT Users—Summary

REGION SIZE

The SORT cataloged procedure requests a region size of 98K. The SORTD cataloged
procedure requests 26K.

A formula for determining region size is given in Section 1: "Determing Region
Size."

OPTIONAL CHARACTERS FOR DD NAMES

If a task initiates two or more sort/merge applications via ATTACH, LINK, or XCTL,
this option must be selected. It is discussed in the topic "Passing Parameters to
the Sort" in Section 2.

ALTERING THE MAIN STORAGE ALLOCATION

The amount of main storage assigned to sort/merge at system generation can be
changed. It can be temporarily increased to improve sort/merge performance or
temporarily decreased to permit other programs to obtain main storage. Refer to
"Altering the Main Storage Allocation" in Section 4 for further details.

OTHER

Refer to "Multiprogramming the Sort/Merge Program" in Section 4.

Appendix B: Considerations For MVT 113

Appendix C: Standard System/360 Operating System

Collating Sequence

The following table shows the collating sequence for character and unsigned deci-
mal data_ The bit configuration shown is EBCDIC. The collating sequence is based
on the EBCDIC representation of the graphic and ranges from low (00000000) to high
(11111111) . The bit configurations which do not correspond to graphics (e.g., 0 -
73, 81 - 89, etc.) are not shown. Some of these correspond to control commands
for the printer and other devices.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data
is collated algebraically; i.e., each quantity is interpreted as having a sign.

Collating
Sequence Bit Configuration Graphic Meaning

00000000

74
75
76
77
78
79
80

90
91
92
93
94
95
96
97

107
108
109
110
111

122
123
124
125
126
127

129
130
131
132
133
134
135
136
137

145
146

01001010
01001011
01001100
01001101
01001110
01001111
01010000

01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001

01101011
01101100
01101101
01101110
01101111

01111010
01111011
01111100
01111101
01111110
01111111

10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001

10010001
10010010

Cent sign
Period, decimal point
Less than sign
Left parenthesis
Plus sign
Vertical bar, Logical OR
Ampersand

Exclamation point
Dollar sign
Asterisk
Right parenthesis
Semi colon
Logical not
Minus, hyphen
Slash

Comma
Percent sign
Underscore
Greater than sign
Question mark

Colon
Number sign
At sign
Apostrophe, prime
Equals sign
Quotation marks

Appendix C: Standard System/36 115

147 10010011 1
148 10010100 m
149 10010101 n
150 10010110 o
151 10010111 p
152 10011000 q
153 10011001 r

162 10100010 -
163 10100011 t
164 10100100 u
165 10100101 v
166 10100110 w
167 10100111 x
168 10101000 y
169 10101001
•

193 11000001 A
194 11000010 B
195 11000011 C
196 11000100 B
197 11000101 E
198 11000110 F
199 11000111 G
200 11001000 H
201 11001001 I

209 11010001 J
210 11010010 K
211 11010011 L
212 11010100 M
213 11010101 N
214 11010110 0
215 11010111 F
216 11011000 Q
217 11011001

226 11100010 S
227 11100011 T
228 11100100 U
229 11100101 V
230 11100110 W
231 11100111 X
232 11101000 Y
233 11101001 Z

240 11110000 0
241 11110001 1
242 11110010 2
243 11110011 3
244 11110100 4
245 11110101 5
246 11110110 6
247 11110111 7
248 11111000 8
249 11111001 9

116

Appendix D: Sort/Merge Messages

The sort/merge program generates two kinds
of messages -- those which result from
critical error conditions and those which
give information about the program's opera-
tion. The printing of either all messages
or only critical messages can be specified
at system generation. The messages can
either be printed on a printer or at the
operator's console.

The message options set up at system
generation can be overridden on a job step
by jobstep basis by coding the MSG parame-
ter in the PARM field of the EXEC state-
ment. Refer to the topic "EXEC Statement"
in "Section 2: How To Use The Sort/Merge
Program," for a complete discussion of the
MSG parameter.

The sort/merge program analyzes control
statements in two stages. Stage 1 analyzes
the general format of control statements.
Stage 2 analyzes the information contained
in the sort/merge control statements and
job control language statements. Stage 2
checks for sort syntax and contents errors.
Each statement is scanned for errors. The
first error detected stops the scan for
that statement. The program prints a mes-
sage and continues the scan on successive
statements.

IER001A - COL 1 OR 1-15 NOT BLANK

Explanation: Critical. Column 1
of a sort/merge control statement
is not blank, or columns 1 through
15 of a sort/merge continuation
card are not blank.

System Action: Stage 1
termination.

User Response: Check control
statements for nonblank characters
in column 1, and continuation
cards for nonblank characters in
columns 1 through 15.

IER002A - EXCESS CARDS

Explanation: Critical. This mes-
sage is generated for one of four
reasons:

* More than 33 control cards are
supplied to the sort/ merge
program.

s A sort/merge control statement
type appears more than once.
(For example, there is more
than one SORT statement.)

