
IBM

File No. S360-29
GC28-8201-2

Systems Reference Library

IBM System/360 Operating System

PL/I (F)

Language Reference Manual

This publication is a companion volume
to IBM System/360 Operating System: PL/I
(F) Programmer's Guide Form C28-6594.
Together the two books form a guide to the
writing and execution of PL/I programs
under the control of an IBM System/360
Operating System that includes the PL/I (F)
compiler.

OS

Third Edition (October, 1969)

This is a major revision of, and obsoletes, Form C28-8201-1
and Technical Newsletters N33-6008, N33-6011. In addition
to incorporating information from Technical Newsletters
this new edition describes additional language implemented
by Version 5 of the PL/I (F) Compiler. The contents of
chapters 8 and 9 have been reorganized and now appear as
three chapters: Chapter 8, Input and Output; Chapter 9,
Stream-oriented Transmission; and Chapter 10, Record-
oriented Transmission. In Chapter 11, Editing and String
Handling, the section headed "The Picture Specification"
has been completely rewritten. A new chapter, entitled
"Optimization and Efficient Performance", has taken the
place of Chapter 13 "Efficient Performance". The new
chapter contains optimization information, and "Programming
Techniques", previously part of the PL/I (F) Programmers
Guide. Information on Data Mapping, extracted from the
PL/I (F) Programmers Guide, now appears as Section K in
Part II of this manual. Other changes to the text, and
small changes to illustrations, are indicated by a vertical
line to the left of the change; changed or added
illustrations are denoted by the symbol • to the left of
the caption.

This edition applies to Release 18 of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the
specification herein; before using this publication in
connection with the operation of IBM systems, consult the
latest IBM System/360 Bibliography SRL Newsletter, Form
N20-0360, for the editions that are applicable and current.

L 	

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving
your locality.

Address comments concerning the contents of this publication
to IBM United Kingdom Laboratories Ltd., Programming
Publications, Hursley Park, Winchester, Hampshire, England.

C Copyright International Business Machines Corporation 1966,
1967, 1968, 1969

Preface

This publication is planned for use as a
reference book by the PL/I programmer. It
is not intended to be a tutorial
publication, but is designed for the reader
who already has a knowledge of the language
and who requires a source of reference
material.

It is divided into two parts. Part I
contains discussions of concepts of the
language. Part II contains detailed rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete
description of the implementation
environment. In general, it contains
information needed in writing a program; it
does not contain all of the information
required to execute a program. For further
information on executing a program refer to
the publication: IBM System/360 Operating
System PL/I (F) Programmer's Guide.

The following features, discussed in
this publication, are implemented in the
fifth version of the F Compiler but are not
implemented in previous versions:

• Teleprocessing support

The TRANSIENT attribute

The PENDING condition

The G and R options of the ENVIRONMENT
attribute

• String-handling additions

The TRANSLATE and VERIFY string
built-in functions

The STRING pseudo-variable

• Adoption of halfword binary facilities
for FIXED BINARY variables of precision
less than 16

Relaxation of REFER option restriction

• Optimization

The ORDER and REORDER options of the
PROCEDURE and BEGIN statements

• Usability improvements

The TRKOFL and NCP options of the
ENVIRONMENT attribute

• Abbreviations for the keywords BUFFERED
(BUF), EXCLUSIVE (EXCL), SEQUENTIAL
(SEQL), and UNBUFFERED (UNBUF)

The following language changes are also
implemented:

• Mandatory RETURNS keyword on PROOEDURE,
%PROCEDURE, and ENTRY statements of
function procedures when the function
value attributes are explicitly specified

• Removal of ABNORMAL, NORMAL, USES, and
SETS attributes

Requisite Publication

For information necessary to compile,
linkage edit, and execute a program, the
reader should be familiar with the
following publication:

IBM System/360 Operating System, PL/I
(F) Programmer's Guide, Form C28-6594

Recommended Publications

The following publications contain other
information that might be valuable to the
PL/I programmer or to a programmer who is
learning PL/I:

A PL/I Primer, Form C28-6808

A Guide to PL/I for Commercial
Programmers, Form C20-1651

A Guide to PL/I for FORTRAN Users, Form
C20-1637

IBM System/360 Operating System, Queued
Telecommunications Access Method
Message Processing Program Services,
Form C30-2003

IBM System/360 Operating System, Queued
Telecommunications Access Method
Message Control Program, Form O30-2005

Contents

Figures

Introduction

PL/I is a programming language designed to
cover as wide a range of programming
applications as possible. A basic belief
underlying the design of PL/I is that
programmers have common problems,
regardless of the different applications
with which they may be concerned.

The language also is designed to reduce
the cost of programming, including the cost
of training programmers, the cost of
debugging, and, in particular, the cost of
program maintenance.

Training programmers to use a particular
language can often be expensive,
particularly if each programmer must be
taught the entire language, even if he need
use only a part of it. One of the prime
features in the design of PL/I is
modularity; in general, a programmer need
know only as much of the language as he
requires to solve his problems.

Another factor that contributes to
programming cost is that a program
frequently must be rewritten, sometimes
because the system under which it is used
has changed, sometimes because the program
is to be run on a new machine. It is not
uncommon to find that rewriting a program
costs as much as writing it in the first
place.

Two basic characteristics of PL/I are
intended to reduce the need to rewrite
complete programs if either the machine
environment or the application environment
changes. These characteristics are the
block structure used in the language and
its machine independence.

A PL/I program is composed of blocks of
statements called procedure blocks (or
procedures) and begin blocks, each of which
defines a region of the program. A single
program may consist of one procedure or of
several procedures and begin blocks.
Either a procedure block or a begin block
can contain other blocks; a begin block
must be contained in a procedure block.
Each external procedure, that is, a
procedure that is not contained in another
procedure, is compiled separately. The
same external procedure might be used in a
number of different programs.
Consequently, a necessary change made in
that one block effectively makes the change
in all programs that use it.

PL/I is much less machine dependent than
most commonly used programming languages.
In the interest of efficiency, however,
certain features are provided that allow
machine dependence for those cases in which
complete independence would be too costly.

The variety of features provided by
PL/I, as well as the simplicity of the
concepts underlying them, demonstrate the
versatility of the language, its
universality, and the ease with which
different subsets can be defined to meet
the needs of different users.

Use of this Publication

This publication is designed as a reference
book for the PL/I programmer. Its two-part
format allows a presentation of the
material in such a way that references can
be found quickly, in as much or as little
detail as the user needs.

Part I, "Concepts of PL/I," is composed
of discussions and examples that explain
the different features of the language and
their interrelationships. To reduce the
need for cross references and to allow each
chapter to stand alone as a complete
reference to its subject, some information
is repeated from one chapter to another.
Part I can, nevertheless, be read
sequentially in its entirety.

Part II, "Rules and Syntactic
Descriptions," provides a quick reference
to specific information. It includes less
information about interrelationships, but
it is organized so that a particular
question can be answered quickly. Part II
is organized purely from a reference point
of view; it is not intended for sequential
reading.

For example, a programmer would read
Chapter 5 in Part I, "Statement
Classification," for information about the
interactions of different statements in a
program; but he would look in Section J of
Part II, "Statements," to find all the
rules for the use of a specific statement,
its effect, options allowed, and the format
in which it is written.

In the same manner, he would read
Chapter 4 in Part I, "Expressions and Data
Conversion," for a discussion of the
concepts of data conversion, but he would

Introduction 13

use Section F of Part II, "Problem Data
Conversion and Assignment," to determine
the exact results of a particular type of
conversion.

An explanation of the syntax language
used in this publication to describe
elements of PL/I is contained in Part II,
Section A, "Syntax Notation."

Implementation Considerations

This publication reflects features of the
fifth version of the F Compiler. No
attempt is made to provide complete
implementation information; this
publication is designed for use in
conjunction with IBM System/360 Operating
System: PL/I (F) Programmer's Guide.
Discussion of implementation is limited to

those features that are required for a full
explanation of the language. For example,
references to certain parameters of the
Data Definition (DD) job control language
statement are essential to an explanation
of record-oriented input and output file
organization.

Implementation features identified by
the phrase "for System/360 implementa-
tions...* apply to all implementations for
IBM System/360 computers. Features
identified by the phrase "for the F
Compiler..." apply specifically to the IBM
F Compiler under the IBM System/360
Operating System.

A separate publication, IBM System/360:
PL/I Subset Reference Manual, Form
C28-8202, provides the same type of
implementation information as it applies to
the D Compiler used under the IBM
System/360 Disk and Tape Operating Systems.

14

Part I 	Concepts of PL/I

Chapter 1: Basic Characteristics of PL/I

The modularity of PL/I, the ease with which
subsets can be defined to meet different
needs, becomes apparent when one examines
the different features of the language.
Such modularity is one of the most
important characteristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

Machine Independence

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used
programming languages. The methods used to
achieve this show in the form of
restrictions in the language. The most
obvious example is that data with different
characteristics cannot in general share the
same storage; to equate a floating-point
number with a certain number of alphabetic
characters would be to make assumptions
about the representation of these data
items which would not be true for all
machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as the UNSPEC
built-in function and record-oriented data
transmission, do permit a degree of machine
dependence.

Program Structure

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a
subroutine. Procedures may invoke other
procedures, and these procedures or
subroutines may either be compiled
separately, or may be nested within the
calling procedure and compiled with it.
Each procedure may contain declarations
that define names and control allocation of
storage.

The rules defining the use of
procedures, communication between
procedures, the meaning of names, and
allocation of storage are fundamental to

the proper understanding of PL/I at any
level but the most elementary. These rules
give the programmer considerable control
over the degree of interaction between
subroutines. They permit flexible
communication and storage allocation, at
the same time allowing the definition of
names and allocation of storage for private
use within a procedure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self-contained, PL/I makes it possible
to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirable.

Multiprogramming

By means of the PL/I multitasking
facilities, the programmer can specify that
an invoked procedure is to be executed
concurrently with the invoking procedure,
thus making use of the multiprogramming
capabilities of the system. In this way,
the central processing unit can be occupied
with one part of the program while the
input/output channels are occupied with
other parts of the program; this can reduce
the overall amount of waiting time during
execution.

Concurrent execution of different parts
of a program does not imply that the
program cannot be coordinated. The
programmer can specify that execution of a
procedure will be suspended at a specified
point until some point in another procedure
has been reached, or until an input/output
operation has been completed.

Data Types and Data Description

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or
decimal, fixed-point or floating-point,
real or complex, and its precision may be
specified.

Chapter 1: Basic Characteristics of PL/I 17

PL/I provides features to perform
arithmetic operations, operations for
comparisons, logical manipulation of bit
strings, and operations and functions for
assembling, scanning, and subdividing
character strings.

The compiler must be able to determine,
for every name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statement, the compiler may
determine all or some of the attributes by
context, or the attributes may be assumed
by default.

Default Assumptions

An important feature of PL/I is its default
philosophy. If all the attributes
associated with a name, or all the options
permitted in a statement, are not specified
by the programmer, attributes or options
may be assigned by the compiler. This
default action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and use
subsets of the language for which the
programmer need not know all possible
alternatives, or even that alternatives
exist.

Since defaults are based on assumptions
about the intent of the programmer, errors
or omissions may be overlooked, and
incorrect attributes may be assigned by
default. To reduce the chance of this, the
F Compiler optionally provides an attribute
listing, which can be used to check the
names in the program and the attributes
associated with them.

Storage Allocation

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembly
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage
is allocated whenever the block in which
the variables are declared is activated.
At that time the bounds of arrays and the
lengths of strings are calculated.
AUTOMATIC storage is freed and is available
for re-use whenever control leaves the
block in which the storage is allocated.

Storage also may be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the programmer with ALLOCATE and FREE
statements, independent of the invocation
of blocks; or it may be declared BASED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or
programming economy that he needs for each
application. The cost of a particular
facility will depend upon the
implementation, but it will usually be true
that the more dynamic the storage
allocation, the greater the overhead in
execution time.

Expressions

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of
elementary algebra. For example:

A + B * C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that can
be used in an expression. For example, it
is conceivable, though unlikely, that A
could be a floating-point number, B a
fixed-point number, and C a character
string.

When such mixed expressions are
specified, the operands will be converted
so that the operation can be evaluated
meaningfully. Note, however, that the
rules for conversion must be considered
carefully; converted data may not have the
same value as the original. And, of
course, any conversion requires additional
compiler-generated coding, which increases
execution time.

The results of the evaluation of
expressions are assigned to variables by
means of the assignment statement. An
example of an assignment statement is:

X = A + B * C;

This means: evaluate the expression on the
right and store the result, in X. If the
attributes of X differ from the attributes
of the result of the expression, conversion
will again be performed.

18

Data Collections

PL/I permits the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
collections of data elements, all of the
same type, collected into lists or tables
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other
structures of deeper levels. The deepest
levels of the hierarchy represent
elementary data items or arrays.

An element of an array may be a
structure; similarly, any level of a
structure may be an array. Operations can
be specified for arrays, structures, or
parts of arrays or structures. For
example:

A = B + C;

In this assignment statement, A, B, and C
could be arrays or structures.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these a
record at a time without any data
conversion; the external representation is
an exact copy of the internal
representation. Because the aggregate is
treated as a whole, and because no
conversion is performed, this form of
input/output is potentially more efficient
than stream-oriented input/output, although
the actual efficiency of each class will,
of course, depend on the implementation. A
form of record-oriented input/output is
used for teleprocessing applications.

Stream-oriented input/output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data
conversion is required. Record-oriented
input and output, on the other hand,
provides faster transmission by
transmitting data as entire records,
without conversion.

Input and Output

Facilities for input and output allow the
user to choose between factors such as
simplicity, machine independence, and
efficiency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to
internal form and assigned to variables
specified in a list. Similarly, on output,
data items are converted one by one to
external character form and are added to a
conceptually continuous stream of
characters. Within the class of stream
input/output, the programmer can choose
different levels of control over the way
data items are edited and selected from or
added to the stream.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a
specified line size and page size. The
programmer has facilities to detect the end
of a page and to specify the beginning of a
line or a page. These facilities may be
used in subroutines that can be developed
into a report generating system suitable
for a particular installation or
application.

Compile-Time Operations

Most programming is concerned only with
operations upon data. PL/I permits a
compile-time level of operation, in which
preprocessor statements specify operations
upon the text of the source program itself.
The simplest, and perhaps the commonest
preprocessor statement is %INCLUDE (in
general, preprocessor statements are
preceded by a percent sign). This
statement causes text to be inserted into
the program, replacing the %INCLUDE
statement itself. A typical use could be
to copy declarations from an installation's
standard set of definitions into the
program.

Another function provided by
compile-time facilities is the selective
compilation of program text. For example,
it might specify the inclusion or deletion
of debugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can become more
elaborate, and more subtle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the
language.

Chapter 1: Basic Characteristics of PL/I 	19

Interrupt Activities

Modern computing systems provide facilities
for interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrupt
occurred.

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the programmer to specify, by means
of a condition prefix, whether certain
interrupts will or will not occur if the
condition should arise. And, by use of an
ON statement, he can specify the action to
be taken when an interrupt does occur.

20

Chapter 2: Program Elements

There are few restrictions in the format of
PL/I statements. Consequently, programs
can be written without consideration of
special ccding forms or checking to see
that each statement begins in a specific
column. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in the next column or position after the
previous statement, or any number of blanks
may intervene.

Character Sets

One of two character sets may be used to
write a source program; either a
60-character set or a 48-character set.
For a given external procedure, the choice
between the two sets is optional. In
practice, this choice will depend upon the
available equipment.

60-CHARACTER SET

The 60-character set is composed of digits,
special characters, and alphabetic
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($), the
number sign (#), and the commercial "at"
sign (s), which precede the 26 letters of
the English alphabet in the IBM System/360
collating sequence in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). For use with languages other
than English, the first three alphabetic
characters can be used to cause printing of
letters that are not included in the
standard English alphabet.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

There are 21 special characters. They
are as follows:

Special characters are combined to
create other symbols. For example, <=
means "less than or equal to," 1 = means
"not equal to." The combination ** denotes
exponentiation (X**2 means X 2). Blanks are
not permitted in such composite symbols.

An alphameric character is either an
alphabetic character or a digit, but not a
special character.

Note: The question mark, at present, has no
specific use in the language, even though
it is included in the 60-character set.

48-CHARACTER SET

The 48-character set is composed of 48
characters of the 60-character set. In all
but four cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the percent symbol (%) is not
included in the 48-character set, but a
double slash (//) can be used to represent
it. The four characters that are not
duplicated are the commercial "at" sign,
the number sign, the break character, and
the question mark.

The restrictions and changes for this
character set are described in Part II,
Section B, "Character Sets with EBCDIC and
Card-Punch Codes."

'The break character is the same as the
typewriter underline character. It can be
used with a name, such as GROSS_PAY, to
improve readability.

Chapter 2: Program Elements 21

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and comments may
contain any character permitted by a
particular machine configuration.

Certain characters perform specific
functions in a PL/I program. For example,
many characters function as operators.

There are four types of operators:
arithmetic, comparison, bit-string, and
string.

The bit-string operators are

The string operator is:

It at.nni-inn r.rinrAfcmatinn

Figure 2-1 shows some of the functions
of other special characters.

22

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a programmer must
observe the syntactic rules for creating an
identifier.

An identifier is a single alphabetic
character or a string of alphameric and
break characters, not contained in a
comment or constant, and preceded and
followed by a blank or some other
delimiter; the initial character of the
string must be alphabetic. For System/360
implementation, the length must not exceed
31 characters.

Language keywords also are identifiers.
A keyword is an identifier that, when used
in proper context, has a specific meaning
to the compiler. A keyword can specify
such things as the action to be taken, the
nature of data, the purpose of a name. For
example, READ, DECIMAL, and ENDFILE are
keywords. Some keywords can be
abbreviated. A complete list of keywords
and their abbreviations is contained in
Part II, Section C, "Keywords and Keyword
Abbreviations."

Note: PL/I keywords are not reserved
words. They are recognized as keywords by
the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.

No identifier can exceed 31 characters
in length; for the F Compiler, some
identifiers, as discussed in later
chapters, cannot exceed seven characters in
length. This limitation is placed upon
certain names, called external names, that
may be referred to by the operating system
or by more than one separately compiled
procedure. If an external name contains
more than seven characters, it is truncated
by the compiler, which concatenates the
first four characters with the last three
characters.

Examples of identifiers that could be
used for names or labels:

A

FILE2

LOOP_3

RATE_OF_PAY

#32

The Use of Blanks

Blanks may be used freely throughout a PL/I
program. They may or may not surround
operators and most other delimiters. In
general, any number of blanks may appear
wherever one blank is allowed, such as
between words in a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, 1=-)
cannot contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed. Some
examples of the use of blanks are:

AB+BC is equivalent to AB + BC

TABLE(10) is equivalent to TABLE (10)

FIRST,SECOND is equivalent to FIRST, SECOND

ATOB is not equivalent to A TO B

Comments

Comments are permitted wherever blanks are
allowed in a program, except within data
items, such as a character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. Comments do not
otherwise affect execution of a program;
they are used only for documentation
purposes. Comments may be punched into the
same cards as statements, either inserted
between statements or in the middle of
them.

The general format of a comment is:

/* character-string *1

The character pair /* indicates the
beginning of a comment. The same character
pair reversed, */, indicates its end. No
blanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be
immediately adjacent. The comment itself
may contain any characters except the */
combination, which would be interpreted as
terminating the comment.

Example:

/* THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Chapter 2: Program Elements 23

Any characters permitted for a
particular machine configuration may be
used in comments.

Basic Program Structure

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple statements:
keyword, assignment, and null, each of
which contains a statement body that is
terminated by a semicolon.

A keyword statement has a keyword to
indicate the function of the statement; the
statement body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:

GO TO LOOP_3; (GO TO is a keyword; the
blank between GO and TO
is optional. The state-
ment body is LOOP_3;)

A = B + C; 	(assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
this semicolon. The IF statement can
contain two simple statements as shown in
the following example:

IF A>B THEN A = B+C; ELSE GO TO
LOOP_3;

This example can also be written as
follows:

IF A>B
THEN A=B+C;

ELSE GO TO LOOP_3;

Following are examples of the ON
statement:

ON OVERFLOW GO TO OVFIX;

ON UNDERFLOW;

The contained statement in the second
example is the null statement represented
by a semicolon only; it indicates that no
action is to be taken when an UNDERFLOW
interrupt occurs.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more labels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interrupts are to result from the
occurrence of the named conditions.
Condition names are language keywords, each
of which represents an exceptional
condition that might arise during execution
of a program. Examples are OVERFLOW and
SIZE. The OVERFLOW condition arises when
the exponent of a floating-point number
exceeds the maximum allowed (representing a
maximum value of about 10 75). The SIZE
condition arises when a value is assigned
to a variable with loss of high-order
digits or bits.

A condition name in a condition prefix
may be preceded by the word NO to indicate
that, effectively, no interrupt is to occur
if the condition arises. If NO is used,
there can be no intervening blank between
the NO and the condition name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. One or
more condition prefixes may be attached to
a statement, and each parenthesized list
must be followed by a colon. Condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement. For example:

(SIZE,NOOVERFLOW):COMPUTE:A = B * C ** D;

24

The single condition prefix indicates that
an interrupt is to occur if the SIZE
condition arises during execution of the
assignment statement, but that no interrupt
is to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a
prefix and its associated statement are
ignored, it is often convenient to punch
the condition prefix into a separate card
that precedes the card into which the
statement is punched. Thus, after
debugging, the prefix can be easily
removed. For example:

(NOCONVERSION):

(SIZE,NOOVERFLOW):

COMPUTE: A = B * C ** D;

Note that there are two condition prefixes.
The first specifies that no interrupt is to
occur if an invalid character is
encountered during an attempted data
conversion.

Condition prefixes are discussed in
Chapter 13, "Exceptional Condition Handling
and Program Checkout."

GROUPS AND BLOCKS

A group is a sequence of statements headed
by a DO statement and terminated by a
corresponding END statement. It is used

for control purposes. A group also may be
called a DO-group.

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for
control purposes. A program may consist of
one or more blocks. Every statement must
appear within a block. There are two kinds
of blocks: begin blocks and procedure
blocks. A begin block is delimited by a
BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block must be invoked by execution of a
statement in another block. The first
procedure in a program to be executed is
invoked automatically by the operating
system. For System/360 implementations,
this first procedure must be identified by
specifying OPTIONS (MAIN) in the PROCEDURE
statement.

A procedure block may be invoked as a
task, in which case it is executed
concurrently with the invoking procedure.
Tasks are discussed in Chapter 15,
"Multitasking."

Chapter 2: Program Elements 	25

Chapter 3: Data Elements

Data is generally defined as a
representation of information or of value.

In PL/I, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
value that may change during execution of a
program.

A constant (which is not a symbolic
name) has a value that cannot change.

The following statement has both
variables and constants:

AREA = RADIUS**2*3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2*PI;

In this statement, only the digit 2 is a
constant.

In preparing a PL/I program, the
programmer must be familiar with the types
of data that are permitted, the ways in
which data can be organized, and the
methods by which data can be referred to.
The following paragraphs discuss these
features.

Data Types

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
Problem data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string.

Program control data is used by the
programmer to control the execution of his
program. Program control data consists of
the following types: label, event, task,
locator, and area.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name.
Since these characteristics, called
attributes, must be known, certain keywords
and expressions may be used to specify the
attributes of a variable in a DECLARE
statement. The attributes used to describe
each data type are discussed briefly in
this chapter. A complete discussion of
each attribute appears in Part LI, Section
I, "Attributes."

Problem Data

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale,
precision, and mode. The characteristics
of data items represented by an arithmetic
variable are specified by attributes
declared for the name, or assumed by
default.

The base of an arithmetic data item is
either decimal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appears.

26

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
minimum number of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For
fixed-point data items, precision can also
specify the assumed position of the decimal
or binary point, relative to the rightmost
digit of the number.

Decimal Fixed-Point Data

A decimal fixed-point constant consists of
one or more decimal digits with an optional
decimal point. If no decimal point
appears, the point is assumed to be
immediately to the right of the rightmost
digit. In most uses, a sign may optionally
precede a decimal fixed-point constant.

Whenever a data item is assigned to a
fixed-point variable, the declared
precision is maintained. The assigned item
is aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item
contains too many integer digits;
truncation on the right may occur if it
contains too many fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers: the
first is real and the second is imaginary.
For a variable representing complex data
items, the base, scale, and precision of
the two parts must be identical.

Ease, scale, and mode of arithmetic
variables are specified by keywords;
precision is specified by parenthesized
decimal integer constants. The precision
of arithmetic constants is discussed in
greater detail below, under the heading
"Precision of Arithmetic Constants."

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, sterling fixed-point, binary
fixed-point, decimal floating-point, and
binary floating-point. Any of these,
except sterling fixed-point, can be used as
the real part of a complex data item. The
imaginary part of a complex number is
discussed in the section "Complex
Arithmetic Data," in this chapter.

Complex arithmetic variables must be
explicitly declared with the COMPLEX
attribute. Real arithmetic variables may
be explicitly declared to have the REAL
attribute, but it is not necessary to do
so, since any arithmetic variable is
assumed to be real unless it is explicitly
declared complex.

Examples of decimal fixed-point
constants as written in a program are:

3.1416

455.3

732

003

5280

.0012

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers, separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total
number of digits; the second, the scale
factor, may be signed and specifies the
number of digits to the right of the
decimal point. If the variable is to
represent integers, the scale factor and
its preceding comma can be omitted. The
attributes may appear in any order, but the
precision specification must follow either
DECIMAL or FIXED (or REAL or COMPLEX).

Following are examples of declarations
of decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);

DECLARE B FIXED (6,0) DECIMAL;

DECLARE C FIXED (7,-2) DECIMAL;

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal
fixed-point and aligned on the decimal
point. The second DECLARE statement
specifies that B is to represent integers
of no more than 6 digits. Note that the
comma and the zero are unnecessary; it
could have been specified B FIXED DECIMAL
(6). The third DECLARE statement specifies
a negative scale factor of -2; this means
that the assumed decimal point is two

Chapter 3: Data Elements 27

places to the right of the rightmost digit
of the item.

The maximum number of decimal digits
allowed for System/360 implementations is
15. Default precision, assumed when no
specification is made, is (5,0). The
internal coded arithmetic form of decimal
fixed-point data is packed decimal. Packed
decimal is stored two digits to the byte,
with a sign indication in the rightmost
four bits of the rightmost byte.
Consequently, a decimal fixed-point data
item is always stored as an odd number of
digits, even though the declaration of the
variable may specify the number of digits
(p) as an even number. When the
declaration specifies an even number of
digits, the extra digit place is in the
high-order position, and it participates in
any operations performed upon the data
item, such as in a comparison operation.
Any arithmetic overflow or assignment into
an extra high-order digit place can be
detected only if the SIZE condition is
enabled.

Sterling Fixed-Point Data

PL/I has a facility for handling constants
stated in terms of sterling currency value.
The data may be written in a program with
pounds, shillings, and pence fields, each
separated by a period. Such data is
converted and maintained internally as a
decimal fixed-point number representing the
equivalent in pence. A sterling data
constant ends with the letter L,
representing the pounds symbol. All three
fields (pounds, shillings, and pence) must
be present in a sterling constant. Note
the maximum number of digits allowed in the
pounds field of a sterling constant is 13.
The pence field is one or more decimal
digits with an optional decimal point (the
integer part must be less than 12 and
cannot be omitted, and the fractional part
must not exceed 13 minus the number of
digits in the pounds field).

Examples of sterling fixed-point
constants as written in a program are:

101.13.8L

1.10.0L

0.0.2.5L

2.4.6L

The third example represents
twopence-halfpenny. The last example
represents two pounds, four shillings, and
six pence. It is converted and stored
internally as 534 (pence).

There are no keyword attributes for
declaring sterling variables, but a
variable can be declared with a sterling
picture, or sterling values may be
expressed in pence as decimal fixed-point
data. The precision of a sterling constant
is the precision of its value expressed in
pence.