When the program encounters a critical
error in either stage, it prints a message
and continues to analyze control informa-
tion until the current stage is completed,
then the program terminates. Thus, if a
critical error is found in Stage 1, the
program terminates at the end of Stage 1;
if the error is encountered in Stage 2, the
program terminates at the end of Stage 2.
The system action that results from
encountering a critical control information
error is described in the messages as ei-
ther "Stage 1 termination" or "Stage 2
termination."

The messages are listed and explained in
message code order, from IER001 to to
IER068. The last character of each message
(A or I) indicates the severity of the mes-
sage. A means that programmer action is
required. I means that the message is an
informational one and no action is
required. The explanations of all critical
messages begin with "Critical."

• The control statements passed
to the sort/merge program dur-
ing an ATTACH, LINE, or XCTL
operation contain more infor-
mation than is allowed for the
statements passed.

• A control statement occupies
more than the allowable number
of cards.

System Action: Stage 1 termina-
tion. The program does not ana-
lyze control cards above the 33
limit or duplicate type state-
ments. If the sort was activated
by an ATTACH, LINK, or XCTL, no
information is processed.

User Response: Check for too many
control cards, duplicate statement
types, and, if the sort was acti-
vated by an ATTACH, LINK, or XCTL,
more information than allowed.

Appendix D: Sort/Merge Messages 117

IER003A - NO CONTIN CARD

Explanation: Critical. A con-
tinuation card has been indicated
by a nonblank character in column
72 of the previous card and no
card follows.

System Action: Stage 1
termination.

User Response: Check for a key-
punching error, an overflow of
parameters into column 72, or a
missing continuation card.

IER004A - INVALID OP DELIMITER

Explanation: Critical. A control
statement ends with a comma or
other incorrect delimiter.

System Action: Stage 1
termination.

User Response: Check for operands
that are incorrectly split between
control and continuation cards.
Refer to the topic "Continuation
Cards" in Section 2.

IER005A - STMT DEFINER ERR

Explanation: Critical. A control
statement that should contain an
operation definer (SORT, MERGE,
RECORD, MODS, or END) does not
contain an acceptable one.

System Action: Stage 1
termination.

User Response: Check all state-
ments for incorrect, misplaced, or
misspelled operation definers.

IER006A - OP DEFINER ERR

Explanation: Critical. The first
operand of a control statement
does not begin on the same state-
ment as the operation definer.

System Accion: Stage 1
termination.

User Response: Check for state-
ments that contain only the opera-
tion definer.

IER007A - SYNTAX ERR - xxx

Explanation: Critical. A control
statement contains an error in
syntax. xxx is a 3-character code

("S/M," "REC," or "MOD") that
indicates the control statement in
which the error occurred.

System Action: Stage 2
termination.

User Response: Check the control
statements for syntax errors.
Some of the more common syntax
errors are:

• Unbalanced parentheses.
• Missing commas.
• Embedded blanks.

IER008A - FLD OR VALUE GT 8 CHAR - xxx

Explanation: Critical. A parame-
ter greater than 8 characters has
been specified. xxx is a 3-
character code ("S/M," "REC," or
"MOD") that indicates the control
statement in which the error
occurred.

System Action: Stage 2
termination.

User Response: Check control
statements for parameters with
more than eight characters.

IER009I - EXCESS INFO ON CARD - xxx

Explanation: More information
than necessary appears in a con-
trol statement. This could pos-
sibly be caused by a syntax error
which cannot be diagnosed by the
program. xxx is a 3-character
code ("S/M," "REC," or "MOD") that
indicates the control statement in
which the error occurred. This
message is also printed when com-
ments appear on a card.

System Action: The excess infor-
mation is treated as a comment.

User Response: Check control
statements, unless comments are
intended.

IER010A - NO S/M CARD

Explanation: Critical. All con-
trol statements have been pro-
cessed and no SORT or MERGE con-
trol. statement has been found.

System Action: Stage 2
termination.

User Response: Supply a SORT or
MERGE control statement.

118

IER011A - TOO MANY S/M KEYWORDS System Action: Stage 2
termination.

Explanation: Critical. More than
the maximum of 5 keyword operands
are defined on a SORT or MERGE
control statement.

User Response: Check SORT or
MERGE control statement keyword
operands for too many parameters.

IER016A - INVALID VALUES IN FLD
System Action: Stage 2
termination.

User Response: C RT or
MERGE control statement for too
many keyword operands.

IER012A - NO FLD DEFINER

Explanation: Critical. An inval-
id number of values is specified
with a FIELDS operand on a S
MERGE control statement.

System Action: Stage 2
termination.

Explanation: Critical. A SORT or
MERGE control statement does not
contain a control field
definition.

User Response: Check values in
control field definitions on SORT
or MERGE control statement.

IER017A - ERR IN DISP LENGTH VALUE
System Action: Stage 2
termination.

User Response: Check SORT or
MERGE control statement for lack
of a control field definition
(FIELD operand).

IER013A - INVALID S/M KEYWORD

Explanation: Critical. An inval-
id length or displacement (posi-
tion) value is specified in a con-
trol field definition on a SORT or
MERGE control statement.

System Action: Stage 2
termination.

Explanation: Critical. An inval-
id keyword operand has been
detected on a SORT or MERGE con-
trol statement.

User Response: Check length and
position values specified in the
FIELDS op n a SORT or MERGE
control statement.

System Action: Stage 2
termination.

IER018A - CTL FLD ERR

User Response: Check SORT or
MERGE control statement for inval-
id keyword operand.

Explanation: Critical. An error
in specifying the type of control
field defined in a SORT or MERGE
control statement has been
detected.

IER014A - DUPLICATE S/M KEYWORD

Explanation: Critical. A keyword
operand is defined twice on a SORT
or MERGE control statement.

System Action: Stage 2
termination.

System Action: Stage 2
termination.

User Response: Check control
field types on SORT or MERGE con-
trol statement for keypunching or
other errors in specification.

User Response: Check SORT or
MERGE control statement for a mul-
tiply defined keyword operand.

IER015A - TOO MANY PARAMETERS

Explanation: Critical. Too many
parameters are associated with a
keyword operand on a SORT or MERGE
control statement.

IER019A - SIZE/SKIPREC. ERR

Explanation: Critical. An error
in specifying the SIZE operand in
either a SORT or MERGE control
statement, or the SKIPREC operand
in a SORT control statement, has
been detected.

System Action: Stage 2
termination.

Appendix D: Sort/Merge Messages 119

User Response: Check SORT or
MERGE control statement for inval-
id SIZE or SKIPREC operand.

IER020A - INVALID REC KEYWORD

Explanation: Critical. An inval-
id keyword operand has been found
in a RECORD control statement.

System Action: Stage 2
termination.

User Response: Check RECORD con-
trol statement for keypunching or
other error in a keyword operand.

IER021A - NO TYPE DEFINER

Explanation: Critical. A RECORD
control statement has been found
without a TYPE operand.

System Action: Stage 2
termination.

User Response: Check RECORD con-
trol statement for lack of TYPE
operand.

IER024A - ERR IN LENGTH VALUE

Explanation: Critical. An incor-
rect value is associated with the
LENGTH parameter of a RECORD con-
trol statement.

System Action: Stage 2
termination.

User Response: Check RECORD con-
trol statement for incorrectly
specified length value.

IER025A - RCD SIZE GT MAX

Explanation: Critical. The reco-
rd size specified on a RECORD con-
trol statement is greater than the
maximum allowed by the program.

System Action: Stage 2
termination.

User Response: Check RECORD con-
trol statement for incorrectly
specified record length.

IER022A - RCD FORMAT NOT F/V

Explanation: Critical. An error
in specifying the value associated
with the TYPE operand of a RECORD
control statement has been
detected.

System Action: Stage 2
termination.

User Response: Check the RECORD
control statement for keypunching
or other errors resulting in TYPE
operand value being some character
other than F (fixed-length rec-
ords) or V (variable-length
records).

IER023A - NO LENGTH DEFINER

Explanation: Critical. The
LENGTH operand of a RECORD control
statement is not present.

System Action: Stage 2
termination.

User Response: Check RECORD con-
trol statement for lack of LENGTH
operand.

IER026A - L1 NOT GIVEN

Explanation: Critical. The
LENGTH operand of a RECORD control
statement lacks an It value.

System Action: Stage 2
termination.

User Response: Check RECORD con-
trol statement for lack of IL
value in LENGTH operand.

IER027A - CF BEYOND RCD

Explanation: Critical. A control
field has been defined as extend-
ing beyond the minimum record
length specified in a RECORD con-
trol statement.

System Action: Stage 2
termination.

User Response: Check SORT or
MERGE control statement for incor-
rectly specified control field
displacement. Check RECORD con-
trol statement for incorrectly
specified maximum record length
(12).

120

IER028A - TOO MANY EXITS

Explanation: Critical. An
attempt has been made to activate
more than the maximum number of
program exits allowed by the pro-
gram (17).

System Action: Stage 2
termination.

User Response: Reduce the number
of exits specified in the MODS
control statement.

IER029A - IMPROPER EXIT

Explanation: Critical. This mes-
sage is generated for one of two
reasons:

• An exit other than the 17
allowed by the program has
been specified on a MODS con-
trol statement.

• An exit in the sort or inter-
mediate merge phase of the
program has been activated
during a merge application.

System Action: Stage 2
termination.

User Response: Check MODS control
statement for keypunching error or
other error resulting in specifi-
cation of invalid program exit
number. If a merge is being per-
formed, check MODS control state-
ment for exit numbers which refer
only to sort or intermediate merge
phase exits.

IER030A - MULTIPLY DEFINED EXIT

Explanation: Critical. A program
exit has been defined twice in
MODS control statement.

System Action: Stage 2
termination.

User Response: Check MODS control
statement for multiply defined
exits.

IER031A - INVALID MODS OP CHAR

Explanation: Critical. An inval-
id character in a parameter of a
MODS control statement has been
found.

System Action: Stage 2
termination.

User Response: Check the parame-
ters of a MODS control statement
for a length field containing
something other than numeric data,
a source or name field beginning
with something other than an
alphabetic character, or a source
or length field containing a spe-
cial character other than $, @, or
#.

IER032A - EXIT E61 REQUIRED

Explanation: Critical. A SORT or
MERGE control statement defines a
control field calling for user-
written routine (this is done by
specifying E for the control field
sequence indicator), and exit E61
is not activated by a MODS control
statement.