Binary Fixed-Point Data

A binary fixed-point constant consists of
one or more binary digits with an optional
binary point, followed immediately by the
letter B, with no intervening blank. In
most uses, a sign may optionally precede
the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B

11111B

101B

111.01B 1011.111B

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by two
decimal integer constants, enclosed in
parentheses, to represent the maximum
number of binary digits and the number of
digits to the right of the binary point,
respectively. If the variable is to
represent integers, the second digit and
the comma can be omitted. The attributes
can appear in any order, but the precision
specification must follow either BINARY or
FIXED (or REAL or COMPLEX).

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 binary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+262,143.75.

The maximum number of binary digits
allowed for System/360 implementations is
31. Default precision is (15,0). The
internal coded arithmetic form of binary
fixed-point data is a fixed-point binary
fullword or halfword. (A fullword is 31
bits plus a sign bit; a halfword is 15 bits
plus a sign bit.) Any binary fixed-point

28

variable of precision less than 16 is
always stored as 15 digits, even though the
declaration of the variable may specify
fewer digits; any binary fixed-point
variable of precision greater than 15 (or
any binary fixed-point constant, regardless
of precision) is always stored as 31
digits. The declared number of digits are
considered to be in the low-order
positions, but the extra high-order digits
participate in any operations performed
upon the data item. Any arithmetic
overflow into such extra high-order digit
positions can be detected only if the SIZE
condition is enabled.

An identifier for which no declaration
is made is assumed to be a binary
fixed-point variable, with default
precision, if its first letter is any of
the letters I through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

15E-23

15E23

4E-3

48333E65

438E0

3141593E-6

.003141593E3

The last two examples represent the same
value.

The keyword attributes for declaring
decimal floating-point variables are
DECIMAL and FLOAT. Precision is stated by
a decimal integer constant enclosed in
parentheses. It specifies the minimum
number of significant digits to be
maintained. If an item assigned to a
variable has a field width larger than the
declared precision of the variable,
truncation may occur on the right. The
least significant digit is the first that
is lost. Attributes may appear in any
order, but the precision specification must
follow either DECIMAL or FLOAT (or REAL or
COMPLEX).

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(5);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for
decimal floating-point data items for
System/360 implementations is (16); the
exponent cannot exceed two digits. A value
range of approximately 10- 78 to 10 75 can be
expressed by a decimal floating-point data
item. Default precision is (6). The
internal coded arithmetic form of decimal
floating-point data is normalized
hexadecimal floating-point, with the point
assumed to the left of the first
hexadecimal digit. If the declared
precision is less than or equal to (6),
short floating-point form is used; if the
declared precision is greater than (6),
long floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
is any of the letters A through H, 0
through Z, or one of the alphabetic
extenders, $, #, @ .

Binary Floating-Point Data

A binary floating-point constant consists
of a field of binary digits followed by the
letter E, followed by an optionally signed
decimal integer exponent followed by the
letter B. The exponent is a string of
decimal digits and specifies an integral
power of two. The field of binary digits
may contain a binary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Examples of binary
floating-point constants as written in a
program are:

101101E5B

101.101E2B

11101E-28B

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or
COMPLEX). Following is an example of

Chapter 3: Data Elements 29

declaration of a binary floating-point
variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items for System/360
implementations is (53); default precision
is (21). The exponent cannot exceed three
decimal digits. A value range of
approximately 2-260 to 2 252 can be
expressed by a binary floating-point data
item. The internal coded arithmetic form
of binary floating-point data is normalized
hexadecimal floating-point. If the
declared precision is less than or equal to
(21), short floating-point form is used; if
the declared precision is greater than
(21), long floating-point form is used.

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no
complex constants in PL/I. The effect is
obtained by writing a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type (except sterling
fixed-point) immediately followed by the
letter I.

Examples of imaginary constants as
written in a program are:

271

3.968E101

11011.01BI

Each of these is considered to have a real
part of zero. Although complex constants
cannot be written with a nonzero real part,
PL/I provides the facility to express such
values in the following form:

real-constant{+|-}imaginary-constant

Thus a complex value could be written as
38+271.

The keyword attribute for declaring a
complex variable is COMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both
fields.

Unless a variable is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data '

A numeric character data item (also known
as a numeric field data item) is the value
of a variable that has been declared with
the PICTURE attribute and a numeric picture
specification. The data item is the
character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification
describes a character string to which only
data that has, or can be converted to, an
arithmetic value is to be assigned. A
numeric picture specification cannot
contain either of the picture characters A
or X, which are used for non-numeric
picture-character strings. The basic form
of a numeric picture specification is one
or more occurrences of the digit-specifying
picture character 9 and an optional
occurrence of the picture character V, to
indicate the assumed location of a decimal
point. The picture specification must be
enclosed in single quotation marks. For
example:

'999V99'

This numeric picture specification
describes a data item consisting of up to
five decimal digits in character form, with
a decimal point assumed to precede the
rightmost two digits.

Repetition factors may be used in
numeric picture specifications. A
repetition factor is a decimal integer
constant, enclosed in parentheses, that
indicates the number or repetitions of the
immediately following picture character.
For example, the following picture
specification would result in the same
description as the example shown above:

'(3)9V(2)9'

The format for declaring a numeric
character variable is:

DECLARE identifier PICTURE
'numeric-picture-specification';

For example:

DECLARE PRICE PICTURE '999V99';

This specifies that any value assigned to
PRICE is to be maintained as a character
string of five decimal digits, with an
assumed decimal point preceding the

30

rightmost two digits. Data assigned to
PRICE will be aligned on the assumed point
in the same way that point alignment is
maintained for fixed-point decimal data.

The numeric picture specification can
specify all of the arithmetic attributes of
data in much the same way that they are
specified by the appearance of a constant.
Only decimal numeric data can be
represented by picture character. Complex
data can be declared by specifying the
COMPLEX attribute along with a single
picture specification that describes either
a fixed-point or a floating-point data
item.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. In System/360
implementations, numeric character data is
stored in zoned decimal format; before it
can be used in arithmetic computations, it
must be converted either to packed decimal
or to hexadecimal floating-point format.
Such conversions are done automatically,
but they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be
specified for insertion into a numeric
character data item, and such characters
are actually stored within the data item.
Consequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.

Consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);

PRICE = 12.28;

COST = '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.) are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, the actual
internal character representation of PRICE
and COST can be considered identical. If

they were printed, they would print exactly
the same. They do not, however, always
function the same. For example:

VALUE = PRICE;

COST = PRICE;

VALUE = COST;

PRICE = COST;

After the first two assignment
statements are executed, the value of VALUE
would be 0012.28 and the value of COST
would be '$12.28'. In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
assignment; the arithmetic value of PRICE
is converted to internal coded arithmetic
form. In the assignment of PRICE to COST,
however, the assignment is to a character
string, and the editing characters of a
numeric picture specification always
participate in such an assignment. No
conversion is necessary because PRICE is
stored in character form.

The third and fourth assignment
statements would cause errors. The value
of COST cannot be assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a
numeric picture specification.

Note: Although the decimal point can be an
editing character or an actual character in
a character string, it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an
arithmetic constant. The same would be
true of a valid plus or minus sign, since
arithmetic constants can be preceded by
signs.

Other editing characters, including zero
suppression characters, drifting
characters, and insertion characters, can
be used in numeric picture specifications.
For complete discussions of picture
characters, see Part II, Section D,
"Picture Specification Characters" and the
discussion of the PICTURE attribute in Part
II, Section I, "Attributes."

Chapter 3: Data Elements 31

Precision of Arithmetic Constants

For purposes of expression evaluation, an
apparent precision is defined for real
arithmetic constants:

Real fixed-point constants have a
precision (p,q), where p is the total
number of digits in the constant and q is
the number of digits specified to the right
of the decimal or binary point.

The precision of a sterling constant is
equivalent to the precision of its
corresponding value in fixed-point pence.
This value is determined as follows:
multiply the value of the pounds field by
240; add the value of the shillings field
multiplied by 12; add the value of the
pence field. The precision of the result
(with leading zeros removed) is the
precision of the corresponding sterling
constant.

The precision of a floating-point
constant is (p), where p is the number of
digits of the constant left of the F.

Examples:

3.14 has precision (3,2)
0.012E5 has precision (4)
0.9.0.5L has precision (4,1)
0000001B has precision (7,0)

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or binary digits) it contains.

There are two types of strings:
character strings and bit strings.

Character-String Data

A character string can include any digit,
letter, or special character recognized as
a character by the particular machine
configuration. Any blank included in a
character string is an integral character
and is included in the count of length. A
comment that is inserted within a character
string will not be recognized as a comment.
The comment, as well as the comment
delimiters (/* and */), will be considered
to be part of the character-string data.

Character-string constants, when written

in a program, must be enclosed in single
quotation marks. If a single quotation
mark is a character in a string, it must be
written as two single quotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation marks are
used within the string to represent a
single quotation mark, they are counted as
a single character.

A null character-string constant is
written in a program as two quotation marks
with no intervening blank.

Examples of character-string constants
are:

'LOGARITHM TABLE'

'PAGE 5'

'SHAKESPEAR''S ''''HAMLET'''''

'AC438-19'

(2)'WALLA '

'' (null character-string constant)

The third example actually indicates
SHAKESPEARE'S "HAMLET" WITH A LENGTH OF
24. In the last example, the parenthesized
number is a repetition factor, which
indicates repetition of the characters that
follow. This example specifies the
constant 'WALLA WALLA ' (the blank is
included as one of the characters to be
repeated). The repetition factor must be
an unsigned decimal integer constant,
enclosed in parentheses.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length is declared by an expression or a
decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length
specification must follow the keyword
CHARACTER. For example:

DECLARE NAME CHARACTER (15);

This DECLARE statement specifies that the
identifier NAME is to represent
character-string data items, 15 characters
in length. If a character string shorter
than 15 characters were to be assigned to
NAME, it would be left adjusted and padded
on the right with blanks to a length of 15.
If a longer string were assigned, it would
be truncated on the right: (Note: If such
truncation occurs, no interrupt will result
as it might for truncation of arithmetic
data, and there is no ON condition 	PL/I
to deal with string truncation.)

32

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specifies that the
identifier NAME is to be used to represent
varying-length character-string data items
with a maximum length of 15. The actual
length attribute for NAME at any particular
time is the length of the data item
assigned to it at that time. The
programmer need not keep track of the
length of a varying-length character
string; this is done automatically. The
length at any given time can be determined
by the programmer, however, by use of the
LENGTH built-in function, as discussed in
Chapter 11, "Editing and String Handling."
Note for the F Compiler that until a
varying-length string variable is given an
initial value, its length is set to zero.

Character-string data in System/360
implementations is maintained internally in
character format, that is, each character
occupies one byte of storage. The maximum
length allowed for variables declared with
the CHARAOTER attribute is 32,767. The
maximum length allowed for a
character-string constant after application
of repetition factors varies according to
the amount of storage available to the
compiler, but it never will be less than
1,007 (see IBM System/360 Operating System:
PL/I (F), Programmer's Guide. The minimum
length for a character string is zero.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE 'character-picture-specification'

The character picture specification is a
string composed of the picture
specification characters A, X, and 9. The
string of picture characters must be
enclosed in single quotation marks, and it
must contain at least one A or X and no
other picture characters except 9. The
character A specifies that the
corresponding position in the described
field will contain an alphabetic character
or blank. The character X specifies that
any character may appear in the
corresponding position in the field. The
picture character 9 specifies that the
corresponding position will contain a
numeric character or blank. For example:

DECLARE PART NO PICTURE 'AA9999X999';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric

characters, one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants.
Repetition factors must be placed inside
the quotation marks. The repetition factor
specifies repetition of the immediately
following picture character. For example,
the above picture specification could be
written:

'(2)A(4)9X(3)9'

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as
discussed above.

Note that, for character picture
specifications, the picture character 9
specifies a digit or a blank, while, for
numeric picture specifications, the same
character specifies only a digit.

Bit-string Data

A bit-string constant is written in a
program as a series of binary digits
enclosed in single quotation marks and
followed immediately by the letter B.

A null bit-string constant is written in
a program as two quotation marks with no
intervening blank, followed immediately by
the letter B.

Examples of bit-string constants as
written in a program are:

'1'B

'11111010110001'B

(64)'0'B

''B

The parenthesized number in the last
example is a repetition factor which
specifies that the following series of
digits is to be repeated the specified
number of times. The example shown would
result in a string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length is
specified by an expression or a decimal
integer constant, enclosed in parentheses,
to specify the number of binary digits in
the string. The letter B is not included
in the length specification since it is not
part of the string. The length
specification must follow the keyword BIT.

Chapter 3: Data Elements 	33

Following is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter, padding,
on the right, is with zeros.

A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variables in the preceding section.

With System/360 implementations, bit
strings are stored eight bits to a byte.
The maximum length allowed for a bit-string
variable with the F Compiler is 32,767.
The maximum length allowed for a bit-string
constant after application of repetition
factors depends upon the amount of storage
available to the compiler, but it will
never be less than 8,056 (1,007 bytes).
The minimum length for a bit string is
zero.

Program Control Data

The types of program control data are
label, event, task, locator, and area.

LBLA: 	statement;

LBLB: 	statement;

LBL_X = LBL_A;

GO TO LBL_X;

LBLA and LBL_B are statement-label
constants because they are prefixed to
statements. LBLX is a statement-label
variable. By assigning LBL_A to LBL_X, the
statement GO TO LBL_X causes a transfer to
the LBLA statement. Elsewhere, the
program may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
LBLB. This value of LBL_X is retained
until another value is assigned to it.

A statement-label variable must be
declared with the LABEL attribute, as
follows:

DECLARE LBL_X LABEL;

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier
written as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: DISTANCE = RATE*TIME;

In this example, ABCDE is the statement
label. The statement can be executed
either by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A
statement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:

EVENT DATA

Event variables are used to coordinate the
concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record-oriented input/output
operation and the execution of other
statements in the procedure that initiated
the operation.

A variable is given the EVENT attribute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see Chapter
15, "Multitasking," and "The EVENT Option"
in Chapter 10, "Record-Oriented
Transmission."

34

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attribute
by its appearance in a TASK option, or by
explicit declaration, as in the following
example:

DECLARE ADTASK TASK;

For detailed information, see Chapter
15, "Multitasking."

LOCATOR DATA

There are two types of locator data:
pointer and offset.

The value of a pointer variable is
effectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may have been
allocated storage in several different
locations, all of which are immediately
accessible. Since based storage is so
allocated, reference to a based variable
must be qualified in some way; with the F
Compiler, this qualification must be
provided by a pointer variable.

The value of an offset variable
specifies a location relative to the start
of a reserved area of storage and remains
valid when the address of the area itself
changes.

Locator variables can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREA1);

In this example, AREA1 is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the
left-hand side of a pointer qualification
symbol, or by its appearance in a SET
option.

For detailed information, see Chapter
14, "Based Variables and List Processing."

AREA DATA

Area variables are used to describe areas
of storage that are to be reserved for the
allocation of based variables. An area can
be assigned or transmitted complete with
its contained allocations; thus, a set of
based allocations can be treated as one
unit for assignment and input/output while
each allocation retains its individual
identity.

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE AREA1 AREA(2000),
AREA2 AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREA1 in the example;
otherwise a default size is assumed. For
the F Compiler, this default size is 1000
bytes.

For detailed information, see Chapter
14, "Based Variables and List Processing."

Data Organization

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (also
called a scalar variable). A variable that
represents a collection of data elements is
either an array variable or a structure
variable.

Any type of problem data or program
control data can be collected into arrays
or structures.

ARRAYS

Data elements having the same
characteristics, that is, of the same data
type and of the same precision or length,
may be grouped together to form an array.
An array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative position
within the array.

Chapter 3: Data Elements 35

Consider the following two declarations:

DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to
be a one-dimensional array of eight
elements, each of which is a fixed-point
decimal item of three digits. In the
second example, TABLE is declared to be a
two-dimensional array, also of eight
fixed-point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute
specification. It must follow the array
name, with or without an intervening blank.
It specifies the number of dimensions of
the array and the bounds, or extent, of
each dimension. Since only one bounds
specification appears for LIST, it is a
one-dimensional array. Two bounds
specifications, separated by a comma, are
listed for TABLE; consequently, it is
declared to be a two-dimensional array.

The bounds of a dimension are the
beginning and the end of that dimension.
The extent is the number of integers
between, and including, the lower and upper
bounds. If only one integer appears in the
bounds specification for a dimension, the
lower bound is assumed to be 1. The one
dimension of LIST has bounds of 1 and 8;
its extent is 8. The two dimensions of
TABLE have bounds of 1 and 4 and 1 and 2;
the extents are 4 and 2.

If the lower bound of a dimension is not
1, both the upper bound and the lower bound
must be stated explicitly, with the two
numbers connected with a colon. For
example:

DECLARE LIST_A (4:11);

DECLARE LIST_B (-4:3);

items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Each of the numbers following the name
LIST is a subscript. A parenthesized
subscript following an array name, with or
without an intervening blank, specifies the
relative position of a data item within the
array. A subscripted name, such as
LIST(4), refers to a single element and is
an element variable. The entire array can
be referred to by the unsubscripted name of
the array, for example, LIST. In this
case, LIST is an array variable. Note the
difference between a subscript and the
dimension attribute specification. The
latter, which appears in a declaration,
specifies the dimensionality and the number
of elements in an array. Subscripts are
used in other references to identify
specific elements within the array.

The same data assigned to LIST_A and
LIST_B, as declared above, would be
referred to as follows:

Reference Element 	Reference

In the first example, the bounds are 4 and
11; in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in Chapter 4, "Expressions and Data
Conversion") involving more than one array,
the bounds -- not merely the
extents -- must be identical. Although
LIST, LIST_A, and LIST_B all have the same
extent, the bounds are not identical.

LIST_A (4) 	20

LIST_A (5) 	5

LIST_A (6) 	10

LIST_A (7) 	30

LIST_A (8) 	630

LIST_A (9) 	150

LIST_A (10) 310

LIST_A (11) 	70

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data

Assume that the same data were assigned
to TABLE, which is declared as a
two-dimensional array. TABLE can be

36

illustrated as a matrix of four rows and
two columns, as follows:

An element of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illustrate
TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the right-most
subscript varying most rapidly. For
example, assignment to TABLE would be to
TABLE(1,1), TABLE(1,2), TABLE(2,1),
TABLE(2,2) and so forth.

Arrays are not limited to two
dimensions. The PL/I F Compiler allows as
many as 32 dimensions to be declared for an
array. In a reference to an element of any
array, a subscripted name must contain as
many subscripts as there are dimensions in
the array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. Other
data types may be collected into arrays.
String arrays, either character or bit, are
valid, as are arrays of statement labels.

Expressions as Subscripts

The subscripts of a subscripted name need
not be constants. Any expression that
yields a valid arithmetic value can be
used. If the evaluation of such an
expression does not yield an integer value,
the fractional portion is ignored. For
System/360 implementations, the integer
value is converted, if necessary, to a
fixed-point binary number of precision
(15,0), since subscripts are maintained
internally as binary integers. Note that,
although the F compiler maintains
fixed-point binary variables of precision
less than 16 as halfwords, this does not
apply to subscript expressions. These,
like most other compiler-created
fixed-point binary temporaries (see Chapter
4, "Expressions and Data Conversion") are
stored as fullwords, regardless of
precision.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross Sections of Arrays

Cross sections of arrays can be referred to
by substituting an asterisk for a subscript
in a subscripted name. The asterisk then
specifies that the entire extent is to be
used. For example, TABLE(*,1) refers to
all of the elements in the first column of
TABLE. It specifies the cross section
consisting of TABLE(1,1), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The
subscripted name TABLE(2,*) refers to all
of the data items in the second row of
TABLE. TABLE(*,*) refers to the entire
array.

Note that a subscripted name containing
asterisk subscripts represents, not a
single data element, but an array with as
many dimensions as there are asterisks.
Consequently, such a name is not an element
expression, but an array expression.

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the
structure name, which represents the entire
collection of element variables. For
example, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST_NAME
FIRST_NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME RATE

These variables could be collected into
a structure and given a single structure

(m 2)
5

30

150

70

Chapter 3: Data Elements 37

name, PAYROLL, which would refer to the
entire collection.

PAYROLL

LAST NAME 	REGULAR_HOURS REGULAR RATE

FIRST NAME OVERTIME_HOURS OVERTIME_RATE

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL);

This input statement could cause data to
be assigned to each of the element
variables of the structure PAYROLL.

It often is convenient to subdivide the
entire collection into smaller logical
collections. In the above examples,
LAST_NAME and FIRST NAME might make a
logical subcollection, as might
REGULAR_HOURS and OVERTIME_HOURS, as well
as REGULAR_ RATE and OVERTIME_RATE. In a
structure, such subcollections also are
given names.

PAYROLL

NAME
	

HOURS
	

RATE

FIRST
	

REGULAR
	

REGULAR
LAST
	

OVERTIME
	

OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the structure name
(called a major structure name); at a
deeper level are the names of substructures
(called minor structure names); and at the
deepest are the element names (called
elementary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is
specified in a DECLARE statement through
the use of level numbers. A major
structure name must be declared with the
level number 1. Minor structures and
elementary names must be declared with
level numbers arithmetically greater than
1; they must be decimal integer constants.
A blank must separate the level number and
its associated name. The maximum declared
level number permitted in a structure is
255. The maximum true level number
permitted in a structure is 63.

For example, the items of a weekly
payroll could be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST,

3 FIRST,
2 HOURS,

3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

Note: In an actual declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names.
The pattern of indention in this example is
used only for readability. The statement
could be written in a continuous string as
DECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A
programmer can refer to the entire
structure by the name PAYROLL, or he can
refer to portions of the structure by
referring to the minor structure names. He
can refer to an element by referring to an
elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeper
levels need not be the immediately
succeeding integers. They are used merely
to specify the relative level of a name. A
minor structure at level n contains all the
names with level numbers greater than n
that lie between that minor structure name
and the next name with a level number less
than or equal to n. PAYROLL might have
been declared as follows:

DECLARE 1 PAYROLL,
4 NAME,

5 LAST,
5 FIRST,

2 HOURS,
6 REGULAR,
5 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

This declaration would result in exactly
the same structuring as the previous
declaration.

The description of a major structure
name is terminated by the declaration of
another item with a level number 1, by the
declaration of another item with no level
number, or by a semicolon terminating the
DECLARE statement.

Level numbers are specified with
structure names only in DECLARE statements.
In references to the structure or its
elements, no level numbers are used.

38

Qualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there
is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name would
be ambiguous without some qualification to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A qualified name
is an elementary name or a minor structure
name that is made unique by qualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and
OVERTIME could be made unique through use
of the qualified names HOURS.REGULAR,
HOURS.OVERTIME, RATE.REGULAR, and
RATE.OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may or
may not appear surrounding the period.
Qualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL.HOURS.REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK.HOURS.REGULAR). All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL.LAST is a valid reference to the
name PAYROLL.NAME.LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attribute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

DECLARE 1 WEATHER(12),
2 TEMPERATURE,

3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND_VELOCITY,
3 HIGH DECIMAL FIXED(3),
3 LOW DECIMAL FIXED(2),

2 PRECIPITATION,
3 TOTAL DECIMAL FIXED(3,1),
3 AVERAGE DECIMAL FIXED(3,1);

Thus, a programmer could refer to the
weather data for the month of July by
specifying WEATHER(7). Portions of the
July weather could be referred to by
TEMPERATURE(7), WIND_VELOCITY(7), and
PRECIPITATION(7), but TOTAL(7) would refer
to the total precipitation during the month
of July.

TEMPERATURE.HIGH(3), which would refer
to the high temperature in March, is a
subscripted qualified name.

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consider the
following array of structures:

DECLARE 1 A (6,6),
2 B (5),

3 C,
3 D,

2 E;

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).0
identifies a particular C that is an
element of B in a structure in A.

So long as the order of subscripts
remains unchanged, subscripts in such
references may be moved to the right or
left and attached to names at a lower or
higher level. For example, A.B.C(1,1,2)
and A(1,1,2).B.0 have the same meaning as
A(1,1).B(2).0 for the above array of
structures. Unless all of the subscripts
are moved to the lowest or highest level,
the qualified name is said to have
interleaved subscripts; thus, A.B(1,1,2).0
has interleaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For example, in
the above declaration for the array of
structures A, the array B is a
three-dimensional structure, because it
inherits the two dimensions declared for A.
If B is unique and requires no
qualification, any reference to a
particular B would require three
subscripts, two to identify the specific A

Chapter 3: Data Elements 39

and one to identify the specific B within 	 DECLARE A(20,20),
that A. 	 B(10) DEFINED A(2*1SUB,2*1SUB);

Other Attributes

Keyword attributes for data variables such
as BINARY and DECIMAL are discussed briefly
in the preceding sections of this chapter.
Other attributes that are not peculiar to
one data type may also be applicable. A
complete discussion of these attributes is
contained in Part II, Section I,
"Attributes." Some that are especially
applicable to a discussion of data type and
data organization are DEFINED, LIKE,
ALIGNED, UNALIGNED, and INITIAL.

The DEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

DECLARE LIST (100,100),
LIST_ITEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST_ITEM is an identical array defined on
LIST. A reference to an element in
LIST_ITEM is the same as a reference to the
corresponding element in LIST.

The DEFINED attribute, along with the
POSITION attribute, can be used to
subdivide or overlay a data item. For
example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTER(10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST

POSITION(11),
LISTC CHARACTER(30) DEFINED LIST

POSITION(21);

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be used
to specify parts of an array through use of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can be specified as any
decimal integer constant from 1 through n
(where n represents the number of
dimensions for the defined item). The
value of the dummy variable (iSUB) ranges
from the lower bound to the upper bound of
the dimension specified by n. For example:

B is a subset of A consisting of
every even element in the diagonal of the
array, A. In other words, B(1) corresponds
to A(2,2), B(2) corresponds to A(4,4).

The LIKE Attribute

The LIKE attribute is used to indicate that
the name being declared is to be given the
same structuring as the major structure or
minor structure name following the
attribute LIKE. For example:

DECLARE 1 BUDGET,
2 RENT,
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT,
1 COST_OF_LIVING LIKE BUDGET;

This declaration for COST_OF_LIVING is the
same as if it had been declared:

DECLARE 1 COST_OF_LIVING,
2 RENT,
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies
structuring, names, and attributes of the
structure below the level of the specified
name only. No dimensionality of the
specified name is copied. For example, if
BUDGET were declared as 1 BUDGET(12), the
declaration of COST_OF_LIVING LIKE BUDGET
would not give the dimension attribute to
COST_OF_LIVING. To achieve dimensionality
of COST_OF_LIVING, the declaration would
have to be DECLARE 1 COST_OF_LIVING(12)
LIKE BUDGET.

A minor structure name can be declared
LIKE a major structure of LIKE another
minor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

DECLARE 1 STRUCTURE,
2 X BIT(2), 	/*

2 A ALIGNED, 	/*
3 B, 	 /*
3 C UNALIGNED, /*

4 D, 	/*
4 E ALIGNED, /*
4 F, 	/*

3 G, 	 /*
2 H; 	 /*

UNALIGNED BY
DEFAULT */
ALIGNED EXPLICITLY */
ALIGNED FROM A */
UNALIGNED
EXPLICITLY */
UNALIGNED FROM C */
ALIGNED EXPLICITLY */
UNALIGNED FROM C */
ALIGNED FROM A */
ALIGNED BY DEFAULT */

The ALIGNED and UNALIGNED Attributes
	 The INITIAL Attribute

The ALIGNED and UNALIGNED attributes are
used to specify the positioning in storage
of data elements, to influence speed of
access or storage economy respectively.

Note: Use of the UNALIGNED attribute allows
data interchange with FORTRAN files. See
'Managing Programs' in the PL/I (F)
Programmer's Guide, Form C28-6594.

ALIGNED in System/360 implementations
specifies that the data element is to be
aligned on the storage boundary
corresponding to its data type requirement.

UNALIGNED in System/360 implementations
specifies that each data element is to be
stored contiguously with the data element
preceding it: a character-string item is to
be mapped on the next byte boundary, a
bit-string item is to be mapped on the next
bit, and a word and doubleword item is to
be mapped on the next byte boundary.