System Action: Stage 2
termination.

User Response: Check SORT or
MERGE control statements for key-
punching errors resulting in the
specification of an E type parame-
ter. Check the MODS control sta-
tement, for lack of an E61
specification.

IER033A - CF SEQ INDIC E REQUIRED

Explanation: Critical. Program
exit E61 is activated and no con-
trol fields have been specified
for user modification (E control
field sequence parameter missing
on SORT or MERGE control
statement).

System Action: Stage 2
termination.

User Response: Check MODS, and
SORT or MERGE control statements
for keypunching errors resulting
in the activation of exit E61 and
the lack of an E type parameter on
the SORT or MERGE control
statement.

IER034A - PARAM ERR FOR MODS

Explanation: Critical. An incor-
rect number of parameters follow
an operand definer on a MODS con-
trol statement, or SYSIN is speci-
fied on the MODS statement as the
source for user—written routines,
and no //SORTMODS DD statement is
present.

Appendix D: Sort/Merge Messages 121

|

System Action: Stage 2
termination.

User Response: Check MODS control
statement for parameter specifica-
tion error.

IER035A - DUPLICATE MOD RTN IN PHASE

Explanation: Critical. The same
user-written routine is being used
for more than one exit in a sort/
merge program phase, or two or
more routines have the same name.

System Action: Stage 2 termina-
tion.

User Response: Check the MODS
control statement for improper use
of duplicate names. Duplicate
names within a phase may be used
only when the user-written rou-
tines are to be link edited
together, and they are in one load
module.

IER036I - B = xxxxxx

Explanation: This message com-
municates the blocking used by the
sort for intermediate storage rec-
ords. For fixed-length records,
the blocking factor is substituted
for xxxxxx in the message text.
For variable-length records, the
size of the buffer area is substi-
tuted for xxxxxx in the message
text.

System Action: None.

User Response: None.

IER037I - G = xxxxxx

Explanation: This message com-
municates the number of records
that can fit into the program's
record storage area at one time
during a sort. The number of rec-
ords is substituted for the xxxxxx
in the text of the message as
shown above.

System Action: None.

User Response: None.

IER038I - NMAX = xxxxxx

Explanation: This message com-
municates an estimate of the maxi-
mum number of records that can be
sorted using the intermediate

storage and main storage available
to the sort for the current appli-
cation. The number replaces the
xxxxxx in the text of the message
as shown above.

System Action: None.

User Response: None.

IER039A - INSUFFICIENT CORE

Explanation: Critical. There is
not enough main storage available
to the sort to allow program
execution.

System Action: The program
terminates.

User Response: The sort requests
main storage from 12,000 bytes to
the maximum amount specified by
the user at system generation.
For any given execution, the mini-
mum amount required depends upon
the number of intermediate storage
data sets, the record length, and
the block size. Reducing the
number of intermediate storage
data sets reduces the amount of
main storage required for buffer
areas. If the number of interme-
diate storage data sets is at the
minimum allowed for the applica-
tion, reducing the block size may
also reduce the amount of main
storage needed for buffer areas.
If such corrective action is not
possible, the user-specified maxi-
mum must be increased using the
CORE parameter in the PARM field
of the EXEC statement.

IER040A - INSUFFICIENT WORK UNITS

Explanation: Critical. There is
not enough intermediate storage
available to the sort to allow
program execution.

System Action: Stage 2
termination.

User Response: Check DD state-
ments for errors. Check to see if
less than three intermediate
storage units were assigned.
Assign more intermediate storage
to sort. If 2311 disks or 2301
drums are assigned, check to be
sure that at least three areas of
at least three tracks each are
specified on the DD statements.
With the 2314 facility, three data
sets of at least five tracks each
must be assigned.

122

IER041A - N GT NMAX

Explanation: Critical. The num-
ber of records specified in the
SIZE operand of a SORT control
statement is greater than the
maximum sort capacity calculated
by the program.

System Action: The program termi-
nates unless data set size was
estimated or not given; then sort
continues.

User Response: Check SIZE operand
of SORT control statement for
error. If SIZE operand is
correct, check DD statements for
an error in assigning intermediate
storage. If DD statements are
correct, assign more intermediate
storage to the program and rerun.

IER042A - UNITS ASGN ERROR

Explanation: Critical. A. Dif-
ferent types of intermediate
storage devices, or an invalid
combination of input, work, and
output devices have been assigned
to the sort. B. Duplicate
ddnames have been specified.

System Action: Stage 2
termination.

User Response: A. Assign inter-
mediate storage so that all units
are of the same type, i.e., all
are either direct-access units or
tape units. Only when 7-track
tape is used for the input unit
may it be used for the intermedi-
ate storage units and the output
units. B. Check DD statements
for duplication.

IER043A - DATA SET ATTRIBUTES NOT
SPECIFIED

Explanation: Critical. DD state-
ments that define the input and
output data sets conflict with
each other or lack any of the fol-
lowing information:

• Input or output blocking fac-
tor (BLKSIZE).

• Record format (RECFM).
• Record length (LRECL).

System Action: Stage 2
termination.

User Response: Correct statements
and rerun job.