Defaults are applied at element level.
The default for bit-string data,
character-string data, and numeric
character data is UNALIGNED; for all other
types of data, the default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that
are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED
declarations for a structure and its
elements:

Although UNALIGNED causes economic use
of data storage, for System/360
implementations it will increase the amount
of code generated to access data items that
are not aligned on the required byte
boundaries.

The INITIAL attribute specifies an initial
value to be assigned to a variable at the
time storage is allocated for it. For
example:

DECLARE NAME CHARACTER(10) INITIAL
('JOHN DOE');

DECLARE PI FIXED DECIMAL (5,4) INITIAL
(3.1416);

DECLARE TABLE (100,100) INITIAL CALL
SUBR(ALPHA);

When storage is allocated for NAME, the
character string 'JOHN DOE' (padded to 10
characters) will be assigned to it. When
PI is allocated, it will be initialized to
the value 3.1416. Either value may be
retained throughout the program, or it may
be changed during execution. The third
example illustrates the CALL option. It
indicates that the procedure SUBR is to be
invoked to perform the initialization.

For a variable that is allocated when
the program is loaded, that is, a static
variable, which remains in allocation
throughout execution of the program, any
value specified in an INITIAL attribute is
assigned only once. For automatic
variables, which are allocated at each
activation of the declaring block, any
specified initialization is assigned with
each allocation. For controlled variables,
which are allocated at the execution of
ALLOCATE statements, any specified
initialization is assigned with each
allocation. Note, however, that this
initialization can be overridden in the
ALLOCATE statement. The F Compiler does
not allow the INITIAL attribute to be
specified for based variables.

The INITIAL attribute cannot be given
for entry names, file names, DEFINED data,
entire structures, parameters, task data,
or event data.

Note: The CALL option cannot be used with
the INITIAL attribute for static data.

The INITIAL attribute cannot be used
without the CALL option for pointer,
offset, or area data. An area variable is
automatically initialized with the value of
the EMPTY built-in function, on allocation,
after which any specified INITIAL CALL is
applied.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. In a structure declaration,
only elementary names can be given the
INITIAL attribute.

Chapter 3: Data Elements 41

An array or an array of structures can
be partly initialized or fully initialized.
For example:

DECLARE A(15) CHARACTER(13) INITIAL
('JOHN DOE', 'RICHARD ROW',
'MARY SMITH'),

B (10,10) DECIMAL FIXED(5)
INITIAL((25)0,(25)1,(50)0),

1 C(8),
2 D INITIAL (0),
2 E INITIAL((8)0);

In this example, only the first three
elements of A are initialized; the rest of
the array is uninitialized. The array B is
fully initialized, with the first 25
elements initialized to 0, the next 25 to
1, and the last 50 to 0. The parenthesized
numbers (25, 25, and 50) are iteration
factors, that specify the number of
elements to be initialized. In the
structure C, where the dimension (8) has
been inherited by D, only the first element
of D is initialized; where the dimension
(8) has been inherited by E, all the
elements of E are initialized.

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initialized, it should be noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(0),
2 I INITIAL(0),

1 J(8) LIKE G;

In this example, only J(1).H and J(1).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decimal integer constants; for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be
confused with the string repetition factor
discussed earlier in this chapter.
Consider the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL ((10)'A',(25)(10)'B',
(24)(1)'C');

This INITIAL attribute specification
contains both iteration factors and
repetition factors. It specifies that the
first element of TABLE is to be initialized
with a string consisting of 10 A's, each of
the next 25 elements is to be initialized
with a string consisting of 10 B's, and
each of the last 24 elements is to be
initialized with the single character C.
In the INITIAL attribute specification for
a string array, a single parenthesized
factor preceding a string constant is
assumed to be a string repetition factor
(as in (10)'A'). If more than one appears,
the first is assumed to be an iteration
factor, and the second a string repetition
factor. For this reason (as in
(24)(1)'C'), a string repetition factor of
1 must be inserted if a single string
constant is to be used to initialize more
than one element.

The CALL option can be used to
initialize arrays, except for arrays of
static storage class.

42

Chapter 4: Expressions and Data Conversion

An expression is a representation of a
value. A single constant or a variable is
an expression. Combinations of constants
and/or variables, along with operators
and/or parentheses, are expressions. An
expression that contains operators is an
operational expression. The constants and
variables of an operational expression are
called operands.

Examples of expressions are:

27

LOSS

A+B

(SQTY-QTY)*SPRICE

Any expression can be classified as an
element expression (also called a scalar
expression), an array expression, or a
structure expression. An element
expression is one that represents an
element value. An array expression is one
that represents an array value. A
structure expression is one that represents
a structure value.

For the F Compiler, array variables and
structure variables cannot appear in the
same expression. Element variables and
constants, however, can appear in either
array expressions or structure expressions.
An elementary name within a structure or a
subscripted name that specifies a single
element of an array is an element
expression.

Note: If an elementary name of a structure
is given the dimension attribute, that
elementary name is an array variable and
can appear only in array expressions.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10,10) BINARY FIXED (31),
B(10,10) BINARY FIXED (31),
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
1 COST, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

Examples of element expressions are:

C * D

A(3,2) + B(4,8)

RATE. PRIMARY - COST.PRIMARY

A(4,4) * C

RATE.SECONDARY / 4

A(4,6) * COST.SECONDARY

All of these expressions are element
expressions because each operand is an
element variable or constant (even though
some may be elements of arrays or
elementary names of structures); hence,
each expression represents an element
value.

Examples of array expressions are:

A + B

A * C - D

B / 10B

All of these expressions are array
expressions because at least one operand of
each is an array variable; hence, each
expression represents an array value. Note
that the third example contains the binary
fixed-point constant 10B.

Examples of structure expressions are:

RATE * COST

RATE / 2

Both of these expressions are structure
expressions because at least one operand of
each is a structure variable; hence, each
expression represents a structure value.

Use of Expressions

Expressions that are single constants or
single variables may appear freely
throughout a program. However, the syntax
of many PL/I statements allows the
appearance of operational expressions, so
long as evaluation of the expression yields
a valid value.

Chapter 4: Expressions and Data Conversion 43

In syntactic descriptions used in this
publication, the unqualified term
"expression" refers to an element
expression, an array expression, or a
structure expression. For cases in which
the kind of expression is restricted, the
type of restriction is noted; for example,
the term "element-expression" in a
syntactic description indicates that
neither an array expression nor a structure
expression is valid.

Note: Although operational expressions can
appear in a number of different PL/I
statements, their most common occurrences
are in assignment statements of the form:

A = B + C;

The assignment statement has no PL/I
keyword. The assignment symbol (=)
indicates that the value of the expression
on the right (B + C) is to be assigned to
the variable on the left (A). For purposes
of illustration in this chapter, some
examples of expressions are shown in
assignment statements.

PROBLEM DATA CONVERSION

Data conversion can be applied to all types
of problem data, as listed below.

Bit-string to Character-String

The bit 1 becomes the character 1; the bit
0 becomes the character 0.

Character-String to Bit-string

The character string should contain the
characters 1 and 0 only, in which case the
character 1 becomes the bit 1, and the
character 0 becomes the bit 0. The
CONVERSION condition is raised by an
attempt to convert any character other than
1 or 0 to a bit.

Character-String to Arithmetic

Data Conversion in Operational Expressions

An operational expression consists of one
or more single operations. A single
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type, as
specified by the attributes of a variable
or the notation used in writing a constant.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
before the operation is performed. General
rules for conversion of different data
types are discussed in the following
paragraphs and in a later section of this
chapter, "Concepts of Data Conversion."
Detailed rules for specific cases,
including rules for computing the precision
or length of a converted item, can be found
in Part II, Section F, "Problem Data
Conversion."

Data conversion is mainly confined to
problem data. The only conversion possible
with program control data is conversion
between offset and pointer types.

The character string must be in the form of
a signed or unsigned arithmetic constant
(or an expression representation of a
COMPLEX data item). The constant may be
surrounded by blanks, but blanks must not
be imbedded in a number. Any character
other than those allowed in arithmetic data
will raise the CONVERSION condition if
conversion is attempted.

Note: In the conversion, for an infix
operation, of a character string that
represents a fixed-point constant -- either
decimal or binary -- any fractional portion
will be lost if it is converted to
fixed-point. If the conversion is to
floating-point, it will retain its
fractional value. Rules for the precision
of such conversion are listed in Part LI,
Section F, "Problem Data Conversion."

Arithmetic to Character-String

The value of an internal coded arithmetic
operand is converted to its character
representation. The converted field is a
character string in the form of a valid
arithmetic constant. The length of the
character string is dependent upon the
precision of the arithmetic data item.

44

Bit-string to Arithmetic

A bit string is interpreted as an unsigned
binary integer and is converted to
fixed-point binary of positive value. The
base and scale are further converted, if
necessary.

Arithmetic to Bit-string

The absolute value is converted, if
necessary, to a real fixed-point binary
integer. Ignoring the plus sign, the
integer is then interpreted as a bit
string. The length of the bit string is
dependent upon the precision of the
original unconverted arithmetic data item.

Arithmetic Mode Conversion

If a complex data item is converted to a
real data item, the result is the real part
of the complex item.

A real data item is converted to a
complex data item by adding an imaginary
part of zero.

Arithmetic Base and Scale Conversion

The precision of the result of an
arithmetic base or scale conversion is
dependent upon the precision of the
original arithmetic data item. The rules
are listed in Part II, Section F, "Problem
Data Conversion."

LOCATOR DATA CONVERSION

Pointer to Offset

A pointer value is converted to offset by
effectively deducting the pointer value for
the start of the area from the pointer
value to be converted. This conversion is
limited to pointer values that relate to
addresses within the area named in the
OFFSET attribute.

Conversion by Assignment

In addition to conversion performed as the
result of an operation in the evaluation of
an expression, conversion will also occur
when a data item -- or the result of an
expression evaluation -- is assigned to a
variable whose attributes differ from the
attributes of the item assigned. The rules
for such conversion are generally the same
as those discussed above and in Part II,
Section F, "Problem Data Conversion."

Expression Operations

An operational expression can specify one
or more single operations. The class of
operation is dependent upon the class of
operator specified for the operation.
There are four classes of
operations -- arithmetic, bit-string,
comparison, and concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

Only offset to pointer conversion occurs as
a result of an operational expression
(locator variables are restricted to = and
1 = comparison operations), but either of
the following types of conversion can
result from assignment. (See also Chapter
14, "Based Variables and List Processing.")

Offset to Pointer

An offset value is converted ..o pointer by
combining the offset value with the pointer
value relating to the start of the area
named in the OFFSET attribute.

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand, such as +A
or -A) or as infix operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For
example, in the expression A*-B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
the negative value of B.

Chapter 4: Expressions and Data Conversion 45

More than one prefix operator can
precede and be associated with a single
variable. More than one positive prefix
operator will have no cumulative effect,
but two consecutive negative prefix
operators will have the same effect as a
single positive prefix operator. For
example:

-A The single minus sign has the effect
of reversing the sign of the value
that A represents.

--A One minus sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the value, restoring it to
the original arithmetic value
represented by A.

---A Three minus signs reverse the sign of
the value three times, giving the
same result as a single minus sign.

Data Conversion in Arithmetic Operations

The two operands of an arithmetic operation
may differ in type, base, mode, precision,
and scale. When they differ, conversion
takes place according to rules listed
below. Certain other rules -- as stated
below -- may apply in cases of
exponentiation.

TYPE: Character-string operands, numeric
character field operands (digits recorded
in character form), and bit-string operands
are converted to internal coded arithmetic
type. The result of an arithmetic
operation is always in coded arithmetic
form. Note that type conversion is the
only conversion that can take place in an
arithmetic prefix operation.

BASE: If the bases of the two operands
differ, the decimal operand is converted to
binary.

MODE: If the modes of the two operands
differ, the real operand is converted to
complex mode (by acquiring an imaginary
part of zero with the same base, scale, and
precision as the real part). The exception
to this rule is in the case of
exponentiation when the second operand (the
exponent of the operation) is fixed-point
real with a scale factor of zero. In such
a case, no conversion is necessary.

PRECISION: If only precisions differ, no
type conversion is necessary.

SCALE: If the scales of the two operands
differ, the fixed-point operand is
converted to floating-point scale. The

exception to this rule is in the case of
exponentiation when the first operand is of
floating-point scale and the second operand
(the exponent of the operation) is
fixed-point with a scale factor of zero,
that is, a fixed-point integer constant or
a variable that has been declared with
precision (p,0). In such a case, no
conversion is necessary, but the result
will be floating-point.

If both operands of an exponentiation
operation are fixed-point, conversions may
occur, as follows:

1. Both operands are converted to
floating-point if the exponent has a
precision other than (p,0).

2. The first operand is converted to
floating-point unless the exponent is
an unsigned fixed-point integer
constant.

3. The first operand is converted to
floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the
maximum number of digits allowed for
the implementation (for System/360, 15
decimal digits or 31 binary digits).
Further details and examples of
conversion in exponentiation are
included in the section "Concepts of
Data Conversion" in this chapter.

Results of Arithmetic Operations

The "result" of an arithmetic operation, as
used in the following text, may refer to an
intermediate result if the operation is
only one of several operations specified in
a single operational expression. Any
result may require further conversion if it
is an intermediate result that is used as
an operand of a subsequent operation or if
it is assigned to a variable.

After required conversions have taken
place, the arithmetic operation is
performed. If maximum precision is
exceeded and truncation is necessary, the
truncation is performed on low-order
fractional digits, regardless of base or
scale of the operands. In some cases
involving fixed-point data, however,
high-order digits may sometimes be lost
when scale factors are such that point
alignment does not allow for the declared
number of integer digits.

The base, scale, mode, and precision of
the result depend upon the operands and the
operator involved.

46

For prefix operations, the result has
the same base, scale, mode, and precision
as the converted operand. Note that the
result of -A, where A is a string, is an
arithmetic result, since A must first be
converted to coded arithmetic form before
the operation can be performed.

For infix operations, the result depends
upon the scale of the operands in the
following ways:

FLOATING-POINT: If the converted operands
of an infix operation are of floating-point
scale, the result is of floating-point
scale, and the base and mode of the result
are the common base and mode of the
operands. The precision of the result is
the greater of the precisions of the two
operands.

FIXED-POINT: If the converted operands of
an infix operation are of fixed-point
scale, the result is of fixed-point scale,
and the base and mode of the result are the
common base and mode of the operands. The
precision of a fixed-point result depends
upon operands, according to the rules
listed below.

In the formulas for computing precision,
the symbols used are as follows:

p 	represents the total number of
digits of the result

q 	represents the scale factor of
the result

p1represents the total number of
digits of the first operand

q1 represents the scale factor of
the first operand

P2 represents the total number of
digits of the second operand

q 2 represents the scale factor of
the second operand

ADDITION AND SUBTRACTION: The total number
of digits in the result is equal to 1 plus
the number of integer digits of the operand
having the greater number of integer digits
plus the number of fractional digits of the
operand having the greater number of
fractional digits. The total number of
positions cannot exceed the maximum number
of digits allowed (15 decimal digits, 31
binary digits). The scale factor of the
result is equal to the larger scale factor
of the two operands.

Formulas:

p = 1 + maximum (p1-g1, p2-q2)
+ maximum (q1, q2)

q = maximum (q1, q2)

Example:

12354.2385 + 222.11111
A 	B 	C 	D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the number of digits in D.
The scale factor of the result would be
equal to the number of digits in D.
Precision of the result would be (11,5).

MULTIPLICATION: The total number of digits
in the result is equal to one plus the
number of digits in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the
implementation (15 decimal, 31 binary).
The scale factor of the result is the sum
of the scale factors of the two operands.

Formulas:

	

P = P1+ P2 + 1

q = q1 +q2

Example:

345.432 * 22.45
A B 	C D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in A, B, C, and D. The
scale factor of the result would be the sum
of the number of digits in B and D.
Precision of the result would be (11,5).

DLVLSION: The total number of digits in
the quotient is equal to the maximum
allowed by the implementation (15 decimal,
31 binary). The scale factor of the
quotient is dependent upon the number of
integer digits of the dividend (A in the
example below), and the number of
fractional digits of the divisor (D in the
example below). The scale factor is equal
to the total number of digits of the result
minus the sum of A and D.

Formulas:

p = 15 decimal, 31 binary

q = 15 (or 31)-((pi-q1) + q2)

Example:

432.432 / 2
A B 	C D

The total number of digits in the quotient
would be 15 (the maximum number allowed).
The scale factor would be 15 minus the sum

Chapter 4: Expressions and Data Conversion 47

of 3 (A, the number of integer digits in
the dividend) and zero (D, the number of
fractional digits in the divisor).
Precision of the quotient would be (15,12).

Note that any change in the number of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, even if all additional digits
are zeros.

Examples:

00432.432 / 2

432.432 / 2.0000

Precision of the quotient of the first
example would be (15,10); scale factor is
equal to 15-(5+0). Precision of the
quotient of the second example would be
(15,8); scale factor is equal to 15-(3+4).

Caution: In the use of fixed-point
division operations, care should be taken
that declared precision of variables and
apparent precision of constants will not
give a result with a scale factor that can
force the result of subsequent operations
to exceed the maximum number of digits
allowed by the implementation.

EXPONENTIATLON:If the second operand (the
exponent) is an unsigned nonzero real
fixed-point constant of precision (p,0),
the total number of positions in the result
is equal to one less than the product of a
number that is one greater than the number
of digits in the first operand multiplied
by the value of the second operand (the
exponent). The scale factor of the result
is equal to the product of the scale factor
of the first operand multiplied by the
value of the second operand (the exponent).

Note: Some special cases of exponentiation
are defined as follows:

1. Real mode, x**y

a. Lf x=0 and y>0, the result is 0.

b. If x=0 and y<=0, the ERROR
condition is raised.

c. If x*0 and y=0, the result is 1.

d. If x<0 and y is not fixed-point
with precision (p,0), the ERROR
condition is raised.

2. Complex mode, x**y

a. If x=0 and y has its real part >0
and its imaginary part =0, the
result is 0.

b. If x=0 and the real part of y <=0
or the imaginary part of y =0, the
ERROR condition is raised.

(As pointed out under "Data Conversion in
Arithmetic Operations," if the exponent is
not an unsigned real fixed-point integer
constant, or if the total number of digits
of the result would exceed 15 decimal
digits or 31 binary digits, the first
operand is converted to floating-point
scale, and the rules for floating-point
exponentiation apply.)

Formulas:

p = ((p1+1)*(value-of-exponent))-1

q = q1 * (value-of-exponent)

Example:

32 ** 5

The total number of digits in the result
would be 14. This is arrived at by
multiplying a number equal to one plus the
number of digits in the first operand (1+2)
by the value of the exponent and
subtracting one. The scale factor of the
result would be zero (0 * 5, scale factor
of the first operand multiplied by the
value of the exponent).

3. The expression X**(-N) for N>0 is
evaluated by taking the reciprocal of
X**N. This may cause the OVERFLOW
condition to occur as the intermediate
result is computed, which corresponds
to UNDERFLOW in the original
expression.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

&

The first operator, the "not" symbol, can
be used as a prefix operator only. The
second and third operators, the "and"
symbol and the "or" symbol, can be used as
infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal length, the shorter is extended on
the right with zeros.

The result of a bit-string operation is

48

a bit string equal in length to the length
of the operands (the two operands, after
conversion, always are the same length).
If either is a varying-length bit string,
the result is of varying length.

Bit-string operations are performed on a
bit-by-bit basis. The effect of the "not"
operation is bit reversal; that is, the
result of 1 1 is 0; the result of 1 0 is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1; in all
other cases, the result is 0. The result
of an "or" operation is 1 if either or both
of the corresponding bits are 1; in all
other cases, the result is 0. The
following table illustrates the result for
each bit position for each of the
operators:

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and the value of
operand C is '110'B, then:

COMPARISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators:

These operators specify "less than," "not
less than," "less than or equal to," "equal
to," "not equal to," "greater than or equal
to," "greater than," and "not greater
than."

There are three types of comparisons:

1. Algebraic, which involves the
comparison of signed arithmetic values
in internal coded arithmetic form. If
operands differ in base, scale,
precision, or mode, they are converted
according to the rules for arithmetic
operations. Numeric character data is
converted to coded arithmetic before
comparison.

2. Character, which involves
left-to-right, character-by-character
comparisons of characters according to
the collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

If the operands of a comparison are not
immediately compatible (that is, if their
data types are appropriate to different
types of comparison), the operand of the
lower comparison type is converted to
conform to the comparison type of the
operand of the higher type. The priority
of comparison types is (1) algebraic
(highest), (2) character string, (3) bit
string. Thus, for example, if a bit string
were to be compared with a fixed decimal
value, the bit string would be converted to
arithmetic (i.e., fixed binary) for
algebraic comparison with the decimal value
(which would also be converted to fixed
binary for the comparison).

If operands of a character-string
comparison, after conversion, are of
different lengths, the shorter operand is
extended on the right with blanks. If
operands of a bit-string comparison are of
different lengths, the shorter is extended
on the right with zeros.

In the execution of PL/I programs,
comparisons of character data will observe
the collating sequence resulting from the
representations of characters in bytes of
System/360 storage, in extended library
coded decimal interchange code (EBCDIC).

The result of a comparison operation
always is a bit string of length one; the
value is '1'B if the relationship is true,
or '0'B if the relationship is not true.

The most common occurrences of

Chapter 4: Expressions and Data Conversion 49

comparison operations are in the IF
statement, of the following format:

IF A = B

THEN action-if-true

ELSE action-if-false

The evaluation of the expression A = B
yields either '1'B or '0'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following assignment statement could be
valid:

X = A < B;

In this example, the value '1'B would be
assigned to X if A is less than B;
otherwise, the value '0'B would be
assigned. In the same way, the following
assignment statement could be valid:

X = A = B;

The first symbol (=) is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be ' 1'B; if A is not equal to B, the
value of X will be '0'B.

Only the comparison operations of
"equal" and "not equal" are valid for
comparisons of complex operands, or
comparisons of locator operands.
Comparison operations with program control
data other than locator data are not
allowed.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

||
It signifies that the operands are to be
joined in such a way that the last
character or bit of the operand to the left
will immediately precede the first
character or bit of the operand to the
right, with no intervening bits or
characters.

The concatenation operator can cause
conversion to string type since
concatenation can be performed only upon
strings, either character strings or bit
strings' If both operands are character

strings or if both operands are bit
strings, no conversion takes place.
Otherwise both operands are converted to
character strings.

The results of concatenation operations
are as follows:

Bit String: A bit string whose length is
equal to the sum of the lengths of the two
bit-string operands.

Character String: A character string whose
length is equal to the sum of the lengths
of the two character-string operands. If
an operand requires conversion for the
concatenation operation, the result is
dependent upon the length of the character
string to which the operand is converted.

For example, if A has the attributes and
value of the constant '010111'B, B of the
constant '101'B, C of the constant 'XY,Z',
and D of the constant 'AA/BB', then

A||B yields '010111101'B

A||A||B yields '010111010111101'B

C||D yields 'XY,ZAA/BB'

D||C yields 'AA/BBXY,Z'

B||D yields '101AA/BB'

Note that, in the last example, the bit
string '101'B is converted to the character
string '101' before the concatenation is
performed. The , result is a character
string consisting of eight characters.

Note: If either of the operands of a
concatenation operation has the VARYING
attribute, the result will be a VARYING
string. When VARYING strings are
concatenated, the intermediate string
created has a length equal to the sum of
the maximum lengths. If the maximum
lengths are known at compile time and their
sum exceeds 32767, then a truncated
intermediate string of length 32767 will be
created and an error message produced. If
the maximum length of either operand is not
known at compile time and their sum exceeds
32767, a truncated intermediate string of
length 32767 will be created but there will
be no diagnostic message.

The use of adjustable VARYING strings
can create a similar problem. When an
operand of the concatenate operator or the
argument of the UNSPEC function is an
adjustable VARYING string, the length of
the intermediate result field is not
tested, and execution will fail. This
situation can also occur with SUBSTR if the
third argument is not a constant, because

50

in this case the result is an adjustable
VARYING string.

Similarly, when a VARYING string is
passed as an argument to a fixed-length
string parameter, the length of the
temporary argument created is the maximum
length. If the user wishes to pass the
current length of the VARYING string (in,
for example, Y=X(A)), a possible method is:

DOL ATEMP CHAR(*) CTL;
ALLOCATE ATEMP CHAR(LENGTH(A));
ATEMP=A;
Y=X(ATEMP);
FREE ATEMP;

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational
expression. Any combination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C £ D;

Each operation within the expression is
evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the
operation is performed.

Assume that the variables given above
are declared as follows:

DECLARE RESULT BIT(3),
A FIXED DECIMAL(1),
B FIXED BINARY (3),
C CHARACTER(2), D BIT(4);

• The decimal value of A would be
converted to binary base.

• The binary addition would be performed,
adding A and B.

• The binary result would be compared
with the converted binary value of C.

• The bit-string result of the comparison
would be extended to the length of the
bit string D, and the 'and" operation
would be performed.

• The result of the "and" operation, a
bit string of length 4, would be
assigned to RESULT without conversion,
but with truncation on the right.

The expression in this example is
described as being evaluated
operation-by-operation, from left to right.
Such would be the case for this particular
expression. The order of evaluation,

however, depends upon the priority of the
operators appearing in the expression.

Priority of Operators

In the evaluation of expressions, priority
of the operators is as follows:

If two or more operators of the highest
priority appear in the same expression, the
order of priority of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator has the
highest priority. Each succeeding
exponentiation or prefix operator to the
left has the next highest priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order of priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & D;

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses
as follows:

(A) + (B)
(A + B) < (C)
(A + B < C) & (D)

The order of evaluation (and,
consequently, the result) of an expression
can be changed through the use of
parentheses. The above expression, for
example, might be changed as follows:

(A + B) < (C & D)

The order of evaluation of this
expression would yield a bit string of
length one, the result of the comparison
operation. In such an expression, those
expressions enclosed in parentheses are
evaluated first, to be reduced to a single
value, before they are considered in
relation to surrounding operators. Within
the language, however, no rules specify
which of two parenthesized expressions,
such as those in the above example, would
be evaluated first.

Chapter 4: Expressions and Data Conversion 51

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (RESULT 1). The value of C would be
converted to a bit string (if valid for
such conversion) and the "and" operation
would be performed.

At this point, the expression would have
been reduced to:

RESULT1 < RESULT_2

RESULT_2 would be converted to binary, and
the algebraic comparison would be
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or sub-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example:

A + (B < C) & (D || E ** F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur before the concatenation. It
does not specify the order of the operation
in relation to the evaluation of the other
operand (A + 	< C)).

Any operational expression (except a
prefix expression) must eventually be
reduced to a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the "and"
operator is the operator of the final infix
operation; in this case, the result of
evaluation of the expression is a bit
string of length 4. In the second example
(because of the use of parentheses), the
operator of the final infix operation is
the comparison operator, and the evaluation
yields a bit string of length 2.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A+ B ** 3 || C* D 	E

In this case, the concatenation operator
indicates that the final operation will be:

(A + B ** 3) 	(C * D - E)

The evaluation will yield a
character-string result.

Subexpressions can be analyzed in the
same way. The two operands of the
expression can be defined as follows:

A + (B ** 3)

(C * D) - E

Array Expressions

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators -- both prefix
and infix -- element variables and
constants.

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an
element-by-element basis, in row-major
order. Therefore, all arrays referred to
in an array expression must be of identical
bounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IF clause of
an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

Note: Array expressions are not always
expressions of conventional matrix algebra.

For the F Compiler the level of nesting
in array expressions is limited by the
following rule:

For each level of nesting of array
expressions, add 2 for the maximum number
of dimensions in the array, add 3 for each
subscript or argument list in the
expression or assignment, and finally, add
5. The total for the whole nest should not
exceed 900.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of
identical bounds, each element of which is
the result of the operation having been
performed upon each element of the original
array. For example:

If A is the array 	5 	3 	-9

2 	-2 	7

6 	3 	-4

then -A is the array -5 -3 9

52

	

-1 	2 	-7

	

-6 	-3 	4

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an element
or another array as the other operand.

Array and Element Operations

The result of an operation in which an
element and an array are connected by an
infix operator is an array with bounds
identical to the original array, each
element of which is the result of the
operation performed upon the corresponding
element of the original array and the
single element. For example:

	

If A is the array 	5 	20 	8

	

22 	22 	3

	

then A*3 is the array 25 	30 	24

	

36 	33 	9

The element of an array-element
operation can be an element of the same
array. For example, the expression
A*A(2,3) would give the same result in the
case of the array A above, since the value
of A(2,3) is 3.

Consider the following assignment
statement:

A = A * A(2,2);

Again, using the above values for A, the
newly assigned value of A would be:

50 	200 800

2200 2200 300

Note that the original value for A(2,2),
which is 20, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, the new value
of A(2,2) is used for all subsequent
operations. The first two elements are
multiplied by 20, the original value of
A(1,2); all other elements are multiplied
by 200, the new value of A(2,2).

Array and Array Operations

If two arrays are connected by an infix
operator, the two arrays must be of
identical bounds. The result is an array
with bounds identical to those of the
original arrays; the operation is performed
upon the corresponding elements of the two
original arrays.

Note that the arrays must have identical
bounds. They must have the same number of
dimensions, and corresponding dimensions
must have identical lower bounds and
identical upper bounds. For example, the
bounds of an array declared X(20,6) are not
identical to the bounds of an array
declared Y(2:22,3:8) although the extents
are the same for corresponding dimensions,
and the number of elements is the same.

Examples of array infix expressions are:

If A is the array 	2 	4 	3

	

6 	2 	7

	

4 	8 	2

and if B is the array 	2 	5 	7

	

8 	3 	4

	

6 	3 	2

then A+B is the array 	3 	9 	20

	

24 	4 	22

	

20 	22 	3

and A*B is the array 	2 	20 	22

	

48 	3 	28

	

24 	24 	2

Array and Structure Operations

For the F Compiler, no reference can be
made to both an array and a structure in
the same expression or in the same
assignment statement.

Chapter 4: Expressions and Data Conversion 53

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single
arithmetic operations. The rules for
combining operations and for data
conversion of operands are the same as
those for element operations.

Structure Expressions

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a
structure operand cannot appear in the
IF clause of an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below), all structure variables appearing
in a structure expression must have
identical structuring.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
been performed upon each element of the
original structure.

Note: Since structures may contain elements
of many different data types, a prefix
operation in a structure expression would
be meaningless unless the operation can be
validly performed upon every element
represented by the structure variable,
which is either a major structure name or a
minor structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a structure
variable as one operand may have an element
or another structure as the other operand.

Structure operands in a structure
expression need not be major structure
names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in the major
structure N, the following is a structure
expression:

M.N & '2020'B
Identical structuring means that the

structures must have the same minor
structuring and the same number of
contained elements and arrays and that the
positioning of the elements and arrays
within the structure (and within the minor
structures if any) must be the same.
Arrays in corresponding positions must have
identical bounds. Names do not have to be
the same. Data types of corresponding
elements do not have to be the same, so
long as valid conversion can be performed.

For the F Compiler the level of nesting
in structure expressions is limited by the
following rule:

For each level of nesting of structure
expressions, add 2 for the maximum number
of dimensions in the structure, add 2 for
the maximum level in a structure
expression, add 3 for each subscript or
argument list in the expression or
assignment, and finally, add 25. The total
for the whole nest should not exceed 900.

Structure and Element Operations

When an operation has one structure and one
element operand, it is the same as a series
of operations, one for each element in the
structure. Each sub-operation involves a
structure element and the single element.

Consider the following structure:

2 A
2 B

3 C
3 D
3 E

2 F
3 G
3 H
3 I

54

If X is an element variable, then A * X is
equivalent to:

A.0 * X
A.D * X
A.E * X
A.G * X
A.H * X
A.I * X

Structure and Structure Operations

When an operation has two structure
operands, it is the same as a series of
element operations, one for each
corresponding pair of elements.

For example, if A is the structure shown
in the previous example and if M is the
following structure:

1 M
2 N

3 0
3 P
3 Q

2 R
3 S
3 T
3 U

then A || M is equivalent to:

Structure Assignment BY NAME

One exception to the rule that operands of
a structure expression must have the same
structuring is the case in which the
structure expression appears in an
assignment statement with the BY NAME
option.

The BY NAME appears at the end of a
structure assignment statement and is
preceded by a comma. Examples are shown
below.

Consider the following structures and
assignment statements:

1 ONE 	1 TWO 	1 THREE
2 PART1 	2 PART1 	2 PART1
3 RED 	3 BLUE 	3 RED
3 ORANGE 	3 GREEN 	3 BLUE

2 PART2 	3 RED 	3 BROWN
3 YELLOW 	2 PART2 	2 PART2
3 BLUE 	3 BROWN 	3 YELLOW
3 GREEN 	3 YELLOW 	3 GREEN

ONE = TWO, BY NAME;
ONE.PART1 = THREE.PART1, BY NAME;
ONE = TWO + THREE, BY NAME;

The first assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW;

The second assignment statement would be
the same as the following:

ONE.PART1.RED = THREE.PART1.RED;

The third assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED
+ THREE.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW
+ THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.
Except for the highest-level qualifier
specified in the assignment statement, all
qualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, operation and assignment are
performed only upon those elements whose
names have been declared in each of the
structures. In the third assignment
statement above, no operation is performed
upon ONE.PART2.GREEN and THREE.PART2.GREEN,
because GREEN does not appear as an
elementary name in PART2 of TWO.

Operands of Expressions

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRT(C);

Chapter 4: Expressions and Data Conversion 55

FUNOTION REFERENCE OPERANDS

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of coding written to perform specific
computations upon the data represented by
the list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the coding that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment
statement would become:

A = B * 4;

The coding represented by the name in
the function reference is called a
function. The function SQRT is one of the
PL/I built-in functions. Built-in
functions, which provide a number of
different operations, are a part of the
PL/I language. A complete discussion of
each appears in Part II, Section G,
"Built-In Functions and Pseudo-Variables."
In addition, a programmer may write
functions for other purposes (as described
in Chapter 12, "Subroutines and
Functions"), and the names of those
functions can be used in function
references.

The use of a function reference is not
limited to operands of operational
expressions. A function reference is, in
itself, an expression and can be used
wherever an expression is allowed. It
cannot be used in those cases where a
variable represents a receiving field, such
as to the left of an assignment symbol.

There are, however, eleven built-in
functions that can be used as
pseudo-variables. A pseudo-variable is a
built-in function name that is used in a
receiving field. Consider the following
example:

DECLARE A CHARACTER(10),
B CHARACTER(30);

SUBSTR(A,6,5) = SUBSTR(B,20,5);

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, is to be
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be replaced by
characters 20 through 24 of B. The first
five characters of A remain unchanged, as
do all of the characters of B.

All eleven of the built-in functions
that can be used as pseudo-variables are
discussed in Part II, Section G, "Built-In
Functions and Pseudo-Variables." No
programmer-written function can be used as
a pseudo-variable.

Concepts of Data Conversion

Data conversion is the transformation of
the representation of a value from one form
to another. PL/I makes very few
restrictions upon the use of the available
forms of data representation or upon the
mixing of different representations within
an expression.

Programmers who wish to make use of this
freedom must understand that mixed
expressions imply conversions. If
conversions take place at execution time,
they will slow down the execution,
sometimes significantly. Unless care is
taken, conversions can result in loss of
precision and can cause unexpected results.
A lack of understanding of conversions can
lead to logical errors and inaccuracies
that are sometimes hard to trace.

This section is concerned primarily with
the concepts of conversion operations.
Specific rules for each kind of conversion
are listed in Part II, Section F, "Problem
Data Conversion." Earlier sections of this
chapter discuss circumstances under which
conversion can occur during evaluation of
expressions. This section deals with the
processes of the conversion.

The subject of conversion can be
considered in two parts, first, determining
the target attributes, and, second, the
conversion operation with known source and
target attributes. This section deals with

56

determining target attributes. Rules for
conversion operations are given in Part II,
Section F, "Problem Data Conversion."
Within each section, here and in Part II,
arithmetic conversion and type conversion
are considered separately.

The target of a conversion is the
receiving field to which the converted
value is assigned. In the case of a direct
assignment, such as A = B, in which
conversion must take place, the variable to
the left of the assignment symbol (in this
case, A) is the target. Consider the
following example, however:

DECLARE A CHARACTER(8),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A = B + C;

During the evaluation of the expression B+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned

2. The compiler-created temporary to
which the binary result of the
addition is assigned

3. The temporary to which the converted
decimal fixed-point equivalent of the
binary result is assigned

4. A, the final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other o perand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the
converted representation of B). The
attributes of the third target are
determined in part from the source (the
second target) and in part from the
attributes of the eventual target (A).
(The only attribute determined from the
eventual target is DECIMAL, since a binary
arithmetic representation must be converted
to decimal representation before it can be
converted to a character string.) The
attributes of the fourth target (A) are
known from the DECLARE statement.

When an expression is evaluated, the
target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some
implementation restrictions (for example,
maximum precision) and conventions exist.
After an expression is evaluated, the
result may be further converted. In this
case, the target attributes usually are
independent of the source. Since the
process of determining target attributes is
different for expression operands and for
the results of expression evaluation, the
two cases are dealt with separately.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It is possible for a conversion to
involve intermediate results whose
attributes may depend upon the source
value. For example, conversion from
character string to arithmetic may require
an intermediate conversion and, thus, an
inter- mediate result, before final
conversion is completed. The final target
attributes in such cases, however, are
always determined from the source data item
and are independent of the values of the
variables.

The maximum number of temporary results
which may exist during the evaluation of an
expression or during an assignment
statement is 200. An estimate of the
number of temporary results which may exist
during the evaluation of an expression can
be obtained from the following:

At each level of parentheses, count one for
each operator which is forced to be
evaluated before an inner level of
parentheses. For each such operator, count
one for each operand which requires
conversion before use, count one for each
nested function, count one for each
subscripted variable used as a target in an
assignment statement, and finally, count
one for each pseudo-variable and each
argument of a pseudo-variable.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, '1'B, '1',
1B, or 1E0. Constants may be converted at

Chapter 4: Expressions and Data Conversion 57

compile time or at execution time, but in
either case, the rules are the same.

Target Attributes for Type Conversion

When an expression operand requires type
conversion, some target attributes must be
assumed or deduced from the source. Some
of these assumptions can be made based on
the operator, as shown in Figure 4-1.

BIT TO CHARACTER AND CHARACTER TO BIT

In the conversion of bit to character, and
character to bit, the length of the target
(in bits or characters) is the same as the
length of the source (in bits or
characters).

ARITBMETIC TO STRING

In the conversion of arithmetic to
bit-string or character-string data, the
length of the target is deduced from the
precision of the source. Algorithms for
determining the length of the target are
given below under the headings "Lengths of
Bit-string Targets" and "Lengths of
Character-String Targets." In the case of
expression operands, there is no truncation
of the resulting character-string value,
since the length of the target is the
length of the intermediate string.

STRING TO ARITHMETIC

In the conversion of bit-string or
character-string data to arithmetic, the
string must consist of digits that
represent a valid arithmetic constant. The
compiler has no way of determining the
attributes of the constant represented by
the string; therefore, attributes must be
assumed for the target.

In the case of character-string to
arithmetic conversion, the attributes
assumed for the target are those attributes
that would have been assumed if a
fixed-point decimal integer of precision
(15,0) had appeared in place of the string.
Similarly, for a bit-string source that is
to be converted to arithmetic type, the
attributes of the target are the attributes
that would have been given to the target if
a fixed-point binary integer of precision
(31,0) had appeared in place of the bit
string.

Target Attributes for Arithmetic Expression
Operands

Except for exponentiation, the target
attributes for arithmetic conversion are
assumed as follows:

BINARY 	unless both operands are
DECIMAL, in which case no base
conversion is performed

FLOAT 	unless both operands are FIXED,
in which case no scale
conversion is performed

COMPLEX 	unless both operands are REAL,
in which case no mode
conversion is performed

precision unless base or scale conversion
of source 	is performed (see Figure 4-2,

"Precision for Arithmetic
Conversion")

In the case of exponentiation, the base
and precision are determined as for other
operations. The target scale of the first
operand is always FLOAT unless the first
operand source is FIXED and the second
operand (the exponent) is an unsigned
fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed (for System/360
implementations, 31, if binary, or 15, if
decimal). The target scale of the second
operand is FLOAT unless it is an integer
constant or a variable of precision (p,0).
If either of the operands is COMPLEX, the

58

target mode is COMPLEX for both operands
unless the second operand is a REAL integer
constant or variable of precision (p,0).
In either case, the target mode for the
second operand is REAL (that is, its mode
is not converted).

In the examples of exponentiation shown
below, the variables are those named in the
following DECLARE statement:

DECLARE A FIXED DECIMAL(2),
B FIXED DECIMAL(3,2),
C FLOAT DECIMAI. (4)
D FLOAT DECIMAL(7),
E FIXED DECIMAL(8),
F FIXED DECIMAL(15),
G COMPLEX FLOAT DECIMAL(6);

Note: If only one digit appears in the
precision attribute specification for a
fixed-point variable, the scale factor is,
by default, zero: the precision is (p,0).

D ** O 	No conversion necessary. Both
operands are floating-point.

A ** 4 	No conversion necessary.
Second operand is unsigned
fixed-point integer constant,
and the result will not exceed
15 digits.

D ** 5 	No conversion necessary. First
operand is floating-point;
second is fixed-point with
precision (p,0).

D ** A 	No conversion necessary. First
operand is floating-point;
second is fixed-point with
precision (p,0).

E ** A 	First operand is converted to
floating-point because second
operand is not unsigned
fixed-point integer constant.
Second operand is not converted
because it has precision (p,0).

D ** B 	Second operand is converted to
floating-point because it does
not have precision (p,0). Even
if B had an integer value with
a fractional part of zero, it
still would be converted, since
its declared precision is
(3,2).

G ** B 	First operand is complex.
Second operand is converted to
floating-point complex because
its precision is not (p,0).

Note: All of these examples would be the
same if they had been declared binary
rather than decimal, except that the

maximum number of binary digits allowed is
31.

Precision and Length of Expression Operand
Targets

The following rules apply to all
calculations of precision and length:

1. Precision and length specifications
are always integers. If any of the
calculations given below produces a
nonintegral value, the next largest
integer is taken as the resulting
precision. In the case of scale
factors, which can be negative, it is
the absolute (positive) value that is
used to take the next largest integer;
the result, of course, will be
negative if the source scale factor is
negative.

The following illustrates now
precision would be computed in a
conversion from DECIMAL FIXED (13,-4)
to BINARY FIXED:

1 + 13 * 3.32 = 44.16 resulting number
of digits (p) is
45

-4 * 3.32 = -13.28 	resulting scale
factor (q) is
-14

Thus, the resulting precision is
(45,-14); however, due to rule 2
below, it becomes (31,-14).

2. There is an implementation-defined
maximum for the precision of each
arithmetic representation. If any
calculation yields a value greater
than the implementation-defined limit,
then the implementation limit is used
instead. In System/360
implementations, these limits are:

FIXED DECIMAL -- 15 digits

FIXED BINARY -- 31 digits

FLOAT DECIMAL -- 16 digits

FLOAT BINARY -- 53 digits

Because of the particular values for
these implementations, these limits
will usually come into effect only for
conversions from fixed-point decimal
to fixed-point binary.

The scale factor for both binary and
decimal base has the range +127 to
-128 in System/360 implementations.
This limit will rarely concern the
programmer.

Chapter 4: Expressions and Data Conversion 59

Precision for Arithmetic Conversions

Figure 4-2 gives the target precision for
an operand if base or scale conversion
occurs.

The target precision of one operand of
an expression is not affected by the
precision of the other operand. This can
have a significant effect on accuracy,
particularly if one of the operands is a
constant.

Lengths of Character-String Targets

The length of a character-string target is
related to the precision of the decimal
source, as shown in Figure 4-3.

Note: If a binary data item is converted
to character, it is first converted to
decimal. The precision of this
intermediate conversion result controls the
length of the final character-string
target. Algorithms for computing the
intermediate precision of a decimal item
converted from binary are shown in Figure
4-2.

For complex coded arithmetic sources,
the target length is one greater than twice
the length of the target for the
corresponding real source. For complex
numeric character data, the target length
is twice the length of the real part of the
source.

60

Lengths of Bit-string Targets

When converting arithmetic operands to bit
string, the arithmetic source is converted
to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Figure 4-4.

Note that p-q represents the number of
binary or decimal digits to the left of the
point. This could be zero or negative, in
which case no conversion is performed and,
for the F Compiler, the final result is a
null string.

Conversion of the Value of an Expression

The result of a completely evaluated
expression may require further conversion.
The circumstances in which this can occur,
and the target attributes for each
situation, are given in Figure 4-5. In
addition, certain built-in functions cause
conversion. Any subscript reference is
converted to binary integer.

Conversion Operations

As in the case of determining target
attributes, conversion operations may also
be considered in two stages: type
conversion and arithmetic conversion. For
example, when a character-string source is
converted to a coded arithmetic target, the
string is first converted to an arithmetic
form whose attributes are determined by the
constant expressed by the string. This
intermediate result is then converted (if
necessary) to the attributes of the target.
These two stages may not be separated in an
actual implementation, but for the purpose
of description it is convenient to consider
them separately.

Chapter 4: Expressions and Data Conversion 61

There are six cases of type conversion:

Arithmetic to character-string

Character-string to arithmetic

Arithmetic to bit-string

Bit-string to arithmetic

Character-string to bit-string

Bit-string to character-string

For specific rules for each of the cases
of type conversion and for arithmetic

conversion, see Part II, Section F,
"Problem Data Conversion."

The CONVERSION, SIZE, FIXEDOVERFLOW,
and OVERFLOW Conditions

When data is converted from one
representation to another, the CONVERSION
or SIZE conditions may be raised. The
OVERFLOW and FIXEDOVERFLOW conditions are
raised only when the result of an
arithmetic operation exceeds the
implementation- defined limit. When an

62

operand is converted from one
representation to another, if the value of
the result will not fit in the declared
precision for the new representation, the
SIZE condition is raised.

The SIZE condition is raised when
significant digits are lost from the
left-hand side of an arithmetic value.
This can occur during conversion within an
expression, or upon assigning the result of
an expression. It is not raised in
conversion to character string or bit
string even if the value is truncated. It
is raised on conversion to E or F format in
edit-directed transmission if the field
width specified will not hold the value of
the list item. The SIZE condition is
normally disabled, so an interrupt will
occur only if the condition is raised
within the scope of a SIZE prefix.

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the conversion being
performed. For example, CONVERSION would
be raised if a character string being
converted to arithmetic contains any
character other than those allowed in
arithmetic constants, or if a character
string that is being converted to bit
contains any character other than 0 and 1.

Each invalid character raises the
CONVERSION condition once, so a single
conversion operation
causes several interrupts if more than one
invalid character is encountered. The
CONVERSION condition is normally enabled,
so when the condition is raised, an
interrupt will occur. It can be disabled
by a NOCONVERSION prefix, in which case an
interrupt will not occur when the condition
is raised.

Note that the OVERFLOW and FIXEDOVERFLOW
conditions are raised when an
implementation maximum is exceeded, while
the SIZE condition is raised when a
declared precision is exceeded. For
example, if the addition of two binary
halfword values resulted in an overflow
into a sixteenth digit position, and the
result were assigned to a binary halfword
variable, SIZE would be raised (if
enabled). Note that, in such a case, SIZE
would be the only indication that an error
had occurred, whereas if a similar
situation arose with fullword binary values
(i.e., an attempted overflow past the
thirty-first digit position), FIXEDOVERFLOW
would be raised during the actual
computation, before the attempt.

Chapter 4: Expressions and Data Conversion 63

Chapter 5: Statement Classification

This chapter classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this chapter but may be
found in Part II, Section J, "Statements."

Classes of Statements

Statements can be grouped into the
following seven classes:

Descriptive

Input/Output

Data Movement and Computational

Program Structure

Control

Exception Control

Preprocessor

The names of the classes have been chosen
for descriptive purposes only; they have no
fundamental significance in the language.
Some statements are included in more than
one class, since they can have more than
one function.

DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except a constant, is
referred to in the program by a name. The
PL/I language requires that the properties
(or attributes) of data items referred to
must be known at the time the program is
compiled. There are a few exceptions to
this rule; the bounds of the dimensions of
arrays, the length of strings, and some
file attributes may be determined during
execution of the program.

The DECLARE Statement

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by
context. If the attributes are not
specifically declared and if they cannot be
determined by context, then default rules
are applied. The combination of default
rules and context determination can make it
unnecessary, in some cases, to use a
DECLARE statement.

DECLARE statements are always needed for
fixed-point decimal and floating-point
binary variables, character- and bit-string
variables, label variables, arrays and
structures, static, controlled, and based
variables, offset variables, and all data
with the PICTURE attribute. An ENTRY
declaration must be made in a DECLARE
statement for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(15) if
the first letter of the name is I through
N; otherwise, DECIMAL FLOAT(6). (The
default precisions are those defined for
System/360 implementations.) An ENTRY
declaration also must be made if arguments
and parameters do not match exactly, as may
be the case when constants are passed as
arguments.

DECLARE statements may also be an
important part of the documentation of a
program; consequently, programmers may make
liberal use of declarations, even when
default attributes apply or when a
contextual declaration is possible.
Because there are no restrictions on the
number of DECLARE statements, different
DECLARE statements can be used for
different groups of names. This can make
modification easier and the interpretation
of diagnostics clearer.

Other Descriptive Statements

The OPEN statement allows certain
attributes to be specified for a file name
and may, therefore, also be classified as a
descriptive statement. The FORMAT
statement may be thought of as describing
the layout of data on an external medium,
such as on a page or an input card.

64

INPUT/OUTPUT STATEMENTS

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
input/output statements, which affect such
transfers, may be considered input/output
control statements.

In the following list, the statements
that cause a transfer of data are grouped
into two subclasses, RECORD L/O and STREAM
I/O:

RECORD I/O Transfer Statements

READ

WRITE
REWRITE

LOCATE

DELETE

STREAM I/O Transfer Statements

GET

PUT

I/O Control Statements

OPEN

CLOSE

UNLOCK

An allied statement, discussed with
these statements, is the DISPLAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
transmitted; in RECORD transmission, the
record on the external medium is an exact
copy of the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream
transmission may be used for processing
keypunched data and for producing readable
output, where editing is required. Since
files for which stream transmission is used

tend to be smaller, the larger processing
overhead can be ignored.

RECORD I/O Transfer Statements

The READ statement transmits records
directly into working storage or makes
records available for processing. The
WRITE statement creates new records,
transferring collections of data to the
output device. The LOCATE statement
allocates storage for a variable within an
output buffer, setting a pointer to
indicate the location in the buffer, having
previously caused any record already
located in a buffer for this file to be
written out.

The REWRITE statement alters existing
records in an UPDATE file. The DELETE
statement removes records from an UPDATE
file.

STREAM I/O Transfer Statements

Only sequential files can be processed with
the GET and PUT statements. Record
boundaries generally are ignored; data is
considered to be a stream of individual
data items, either coming from (GFT) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes,
data-directed, list-directed, or
edit-directed. In data-directed
transmission, the names of the data items,
as well as their values, are recorded on
the external medium. In list-directed
transmission, the data is recorded
externally as a list of constants,
separated by blanks or commas. In
edit-directed transmission, the data is
recorded externally as a string of
characters to be treated character by
character according to a format list.

Data-directed transmission is most
useful for reading a relatively small
number of values and for producing
self-annotated debugging output.
List-directed input is suitable for reading
in larger volumes of data punched in free
form. Edit-directed transmission is used
wherever format must be strictly
controlled, for example, in producing
reports and for reading cards punched in a
fixed format.

Note: The GET and PUT statements can also
be used for internal data movement, by
specifying a string name in the STRING

Chapter 5: Statement Classification 65

option instead of specifying the FILE
option. Although the facility may be used
with READ and WRITE statements for moving
data to and from a buffer, it is not
actually a part of the input/output
operation. GET and PUT statements with the
STRING option are discussed in the section
"Data Movement and Computational
Statements," in this chapter.

Input/Output Control Statements

The OPEN statement associates a file name
with a data set and prepares the data set
for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name of an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
declare attributes for a file; for a PRINT
file, the length of each printed line and
the number of lines per page can be
specified only in an OPEN statement. The
OPEN statement can also be used to specify
a name (in the TITLE option) other than the
file name, as a link between the data set
and the file.

The CLOSE statement dissociates a data
set from a file. All files are closed at
termination of a program, so a CLOSE
statement is not always required.

The UNLOCK statement releases a record
that has been temporarily locked by the
task executing the UNLOCK statement, so
that other concurrent tasks may resume
access to the record. The UNLOCK statement
is not always required; the unlocking
operation is automatic when the task that
locked the record deletes or rewrites it,
or closes the file, or when the task is
terminated.

The DISPLAY Statement

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
used merely as a means of suspending
program execution until the operator
acknowledges the message.

DATA MOVEMENT AND COMPUTATIONAL STATEMENTS

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option also can be used for
internal data movement. The PUT statement
can, in addition, specify computations to
be made.

The Assignment Statement

The assignment statement, which has no
keyword, is identified by the assignment
symbol (=). It generally takes one of two
forms:

A =

A = B + C;

The first form can be used purely for
internal data movement. The value of the
variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. The
second form specifies computations to be
made, as well as data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array or
structure value. Thus the assignment
statement can be used to move aggregates of
data, as well as single items.

Multiple Assignment

The value of the expression in an
assignment statement can be assigned to
more than one variable in, a statement of
the following form:

A,X = B + C;

66

Such a statement is executed in exactly the
same way as a single assignment, except
that the value of B + C is assi gned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A = B + C;

X = B + C;

Note: If multiple assignment is used for a
structure assignment BY NAME, the
elementary names affected will be only
those that are common to all of the
structures listed to the left of the
assignment symbol.

The STRING Option

If the STRING option appears in a GET or
PUT statement in place of a FILE option,
execution of the statement will result only
in internal data movement; neither input
nor output is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. Consider the
following example:

GET STRING (NAME) EDIT
(FIRST, MIDDLE, LAST)
(A(12),A(1),A(17));

This statement specifies that the first 12
characters of NAME are to be assigned to
FIRST, the next character to MIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the string option
specifies the reverse operation, that is,
that the values of the specified variables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A(1),A(17));

This statement specifies that the values of
FIRST, MIDDLE, and LAST are to be
concatenated, in that order, and assigned
to the string variable NAME.

Computations to be performed can be
specified in a PUT statement by including
operational expressions in the data list.
Assume, for the following example, that the
variables A, B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) LIST (A*3,B+C);

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the value of the
sum of B and C.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option.
Operational expressions can appear in PUT
statements that specify output to a file.

PROGRAM STRUCTURE STATEMENTS

The program structure statements are those
statements used to delimit sections of a
program into blocks and groups, and to
control the allocation of storage within a
program. These statements are the
PROCEDURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
DO statement, the ALLOCATE statement, and
the FREE statement. The concept of blocks
and groups is fundamental to a proper
understanding of PL/I and is dealt with in
detail in Chapters 6, 7, and 10.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which it is
declared.

The PROCEDURE Statement

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of
separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These
internal procedures may contain
declarations that are treated (unless
otherwise specified) as local definitions
of names. Such definitions are not known
outside their own block, and the names
cannot be referred to in the containing
procedure. Storage associated with these

Chapter 5: Statement Classification 67

names is generally allocated upon entry to
the block in which such a name is defined,
and it is freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. This
execution can be either synchronous (that
is, the execution of the invoking procedure
is suspended until control is returned to
it) or asynchronous (that is, execution of
the invoking procedure proceeds
concurrently with that of the invoked
procedure); for details of asynchronous
operation, see Chapter 15, "Multitasking."
A procedure is invoked either by a CALL
statement or by the appearance of its name
in an expression, in which case the
procedure is called a function procedure.
A function reference causes a value to be
calculated and returned to the function
reference for use in the evaluation of the
expression. A function procedure cannot be
executed asynchronously with the invoking
procedure.