IER044I - EXIT Exx INVALID OPTION

Explanation: An invalid data con-
trol block field specification was
passed to the sort/merge program
at exit E18, E19, E28, E29, E38,
or E39. The xx value in the above
message text is replaced by the
number of the exit at which the
error occurred.

System Action: The invalid option
is ignored.

User Response: Check the parame-
ter list passed by the user-
written routine against the fol-
lowing table before rerunning the
application. An x indicates which
options are allowed with the exit
in question.

IER045I - END SORT PH

Explanation: The program's sort
phase has been successfully
executed.

System Action: None.

User Response: None.

IER046A - SORT CAPACITY EXCEEDED

Explanation: Critical. The sort
has used up all available interme-
diate storage and the input data
set has not been exhausted.

System Action: The program
terminates.

User Response: If magnetic tape
is used for intermediate storage,
be sure all reels contain full
length tapes. (Short tapes may
result from excessive write
errors.) If all reels contain
full length tapes, rerun the ap-
plication with more intermediate
storage. If a direct access
device is used for intermediate
storage, assign more tracks.

Appendix D: Sort/Merge Messages 123

IER047A - RCD CNT OFF, IN xxxxxx, OUT
xxxxxx

Explanation: Critical. The num-
ber of records entering and leav-
ing a program phase are not equal;
these numbers do not include rec-
ords inserted or deleted by user-
written routines. If an actual
data set size was specified in the
SIZE parameter of the SORT control
statement, it is placed in the IN
field of this message. This mes-
sage can appear in phase 1 or
phase 2. In phase 3 the message
is RCD CNT OFF and message IER054I
contains the count. The numbers
replace the values specified as
xxxxxx in the text of the message
as shown above.

System Action: The program
terminates.

User Response: Check for valid
SIZE value. If correct, rerun the
job.

IER048I - NMAX EXCEEDED

Explanation: The sort has
exceeded the calculated sort ca-
pacity while processing the input
data set, and exit E16 is
specified.

System Action: The user-written
routine at exit E16 is entered.
(See the section "Program Modifi-
cation," for further information.)

User Response: None. (The number
of records sorted is equal to the
Nmax calculated by the sort. See
sort message IER038I.)

IER049I - SKIP MERGE PH

Explanation: It is not necessary
to execute the intermediate merge
phase to complete a sorting appli-
cation because the number of
sequences created by the sort
phase is < the merge order.

System Action: Control is passed
directly from the sort phase to
the final merge phase.

User Response: None.

IER050I - END MERGE PH

Explanation: The program's inter-
mediate merge phase has been suc-
cessfully executed.

System Action: None.

User Response: None.

IER051A - UNENDING MERGE

Explanation: Critical. There is
not enough intermediate storage
assigned to successfully complete
the program's intermediate merge
phase.

System Action: The program
terminates.

User Response: Rerun the job
after assigning more intermediate
storage to the sort/merge program.

IER052I - EOJ

Explanation: The program's final
merge phase has been successfully
executed.

System Action: Return is made to
the operating system for a normal
end of task.

User Response: None.

IER053A - OUT OF SEQ

Explanation: Critical. The cur-
rent record leaving the final
merge phase is not in collating
sequence with the last record
blocked for output.

System Action: The program
terminates.

User Response: If a user-written
routine was modifying the records
leaving the final merge phase at
the time this message was
generated, check the routine
thoroughly. If not, rerun the
job.

IER054I - RCD IN xxxxxx, OUT xxxxxx

Explanation: This message lists
the number of records accepted by
the sort as input and the number
of records in the output data set.
The numbers replace the xxxxxx in
the text of the message as shown

124

above. Leading zeros are sup-
pressed; if there were no records
in the input data set, this field
will be blank. In a merging app-
lication, the RECORDS IN field is
blank unless an actual data set
size was specified in the SIZE
parameter of the MERGE control
card. When an actual size is spe-
cified, it is inserted in the IN
field of the message,

System Action: None.

User Response: None.

IER055I - INSERT xxxxxx, DELETE xxxxxx

Explanation: The number of rec-
ords inserted and/or deleted dur-
ing a sort/merge program execution
replaces the values shown as
xxxxxx in the above format.

System Action: None.

User Response: None.

IER056A - SORTIN/SORTOUT NOT DEFINED

Explanation: Critical. SORTIN
and/or SORTOUT do not appear as
ddnames on DD statements supplied
to the sort/merge program. This
message can also appear when DD
statements are supplied for a
merge, and a SORT control state-
ment is given instead of a MERGE
statement.

System Action: The program
terminates.

User Response: Check DD state-
ments for error.

System Action: The program
terminates.

User Response: Check DD state-
ments for error.

IER059A - RCD LNG INVALID FOR DEVICE

Explanation: Critical. The rec-
ord length in the input data
set(s) is either less than 18
bytes, or is too large for the
assigned intermediate storage
devices. (For example, a record
which can not be contained on one
disk track is too large.)

System Action: The program
terminates.

User Response: If the record
length is too large, assign a dif-
ferent type of intermediate
storage device. If the length is
too small, redefine the sort with
a record length of at least 18
bytes.