Communication between two procedures is
by means of arguments passed from an
invoking procedure to the invoked
procedure, by a value returned from an
invoked procedure, and by names known
within both procedures. A procedure may
therefore operate upon different data when
it is invoked from different points. A
value is returned from a function procedure
to a function reference by means of the
RETURN statement.

The ENTRY Statement

The ENTRY statement is used to provide an
alternate entry point to a procedure and,
possibly, an alternate parameter list to
which arguments can be passed,

|

 corresponding to that entry point. It may
also specify the attributes of the value
returned by a function procedure.

Note: It is important to distinguish
between the ENTRY statement, which
specifies an entry to the procedure in
which it occurs, and the ENTRY attribute
specification, which describes the
attributes of parameters of procedures that
are invoked from the procedure in which the
ENTRY attribute specification appears.

statement. Begin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. One of the
most common uses of a begin block is as the
on-unit of an ON statement, in which case
it is not executed through normal flow of
control, but only upon occurrence of the
specified condition. It is also useful for
delimiting a section of a program in which
some automatic storage is to be allocated.

Each begin block must be nested within a
procedure or another begin block.

The END Statement

The END statement is used to signify the
end of a block or group. Every block or
group must have an END statement. However,
the END statement may be explicit or
implicit; a single END statement can be
applied to a number of nested blocks and
groups by the inclusion of the label of the
containing block or group after the keyword
END. The other END statements are then
implied by the one containing the label,
and need not be given explicitly. If no
label follows END, the statement applies to
only one group or block. (Multiple closure
is discussed in more detail in Chapter 6,
"Blocks, Flow of Control, and Storage
Allocation.".

Execution of an END statement for a
block terminates the block. However, it is
not the only means of terminating a block,
even though each block must have an END
statement. For example, a procedure can be
terminated by execution of a RETURN
statement (see "Control Statements,"
below).

The effect of execution of an END
statement for a group depends on whether or
not the group is iterative. If the group
is iterative, execution of the END
statement causes control to return to the
beginning of the group until all iterations
are complete, unless control is passed out
of the group before then. (See "Control
Statements," below.) If the group is
noniterative, the END statement merely
delimits the group (to enable the group to
be treated as a single statement), and
control passes to the next statement.

The BEGIN Statement

Local definitions of names can also be made
within begin blocks, which are delimited by
a BEGIN statement and an associated END

The ALLOCATE and FREE Statements

As with many other conventions in PL/I, the
convention concerning storage allocation
and the scope of definitions of names can

68

be overridden by the programmer. The
storage class attribute AUTOMATIC is
assumed for most variables. However a
variable can be declared STATIC, in which
case it is allocated throughout the entire
program; or it can be declared CONTROLLED,
or BASED, in which case its allocation can
be explicitly specified by the programmer.

The ALLOCATE statement is used to assign
storage to controlled and based data,
independent of block boundaries. The
bounds of controlled arrays and the length
of controlled strings, as well as their
initial values, may also be specified at
the time the ALLOCATE statement is
executed. The FREE statement is used to
free controlled and based storage after it
has been allocated.

PREPROCESSOR STATEMENTS

PL/I allows a degree of control over the
contents of the source program during the
compilation. The programmer can specify,
for example, that any identifier appearing
in the source program will be changed; he
can select parts of the program to be
compiled without the rest; he can include
text from an external source. These
operations are performed by the
preprocessor stage of the compiler, and are
specified by preprocessor statements that
appear among the other statements within
the source program itself.

In general, preprocessor statements are
identified by a leading percent symbol
before the keyword; several of them have
the same keyword as standard PL/I
statements, and these have a similar effect
at compile-time to that of their
counterpart at execution time.

The complete list of preprocessor
statements is as follows:

% ACTIVATE

% assignment

% DEACTIVATE

% DECLARE

% DO

% END

% GO TO

% IF

% INCLUDE

% null

% PROCEDURE

RETURN

These statements are discussed in Chapter
16, "Compile-Time Facilities," and in Part
II, Section J, "Statements."

CONTROL STATEMENTS

Statements in a PL/I program, in general,
are executed sequentially unless the flow
of control is modified by the occurrence of
an interrupt or the execution of one of the
following control statements:

GO TO

IF

DO

CALL

RETURN

END

STOP

EXIT

The GO TO Statement

The GO TO statement is most frequently used
as an unconditional branch. If the
destination of the GO TO is specified by a
label variable, it may then be used as a
switch by assigning label constants, as
values, to the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. Since multidimensional label
arrays are allowed, and since logical
values may be used as subscripts, quite
subtle switching can be effected. It is
usually true, however, that simple control
statements are the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or as a single word, GOTO.

Chapter 5: Statement Classification 69

The IF Statement

The IF statement provides the most common
conditional branch and is usually used with
a simple comparison expression following
the word IF. For example:

IF A = B

THEN action-if-true

ELSE action-if-false

If the comparison is true, the THEN
clause (the "action to be taken") is
executed. After execution of the THEN
clause, control branches around the ELSE
clause (the "alternate action"), and
execution continues with the next
statement. Note that the THEN clause can
contain a GO TO statement or some other
control statement that would result in a
different transfer of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause is executed. Control then
continues normally.

The IF statement might be as follows:

IF A = B

THEN C = D;

ELSE C = E;

If A is equal to B, the value of D is
assigned to O, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to C.

Either the THEN clause or the ELSE
clause can contain some other control
statement that causes a branch, either
conditional or unconditional. If the THEN
clause contains a GO TO statement, for
example, there is no need to specify an
ELSE clause. Consider the following
example:

IF A = B

THEN GO TO LABEL 1;

next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL 1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF
statement.

Note: If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next
statement will be executed whether or not
the THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
(The STRING built-in function can be used
to concatenate the elements of a bit- or
character-string array or structure into an
element expression.) It can, however, be a
logical expression with more than one
operator. For example:

IF A = B & C = D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

The DO Statement

The most common use of the DO statement is
to specify that a group of statements is to
be executed a stated number of times while
a control variable is incremented each time
through the loop. Such a group might take
the form:

DO I = 1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of the DO and END statements would
be the same as the following:

70

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
g roup to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I = 1 TO 10 WHILE (A = P);

This statement specifies two tests. Each
time that 1 is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one successive iteration
specification can be included in a single
DO statement. Consider each of the
following DO statements:

DO I = 1 TO 10, 13 TO 15;

DO I = 1 TO 10, 11 WHILE (A = B);

The first statement specifies that the DO
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
second DO statement specifies that the
group is to be executed at least ten times,
and then (provided that A is equal to B)
once more; if "BY 0" were inserted after
"11", execution would continue with I set
to 11 as long as A remained equal to B.
Note that in both statements a comma is
used to separate the two specifications.
This indicates that a succeeding
specification is to be considered only

after the preceding specification has been
satisfied.

The control variable of a DO statement
can be used as a subscript in statements
within the DO-group, so that each iteration
deals with successive elements of a table
or array. For example:

DO I = 1 TO 10;

	

A(I) = I;

	

END;

In this example, the first ten elements of
A are set to 1,2,...,10, respectively.

The increment in the iteration
specification is assumed to be one unless
some other value is stated, as follows:

DO I = 2 TO 10 BY 2;

This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO Statements

The DO statement need not specify repeated
execution of the statements of a DO-group.
A simple DO statement, in conjunction with
a DO-group, can be used as follows:

The use of the simple DO statement in this
manner merely indicates that the DO-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential
control without the use of a begin block.
(Only a single statement, a DO-group, or a
begin block can be specified in the THEN
clause or in the ELSE clause.)

The CALL, RETURN, and END Statements

A subroutine may be invoked by a CALL
statement that names an entry point of the
subroutine. When the multitasking
facilities are not in use, control is
returned to the activating, or invoking,
procedure when a RETURN statement is
executed in the subroutine or when
execution of the END statement terminates
the subroutine. If the CALL statement

Chapter 5: Statement Classification 71

contains one of the multitasking options,
TASK, EVENT, or PRIORITY, the subroutine is
executed by a subtask with its own separate
flow of control; in this case, the RETURN
or END statement merely terminates the
separate flow of control established for
the subtask. (See Chapter 15,
"Multitasking.")

The RETURN statement with a
parenthesized expression is used in a
function procedure to return a value to a
function reference. This form is used to
return a value from a procedure that has
been invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END
statement of the main procedure or of a
RETURN statement in the main procedure,
either of which returns control to the
operating system.

The STOP and EXIT Statements

The STOP and EXIT statements are both used
|to cause abnormal termination'. The STOP
statement terminates execution of the
entire program, including all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See Chapter 15,
"Multitasking.")

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of
control whenever they are executed.
Another way in which the sequence of
execution can be altered is by the
occurrence of a program interrupt caused by
an exceptional condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an
expected action, such as an end of file,
that occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in Chapter 13,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

¹Note that abnormal termination does not
have the same effect as the ABEND macro of
the Operating System.

The ON Statement

The ON statement is used to specify action
to be taken when any subsequent occurrence
of a specified condition causes a program
interrupt. ON statements may specify
particular action for any of a number of
different conditions. For all of these
conditions, a standard system action exists
as a part of PL/I, and if no ON statement
is in force at the time an interrupt
occurs, the standard system action will
take place. For most conditions, the
standard system action is to print a
message and terminate execution.

The ON statement takes the form:

ON condition [SNAP]{SYSTEM;|on-unit}

The "condition name" is one of the keywords
listed in Part II, Section H,
"ON-Conditions." The "on-unit" is a single
statement or a begin block that specifies
action to be taken when that condition
arises and an interrupt occurs. For
example:

ON ENDFILE(DETAIL) GO TO NEXT MASTER;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named
DETAIL, control is to be transferred to the
statement labeled NEXT MASTER.

When execution of an on-unit is
successfully completed, control will
normally return to the point of the
interrupt or to a point immediately
following it, depending upon the condition
that caused the interrupt.

An important use of the ON statement is
for debugging. The CHECK condition causes
debugging information to be printed
whenever the value of one of a list of
specified variables is changed or whenever
a specified statement is executed.

The effect of an ON statement, the
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naming the same
condition with either another on-unit or
the word SYSTEM, which re-establishes
standard system action, or (2) by the
execution of a REVERT statement naming that
condition. On-units in effect at the time
another block is activated remain in effect
in the activated block, and in other blocks
activated by it, unless another ON
statement for the same condition is
executed. When control returns to an
activating block, on-units are
re-established as they existed.

72

The REVERT Statement

The REVERT statement is used to cancel the
effect of all ON statements for the same
condition that have been executed in the
block in which the REVERT statement
appears.

The SIGNAL Statement

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test the
coding of the on-unit established by
execution of an ON statement. For example:

SIGNAL OVERFLOW;

The REVERT statement, which must specify
the condition name, re-establishes the
on-unit that was in effect in the
activating block at the time the current
block was invoked.

This statement would simulate the
occurrence of an overflow interrupt and
would cause execution of the on-unit
established for the OVERFLOW condition. If
an on-unit has not been established,
standard system action is taken.

Ohapter 5: Statement Classification 73

Chapter 6: Blocks, Flow of Control, and Storage Allocation

This section discusses how statements can
be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements to another,
and how storage may be allocated for data
within a block of statements. The
discussion in this chapter does not
completely cover multitasking, which is
discussed in detail in Chapter 15.
However, the discussion generally applies
to all blocks, whether or not they are
executed concurrently.

Blocks

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared
within the block and limits the allocation
of variables. There are two kinds of
blocks: procedure blocks and begin blocks.

PROCEDURE BLOCKS

A procedure block, simply called a
procedure, is a sequence of statements
headed by a PROCEDURE statement and ended
by an END statement, as follows:

All procedures must be named because the
procedure name is the primary point of
entry through which control can be
transferred to a procedure. Hence, a
PROCEDURE statement must have at least one
label. A label need not appear after the
keyword END in the END statement, but if
one does appear, it must match the label
(or one of the labels) of the PROCEDURE
statement to which the END statement
corresponds. (There are exceptions; see
"Use of the END Statement with Nested
Blocks and DO-Groups" in this chapter.) An
example of a procedure follows:

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

A PL/I program consists of one r more
such procedures, each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A

 begin block is a set of statements headed
by a BEGIN statement and ended by an END
statement, as follows:

Unlike a procedure block, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may pass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be
transferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, matching a
label of the corresponding BEGIN statement.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups"
in this chapter.) An example of a begin
block follows:

74

Unlike procedures, begin blocks
generally are not given control through
special references to them. The normal
sequence of control governing ordinary
statement execution also governs the
execution of begin blocks. Control passes
into a begin block sequentially, following
execution of the preceding statement.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are
discussed in this chapter and in Chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more blocks.
That is, a procedure, as well as a begin
block, can contain other procedures and
begin blocks. However, there can be no
overlapping of blocks; a block that
contains another block must totally
encompass that block.

A procedure block that is contained
within another block is called an internal
procedure. A procedure block that is not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note: With System/360
implementations, each external procedure is
compiled separately. Entry names of
external procedures cannot exceed seven
characters.)

Begin blocks are always internal; they
must always be contained within another
block.

Internal procedure and begin blocks can
also be referred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The
outermost block always must be a procedure.
Consider the following example:

A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;

statement-b1
statement-b2
statement-b3
END B;

statement-a4
statement-a5
C: PROCEDURE;

statement-c1
statement-c2

D: BEGIN;
statement-

d1 statement-d2
statement-d3
E: PROCEDURE;

statement-el
statement-e2
END E;

statement-d4
END D;

END C;
statement-a6
statement-a7
END A;

In the above example, procedure block A
is an external procedure because it is not
contained in any other block. Block B is a
begin block that is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D, which, in turn, contains internal
procedure E. This example contains three
levels of nesting relative to A; B and C
are at the first level, D is at the second
level (but the first level relative to C)
and E is at the third level (the second
level relative to C, and the first level
relative to D).

There must not be more than 50 levels of
nesting at any point in the compilation.
The degree of nesting at any point is the
number of PROCEDURE, BEGIN, or DO
statements without a corresponding END
statement, plus the number of currently
active IF compound statements, plus the
number of currently unmatched left
parentheses, plus the number of dimensions
in each active array expression, plus the
maximum number of dimensions in each active
array expression, plus the maximum number
of dimensions in each active structure
expression.

Use of the END Statement with Nested Blocks
and DO-Groups (Multiple Closure)

The use of the END statement with a
procedure, begin block, or DO-group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes (i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO-group headed by the DO statement,
that physically precedes, and appears
closest to, the END statement.

2. If the optional label is used after
END, the END statement closes that
unclosed block or DO-group headed by
the BEGIN, PROCEDURE, or DO statement
that has a matching label, and that

Chapter 6: Blocks, Flow of Control, and Storage Allocation 75

physically precedes, and appears
closest to, the END statement. Any
unclosed blocks or DO-groups nested
within such a block or DO-group are
automatically closed by this END
statement; this is known as multiple
closure.

From the second rule, it is evident that
nested blocks sometimes make it possible
for a single END statement to close more
than one block. For example, assume that
the following external procedure has been
defined:

FRST: PROCEDURE;
statement-fl
statement-f2
ABLK: BEGIN;

statement-al
statement-a2
SCND: PROCEDURE;

statement-
s1 statement-s2

BBLF: BEGIN;
statement-b1
statement-b2
END;

END;
statement-a3
END ABLE;

END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is, there are no
statements between the END statements for
each. This is also true for begin block
ABLE and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLE and FRST. In the first case, the
statement would be END SCND, because one
END statement with no following label would
close only the begin block BBLK (see the
first rule above). In the second case,
only the statement END FRST is required;
the statement END ABLK is superfluous.
Thus, the example could be specified as
follows:

FRST: PROCEDURE;
statement-fl
statement-f2
ABLE: BEGIN;

statement-al
statement-a2
SCND: PROCEDURE;

statement-s1
statement-s2
BBLK: BEGIN;

statement-bi
statement-b2

END SCND;
statement-a3

END FRST;

Note the following example:

CBLK: PROCEDURE;
statement-c1
statement-c2

DGP: DO I = 1 TO 10;
statement-d1
GO TO LBL;
statement-d2

LBL: END CBLK;

In this example, the END CBLK statement
closes the block CBLK and the iterative
DO-group DGP. The effect is as if an
unlabeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would prevent all but the
first iteration of DGP from taking place,
and statement-d2 would not be executed.

Activation and Termination of Blocks

ACTIVATION

Although the begin block and the procedure
have a physical resemblance and play the
same role in the allocation and freeing of
storage, as well as in delimiting the scope
of names, they differ in the way they are
activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can appear
wherever a single statement can appear.
For a procedure, however, normal sequential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry name (defined below) in one of
the following contexts:

1. After the keyword CALL in a CALL
statement

2. After the keyword CALL in the CALL
option of the INITIAL attribute (see
the discussion of the INITIAL
attribute in Part II, Section I,
"Attributes," for details)

3. As a function reference (see Chapter
12, "Subroutines and Functions," for
details)

This chapter uses examples of the first
of these; that is, with the procedure
reference of the form:

76

CALL entry-name;

The material, however, is relevant to the
other two forms as well.

An entry name is defined as either of
the following:

1. The label, or one of the labels, of a
PROCEDURE statement

2. The label, or one of the labels, of an
ENTRY statement appearing within a
procedure

The first of these is called the primary
entry point to a procedure; the second is
known as a secondary entry point to a
procedure. The following is an example of
a procedure containing secondary entry
points:

A: PROCEDURE;
statement-1
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement-5

NEXT: RETR: ENTRY;
statement-6
statement-7
statement-8
END A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both labels of the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point.

When a procedure reference is executed,
the procedure containing the specified
entry point is activated and is said to be
invoked; control is transferred to the
specified entry point. 1 The point at which
the procedure reference appears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking block remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a

I This statement does not apply when the
CALL statement specifies one of the
multitasking options. See Chapter 15,
"Multitasking."

procedure is invoked at a secondary entry
point, execution begins with the first
executable statement following the ENTRY
statement that defines that secondary entry
point. Therefore, if all of the numbered
statements in the last example are
executable, the statement CALL A would
invoke procedure A at its primary entry
point, and execution would begin with
statement-1; the statement CALL ERRT would
invoke procedure A at the secondary entry
point ERRT, and execution would begin with
statement-3; either of the statements CALL
NEXT or CALL RETR would invoke procedure A
at its other secondary entry point, and
execution would begin with statement-6.
Note that any ENTRY statements encountered
during sequential flow are never executed;
control flows around the ENTRY statement as
though the statement were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal
procedures that are at the first level of
nesting relative to a containing procedure
can always be invoked by that containing
procedure, or by each other. For example:

PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

statement-al
statement-a2
B: PROCEDURE;

statement-b1
statement-b2

END A;
statement-4
statement-5
C: PROCEDURE;

statement-c1
statement-c2
END C;

statement-6
statement-7
END PRMAIN;

In this example, PRMAIN can invoke
procedures A and C, but not B; procedure A
can invoke procedures B and C; procedure B
can invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the
activation of blocks presupposes that a
program has already been activated. A PL/I
program becomes active when a calling
program invokes the initial procedure.
This calling program usually is the
operating system, although it could be
another program. For System/360

Chapter 6: Blocks, Flow of Control, and Storage Allocation 77

implementations, the initial procedure,
called the main procedure, must be an
external procedure whose PROCEDURE
statement has the OPTIONS(MAIN)
specification, as shown in the following
example:

CONTRL: PROCEDURE OPTIONS(MAIN);
CALL A;
CALL B;
CALL C;
END CONTRL;

In this example, CONTRL is the initial
procedure and it invokes other procedures
in the program.

The following is a summary of what has
been stated, or at least implied, about the
activation of blocks:

• A program becomes active when the
initial procedure is activated by the
operating system.

• Except for the initial procedure,
external and internal procedures
contained in a program are activated
only when they are invoked by a
procedure reference.

• Begin blocks are activated through
normal sequential flow or as on-units.

• The initial procedure remains active
for the duration of the program.

• All activated blocks remain active
until they are terminated (see below).

TERMINATION

In general, a procedure block is terminated
when, by some means other than a procedure
reference, control passes back to the
invoking block or to some other active
block. Similarly, a begin block is
terminated when, by some means other than a
procedure reference, control passes to
another active block. There are a number
of ways by which such transfers of control
can be accomplished, and their
interpretations differ according to the
type of block being terminated.

Note that when a block is terminated,
any task attached by that block is
terminated (see Chapter 15,
"Multitasking").

Begin Block Termination

A begin block is terminated when any of the
following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically
following the END, except when the
block is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any block
activated from within that begin
block) transfers control to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution).

4. Control reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well.

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin block B is
contained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B
effectively terminates both A and B. This
case is illustrated below:

FRST: PROCEDURE OPTIONS(MAIN);
statement-1
statement-2
statement-3
A: BEGIN;

statement-al
statement-a2
B: BEGIN;

statement-b1
statement-b2
GO TO LAB;
statement-b3
END B;

statement-a3
END A;

statement-4
statement-5

LAB: statement-6
statement-7
END FRST;

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two
statements in A are executed and then begin

78

block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as well as termination of block B.

Procedure Termination

A procedure is terminated when one of the
following occurs:

1. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of
invocation in the invoking procedure.
If the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
OALL option or a function reference),
execution of the statement containing
the reference will be resumed.

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO statement
within the procedure (or any block
activated from within that procedure)
transfers control to a point not
contained within the procedure.

4. A STOP or EXIT statement is executed
(thereby terminating execution).

Items 1, 2, and 3 are normal procedure
terminations; item 4 is abnormal procedure
termination.

As with a begin block, the type of
termination described in item 3 can
sometimes result in the termination of
several procedures and/or begin blocks.
Specifically, if the transfer point
specified by the GO TO statement is
contained in a block that did not directly
activate the block being terminated, all
intervening blocks in the activation
sequence are terminated. Consider the
following example:

A: PROCEDURE OPTIONS(MAIN);
statement-1
statement-2
B: BEGIN;

statement-b1
statement-b2
CALL C;
statement-b3
END B;

statement-3
statement-4
C: PROCEDURE;

statement-c1
statement-c2
statement-c3
D: BEGIN;

statement-d1
statement-d2
GO TO LAB;
statement-d3
END D;

statement-c4
END C;

statement-5
LAB: statement-6

statement-7
END A;

In the above example, A activates F,

which activates C, which activates F. In
D, the statement GO TO LAB transfers
control to statement-6 in A. Since this
statement is not contained in D, C, or B,

all three blocks are terminated; A remains
active. Thus, the transfer of control out
of D results in the termination of
intervening blocks B and C as well as the
termination of block D.

Program Termination

A program is terminated when any one of the
following occurs:

1. Control for the program reaches an
EXIT statement. This is abnormal
termination.

2. Control for the program reaches a STOP
statement. 1 This also is abnormal
termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal
termination.

4. An on-unit for the ERROR condition is
executed with normal return (that is,

When multitasking is in operation, the
program (i.e., the major task) is
terminated when any task reaches a STOP
statement. See Chapter 15, "Multitasking."

Chapter 6: Blocks, Flow of Control, and Storage Allocation 79

a GO TO statement does not transfer
control out of the on-unit) or the
FINISH condition is raised as a result
of the standard system action for the
ERROR condition.

Note: The termination of a program,
whether normal or abnormal , raises the
FINISH condition. The standard system
action for this condition is to return
control to the operating system control
program. For normal termination, the
control program will then pass control to
the calling program, if any. For abnormal
termination, it will terminate the job.
(See Part II, Section H, "ON-Conditions.")

STORAGE ALLOCATION

Storage allocation is the process of
associating an area of storage with a
variable sc that the data item(s) to be
represented by the variable may be recorded
internally. When storage has been
associated with a variable, the variable is
said to be allocated. Allocation for a
given variable may take place statically,
that is, before the execution of the
program, or dynamically, during execution.
A variable that is allocated statically
remains allocated for the duration of the
program. A variable that is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variable or at the request
of the programmer, depending upon its
storage class.

The manner in which storage is allocated
for a variable is determined by the storage
class of that variable. There are four
storage classes: static, automatic,
controlled, and based. Each storage class
is specified by its corresponding storage
class attribute: STATIC, AUTOMATIC,
CONTROLLED, and BASED, respectively, The
last three define dynamic storage
allocation.

Storage class attributes may be declared
explicitly for element, array, and major
structure variables. If a variable is an
array or a major structure variable, the
storage class declared for that variable
applies to all of the elements in the array
or structure.

All variables that have not been
explicitly declared with a storage class
attribute are assumed to have the AUTOMATIC
attribute, with one exception: any variable
that has the EXTERNAL attribute is assumed
to have the STATIC attribute.

Static Storage

All variables that have the STATIC
attribute are allocated storage before the
execution of the program begins and they
remain allocated for the duration of the
program. For example:

Before the execution of a program
begins, all static variables are allocated
and any initial values specified for them
are assigned. Therefore, in the above
example, the first time that procedure OUTP
is invoked, X has the value 1 and execution
of the PUT statement causes the item X=1 to
be written. Before OUTP is terminated, the
assignment statement X=X+1 increases the
value of X by 1. If OUTP is invoked a
second time, and if the value of X is not
changed elsewhere in the program, X has the
value 2 (X is not re-initialized to 1
because static variables are initialized
only once before execution). When the PUT
statement is executed for the second time,
the item X=2 is written into the stream,
etc. Thus, the static variable X might be
used to record the number of times that
OUTP is invoked.

Automatic Storage

A variable that has the AUTOMATIC attribute
is allocated storage upon activation of the
block in which that variable is declared.
The variable remains allocated as long as
the block remains active; it is freed when
the block is terminated. Once a variable
is freed, its value is lost.

Controlled Storage

A variable that has the CONTROLLED
attribute is allocated storage only upon
the execution of an ALLOCATE statement
specifying that variable. Storage remains
allocated for that variable until the
execution of a FREE statement in which the
variable is specified. This allocation
remains even after termination of the block

80

in which it is allocated. Thus, the
allocation and freeing of storage for
variables declared with the CONTROLLED
attribute is directly under the control of
the programmer.

A controlled variable may be stacked;
that is, storage may be allocated for a
controlled variable even when a previous
allocation for that variable exists. In
terms of ALLOCATE and FREE statements,
stacking occurs when an allocated
controlled variable is specified in an
ALLOCATE statement without first having
been specified in a FREE statement. When
this occurs, the previous allocation is not
released; its value remains the same but,
for the time being, this value is not
available to the programmer. Conceptually,
the new allocation is stacked on top of the
previous allocation, with the result that
the previous allocation is "pushed-down" in
the stack. Subsequent allocations are
always added to the top of the stack.

Any reference to a stacked controlled
variable always refers to the most recent
allocation for that variable; i.e., to the
allocation at the top of the stack. Thus,
a FREE statement specifying a stacked
controlled variable will cause the
allocation at the top of the stack to be
freed. When this occurs, the other
allocations in the stack are "popped-up",
the most recent previous allocation coming
to the top and being available once again.
When an allocation is popped up to the top
of a stack, its value is the same as it was
when it was pushed down.

Based Storage

Based storage is similar to controlled
storage in that it can be allocated by the
ALLOCATE statement and freed by the FREE
statement; and more than one allocation can
exist for one variable. However, the
programmer has a much greater degree of
control with based storage. For example,
all current based allocations are available
at any time: unique reference to a
particular allocation is provided by a
pointer value qualifying the based variable
reference.

The use of based storage also allows
data to be processed in an input/output
buffer without it having to be moved from
the buffer to a variable (i.e., to a work
area). By means of the LOCATE statement
and the READ statement with the SET option,
the structure of the based variable is
superimposed on the data in the output or
input buffer respectively, so that any
reference to that allocation of the based
variable is a reference to that data.

Based storage is the most powerful of
the PL/I storage classes, but it must be
used carefully; many of the safeguards
against error that are provided for other
storage classes cannot be provided for
based.

For full details of based storage, see
Chapter 14, "Based Variables and List
Processing."

Reactivation of an Active Procedure
(Recursion)

An active procedure that can be reactivated
from within itself or from within another
active procedure is said to be a recursive
procedure; such reactivation is called
recursion.

A procedure can be invoked recursively
only if the RECURSIVE option has been
specified in its PROCEDURE statement. This
option also applies to the names of any
secondary entry points that the procedure
might have.

The environment (that is, values of
automatic variables, etc.) of every
invocation of a recursive procedure is
preserved in a manner analogous to the
stacking of allocations of a controlled
variable. An environment can thus be
thought of as being "pushed down" at a
recursive invocation, and "popped up" at
the termination of that invocation. Note
that a label constant always contains
information identifying the current
invocation of the block that contains the
label. Hence, if a label constant is
assigned to a label variable in a
particular invocation, a GO TO statement
naming that variable in another invocation
could restore the environment that existed
when the assignment was performed.

Consider the following example:

Chapter 6: Blocks, Flow of Control, and Storage Allocation 81

In the above example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program begins.

The first time that RECURS is invoked, X
is incremented by 1 and X=1 is transmitted
by the PUT statement. Since X is less than
5, AGN is invoked. In AGN, X is
incremented by 1 and X=2 is transmitted
(also by a PUT statement). AGN then
reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as before,
and then X=3 is transmitted. X is still
less than 5, so AGN is invoked again.
Since AGN is active when invoked, this
invocation of AGN is also recursive. X is
incremented once again, X=4 is transmitted,
and RECURS is invoked for the third time.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time; that is,
control returns to the statement following
CALL RECURS in the second invocation of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second
invocation of AGN is terminated, and
control returns to the procedure that
invoked AGN for the second time; that is,
control returns to the statement following
CALL AGN in the second invocation of
RECURS. Here X is decremented again and
X=3 is transmitted, after which the second
invocation of RECURS is terminated and
control returns to the first invocation of
AGN. X is decremented again, X=2 is
transmitted, the first invocation of AGN is
terminated, and control returns to the
first invocation of RECURS. X is
decremented, X=1 is transmitted, and the
first invocation of RECURS is terminated.
Control then returns to the procedure that
invoked RECURS in the first place.

Note the difference between recursive
and reentrant procedures. A procedure is
recursive only if the RECURSIVE option is
specified in the PROCEDURE statement.
Every procedure compiled by the F Compiler
is reentrant; that is, it is a procedure
that does not modify itself during its
execution, so that subsequent execution of
the procedure with the same data will
always give the same result.

Effect of Recursion on Storage Classes

Allocation of static variables (as
illustrated above) is not affected by
recursion, because they are allocated
storage outside the environment of a
recursive procedure. However, allocation
of automatic variables is affected, because
they are a part of the environment of a
particular invocation and also because
their allocation and release is not
directly controlled by the programmer.
Allocation of controlled variables is not
affected, because their allocation and
release is completely under the control of
the programmer. This applies to based
variables also, but with the provision that
the storage class of the pointer variable
must be taken into account.

Each time a procedure is invoked
recursively, storage for each automatic
variable is reallocated, and the previous
allocation is pushed down in a stack. Each
time an activation of a recursive procedure
is terminated, automatic storage is popped
up to yield the next most recent generation
of automatic storage. Hence, each
generation of automatic storage is
preserved as part of the environment of the
corresponding recursive activation.

Pointer variables, unless they are
explicitly declared otherwise, are
automatic by default, and are therefore
subject to the stacking process described
above. Consequently, when reference is
made to a based variable in a recursive
procedure, the programmer should take care
to ensure the validity and accuracy of the
pointer qualifier.

Prologues and Epilogues

Each time a block is activated, certain
activities must be performed before control
can reach the first executable statement in
the block. This set of activities is
called a prologue. Similarly, when a block
is terminated, certain activities must be
performed before control can he transferred

82

out of the block; this set of activities is
called an epilogue.

Prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the
programmer in improving the performance of
his program.

Prologues

A prologue is a compiler-written routine
logically appended to the beginning of a
block and executed as the first step in the
activation of a block. In general,
activities performed by a prologue are as
follows:

• Computing dimension bounds and string
lengths for automatic and DEFINED
variables and ENTRY declarations.

• Allocating storage for automatic
variables and initialization, if
specified.

• Determining which currently active
blocks are known to the procedure, so
that the correct generations of
automatic storage are accessible, and
the correct on-units may be entered.

• Allocating storage for dummy arguments
that may be passed from this block.

The prologue may need to evaluate
expressions defining lengths, bounds,

iteration factors, and initial values.
Note that if an item is referred to in an
expression and the allocation or
initialization of a second item depends on
that expression, then the first item must
be in no way dependent on the second item
for its own allocation and initialization.
Further, the first item must be in no way
dependent on any other item that so depends
on the second item. For example, the
following declaration is invalid:

DCL A(B(1)) INITIAL(2),
B(A(1)) INITIAL(3);

However, the following declaration is
valid:

DCL N INITIAL(3),
A(N),
B CHAR(N);

Epilogues

An epilogue is a compiler-written routine
logically appended to the end of a block
and executed as the final step in the
termination of a block. In general, the
activities performed by an epilogue are as
follows:

• Re-establishing the on-unit environment
existing before the block was
activated.

• Releasing storage for all automatic
variables allocated in the block.

Chapter 6: Blocks, Flow of Control, and Storage Allocation 83

Chapter 7: Recognition of Names

A PL/I program consists of a collection of
identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either
keywords or names with a meaning specified
by the programmer. The PL/I langua ge is
constructed so that the compiler can
determine from context whether or not an
identifier is a keyword, so there is no
list of reserved words that must not be
used for programmer-defined names. Any
identifier may be used as a name; the only
restriction is that at any point in a
program a name can have one and only one
meaning. For example, the same name cannot
be used for both a file and a
floating-point variable.

Note: The above is true so long as the
60-character set is used. Certain
identifiers of the 48-character set cannot
be used as programmer-defined identifiers
in a program written using the 48-character
set; these identifiers are: GT, GE, NE, LT,
NG, LE, NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a
program. A name declared within a block
has a meaning only within that block.
Outside the block it is unknown unless the
same name has also been declared in the
outer block. In this case, the name in the
outer block refers to a different object.
This enables programmers to specify local
definitions and, hence, to write procedures
or begin blocks without knowing all the
names being used by other programmers
writing other parts of the program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the pro gram a
particular meaning applies to. In PL/I a
name is given attributes and a meaning by a
declaration (not necessarily explicit).
The part of the program for which the
meaning applies is called the scope of the
declaration of that name. In most cases,
the scope of a name is determined entirely
by the position at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name (such as in recursion); such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to
understand the terms "contained in" and
"internal to."

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained in that block.
Note, however, that the labels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
block. Nested blocks are contained in
the block in which they appear.

Internal To:

Text that is contained in a block, but
not contained in any other block
nested within it, is said to be
internal to that block. Note that
entry names of a procedure (and labels
of a BEGIN statement) are not
contained in that block.
Consequently, they are internal to the
containing block. Entry names of an
external procedure are treated as if
they were external to the external
procedure.

In addition to these terms, the
different types of declaration are
important. The three different types --
explicit declaration, contextual
declaration, and implicit declaration --
are discussed in the following sections.

Explicit Declaration

A name is explicitly declared if it
appears:

1. In a DECLARE statement

2. In a parameter list

3. As a statement label

4. As a label of a PROCEDURE or ENTRY
statement

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately
following the PROCEDURE or ENTRY statement
in which the parameter list occurs (though
the same name may also appear in a DECLARE
statement internal to the same block).

84

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement is
the same as if it were declared in a
DECLARE statement immediately preceding the
PROCEDURE statement for the procedure to
which it refers.

The appearance of a statement label
prefix constitutes explicit declaration
equivalent to the declaration of a variable
in a DECLARE statement internal to the same
block as the statement to which it applies.

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of a
name is that block to which the declaration
is internal, including all contained blocks
except those blocks (and any blocks
contained within them) to which another
explicit declaration of the same identifier
is internal.

For example:

The lines to the right indicate the
scope of the names. B and B' indicate the
two distinct uses of the name B; C and C'
indicate the two uses of the name C.

Contextual Declaration

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit
declaration for the same name, the name is
said to be contextually declared.

A name that has not been declared
explicitly will be recognized and declared
contextually in the following cases:

1. A name that appears in a CALL
statement, in a CALL option, or
followed by a parenthesized list in a
function reference (in a context where
an expression is expected) is given
the ENTRY and EXTERNAL attributes.

2. A name that appears in a FILE option,
or a name that appears in an ON,
SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE and EXTERNAL
attributes.

3. A name that appears in an ON
CONDITION, SIGNAL CONDITION, or REVERT
CONDITION statement is recognized as a
programmer-defined condition name.

4. A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

5. A name that appears in a TASK option
is given the TASK attribute.

6. A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side of a pointer
qualification symbol is given the
POINTER attribute.

7. A name that appears in an IN option,
or in the OFFSET attribute is given
the AREA attribute. Note, however,
that all contextually declared area
variables are given the AUTOMATIC
attribute. The F Compiler
implementation requires that the
variable named in the OFFSET attribute
must be based; if a nonbased area
variable is named, the offset variable
will be changed to a pointer variable.
Hence, unless the variable named in
the OFFSET attribute is explicitly
declared, OFFSET effectively becomes
POINTER, and a severe error occurs.

8. If an undeclared identifier appears:

a. before the equal sign in an
assignment statement, or

b. before the assignment symbol in a
DO statement (or in a repetitive
specification), or

c. in the data list of a GET
statement

and if that identifier is neither
enclosed within an argument list nor
immediately followed by an argument
list, that identifier is contextually
declared to be a variable and not a
reference to a built-in function or
pseudo-variable. This rule does not

Chapter 7: Recognition of Names 85

apply to the identifiers ONCHAR,
ONSOURCE, and PRIORITY.

Examples of contextual declaration are:

READ FILE (PREQ) INTO (Q);

ON CONDITION (NEG) CALL CREDIT;

In these statements, PREQ is given the FILE
attribute, NEG is recognized as a
programmer-defined condition name, and
CREDIT is given the ENTRY attribute. The
EXTERNAL attribute is given to all three by
default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately
following the PROCEDURE statement of the
external procedure in which the name
appears.

Note that contextual declaration has the
same effect as if the name were declared in
the external procedure, even when the
statement that causes the contextual
declarations is internal to a block (called
B, for example) that is contained in the
external procedure. Consequently, the name
is known throughout the entire external
procedure, except for any blocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the
context of a name to add to the attributes
established for that name in an explicit
declaration.

For example, the following procedure is
invalid:

The identifier F is in a parameter list and
is, therefore, explicitly declared. It is
given the attributes REAL DECIMAL FLOAT by
default. Since F is explicitly declared,
its appearance in the FILE option does not
constitute a contextual declaration. Such
use of the identifier is in error.

Implicit Declaration

If a name appears in a program and is not
explicitly or contextually declared, it is
said to be implicitly declared. The scope
of an implicit declaration is determined as
if the name were declared in a DECLARE
statement immediately following the first
PROCEDURE statement of the external
procedure in which the name is used.

An implicit declaration causes default
attributes to be applied, depending upon
the first letter of the name. If the name
begins with any of the letters I through N
it is given the attributes REAL FIXED
BINARY (15,0). If the name begins with any
other letter including one of the
alphabetic extenders $, #, or @, it is
given the attributes REAL FLOAT DECIMAL
(6). (The default precisions are those
defined for System/360 implementations.)

Examples of Declarations

Scopes of data declarations are illustrated
in Figure 7-1. The brackets to the left
indicate the block structure; the brackets
to the right show the scope of each
declaration of a name. In the diagram, the
scopes of the two declarations of Q and R
are shown as Q and Q' and R and R'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except B; the scope of the second
declaration is block B only.

R is declared in block C, but a
reference to R is also made in block B.
The reference to R in block B results in an
implicit declaration of R in A,the external
procedure. Two separate names with
different scopes exist, therefore. The
scope of the explicitly declared R is C;
the scope of the implicitly declared R is
all of A except block C.

I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C and D.

S is explicitly declared in procedure D
and is known only within D.

Scopes of entry name and statement label
declarations are illustrated in Figure 7-2.
The example shows two external procedures.
The names of these procedures, A and E, are

86

assumed to be explicitly declared with the
EXTERNAL attribute within the procedures to
which they apply. In addition, E is
contextually declared in A as an EXTERNAL
entry name by its appearance in the CALL
statement in block C. The contextual
declaration of E applies throughout block A
and is linked to the explicit declaration
of E that applies throughout block E. The
scope of the name E is all of block A and
all of block E. The scope of the name A is
only all of the block A, and not E.
However, it could appear in a CALL
statement in E, since the CALL statement
itself would provide a contextual
declaration of A, which would then result
in the scope of A being all of A and all of
E.

The label L1 appears with statements
internal to A and to C. Two separate
declarations are therefore established; the
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement

in block B is executed, control is
transferred to L1 in block A, and block B
is terminated.

D and B are explicitly declared in block
A and can be referred to anywhere within A;
but since they are INTERNAL, they cannot be
referred to in block E (unless passed as an
argument to E).

C is explicitly declared in B and can be
referred to from within B, but not from
outside B.

L2 is declared in B and can be referred
to in block B, including C, which is
contained in B, but not from outside B.

Chapter 7: Recognition of Names 87

Application of Default Attributes

The attributes associated with a name
comprise those explicitly, contextually, or
implicitly declared for that name, as well
as those assumed by default. The default
for each attribute is given in Part II,
Section I, "Attributes."

The INTERNAL and EXTERNAL Attributes

The scope of a name with the INTERNAL
attribute is the same as the scope of its
declaration. Any other explicit
declaration of that name refers to a new
object with a different, non-overlapping
scope.

A name with the EXTERNAL attribute may
be declared more than once in the same
program, either in different external
procedures or within blocks contained in
external procedures. Each declaration of
the name establishes a scope. These
declarations are linked together and,
within a program, all declarations of the
same identifier with the EXTERNAL attribute
refer to the same name. The scope of the
name is the sum of the scopes of all the
declarations of that name within the
program.

Note: External names cannot be more than
seven characters long for System/360
implementations.

Since these declarations all refer to
the same thing, they must all result in the
same set of attributes. It may be
impossible for the compiler to check this,
particularly if the names are declared in
different procedures, so care should be
taken to ensure that different declarations
of the same name with the EXTERNAL
attribute do have matching attributes. The
attribute listing, which is available as
optional output from the F Compiler, helps
to check the use of names. The following
example illustrates the above points in a
program:

A: PROCEDURE;
DECLARE S CHARACTER (20);
CALL SET (3);

E: GET LIST (S,M,N);
B: BEGIN;

DECLARE X(M,N), Y(M);
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q);

DECLARE p (*,*), Q(*),
S BINARY FIXED EXTERNAL;

S = 0;
DO I = 1 TO M;

IF SUM (P(I,*)) = Q(I)
THEN GO TO B;

S = S+1;
IF S = 3 THEN CALL OUT (E);
CALL D(I);

B: END;
END C;

D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW ',

N, 'TABLE NAME ', S);
END D;

END B;
GO TO E;
END A;

OUT: PROCEDURE (R);
DECLARE R LABEL,

(M,L) STATIC INTERNAL
INITIAL (0),

S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(1);

M = M+1; S=0;
IF M<L THEN STOP; ELSE GO TO R;

SET: ENTRY (Z);
L=Z;
RETURN;
END OUT;

A is an external procedure name; its
scope is all of block A, plus any other
blocks where A is declared (explicitly or
contextually) as external.

S is explicitly declared in block A and
block C. The character string declaration
applies to all of block A except block C;
the fixed binary declaration applies only
within block C. Notice that although D is
called from within block C, the reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. Its
appearance as a parameter establishes an
explicit declaration of N within D; the
references outside D cause an implicit
declaration of N in block A. These two
declarations of the name N refer to
different objects, although in this case,
the objects have the same data attributes,
which are, by default, FIXED (15,0),
BINARY, and INTERNAL.

X and Y are known throughout B and could
be referred to in block C or D within B,
but not in that part of A outside B.

P and Q are parameters, and therefore
their appearance in the parameter list is
sufficient to constitute an explicit
declaration. However, a separate DECLARE
statement is required in order to specify
that P and Q are arrays., Note that
although the arguments X and Y are declared
as arrays and are known in block C, it is
still necessary to declare P and Q in a

88

DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the
arguments.)

I and M are not explicitly declared in
the external procedure A; they are
therefore implicitly declared and are known
throughout A, even though I appears only
within block C.

Within the external procedure A, OUT and
SET are contextually declared as entry
names, since they follow the keyword CALL.
They are therefore considered to be
declared in A and are given the EXTERNAL
attribute by default.

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the EXTERNAL attribute. The
two entry names SET and OUT are therefore
known throughout the two procedures.

The label B appears twice in the
program, once as the label of a begin
block, which is an explicit declaration, as
a label in A. It is redeclared as a label
within block C by its appearance as a
prefix to the END statement. The reference
to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside block C,
any reference to B would be to the label of
the begin block.

Note that C and D can be called from any
point within B but not from that part of A
outside B, nor from another external
procedure. Similarly, since E is known
throughout the external procedure A, a
transfer to E may be made from any point
within A. The label B within block C,
however, can only be referred to from
within C. Transfers out of a block by a GO
TO statement can be made; but such
transfers into a nested block generally
cannot. An exception is shown in the
external procedure OUT, where the label E
from block A is passed as an argument to
the label parameter R.

The statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
OUT.

The variables M and L are declared
within the block OUT to be STATIC, so their
values are preserved between calls to OUT.

In order to identify the S in the
procedure OUT as the same S in the
procedure C, both have been declared with
the attribute EXTERNAL.

Scope of Member Names of External
Structures

When a major structure name is declared
with the EXTERNAL attribute in more than
one block, the attributes of the
corresponding structure members must be the
same in each case, although the
corresponding member names need not be
identical. Members of structures always
have the INTERNAL attribute, and cannot be
declared with any scope attribute.
However, a reference to a member of an
external structure, using the member name
known to the block containing the
reference, is effectively a reference to
that member in all blocks in which the
external name is known, regardless of
whether the corresponding member names are
identical. For example:

In this example, if A.B is changed in
PROCA, it is also changed for PROCB, and
vice versa; if A.0 is changed in PROCA, A.D
is changed for PROCB, and vice versa.

Multiple Declarations and Ambiguous
References

Two or more declarations of the same
identifier internal to the same block
constitute a multiple declaration, unless
at least one of the identifiers is declared
within a structure in such a way that name
qualification can be used to make the names
unique.

Two or more declarations anywhere in a
program of the same identifier as different
names with the EXTERNAL attribute
constitute a multiple declaration.

Multiple declarations are in error.

A name need have only enough
qualification to make the name unique.

Chapter 7: Recognition of Names 89

Reference to a name is always taken to
apply to the identifier declared in the
innermost block containing the reference.
An ambiguous reference is a name with
insufficient qualification to make the name
unique.

The following examples illustrate both
multiple declarations and ambiguous
references:

DECLARE 1 A, 2 C, 2 D, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
A.0 = D.E;

In this example, A.0 refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2 B, 2 B, 2 C, 3 D, 2 D;

In this example, B has been multiply
declared. A.D refers to the second D,
since A.D is a complete qualification of

only the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3 C, 2 D, 3 C;

In this example, A.0 is ambiguous because
neither C is completely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A;

In this example, A refers to the first A,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;

DECLARE 1 Y, 2 X, 3 Z, 3 A,
2 Y, 3 Z, 3 A;

In this example, X refers to the first
DECLARE statement. A reference to Y.Z is
ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z refers to the first Z.

90

Chapter 8: Input and Output

Introduction

PL/I includes input and output statements
that enable data to be transmitted between
the internal and external storage devices
of a computer. A collection of data
external to a program is called a data set.
Transmission of data from a data set to a
program is termed input, and transmission
of data from a program to a data set is
called output.

PL/I input and output statements are
concerned with the logical organization of
a data set and not with its physical
characteristics; a program can be designed
without specific knowledge of the
input/output devices that will be used when
the program is executed. To allow a source
program to deal primarily with the logical
aspects of data rather than with its
physical organization in a data set, PL/I
employs a symbolic representation of a data
set called a file. A file can be
associated with different data sets at
different times during the execution of a
program.

Two types of data transmission can be
used by a PL/I program. In stream-oriented
transmission, the organization of the data
in the data set is ignored within the
program, and the data is treated as though
it actually were a continuous stream of
individual data items in character form;
data is converted from character form to
internal form on input, and from internal
form to character form on output. In
record-oriented transmission, the data set
is considered to be a collection of
discrete records. No data conversion takes
place during record transmission; on input
the data is transmitted exactly as it is
recorded in the data set, and on output it
is transmitted exactly as it is recorded
internally. It is possible for the same
data set to be processed at different times
by either stream transmission or record
transmission; however, all items in the
data set would have to be in character
form.

Stream-oriented transmission is ideal
for simple jobs, particularly those that
use punched card input and have limited
output; a minimum of coding is required of
the programmer, especially for punched card
input and printed output. However,
compared with record-oriented transmission,
stream-oriented transmission is less
efficient in terms of execution time

because of the data conversion it involves,
and more space is required on external
storage devices because all data is in
character form.

Although record-oriented transmission
may demand rather more effort from the
programmer, it is more versatile than
stream-oriented transmission, with regard
to the manner in which data can be
processed and the types of data set that
can be processed. Since data is recorded
in a data set exactly as it appears in main
storage, any data format is acceptable; no
conversion problems will arise, but the
programmer must have a greater awareness of
the structure of his data.

This chapter discusses those aspects of
PL/I input and output that are common to
stream-oriented and record-oriented
transmission, including files and their
attributes, and the relationship of files
to data sets. Chapters 9 and 10 describe
the input and output statements that can be
used in a PL/I program, and the various
data set organizations that are recognized
in PL/I. Stream-oriented transmission is
dealt with in Chapter 9, and
record-oriented transmission in Chapter 10.

Data Sets

Data sets are stored on a variety of
external storage media, such as punched
cards, reels of magnetic tape, magnetic
disks, magnetic drums, and punched paper
tape. Despite their variety, these media
have many common characteristics that
permit standard methods of collecting,
storing, and transmitting data. For
convenience, the general term volume is
used to refer to a unit of external
storage, such as a reel of magnetic tape or
a disk pack, without regard to its specific
physical composition.

The data items within a data set are
arranged in distinct physical groupings

Chapter 8: Input and Output 91

called blocks.' These blocks allow the data
set to be transmitted and processed in
portions rather than as a unit. For
processing purposes, each block may consist
of one or more logical subdivisions called
records, each of which contains one or more
data items. (Sometimes a block is called a
physical record, because it is the unit of
data that is physically transmitted to and
from a volume, and its logical subdivisions
are called logical records.)

When a block contains two or more
records, the records are said to be
blocked. Blocked records often permit more
compact and efficient use of storage.
Consider how data is stored on magnetic
tape: the data between two successive
interrecord gaps is one block, or physical
record. If several logical records are
contained within one block, the number of
gaps is reduced, and much more data can be
stored on a full length of tape. For
example, on a tape of density 800
characters/inch with an interrecord gap of
0.6 inches, a card image of 80 characters
would take up 0.1 inches. If the records
were unblocked, each record would require
0.1 inches, plus 0.6 inches for the
interrecord gap, making a total of 0.7
inches. 100 records would therefore take
up 70 inches of tape. If the records were
blocked, however, at, say, 10 records to a
block, each block of 10 records would take
up 1 inch, plus 0.6 inches for the gap,
making a total of 1.6 inches. Thus, 100
records would now take up only 16 inches of
tape; this is less than 25 percent of the
amount needed for the unblocked records.

Most data processing applications are
concerned with logical records rather than
blocks. Therefore, the input and output
statements of PL/I generally refer to
logical records; this allows the programmer
to concentrate on the data to be processed,
without being directly concerned about its
physical organization in external storage.

data set, PL/I employs a symbolic
representation of a data set called a file.
This symbolic representation determines how
input and output statements access and
process the associated data set. Unlike a
data set, however, a file has significance
only within the source program and does not
exist as a physical entity external to the
program.

PL/I requires a file name to be declared
for a file, and allows the characteristics
of the file to be described with keywords
called file attributes, which are specified
for the file name. The following lists
show the attributes that are applicable for
each type of data transmission:

Stream-Oriented Record-Oriented
Transmission 	Transmission

FILE
	

FILE
STREAM
	

RECORD
INPUT
	

INPUT
OUTPUT
	

OUTPUT
EXTERNAL
	

UPDATE
INTERNAL
	 SEQUENTIAL

PRINT
	 DIRECT

ENVIRONMENT
	TRANSIENT

BUFFERED
UNBUFFERED
EXTERNAL
INTERNAL
BACKWARDS
KEYED
EXCLUSIVE
ENVIRONMENT

A detailed description of each of these
attributes appears in Part II, Section I,
"Attributes." The discussions below give a
brief description of each of the file
description attributes and show how these
attributes are declared for a file. The
scope attributes, EXTERNAL and INTERNAL,
are discussed in Chapter 7, "Recognition of
Names."

THE FILE ATTRIBUTE
Files

To allow a source program to deal primarily
with the logical aspects of data rather
than with its physical organization in a

'This discussion has to be slightly
modified for teleprocessing applications,
where the data set is in fact a queue of
messages and the term "block" is not
strictly applicable. However, a message is
similar to a block in that it may consist
of one or more records. Teleprocessing is
discussed in Chapter 10, "Record-Oriented
Transmission."

The FILE attribute indicates that the
associated identifier is a file name. For
example, the identifier MASTER is declared
to be a file name in the following
statement:

DECLARE MASTER FILE;

The attributes associated with the FILE
attribute fall into two categories:
alternative attributes and additive
attributes. An alternative attribute is
one that is chosen from a group of
attributes. If no explicit or implicit
declaration is given for one of the

92

alternative attributes in a group and if
one of the alternatives is required, a
default attribute is assumed.

An additive attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute or
name. The additive attribute KEYED can be
implied by the DIRECT attribute. The
additive attribute PRINT can be implied by
the standard output file name SYSPRINT. An
additive attribute can never be applied by
default.

Note: With the exception of the INTERNAL
and EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified for a file
that has at least one of the alternative or
additive attributes already specified
explicitly. The FILE attribute must be
specified explicitly, however, if only the
INTERNAL or EXTERNAL attribute is
specified; otherwise, the identifier will
be assumed, by default, to be an arithmetic
variable rather than a file name.

ALTERNATIVE ATTRIBUTES

PL/I provides five groups of alternative
file attributes. Each group is discussed
individually. Following is a list of the
groups and the default for each:

The scope attributes are discussed in
detail in Section I, "Attributes", and a
brief description of alternative attributes
is given below.

The STREAM and RECORD Attributes

The STREAM and RECORD attributes describe
the type of data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attribute causes a file to be
treated as a continuous stream of data
items recorded only in character form.

The RECORD attribute causes a file to be
treated as a sequence of records, each
record consisting of one or more data items
recorded in any internal form.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREAM;

The INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute applies to files that are to be
written only. The UPDATE attribute
describes a file that is to be used for
both input and output; it allows records to
be inserted into an existing file and other
records already in that file to be altered
or deleted.

DECLARE
DETAIL FILE INPUT,
REPORT FILE OUTPUT,
MASTER FILE UPDATE;

The SEQUENTIAL, DIRECT, and TRANSIENT
Attributes

The access attributes apply only to a file
with the RECORD attribute, and provide
information regarding access to the
contents of the file.

The SEQUENTIAL attribute specifies that
successive records in the file are to be
accessed on the basis of their successive
physical positions, such as they are on
magnetic tape.

The DIREOT attribute specifies that a
record in a file is to be accessed on the
basis of its location in the file and not
on the basis of its position relative to
the record previously read or written. The
location of the record is determined by a
character-string which is called a key;
therefore, the DIRECT attribute implies the
KEYED attribute. The associated data set
must be in a direct-access volume.

The TRANSIENT attribute, which is used
only for teleprocessing applications,
specifies that the file is associated with
a data set whose contents are
re-established each time it is accessed
(i.e., a "queue" data set; messages

Chapter 8: Input and Output 93

originating from and destined for remote
terminals are held in such a data set while
in transit between a message control
program and a message processing program.)
The action of reading a record removes that
record from the data set. With the F
Compiler, access is sequential, but the
file must have the KEYED attribute since a
key is used to identify the terminal
concerned; a buffer is always used, and so
the file must also have the BUFFERED
attribute. Teleprocessing is discussed in
Chapter 10, "Record-Oriented Transmission."