IER060A - DSCB NOT DEFINED

Explanation: Critical. A DD
statement used to define a direct
access intermediate storage data
set is incorrect.

System Action: The program
terminates.

User Response: Check DD state-
ments for error.

IER057A - SORTIN NOT SORTWK01

Explanation: Critical. An inter-
mediate storage data set other
than SORTWK01 was assigned to the
same tape drive as SORTIN.

System Action: The program
terminates.

User Response: Check DD state-
ments for error.

IER058A - SORTOUT A WORK UNIT

Explanation: Critical. SORTOUT
was specified on the same tape
drive as an intermediate storage
data set.

IER061A - I/O ERR xxx

Explanation: Critical. A per-
manent error occurred during an
I/O operation on device xxx, where
xxx represents the unit number of
the device.

System Action: If no user options
are specified, the program ter-
minates. (For more information on
user options, see the topic I/O
ERRORS in the section "Sort/merge
Program" and topic "Read/write
Error Routines" in the section
"Program Modification.")

User Response: If error persists,
have the computing system checked.

Appendix D: Sort/Merge Messages 125

IER062A - L E ERR

Explanation: Critical. The link-
age editor found a serious error;
execution of the sort/merge pro-
gram is impossible.

System Action: The program
terminates.

User Response: Check user-written
modification routines for a link
editing problem.

IER063A - OPEN ERR xxxxxxxx

Explanation: Critical. An error
occurred during execution of the
OPEN routine for data set
xxxxxxxx, where xxxxxxxx repre-
sents the ddname of the data set
being opened.

System Action: The program
terminates.

User Response: Check for a mis-
sing DD statement.

IER064A - DELETE ERR

Explanation: Critical. The sort/
merge program was unable to delete
either itself or a user-written
modification routine. This mes-
sage should appear only when modi-
fication routines are used.

System Action: The program
terminates.

User Response: Check modification
routines. If no modification rou-
tines are used, and the program is
running in a multiprogramming
environment, rerun the job.

IER065A - PROBABLE DECK STRUCTURE ERROR

Explanation: Critical. The end
of the SYSIN data set was found
before all needed user modifica-
tion modules were read.

System Action: The program
terminates.

User Response: 1. Be sure the
SYSIN data set contains all modi-
fication routines that the MODS

statement specifies it will con-
tain. 2. Check for misplaced job
control language statements, espe-
cially a /* preceding a user modi-
fication module on SYSIN.

IER066A - APROX RCD CNT xxxxxx

Explanation: Critical. Sort
capacity has been reached. The
count xxxxxx is an approximation
of the number of records the sort/
merge program can handle with the
assigned intermediate storage.

System Action: The program
terminates.

User Response: Rerun application
with more intermediate storage.

IER067I - INVALID EXEC OR ATTACH PARAMETER

Explanation: An error was found
in the PARM field parameters of
the EXEC statement, or in the
optional parameters of the parame-
ter list passed to a sort
initiated by ATTACH, LINK, or
XCTL. Invalid parameters are
ignored. If a parameter is
entered more than once, the last
entry is used (if valid).

System Action: Processing con-
tinues. Invalid parameters are
ignored.

User Response: None. For suc-
ceeding runs, check the validity
of optional parameters.

IER068A - OUT OF SEQ SORTINxx

Explanation: Critical. During a
merge only run, a data set was
found to be out of sequence. The
xx is replaced by the data set
identification (01 to 16).

System Action: The program
terminates.

User Response: If a user written
routine was modifying the records,
check it thoroughly. If not,
check the data set that is in
error.

126

Index

Address list
with XCTL

73-74
76

Areas, intermediate storage 43-44
Ascending sequence 107
Assignment component 79

definition of 107
exits 82,84,86

ATTACH 72-78,55,71
Average record length 30

B 43,44,45
Balanced direct access
technique 16-17,47,75

influence on nmnx 92
intermediate storage 43

Balanced tape technique 16-17,47,75
with checkpoint 25

BALM 17,47,75
Base register 85
Binary control fields 23,25,97
Blanks in control statements 22
BLKSIZE subparameter 50
Block, definition of 107
Blocking factor 42

for efficiency 101

CALL macro

Cataloged procedures

channel
overlap

Closing data sets, routines for . .

Character data

Checkpoint

data set
records

restriction with ATTACH

CKPT operand
example of

Collating equal records

Collating sequence

definition of

Commas in conlrol statements

comments field -

Concatenated data set
Continuation

card
Hdxiiouin number

column .

85
47,57,71-72

10
102
92

26,97
9,53,54,55

25,49
49
72
25
26
81

115-116,13
107
22
20

33,52

20
21
21

Control statement
compatibility 35
formats 20-22
maximum number of 22
rules for preparation 22
summary . 36—37

control field
definition of 107,22-24
for merqe 28
lengths 13,24
modification of 13,14,96-97
rules governing 25

Control word 9,13
definition of 107

CORE parameter 47,48,75,104
Count field 31
CRCX 17,47,75
Crisscross direct access
technique 16-17,47,75

intermediate storage 11
restrictions 47
sorting examples 47
work areas 47

Critical messages 105
option 47,48

Data converter 42,50
Data set

checkpoint 25
size 18,24,101
sort 9

DCB parameter 30,49,50
DDNAMES

modification of 103
opticnal characters fcr 75

DD statements 48-55
examples of 57-70
required parameters 49-50

Deferred restart 53
Definition phase 79
Delete records 82
Density 50
DEN subparameter 50
Descending sequence, definition of 107

. 75
Direct access

devices 41-42
intermediate storage 43-44,47,8l
techniques 16-17

Disk intermediate storage 75
DISP parameter 49
DSNAME parameter 49

E option for FIELDS operands

Efficiency, program

End-of-file routine

END statement
examples of

EODAD field

Equal

81,96
101
94
19

38-41
35,93,94

control fields 89
records, collation of 81

Equals module 80,81
EROPT field 93,94
Error

read, write routines 93-96
critical 117
I/O 18,82

Examples
END statement 37-41
JCL 57-70

Index 127

MERGE statement 28-29,38,39
MODS statement 33-35,38,39,40,41
RECORD statement ... 31-32,38,39,40
SORT statement ... 26-27,38,40,41

Exceeding nmax 91-92
Exceeding intermediate storage 91-92
EXEC statement 47
Exit

modification 32,79,81
Ell 99

separate link editing 84
sortinq example 66,70
use of86
E15 .5,73,78,99

restriction with macros 73,88
sorting example 61,62
use of 87,88
E16 . 99

sorting example 61,62,66,60
use of 91-92

El7 99
use of 92
E18 99

use of 93-95
E19 99

use of95-96
E21 99

use of 86
E25 99

use of 88—89
E27 99

use of 92
E28 99

use Of 93-95
E29 99

use of ... 95-96
E31 99

use of 86
E35 5,73,78,99

restriction with macros 73,99
sorting example 61,62,65,67,69
use of 89-91

E37 99
use of 92

E38 99
use of 93-95

E39 99
use of 9 5-96

E61 82,99
sorting example ... 61,62,67
use of 96-97

EXLST field ... 93,94,95-96
External references 84
Extract module 80,81,82

FIELDS operand
merge 28-29,38,39
sort 22,25

examples of 26-27,38,40,41
Final merge phase 82
Fixed-length records

definition for RECORD statement ... 30
influence on 92

Fixed-point control field
Floating point control field 25,82,97
Forcing a technique 16

format
of control statements 20-22

SORT 22
MERGE
28
RECORD 29
MODS 32
END 35

FORMAT operand
merge 29
sort 24

example of 27,38

General assignment phase84
GETMAIN 76

International messages 105
Initialization phases 79
INPFIL 35
Input

definition of 52
for merge 14
for sort 14
modification of 87-80
stream 33,49
tape 75

Input data set
definition of 107
end-of-file routine for 94
ignored 88
modification of 87 -88

Insert records 82
Intermediate merge phase 81
Intermediate storage 41 -45

efficient use of 102-103

examples 43
for merge 15
for sort

formulas
14

tape 42,45
balanced direct access 43,45
crisscross direct access 44,45

requirements 10
Intermediate storage data set

definition of 107
for 2314 technique 47

Invoking
merge 15
sort 14

I/O devices for sort/merge 9
I/O errors 18

routines to correct 82

JCL
See Job control language

Job control language 38,47-55
examples of 57-70

JOB statement 47

Keywords, operand field 20

L 43,44,45

Label checking 9,94
LABEL parameter 49

128

LENGTH operand 29
examples of 31-32,33,39,40

Libraries 33
LINK 72-78,55,71
Linkage editor 33,48
Link editing, separate 84
List

address 73-74
parameter 72,73-74,76,94

Load modules 48
LRECL 30,50

Magnetic tape intermediate storage .. 41-42
Main storage

altering its value 104,75
option 48
requirements 10

Major control field 22
definition of 107

Maximum input 42,45
with various merging techniques 17

Maximum intermediate storage 17
Maximum record size 11,30

Merge
definition of 107
pass, definition of 107
phases

MERGE statement

examples of

parameter
Merging techniques

influence on intermediate storage ...
in parameter list

Messages
list of

option
in parameter list
sorting example

8-

81,82
9,27

29,38,39
28

9,16-17
42
75

117-126
47,48

76
65,66

sysgen 104,105
Minimum intermediate storage 17
Mininuit main storage 17
Minimum record size 10,30

default 30-31
Minimum machine requirements 10
Minor control field 22

definition of 107
Modal length 30-31,40,101

definition of 107
Modification routine 9,54

exits ... 32,86-97,99
definition of 107

in object formin input stream 39
in sort/merge examples 38,39,40
in SYSIN 84

examples of 61,62,65
link editing 84
object form 34
overlaying 35,84
with macros 73

MODS statement 19
examples of 33-35,38,39,40,41
format of 32
indicating separate link editing 84
parameters 32-33