The BUFFERED and UNBUFFERED Attributes

The buffering attributes apply only to
files that have the SEQUENTIAL or TRANSIENT
attributes. The BUFFERED attribute
indicates that records transmitted to and
from a file must pass through an
intermediate internal-storage area. Use of
the BUFFERED attribute enables the system
to automatically overlap data transmission
with other processing. The size of a
buffer is usually related to the size of
the blocks (physical records) in the data
set associated with the file.

The UNBUFFERED attribute indicates that
a record in a data set need not pass
through a buffer but may be transmitted
directly to and from the internal storage
associated with a variable. Any desired
overlapping of data transmission with other
processing is the responsibility of the
programmer, who can use the EVENT option
for this purpose. The blocks and records
are generally the same size in a data set
that is associated with an UNBUFFERED file.

Note: Specification of UNBUFFERED does not
preclude the use of buffers. In some
cases, 'hidden buffers" are required.
These cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
Part II, Section I, "Attributes."

The PRINT Attribute

The PRINT attribute applies only to files
with the STREAM and OUTPUT attributes. It
indicates that the file is eventually to be
printed, that is, the data associated with
the file is to appear on printed pages,
although it may first be written on some
other medium. The PRINT attribute causes
the initial byte of each record of the
associated data set to be reserved for a
printer control character.

The BACKWARDS Attribute

The BACKWARDS attribute applies only to
files with the SEQUENTIAL, RECORD, and
INPUT attributes and only to data sets on
magnetic tape. It indicates that a file is
to be accessed in reverse order, beginning
with the last record and proceeding through
the file until the first record is
accessed.

The KEYED Attribute

The KEYED attribute indicates that records
in the file are to be accessed using one of
the key options (KEY, KEYTO, or KEYFROM) of
data transmission statements or of the
DELETE statement. Note that the KEYED
attribute does not necessarily indicate
that the actual keys exist or are to be
written in the data set; consequently, it
need not be specified unless one of the key
options is to be used. The STREAM
attribute cannot be applied to a file that
has the KEYED attribute. The nature and
use of keys is discussed in detail in
Chapter 10, "Record-Oriented Transmission."

The EXCLUSIVE Attribute
ADDITIVE ATTRIBUTES

The additive attributes are:

PRINT

BACKWARDS

KEYED

EXCLUSIVE

ENVIRONMENT (option-list)

The EXCLUSIVE attribute applies only to
files with the RECORD, DIRECT, and UPDATE
attributes. It specifies that any record
in the file may be automatically locked by
a task while it is operating on that
record, to prevent interference by another
concurrent task. It can be suppressed by
the NOLOCK option on the READ statement.

For detailed information on the effects
of operations on EXCLUSIVE files, see "The
EXCLUSIVE Attribute," in Chapter 14.

94

The ENVIRONMENT Attribute OPEN FILE(file-name) [option-list]
[,FILE(file-name) [option-list]]...;

The ENVIRONMENT attribute provides
information that allows the compiler to
determine the method of accessing the data
associated with a file. It specifies the
physical organization of the data set that
will be associated with the file, and
indicates how the data set is to be
handled.

The general format of the ENVIRONMENT
attribute is

ENVIRONMENT (option-list)

The options appropriate to the two types of
data transmission are described in the
relevant chapters: Chapter 9,
"Stream-Oriented Transmission," and Chapter
10, "Record-Oriented Transmission."

OPENING AND CLOSING FILES

Before the data associated with a file can
be transmitted by input or output
statements, certain file preparation
activities must occur, such as checking for
the availability of external storage media,
positioning the media, and allocating
appropriate programming support. Such
activity is known as opening a file. Also,
when processing is completed, the file must
be closed. Closing a file involves
releasing the facilities that were
established during the opening of the file.

PL/I provides two statements, OPEN and
CLOSE, to perform these functions. These
statements, however, are optional. If an
OPEN statement is not executed for a file,
the file is opened automatically when the
first data transmission statement for that
file is executed; in this case, the
automatic file preparation consists of
standard system procedures that use
information about the file as specified in
a DECLARE statement (or assumed from a
contextual declaration). Similarly, the
file is closed automatically on termination
of the task that opened it, if it has not
been explicitly closed before termination.

The OPEN Statement

Execution of an OPEN statement causes one
or more files to be opened explicitly. The
OPEN statement has the following basic
format:

The option list of the OPEN statement can
specify any of the alternative and additive
attributes, except the INTERNAL, EXTERNAL,
and ENVIRONMENT attributes. Attributes
included as options in the OPEN statement
are merged with those stated in a DECLARE
statement. The same attributes need not be
listed in both an OPEN statement and a
DECLARE statement for the same file, and,
of course, there must be no conflict.
Other options that can appear in the OPEN
statement are the TITLE option, used to
associate the file name with the data set,
and the PAGESIZE and LINESIZE options, used
to specify the layout of a data set. The
TITLE option is discussed below under
"Associating Data Sets with Files," and the
PAGESIZE and LINESIZE options, which apply
only to STREAM files, in Chapter 9. The
option list may precede the FILE (file
name) specification.

For the F Compiler, the OPEN statement
is executed by library routines that are
loaded dynamically at the time the OPEN
statement is executed. Consequently,
execution time can be reduced if more than
one file is specified in the same OPEN
statement, since the routines need be
loaded only once, regardless of the number
of files being opened. Note, however, that
such multiple opening may require
considerably more storage than might
otherwise be needed.

For a file to be opened explicitly, the
OPEN statement must be executed before any
of the input and output statements listed
below in "Implicit Opening" are executed
for the file.

Implicit Opening

An implicit opening of a file occurs when
one of the statements listed below is
executed for a file for which an OPEN
statement has not already been executed.
The type of statement determines which
unspecified alternatives are applied to the
file when it is opened.

The following list contains the
statement identifiers and the attributes
deduced from each:

Chapter 8: Input and Output 95

Merged Attributes

UPDATE

SEQUENTIAL

DIRECT

BUFFERED

UNBUFFERED

PRINT

Implied Attributes

RECORD

RECORD

RECORD, KEYED

RECORD

RECORD

OUTPUT, STREAM

BACKWARDS 	 RECORD,
SEQUENTIAL
INPUT

Statement Identifier Attributes Deduced

GET 	 STREAM, INPUT

PUT 	 STREAM, OUTPUT

READ 	 RECORD, INPUT
(see Note)

WRITE 	 RECORD, OUTPUT
(see Note)

LOCATE 	 RECORD, OUTPUT,
SEQUENTIAL, BUFFERED

REWRITE 	 RECORD, UPDATE

RECORD, UPDATE

RECORD, DIRECT,
UPDATE, EXCLUSIVE

KEYED 	 RECORD

EXCLUSIVE 	 RECORD, KEYED,
DIRECT, UPDATE

DELETE

UNLOCK

Note: INPUT and OUTPUT are deduced from
READ and WRITE only if UPDATE has not been
explicitly declared.

An implicit opening caused by one of the
above statements is equivalent to preceding
the statement with an OPEN statement that
specifies the deduced attributes.

Merging of Attributes

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged, explicitly or
implicitly, as the result of opening the
file. For example, the attributes INPUT
and UPDATE are in conflict, as are the
attributes UPDATE and STREAM.

After the attributes are merged, the
attribute implications listed below are
applied prior to the application of the
default attributes discussed earlier.
Implied attributes can also cause a
conflict. If a conflict in attributes
exists after the application of default
attributes, the UNDEFINEDFILE condition is
raised.

Following is a list of merged attributes
and attributes that each implies after
merging:

Note: The attributes SEQUENTIAL or DIRECT
and BUFFERED or UNBUFFERED do not apply to
a file with the STREAM attribute.

The following two examples illustrate
attribute merging for an explicit opening
and for an implicit opening.

Explicit opening:

DECLARE LISTING FILE STREAM;

OPEN FILE(LISTING) PRINT;

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM,
PRINT, and OUTPUT. Attributes after
default application are STREAM, PRINT,
OUTPUT, and EXTERNAL.

Implicit opening:

DECLARE MASTER FILE KEYED INTERNAL;

READ FILE (MASTER) INTO
(MASTER RECORD) KEYTO(MASTER KEY);

Attributes after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attributes after implication are KEYED,
INTERNAL, RECORD, and INPUT (no additional
attributes are implied). Attributes after
default application are KEYED, INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUFFERED.

96

Associating Data Sets with Files

With the System/360 Operating System, the
association of a file with a specific data
set is accomplished using job control
language1, outside the PL/I program. At
the time a file is opened, the PL/I file
name is associated with the name (ddname)
of a data definition statement (DD
statement), which is, in turn, associated
with the name of a specific data set
(dsname). Note that the direct association
is with the name of a DD statement, not
with the name of the data set itself.

A ddname can be associated with a PL/I
file either through the file name or
through the character-string value of the
expression in the TITLE option of the
associated OPEN statement.

If a file is opened implicitly, or if no
TITLE option is included in the OPEN
statement that causes explicit opening of
the file, the ddname is assumed to be the
same as the file name. If the file name is
longer than eight characters, the ddname is
assumed to be composed of the first eight
characters of the file name.

Note: Since external names are limited to
seven characters for the F Compiler, an
external file name of more than seven
characters is shortened into a
concatenation of the first four and the
last three characters of the file name.
Such a shortened name is not, however, the
name used as the ddname in the associated
DD statement.

Consider the following statements:

1. OPEN FILE(MASTER);

2. OPEN FILE(OLDMASTER);

3. READ FILE(DETAIL)...;

When statement number 1 is executed, the
file name MASTER is taken to be the same as
the ddname of a DD statement in the current
job step. When statement number 2 is
executed, the name OLDMASTE is taken to be
the same as the ddname of a DD statement in
the current job step. (The first eight
characters of a file name form the ddname.
Note, however, that if OLDMASTER is an
external name, it will be shortened by the

1This does not apply to TRANSIENT files;
the association of a TRANSIENT file with a
data set is direct and does not involve job
control language (except that a DD DUMMY
statement is given for each TRANSIENT
file). See "Teleprocessing" in Chapter 10,
"Record-Oriented Transmission."

compiler to OLDMTER for use within the
program.) If statement number 3 causes
implicit opening of the file DETAIL, the
name DETAIL is taken to be the same as the
ddname of a DD statement in the current job
step.

In each of the above cases, a
corresponding DD statement must appear in
the job stream; otherwise, the
UNDEFINEDFILE condition would be raised.
The three DD statements would appear, in
part, as follows:

1. //MASTER DD DSNAME=...

2. //OLDMASTE DD DSNAME=...

3. //DETAIL DD DSNAME=...

If a file is opened explicitly by an
OPEN statement that includes a TITLE
option, the ddname is taken from the TITLE
option, and the file name is not used
outside the program. The TITLE option
appears in an OPEN statement in the
following format:

OPEN FILE(file-name) TITLE(expression);

The expression in the TITLE option is
evaluated and, if necessary, converted to a
character string, that is assumed to be the
ddname identifying the appropriate data
set. If the character string is longer
than eight characters, only the first eight
characters are used. The following OPEN
statement illustrates how the TITLE option
might be used:

OPEN FILE(DETAIL) TITLE('DETAIL1');

If this statement were executed, there must
be a DD statement in the current job step
with DETAIL1 as its ddname. It might
appear, in part, as follows:

//DETAIL1 DD DSNAME=DETAILA,...

Thus, the data set DETAILA is associated
with the file DETAIL through the ddname
DETAIL1.

Although a data set name represents a
specific collection of data, the file name
can, at different times, represent entirely
different data sets. In the above example
of the OPEN statement, whatever data set is
named in the DSNAME parameter of the DD
statement DETAIL1 is the one that is
associated with DETAIL at the time it is
opened.

Use of the TITLE option allows a
programmer to choose dynamically, at open
time, one among several data sets to be
associated with a particular file name.
Consider the following example:

Chapter 8: Input and Output 97

DECLARE 1 INREC, 2 FIELD 1...,
2 FILE_IDENT CHARACTER(8),

DETAIL FILE INPUT...,
MASTER FILE INPUT...;

OPEN FILE(DETAIL);

READ FILE (DETAIL) INTO (INREC);

OPEN FILE (MASTER) TITLE(FILEIDENT);

Assume that the program containing these
statements is used to process several
different detail data sets, each of which
has a different corresponding master data
set. Assume, further, that the first
record of each detail data set contains, as
its last data item, a character string that
identifies the appropriate master data set.
The following DD statements might appear in
the current job step:

//DETAIL 	DD DSNAME=...

//MASTER1A DD DSNAME=MASTER1A...

//MASTER1B DD DSNAME=MASTER1B...

//MASTER1C DD DSNAME=MASTER1C...

In this case, MASTER1A, MASTER1B, and
MASTER1C represent three different master
files. The first record of DETAIL would
contain as its last item, either
'MASTER1A', 'MASTER1B', or 'MASTER1C',
which is assigned to the character-string
variable FILE_IDENT. When the OPEN
statement is executed to open the file
MASTER, the current value of FILE_IDENT
would be taken to be the ddname, and the
appropriate data set identified by that
ddname would be associated with the file
name MASTER.

Another similar use of the TITLE option
is illustrated in the following statements:

DCL IDENT(3) CHAR(1)
INIT('A', 'B', 'C');

DO I = 1 TO 3;
OPEN FILE(MASTER)

TITLE('MASTER1'||IDENT(I));

CLOSE FILE(MASTER);
END;

In this example, IDENT is declared as a
character-string array with three elements
having as values the specific character
strings 'A', 'B', and 'C'. When MASTER is
opened during the first iteration of the
DO-group, the character constant 'MASTER1'
is concatenated with the value of the first
element of IDENT, and the associated ddname
is taken to be MASTER1A. After processing,
the file is closed, dissociating the file

name and the ddname. During the second
iteration of the group, MASTER is opened
again. This time, however, the value of
the second element of IDENT is taken, and
MASTER is associated with the ddname
MASTER1B. Similarly, during the final
iteration of the group, MASTER is
associated with the ddname MASTER1C.

Note: The character set of the job control
language does not contain the break
character (_). Consequently, this
character cannot appear in ddnames. Care
should thus be taken to avoid using break
characters among the first eight characters
of file names, unless the file is to be
opened with a TITLE option with a valid
ddname as its expression. The alphabetic
extender characters $, 8, and #, however,
are valid for ddnames, and can begin a
DDNAME.

The CLOSE Statement

The basic form of the CLOSE statement is:

CLOSE FILE (file-name)
[,FILE (file-name)]...;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also
dissociates from the file all attributes
established for it by the implicit or
explicit opening process. If desired, new
attributes may be specified for the file
name in a subsequent OPEN statement.
However, all attributes explicitly given to
the file name in a DECLARE statement remain
in effect.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
can save execution time, but it may require
the use of more storage than would
otherwise be needed.

Note: Closing an already closed file or
opening an already opened file has no
effect apart from increasing the execution
time of the program.

STANDARD FILES

Two standard files are provided that can be
used by any PL/I program. One is the
standard input file SYSIN, and the other is
the standard output file SYSPRINT. These
files need not be declared or opened
explicitly; a standard set of attributes is
applied automatically. For SYSIN, the

98

attributes are STREAM INPUT, and for
SYSPRINT they are STREAM OUTPUT PRINT.
Both file names, SYSIN and SYSPRINT, are
assumed to have the EXTERNAL attribute,
even though SYSPRINT contains more than
seven characters.

The file names need not be explicitly
stated in GET and PUT statements when these
files are to be used. GET and PUT
statements that do not name a file are
equivalent to:

GET FILE(SYSIN)...;

PUT FILE(SYSPRINT)...;

Any other references to SYSIN and SYSPRINT
(such as in ON statements or in
record-oriented statements) must be stated
explicitly.

The identifiers SYSIN and SYSPRINT are
not reserved for the specific purposes
described above. They can be used for
other purposes than identifying standard
files. Other attributes can be applied to
them, either explicitly or contextually,
but the PRINT attribute is applied
automatically to SYSPRINT when it is

declared as a file name with the STREAM and
OUTPUT attributes, unless the INTERNAL
attribute is declared for it.

Note: Special care must be taken when
SYSIN or SYSPRINT is declared as anything
other than a STREAM file. The F Compiler
causes, in effect, the identifier SYSIN to
be inserted into each GET statement in
which no file name is explicitly stated and
the identifier SYSPRINT to be inserted into
each PUT statement in which no file name is
explicitly stated. Consequently, the
following would be in error:

DECLARE (SYSIN,SYSPRINT) FIXED
DECIMAL (4,2);

GET LIST (A,B,C);
PUT LIST (D,E,F);

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. In this case, however, they
would not refer to the standard files, but
to the fixed-point variables declared in
the block.

Chapter 8: Input and Output 99

Chapter 9: Stream-Oriented Transmission

Introduction

This chapter describes the input and output
statements used in stream-oriented
transmission, which is one of the two types
of data transmission available in PL/I.
Those features that apply equally to
stream-oriented and record-oriented
transmission, including files, file
attributes, and opening and closing files,
are described in Chapter 8, which forms a
general introduction to this chapter and to
Chapter 10.

In stream-oriented transmission, a data
set is treated as a continuous stream of
data items in character form; within a
program, block and record boundaries are
ignored. However, a data set is considered
to consist of a series of lines of data,
and each data set that is created or
accessed by stream-oriented transmission
has a line size associated with it. In
general, a line is equivalent to a record
in the data set; however, the line size
does not necessarily equal the record size.

There are three modes of stream-oriented
transmission: list-directed, data-directed,
and edit-directed. The transmission
statements used in all three modes
generally require the following
information:

1. The name of the file associated with
the data set from which data is to be
obtained or to which data is to be
assigned.

2. A list of program variables to which
data items are to be assigned during
input or from which data items are to
be obtained during output. This list
is called a data list. On output, the
data list can also include constants
and other expressions.

3. The format of each data item in the
stream.

Under certain conditions all of this
required information can be implied; in
other cases, only a portion of it need be
stated explicitly. In list-directed and
data-directed transmission, the formats of
data items are not specified in the
statements. And in data-directed
transmission, even the data list is
optional.

LIST-DIRECTED TRANSMISSION

List-directed transmission permits the user
to specify the variables to which data is
assigned and to specify data to be
transmitted without specifying the format.

Input: In general, the data items in the
stream are character strings in the form of
optionally signed valid constants or in the
form of expressions that represent complex
constants. The variables to which the data
is to be assigned are specified by a data
list. Items are separated by a comma
and/or one or more blanks.

Output: The data values to be transmitted
are specified by a variable, a constant, or
an expression that represents a data item.
Each data item placed in the stream is a
character-string representation that
reflects the attributes of the variable.
Items are separated by a blank. Leading
zeros of arithmetic data are suppressed.
Binary fixed-point and floating-point
items, however, are character strings that
express the value in decimal
representation.

For PRINT files, data items are
automatically aligned on
implementation-defined preset tab
positions. For the F Compiler, these
positions are 1, 25, 49, 73, 97, and 121,
but provision is made for the programmer to
alter these values (see IBM System/360
Operating System, PL/I (F) Programmer's
Guide).

DATA-DIRECTED TRANSMISSION

Data-directed transmission permits the user
to transmit self-identifying data.

Input: Each data item in the stream is in
the form of an assignment statement that
specifies both the value and the variable
to which it is to be assigned. In general,
values are in the form of constants. Items
are separated by a comma and/or one or more
blanks. A semicolon must end each group of
items to be accessed by a single GET
statement. A data list in the GET
statement is optional, since the semicolon
determines the number of items to be
obtained from the stream.

100

A,B,C,E,F,
P,R,X,
SKIP [(w)]
COLUMN (w)

PAGE
LINE (w)

which may be used with
any STREAM file

which can be used with
STREAM OUTPUT PRINT
files only

Output: The data values to be transmitted
may be specified by an optional data list.
Each data item placed in the stream has the
form of an assignment statement without a
semicolon. Items are separated by a blank.
The last item transmitted by each PUT
statement is followed by a semicolon.
Leading zeros of arithmetic data are
suppressed. The character representation
of each value reflects the attributes of
the variable, except for fixed-point and
floating-point binary items, which appear
as values expressed in decimal notation.

If the data list is omitted, it is
assumed to specify all variables that are
known within the block containing the
statement and are permitted in
data-directed output.

For PRINT files, data items are
automatically aligned on the
implementation-defined preset tab positions
referred to under "List-Directed
Transmission."

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the user
to specify the variables to which data is
to be assigned or to specify data to be
transmitted, and to specify the format for
each item on the external medium.

Input: Data in the stream is a continuous
string of characters; different data items
are not separated. The variables to which
the data is to be assigned are specified by
a data list. Format items in a format list
specify the number of characters to be
assigned to each variable and describe
characteristics of the data (for example,
the assumed location of a decimal point).

Output: The data values to be transmitted
are defined by a data list. The format
that the data is to have in the stream is
defined by a format list.

Data Transmission Statements

Stream-oriented transmission uses only one
input statement, GET, and one output
statement, PUT. A GET statement gets the
next series of data items from the stream,
and a PUT statement puts a specified set of
data items into the stream. The variables
to which data items are assigned, and the
variables or expressions from which they
are transmitted, are generally specified in
a data list with each GET or PUT statement.
The statements may also include options

that specify the origin or destination of
the data or indicate where it appears in
the stream relative to the preceding data.

The following is a summary of the
stream-oriented data transmission
statements and their options:

STREAM INPUT

GET [FILE (file-name)|STRING
(character-string-variable)]
data-specification [COPY]
[SKIP [(expression)]];

STREAM OUTPUT

PUT [FILE (file-name)|STRING
(character-string-variable)]
data-specification
[SKIP [(expression)]];

STREAM OUTPUT PRINT

PUT [FILE (file-name)]
[data-specification]

[

PAGE [LINE(expression)]
SKIP[(expression)]
LINE (expression)

The options may appear in any order, The
data specification can have one of the
following forms:

LIST (data-list)

DATA [(data-list)]

EDIT (data-list) (format-list)
[(data-list) (format-list)]...

The data specification can be omitted for
STREAM OUTPUT PRINT files only if one of
the control options (PAGE, SKIP, or LINE)
appears. Format lists may use any of the
following format items:

The statements are discussed individually
in detail in Part II, Section
"Statements."

Chapter 9: Stream-Oriented Transmission 101

OPTIONS OF TRANSMISSION STATEMENTS

The FILE and STRING Options

The FILE option specifies the name of the
file upon which the operation is to take
place. The STRING option allows GET and
PUT statements to be used to transmit data
between internal storage locations rather
than between internal and external storage.
If neither the FILE option nor the STRING
option appears in a GET statement, the
standard input file SYSIN is assumed; if
neither option appears in a PUT statement,
the standard output file SYSPRINT is
assumed.

Examples of the use of the FILE option
are given in some of the statements below,
Chapter 11, "Editing and String Handling,"
illustrates the use of the STRING option.

The COPY Option

The COPY option may appear only in a GET
statement. It specifies that each data
item is to be written, exactly as read,
into the standard output file SYSPRINT.
For example, the statement

GET FILE(SYSIN) DATA(A,B,C)COPY;

not only transmits the values assigned to
A, B, and O in the input stream to the
variables with these names, but also causes
them to be printed out in data-directed
format.

The SKIP Option

The SKIP option specifies a new current
line (or record) within the data set. The
parenthesized expression is converted to an
integer w, which must be greater than zero
(unless the file is a PRINT file). The
data set is positioned to the start of the
wth line (record) relative to the current
line (record).

For non-PRINT files, if the expression
is omitted or if w is not greater than
zero, a value of 1 is assumed. For PRINT
files, if w is less than or equal to zero,
the effect is that of a carriage return
with the same current line.

The SKIP option takes effect before the
transmission of any values defined by the
data specification, even if it appears
after the data specification. Thus, the
statement

PUT LIST(X,Y,Z) SKIP(3);

causes the values of the variables X, Y,
and Z to be printed on the standard output
file SYSPRINT commencing on the third line
after the current line.

The PAGE Option

The PAGE option can be specified only for
PRINT files. It causes a new current page
to be defined within the data set. The
PAGE option takes effect before the
transmission of any values defined by the
data specification (if any), even if it
appears after the data specification.

The LINE Option

The LINE option can be specified only for
PRINT files. It causes blank lines to be
inserted so that the next line will be the
wth line of the current page, where w is
the value of the parenthesized expression
when converted to an integer. The LINE
option takes effect before the transmission
of any values defined by the data
specification (if any), even if it follows
the data specification. If both the PAGE
option and the LINE option appear in the
same statement, the PAGE option is applied
first. For example, the statement

PUT FILE(LIST) DATA(P,Q,R) LINE(34) PAGE;

causes the values of the variables P, Q,
and R to printed in data-directed format on
a new page, commencing at line 34.

DATA SPECIFIOATIONS

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted. The data specifications
correspond to the modes of transmission.

Data Lists

List-directed, data-directed, and
edit-directed data specifications require a
data list to specify the data items to be
transmitted.

General format:

(data-list)

102

where "data list" is defined as:

element [,element]...

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules are as follows:

1. On input, a data-list element for
edit-directed and list-directed
transmission can be one of the
following: an element, array, or
structure variable, a pseudo-variable,
or a repetitive specification (similar
to a repetitive specification of a DO
group) involving any of these
elements. For a data-directed data
specification, a data-list element can
be an element, array, or structure
variable. None of the names in a
data-directed data list can be
subscripted, but qualified names are
allowed.

2. On output, a data-list element for
edit-directed and list-directed data
specifications can be one of the
following: an element expression, an
array expression, a structure
expression, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, a data-list element can
be an element, array, or structure
variable, or a repetitive
specification involving any of these
elements. Subscripts are allowed for
data-directed output.

3. The elements of a data list must be of
arithmetic or string data type.

4. A data list must always be enclosed in
parentheses.

REPETITIVE SPECIFICATION: The general
format of a repetitive specification is
shown in Figure 9-1.

Syntax rules:

1. An element in the element list of the
repetitive specification can be any of
those allowed as data-list elements as
listed above.

2. The expressions in the specification,
which are the same as those in a DO
statement, are described as follows:

a. Each expression in the
specification is an element
expression.

b. In the specification, expression-1
represents the starting value of

the control variable or
pseudo-variable. Expression-3
represents the increment to be
added to the control variable
after each repetition of data-list
elements in the repetitive
specification. Expression-2
represents the terminating value
of the control variable.
Expression-4 represents a second
condition to control the number of
repetitions. The exact meaning of
the specification is identical to
that of a DO statement with the
same specification. When the last
specification is completed,
control passes to the next element
in the data list.

3. Each repetitive specification must be
enclosed in parentheses, as shown in
the general format. Note that if a
repetitive specification is the only
element in a data list, two sets of
outer parentheses are required, since
the data list must have one set of
parentheses and the repetitive
specification must have a separate
set.

4. As Figure 9-1 shows, the
"specification" portion of a
repetitive specification can be
repeated a number of times, as in the
following form:

DO I = 1 TO 4, 6 TO 10

Repetitive specifications can be
nested; that is, an element of a
repetitive specification can itself be
a repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the
beginning of the entire repetitive
specification).

When DO portions are nested, the
rightmost DO is at the outer level of
nesting. For example, consider the
following statement:

GET LIST (((A(I,J) DO I = 1 TO 2)
DO J = 3 TO 4));

Note the three sets of parentheses, in
addition to the set used to delimit
the subscript. The outermost set is
the set required by the data list; the
next is that required the outer
repetitive specification. The third
set of parentheses is that required by
the inner repetitive specification.
This statement is equivalent to the
following nested DO-groups:

DO J = 3 TO 4:

Chapter 9: Stream-Oriented Transmission 103

DO I = 1 TO 2;
GET LIST (A (I,J));
END;

END;

It gives values to the elements of the
array A in the following order:

A(1,3), A(2,3), A(1,4), A(2,4)

Note: Although the DO keyword is used in
the repetitive specification, a
corresponding END statement is not allowed.

TRANSMISSION OF DATA-LIST ELEMENTS: If a
data-list element is of complex mode, the
real part is transmitted before the
imaginary part.

If a data-list element is an array
variable, the elements of the array are
transmitted in row-major order, that is,
with the rightmost subscript of the array
varying most frequently.

If a data-list element is a structure
variable, the elements of the structure are
transmitted in the order specified in the
structure declaration.