Module 79
equals80,81
extract 80,81,82

MSG parameter 47,48,76,105,117
Multiple control fields 104
Multiprogramming 75

considerations for 103,104,113
Multi reel input 52
MVT 84

Nmax ...18,61,62,82
calculation of 92
definition of 107
exit 91-92

Normalization of floating-point data ... 25

Operand field

Operation field

Optimization phase
OPTION
Options, sysgen

Oscillating tape technique
example of forcing

OSCL
OUTFIL
Output

data set
definition of

ignored

modification of

16-

20,22
20,22
79,80

35

1

03-104

17,47,75
62

7,47,75
35

54,82
107
91

89-91
system 48

for merqe 15
for sort 14

Packed decimal control field 97
Parameter list

for error exits 94
with macros 72,73-74,76
PARK field 47

Performance, optimum 101
Phase 79

definition of 107
POLY 17,47,75
Polyphase tape technique 16-17,47,75

with checkpoint 25
Private libraries 33
Procedures, cataloged ...47,57,71-72
Program

exits 79
definition of 107

modification 79
termination 91-92

Read backward 81
Read error routines 93-95,18
RECFM 31,50
Record

addition of 87
definition of 107
deletion of 82
length 30
skipped 24
size 10-11,30

Index 129

storage area 30
summarization of 82,89,91

Record change exits
El5 87-88
E25 88-89
E35 89-91

References, external 84
Region size 10,104,113
Register

base 85
conventions 99
saving and restoring 85

Restart 25,54
deferred 53

Return codes 82
for exit E15 87
tor exit El6 91
for exit E25 88
for exit E35 90
general use cf 85

RETURN macro 85
Routine, modification 32-33
Running component 79

definition of 107
exits86-97

Sequence

checkinq 90
collating 115-116,13
definition of 107

Sequence distribution technique 9,16-17,47
definition of 107
forcing 16
influence on intermediate storage ... 42
in parameter .list

Sequencing, control fields

SEP parameter

Separate link editing

Size, data set
SIZE operand

example of

merge

sort
SKIPREC operand

75
24

102,103
35,84,86

24

26-27,38,10
28-29,39

18,24
24,91

Skip records 24
Sort

blocking factor, definition 107
definition of 107
initiation of 71
phase 81
technique 9,15

SORT cataloged procedure 71-72,47,57
SORT statement 18,19

examples of 26-27,38,40,41
format of 22
image for macros 74
parameters 22-25

SORTCKPT DD
example cf 54
summary 55
use uf 49,54

SORTD cataloged procedure 72,47,57
SORTIN

data set 51
ignored 78,88
modification of 87-88

DD 30,73
examples
of ... 51-52,57,59,61,62,64,65,69,70
use of 48
with macros 73

SORTIN01-16 DD
examples of 52,60,67,68
summary 55
use of 48

SORTLIB DD
example of 59
in cataloged procedure 71,72
summary of 55
use of 48
with macros 72

SORTMODS
data set 51,84
DD statement

examples of 54,61,62,65
summary 55
use of 49

SORTOUT
data set 78,91
DD statement ... 30,31,73

example of 54,57-62,61-70
summary 55
use of 49,54

SORTWK
data sets 52,53
DD statements

examples
of 53,57,59,61,62,64,65,69,70
summary 55
use of 48,52
with macros 73

SPACE parameter 49
Spanned records 10-11

definition cf 10
Special charactcrs 75
Storage capacity, exceeding 18
Storage, intermediate

see intermediate storage
Storage, main

see main storage
Summarization of records 82,89,91
System generation 75,101

options and requirements 103-104
system libraries 33
SYNAD field ... 93,94,95-96
SYSIN DD 33

examples of 57,59,60,61
SYSLIN DD

in cataloged procedure 71
summary 55
use of 48

SYSLM0D DD
summary 55
use of 48

SYSPRINT DD
in cataloged procedure 71
suirmary 55
use of . 48

SYSOUT DD
example of 59
in cataloged procedure 71,72
suirrary 55
use of 48
with macros 73

130

SYSUT1 DD
in cataloged procedure 71
summary 55
use of 48

Tape
intermediate storaqe 42,45,47,75,81
switching device 102
techniques16-17
units, maximum number 42

Techniques, sorting and merging 9
Temporary data set 49
Termination

due to exceeding storage capacity 18
due to I/O errors 18

Total tracks for intermediate storage 43,44
Track capacity 31
Translation feature 42
TRTCH subparameter 50
TYPE operand 29

examples of 31-32,38,39,40

UNIT parameter 49
User written routine ... 9,33-34,79

definition of 107

Variable-lenqth records
definition of RECORD statement 30
influence on nmax 92
restriction with 7-track tape.... 41

Variable-length spanned records 10-11
VOLUME parameter 49

when required 52
VRE records 10-11

Work data sets 52
for 2314 technique 47

Write errors, routines for 95-96

XCTL72—78,55,71
special considerations 76

Zoned decimal data 27,97

2301 drum 41-42,47,75
efficient use of 102
merglnq example 67

2311 disk 41-42,47,75
efficient use of 102
sorting example 61,65

2314 storage facility 41-42,75
efficient use of 102
merging technique 17
sorting example 66,69

7-track tape 4l-42,49,50
sorting example 64,68

9-track tape 41
sorting example 57,60,61

/* statement 35

Index 131

GC28-6543-5

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10 017
[International]

IBM S/360 Printed in U.S.A. GC28-6543-5

IBM System/360 Operating System
Sort/Merge

Form GC28-6543-5

READER'S COMMENT FORM

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131