For example, if a declaration is:

DECLARE 1 A (10), 2 B, 2 C;

then the statement:

PUT FILE(X) LIST(A);

would result in the output being ordered as
follows:

A.B(1) A.C(1) A.B(2) A.C(2) A.B(3)
A.C(3)...etc.

If, however, the declaration had been:

DECLARE 1 A, 2 B(10), 2 C(10);

then the same PUT statement would result in
the output being ordered as follows:

A.B(1) A.B(2) A.B(3)...A.B(10)
A.C(1) A.C(2) A.C(3)...A.C(10)

If, within a data list used in an input
statement for list-directed or
edit-directed transmission, a variable is
assigned a value, this new value is used if
the variable appears in a later reference
in the data list. For example:

GET LIST (N,(X(I) DO I=1 TO N), J, K,
SUBSTR (NAME, J,K));

When this statement is executed, data is
transmitted and assigned in the following
order:

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive
specification in the order
X(1),X(2),...X(N), with the new value
of N used to specify the number of
items to be assigned.

3. A new value is assigned to J.

4. A new value is assigned to K.

5. A substring of length K is assigned to
the string variable NAME, beginning at
the Jth character.

LIST-DIRECTED DATA SPECIFICATION

General format for a list-directed data
specification, either input or output is as
follows:

LIST (data-list)

The data list is described under "Data
Lists," above. The keyword LIST must
appear to specify the list-directed mode of
transmission.

104

List-Directed Data in the Stream

Data in the stream, either input or output,
is of character data type and has one of
the following general forms:

{+|-} arithmetic-constant

character-string-constant

bit-string-constant

{+|-} real-constant{+|-}imaginary-constant

These forms correspond exactly to the forms
used for writing optionally signed
constants in a PL/I program. However,
sterling constants cannot be used. A
string constant must be one of the two
permitted forms listed above; iteration and
string repetition factors are not allowed.
A blank must not precede the central + or -
in complex expressions.

List-Directed Input Format

When the data named is an array, the data
consists of constants, the first of which
is assigned to the first element of the
array, the second constant to the second
element, etc., in row-major order.

A structure name in the data list
represents a list of the contained element
variables and arrays in the order specified
in the structure description.

On input, data items in the stream must
be separated either by a blank or by a
comma. This separator may be surrounded by
an arbitrary number of blanks. A null field
in the stream is indicated either by the
first non-blank character in the data set
being a comma, or by two commas separated
by an arbitrary number of blanks. A null
field specifies that the value of the
associated item in the data list is to
remain unchanged.

The transmission of the list of
constants on input is terminated by
expiration of the list or by the
end-of-file condition. In the former case,
positioning in the stream for the next GET
statement is always at the character
following the first blank or comma
following the last data item transmitted.
More than one blank can separate two data
items, and a comma separator may be
preceded or followed by one or more blanks.
In such cases, a subsequent GET statement
will ignore intervening blanks and the
comma (if present) and will access the next
data item. However, if an edit-directed

GET statement should follow, the first
character accessed will be the character to
which the file has been positioned (in
other words, the next data item will begin
with the first character following the
blank or comma that separated it from the
previous data item).

If the data is a character-string
constant, the surrounding quotation marks
are removed, and the enclosed characters
are interpreted as a character string.

If the data is a bit-string constant,
enclosing quotation marks and the trailing
character B are removed, and the enclosed
characters are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is converted to
coded arithmetic form with the base, scale,
mode, and precision implied by the
constant.

Data type conversions follow the rules
for conversion from character type, as
listed in Part II, Section F, "Problem Data
Conversion."

List-Directed Output Format

The values of the element variables and
expressions in the data list are converted
to character representations and
transmitted to the data stream.

A blank separates successive data items
transmitted. (For PRINT files, items are
separated according to program tab
settings.)

The length of the data field placed in
the stream is a function of the attributes
of the data item, including precision and
length. Detailed discussions of the
conversion rules and their effect upon
precision are listed in the sections
covering conversion to character type in
Part II, Section F, "Problem Data
Conversion."

Fixed-point and floating-point binary
data items are converted to decimal
notation before being placed in the stream.

For numeric character values, the
character-string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1,
enclosed in quotation marks, and followed
by the letter B.

Chapter 9: Stream-Oriented Transmission 105

Character strings are written out. If
the file does not have the attribute PRINT,
enclosing quotation marks are supplied, and
contained single quotation marks or
apostrophes are replaced by two quotation
marks. The field width is the current
length of the string plus the number of
added quotation marks. If the file has the
attribute PRINT, enclosing quotation marks
are not supplied, and contained single
quotation marks or apostrophes are
unmodified. The field width is the current
length of the string.

Examples of list-directed data
specifications:

LIST (CARD, RATE, DYNAMIC FLOW)

LIST ((THICKNESS(DISTANCE)
DO DISTANCE = 1 TO 1000))

LIST (P, Z, M, R)

LIST (A*B/C, (X+Y)**2)

The specification in the last example
can be used only for output, since it
contains operational expressions. Such
expressions are evaluated when the
statement is executed, and the result is
placed in the stream.

DATA-DIRECTED DATA SPECIFICATION

General format for a data-directed data
specification, either for input or output,
is as follows:

DATA[(data-list)]

General rules:

1. The data list is described in "Data
Lists" in this chapter. It cannot
include parameters, defined variables,
or based variables. For input, the
data list cannot contain subscripted
names. Names of structure elements in
the data list need only have enough
qualification to resolve any
ambiguity; full qualification is not
required. On input, if the stream
contains a name that does not have a
counterpart in the data list, the NAME
condition is raised.

2. Omission of the data list implies that
a data list is assumed. This assumed
data list contains all the names that
are known to the block and are valid
for data-directed transmission. On
input, if the stream contains a name
not known within the block, the NAME
condition is raised. If the assumed

data list contains a name that is not
included in the stream, the value of
the associated variable remains
unchanged. On output, all items in
the assumed data list are transmitted.

3. On input, recognition of a semicolon
or an end of file in the stream causes
transmission to cease, whether or not
a data list is specified. On output,
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-Directed Data in the Stream

The data in the stream associated with a
data-directed transmission statement is in
the form of a list of element assignments
having the following general format (the
optionally signed constants, like the
variable names and the equal signs, are in
character form):

element-variable = constant
[{b|,}element-variable = constant]...;

General rules:

1. The element variable may be a
subscripted name. Subscripts must be
optionally signed decimal integer
constants.

2. On input, the element assignments may
be separated by either a blank (b in
the above format) or a comma.
Redundant blanks are ignored. On
output, the assignments are separated
by a blank.

3. Each constant in the stream has one of
the forms described for list-directed
transmission.

Data-Directed Input Format

General rules for data-directed input:

1. If the data specification does not
include a data list, the names in the
stream may be any names known at the
point of transmission. Qualified
names in the input stream must be
fully qualified.

2. The number of characters in a
qualified name, must not exceed 256.

3. If a data list is used, each element
of the data list must be an element,

106

array, or structure variable. Names
cannot be subscripted, but qualified
names are allowed in the data list.
All names in the stream should appear
in the data list; however, the order
of the names need not be the same, and
the data list may include names that
do not appear in the stream.

For example, consider the following
data list, where A, B, C, and D are
names of element variables:

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:

A= 2.5, B= .0047, D= 125, Z= 'ABC';

Note: C appears in the data list but
not in the stream; its value remains
unaltered. Z, which is not in the
data list, raises the NAME condition.

4. If the data list includes the name of
an array, subscripted references to
that array may appear in the stream
although subscripted names cannot
appear in the data list. The entire
array need not appear in the stream;
only those elements that actually
appear in the stream will be assigned.

Let X be the name of a two-dimensional
array declared as follows:

DECLARE X (2,3)FIXED (6,2);

Consider the following data list and
input data stream:

Data List Input Data Stream
DATA (X) 	X(1,1)= 7.95, X(1,2)= 8085,

X(1,3)= 73;

Although the data list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array. In
this case, only three elements are
assigned; the remainder of the array
is unchanged.

5. If the data list includes the names of
structure elements, then fully
qualified names must appear in the
stream, although full qualification is
not required in the data list.
Consider the following structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRP,
2 PRICE, 3 RETAIL, 3 WHSL,
1 CARDOUT, 2 PARTNO, 2 DESCRP,
2 PRICE, 3 RETAIL, 3 WHSL;

If it is desired to read a value for
CARDIN.PRICE.RETAIL, the data

specification and input data stream
could have the following forms:

Data Specification Input Data Stream
DATA (CARDIN.RETAIL) CARDIN.PRICE.

RETAIL = 4.28;

6. Interleaved subscripts cannot appear
in qualified names in the stream. All
subscripts must be moved all the way
to the right, following the last name
of the qualified name. For example,
assume that Y is declared as follows:

DECLARE 1 Y(5,5),2 A(10),3 B,
3 C, 3 D;

An element name would have to appear
in the stream as follows:

Y.A.B(2,3,8)= 8.72

The name in the data list could not
contain the subscript.

7. The maximum number of elements
permitted in a list for data-directed
input is 320. Each element of a
structure counts as a separate list
element.

Data-Directed Output Format

General rules for data-directed output:

1. An element of the data list may be an
element, array, or structure variable,
or a repetitive specification
involving any of these elements or
further repetitive specifications.
Subscripted names can appear. The
names appearing in the data list,
together with their values, are
transmitted in the form of a list of
element assignments separated by
blanks and terminated by a semicolon.
(For PRINT files, items are separated
according to program tab settings.)

2. Array variables in the data list are
treated as a list of the contained
subscripted elements in row-major
order.

Consider an array declared as follows:

DECLARE X (2,4)FIXED;

If X appears in a data list as
follows:

DATA (X)

on output, the output data stream
would have the form:

107 Chapter 9: Stream-Oriented Transmission

X(1,1)= 1 X(1,2)= 2 X(1,3)= 3
X(1,4)= 4 X(2,1)= 5 X(2,2)= 6
X(2,3)= 7 X(2,4)= 8;

Note: In actual output, more than one
blank would follow the equal sign. In
conversion from coded arithmetic to
character, leading zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

3. Subscript expressions that appear in a
data list are evaluated and replaced
by the value.

4. Items that are part of a structure
appearing in the data list are
transmitted with the full
qualification, but subscripts follow
the qualified names rather than being
interleaved. If a data list is
specified for a structure element
transmitted under data-directed output
as follows:

DATA (Y(1,-3).Q)

the associated data field in the
output stream is of the form:

Y.01,-3)= 3.756;

5. The number of characters in a
qualified name must not exceed 256.

6. Structure names in the data list are
interpreted as a list of the contained
element or elements, and any contained
arrays are treated as above.

Consider the following structure:

DECLARE 1 A, 2 B, 3 C, 3 D;

If a data list for data-directed
output is as follows:

DATA (A)

and the values of B and D are 2 and
17, respectively, the associated data
fields in the output stream would be
as follows:

A.B= 2 A.C.D= 17;

7. In the following cases, data-directed
output is not valid for subsequent
data-directed input:

a. When the precision attribute of a
fixed-point variable is such that

the assumed point is located
outside the field with assumed
zeros intervening; that is, if for
precision (p,q) p is less than q,
or q is less than zero. (In this
case an exponent is transmitted,
preceded by a letter F which is
not valid for conversion to
arithmetic type.)

b. When the character-string value of
a numeric character variable does
not represent a valid optionally
signed arithmetic constant. For
example, this is always true for
complex numeric character
variables.

Length of Data-Directed Output Fields

The length of the data field on the
external medium is a function of the
attributes declared for the variable and,
since the name is also included, the length
of the fully qualified subscripted name.
The field length for output items converted
from coded arithmetic data, numeric
character data, and bit-string data is the
same as that for list-directed output data,
and is governed by the rules for data
conversion to character type as described
in Part II, Section F, "Problem Data
Conversion."

For character-string data, the contents
of the character string are written out
enclosed in quotation marks. Each
quotation mark or apostrophe contained
within the character string is represented
by two successive quotation marks.

In the example shown in Figure 9-2, A is
declared as a one-dimensional array of six
elements; B is a one-dimensional array of
seven elements. The procedure calculates
and writes out values for A(I) = B(I+1) +
B(I).

EDIT-DIRECTED DATA SPECIFICATION

General format for an edit-directed data
specification, either for input or output,
is as follows:

EDIT (data-list) (format-list)
((data-list)(format-list)]...

108

1. The data list, which must be enclosed
in parentheses, is described in "Data
Lists," above. The format list, which
also must be enclosed in parentheses,
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream; control format items,
which describe page, line, and spacing
operations; and remote format items,
which specify the label of a separate
statement that contains the format
list to be used. Format lists and
format items are discussed in more
detail in "Format Lists," below.
Edit-directed transmission is the only
mode that can be used for reading or
writing sterling data, by use of a
picture specification.

2. For input, data in the stream is
considered to be a continuous string
of characters not separated into
individual data items. The number of
characters for each data item is
specified by a format item in the
format list. The characters are
treated according to the associated
format item.

3. For output, the value of each item in
the data list is converted to a format
specified by the associated format
item and placed in the stream in a
field whose width also is specified by
the format item.

4. For either input or output, the first
data format item is associated with
the first item in the data list, the
second data format item with the
second item in the data list, and so
forth. If a format list contains
fewer format items than there are
items in the associated data list, the
format list is re-used; if there are
excessive format items, they are
ignored. Suppose a format list

contains five data format items and
its associated data list specifies ten
items to be transmitted. Then the
sixth item in the data list will be
associated with the first data format
item, and so forth. Suppose a format
list contains ten data format items
and its associated data list specifies
only five items. Then the sixth
through the tenth format items will be
ignored.

5. An array or structure variable in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be
associated with a separate use of a
data format item.

6. If a data list item is associated with
a control format item, that control
action is executed, and the data list
item is paired with the next format
item.

7. The specified transmission is complete
when the last item in the data list
has been processed using its
corresponding format item. Subsequent
format items, including control format
items, are ignored.

8. On output, data items are not
automatically separated, but
arithmetic data items generally
include leading blanks because of data
conversion rules and zero suppression.

Examples:

GET EDIT (NAME, DATA, SALARY)
(A(N), X(2), A(6), F(6,2));

PUT EDIT ('INVENTORY='||INUM,INVCODE)
(A,F(5));

Chapter 9: Stream-Oriented Transmission 109

The first example specifies that the
first N characters in the stream are to be
treated as a character string and assigned
to NAME; the next two characters are to be
skipped; the next six are to be assigned to
DATA in character format; and the next six
characters are to be considered as an
optionally signed decimal fixed-point
constant and assigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' is to be
concatenated with the value of INUM and
placed in the stream in a field whose width
is the length of the resultant string.
Then the value of INVCODE is to be
converted to character to represent an
optionally signed decimal fixed-point
integer constant and is then to be placed
in the stream right-adjusted in a field
with a width of five characters (leading
characters may be blanks). Note that
operational expressions and constants can
appear in output data lists only.

Format Lists

Each edit-directed data specification
requires its own format list.

General format:

(format-list)

where "format list" is defined as:

item 	 , ite em

n item

n (format-list) 	, n (format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses or an unsigned
decimal integer constant. If it is
the latter, a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero or negative iteration
factor specifies that the associated
format item or format list is to be
skipped and not used (the data list
item will be associated with the next
format item). If an expression is
used to represent the iteration
factor, it is evaluated and converted
to an integer once for each set of

iterations. The associated format
item or format list is that item or
list of items immediately to the right
of the iteration factor.

General rule:

There are three types of format items:
data format items, control format items,
and the remote format item. Data format
items specify the external forms that data
fields are to take. Control format items
specify the page, line, column, and spacing
operations. The remote format item allows
format items to be specified in a separate
FORMAT statement elsewhere in the block.

Detailed discussions of the various
types of format items appear in Part II,
Section E, "Edit-Directed Format Items."
The following discussions show how the
format items are used in edit-directed data
specifications.

For the F Compiler the number of nested
iteration factors in a format list must not
exceed 20.

Data Format Items

On input, each data format item
specifies the number of characters to be
associated with the data item and how to
interpret the external data. The data item
is assigned to the associated variable
named in the data list, with necessary
conversion to conform to the attributes of
the variable. On output, the value of the
associated element in the data list is
converted to the character representation
specified by the format item and is
inserted into the data stream.

There are six data format items:
fixed-point (F), floating-point (E),
complex (C), picture (P), character-string
(A), and bit-string (B). They are, in
general, specified as follows:

F (w[,d[,p]])

E(w,d[,s])

C (real-format-item [,real-format-item])

P 'picture-specification'

A [(w)]

B [(w)]

In this list, the letter w represents an
expression that specifies the number of
characters in the field. The letter d
specifies the number of digits to the right
of a decimal point; it may be omitted for
integers. The real format item of the
complex format item represents the

110

appearance of either an F, E or P format
item. The picture specification of the P
format item can be either a numeric
character specification or a
character-string specification. On output,
data associated with E and F format items
is rounded if the internal precision
exceeds the external precision.

A third specification (p) is allowed in
the F format item; it is a scaling factor.
A third specification (s) is allowed in the
E format item to specify the number of
digits that must be maintained in the first
subfield of the floating-point number.
These specifications are discussed in
detail in Part II, Section E,
"Edit-Directed Format Items."

Note: Fixed-point binary and floating-point
binary data items must always be
represented in the input stream with their
values expressed in decimal digits. The F
and E format items then are used to access
them, and the values will be converted to
binary representation upon assignment. On
output, binary items are converted to
decimal values and the associated F or E
format items must state the field width and
point placement in terms of the converted
decimal number.

The following examples illustrate the
use of format items:

1. GET FILE (INFILE) EDIT (ITEM) (A(20));

This statement causes the next 20
characters in the file called INFILE
to be assigned to ITEM. The value is
automatically transformed from its
character representation specified by
the format item A(20), to the
representation specified by the
attributes declared for ITEM.

Note: If the data list and format list
were used for output, the length of a
string item need not be specified in
the format item if the field width is
to be the same as the length of the
string, that is, if no blanks are to
follow the string.

2. PUT FILE (MASKFLE) EDIT (MASK) (B);

Assume MASK has the attribute BIT
(25); then the above statement writes
the value of MASK in the file called
MASKFLE as a string of 25 characters
consisting of 0's and l's. A field
width specification can be given in
the B format item. It must be stated
for input.

3. PUT EDIT (TOTAL) (F(6,2));

Assume TOTAL has the attributes FIXED

(4,2); then the above statement
specifies that the value of TOTAL is
to be converted to the character
representation of a fixed-point number
and written into the standard output
file SYSPRINT. A decimal point is to
be inserted before the last two
numeric characters, and the number
will be right-adjusted in a field of
six characters. Leading zeros will be
changed to blanks, and, if necessary,
a minus sign will be placed to the
left of the first numeric character.

In conversion from internal decimal
fixed-point type to character type,
the resultant string always is three
characters longer than p, the number
of digits in the precision
specification of a decimal fixed-point
variable. The extra characters may
appear as blanks preceding the number
in the converted string. And, since
leading zeros are converted to blanks,
additional blanks may precede the
number. If a decimal point or a minus
sign appears, either will cause one
leading blank to be replaced.

In edit-directed output, the field
width specification in the format item
(in this case, the 6 in the F(6,2)
format item) can be used to truncate
leading zeros. In this specification,
one zero is truncated. TCTAL would be
converted to a character string of
length seven. If all four digits of
the converted number are greater than
zero, the number, with its inserted
decimal point, will require five digit
positions; if the number is negative,
another digit position will be
required for the minus sign.
Consequently, the F(6,2) specification
will always allow all digits, the
point, and a possible sign to appear,
but will remove the extra blank by
truncation.

4. GET FILE(A) EDIT (ESTIMATE) (E(10,6));

This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
number is converted to the attributes
of ESTIMATE and assigned to this
variable.

5. GET EDIT (NAME, TOTAL)
(P'AAAAA',P'9999');

When this statement is executed, the
standard input file SYSIN is assumed.

Chapter 9: Stream-Oriented Transmission 111

The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four
characters must be nonblank numeric
characters and they are assigned to
TOTAL.

Control Format Items

The control format items are the spacing
format item (X), and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format item specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only appear in PUT
statements. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement.

The following examples illustrate the
use of the control format items:

1. GET EDIT (NUMBER, REBATE)
(A(5), X(5), A(5));

This statement treats the next 15
characters from the standard input
file, SYSIN, as follows: the first
five characters are assigned to
NUMBER, the next five characters are
spaced over and ignored, and the

remaining five characters are assigned
to REBATE.

2. GET FILE(IN) EDIT(MAN,OVERTIME)
(SKIP(1), A(6), COLUMN(60), F(4,2));

This statement positions the data set
associated with file IN to a new line;
the first six characters on the line
are assigned to MAN, and the four
characters beginning at character
position 60 are assigned to OVERTIME.

3. PUT FILE(OUT) EDIT (PART, COUNT)
(A(4), X(2), F(5));

This statement places in the file
named OUT four characters that
represent the value of PART, then two
blank characters, and finally five
characters that represent the
fixed-point value of COUNT.

4. The following examples show the use of
the COLUMN, LINE, PAGE, and SKIP
format items in combination with one
another.

PUT EDIT ('QUARTERLY STATEMENT•)
(PAGE, LINE(2), A(19));

PUT EDIT
(ACCT#, BOUGHT, SOLD,
PAYMENT, BALANCE)
(SKIP(3), A(6), COLUMN(14),

F(7,2), COLUMN(30), F(7,2),
COLUMN(45), F(7,2),
COLUMN(60), F(7,2));

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new page
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
"skip to the third following line")
and the value of ACCT# is to be
written, beginning at the first
character of the fifth line; the value
of BOUGHT, beginning at character
position 14; the value of SOLD,
beginning at character position 30;
the value of PAYMENT, beginning at
character position 45; and the value
of BALANCE at character position 60.

Note: Control format items are executed at
the time they are encountered in the format
list. Any control format list that appears
after the data- list is exhausted will have
no effect.

Remote Format Item

The remote format item (R) specifies the
label of a FORMAT statement (or a label
variable whose value is the label of a
FORMAT statement) located elsewhere; the
FORMAT statement and the GET or PUT
statement specifying the remote format item
must be internal to the same block. The
FORMAT statement contains the remotely
situated format items. This facility
permits the choice of different format
specifications at execution time, as
illustrated by the following example:

DECLARE SWITCH LABEL;
GET FILE(IN) LIST(CODE);
IF CODE = 1

THEN SWITCH = L1;
ELSE SWITCH = L2;

GET FILE(IN) EDIT (W,X,Y,Z)
(R(SWITCH));

L1: FORMAT (4 F(8,3));
L2: FORMAT (4 E(12,6));

SWITCH has been declared to be a label
variable; the second GET statement can be
made to operate with either of the two
FORMAT statements.

Expressions in Format Items

The w, p, d, and s specifications in
data format items, as well as the
specifications in control format items,
need not be decimal integer constants.
Expressions are allowed. They may be
variables or other expressions.

On input, a value read into a variable
can be used in a format item associated

112

with another variable later in the data
list.

PUT EDIT (NAME,NUMBER,CITY)
(A(N),A(N-4),A(10));

GET EDIT (M,STRING_A,I,STRING_B)
(F(2),A(M),X(M),F(2),A(I));

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N
characters; NUMBER is left-adjusted in a
field of N-4 characters; and CITY is
left-adjusted in a field of 10 characters.
In the second example, the first two
characters are assigned to M. The value of
M is then taken to specify the number of
characters to be assigned to STRING_A and
also to specify the number of characters to
be ignored before two characters are
assigned to I, whose value then is used to
specify the number of characters to be
assigned to STRING_B.

PRINT FILES

The PRINT attribute can be applied only to
a STREAM OUTPUT file. It indicates that
the data in the file is ultimately intended
to be printed (although it may first be
written on a medium other than the printed
page). The first data byte of each record
of a PRINT file is reserved for an ASA
printer control character; the compiler
causes the control characters to be
inserted automatically when statements
containing the control options and format
items PAGE, SKIP, and LINE are executed.

The layout of a PRINT file can be
controlled by the use of the options and
format items listed in Figure 9-3. (Note
that LINESIZE, SKIP, and COLUMN can also be
used for non-PRINT files.) LINESEZE and
PAGESIZE establish the dimensions of the
printed area of the page, excluding
headings and footings. The LINESIZE option
specifies the maximum number of characters
to be included in each printed line; if it
is not specified for a PRINT file, a
default value of 120 characters is assumed
(but there is no default for a non-PRINT
file). The PAGESIZE option specifies the
maximum number of lines to appear in each
printed page; if it is not specified, a
default value of 60 lines is assumed.

Consider the following example:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(55) LINESIZE(110);

This statement opens the file REPORT as a
PRINT file. The specification PAGESIZE(55)
indicates that each page should contain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already been
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
the ENDPAGE condition is to skip to a new
page, but the programmer can establish his
own action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be written at
the bottom of each page.

For example;

ON ENDPAGF(REPORT) BEGIN;
PUT FILE(REPORT) SKIP LIST

(FOOTING);
PUT FILE(REPORT) PAGE;
N = N + 1;
PUT FILE(REPORT) LIST

('PAGE '||N);
PUT FILE(REPORT) SKIP (3);
END;

Assume that REPORT has been opened with
PAGESIZE(55), as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped, and the value of FOOTING,
presumably a character string, is to be
printed on line 57 (when FNDPAGE arises,
the current line is always PAGESIZE+1).
The second PUT statement causes a skip to
the next page, and the ENDPAGE counter is
automatically reset for the new page. The
page number is incremented, and the
character string 'PAGE' is concatenated
with the new page number and printed. The
final PUT statement causes three lines to
be skipped, so that the next printing will
be on line 4. Control returns from the
begin block to the PUT statement that
caused the ENDPAGE condition, and the data
is printed. Any SKIP option specified in
that statement is ignored, however.

Chapter 9: Stream-Oriented Transmission 113

1Can also be used with non-PRINT files: see "Options of Transmission
Statements" and "Control Format Items," above, and "Line Size and Record
Format," below.

•Figure 9-3. Options and Format Items for Controlling Layout of PRINT Files

Note that SIGNAL ENDPAGE is ignored if
there is no ENDPAGE on-unit, since it may
not be possible for standard system action
(start a new page) to occur (for example,
if the file has not been opened).

The specification LINESIZE(110)
indicates that each line on the page can
contain a maximum of 110 characters. An
attempt to write a line greater than 110
characters will cause the excess characters
to be placed on the next line.

Standard File SYSPRINT

Unless the standard file SYSPRINT is
declared explicitly, it is always given the
attribute PRINT. When the file is opened,
a new page is initiated automatically. If
the first PUT statement that refers to the
file has the PAGE option, or if the first
PUT statement includes a format list with
PAGE as the first item, a blank page will
appear.

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
The information is contained in a
parenthesized option list; the general
format is:

ENVIRONMENT (option-list)

The options applicable to
stream-oriented transmission are:

[F(block-size[,record-size])

{V|VS|VBS} (maximum-block-size
[,maximum-record-size])

U(maximum-block-size)

[BUFFERS(n)]

CONSECUTIVE

LEAVE

REWIND

The options may appear in any order and
are separated by blanks, The options
themselves cannot contain blanks.

The options are discussed below under
four headings: record format, buffer
allocation, data set organization, and
volume disposition. The information
supplied by some of the options can
alternatively be specified in DD statements
or by default. The DD statement is
described in IBM System/360 Operating
System: PL/I(F) Programmer's Guide.

RECORD FORMAT

Although record boundaries are ignored in
stream-oriented transmission, record format
is important when a data set is being
created, not only because it affects the

114

amount of storage space occupied by the
data set and the efficiency of the program
that processes the data, but also because
the data set may later be processed by
record-oriented transmission. Having
specified the record format, the programmer
need not concern himself with records and
blocks as long as he uses only
stream-oriented transmission; he can
consider his data set as a series of
characters arranged in lines, and can use
the SKIP option or format item (and, for a
PRINT file, the PAGE and LINE options and
format items) to select a new line.

Records can be in one of three formats:
fixed-length, variable-length, or
undefined-length. The block size and
record size are specified in number of
bytes. The block size must be stated
(unless the records are unblocked and the
record size is given by means of the
LINESIZE option); if no record size or line
size is specified, the records are assumed
to be unblocked (that is, each block
contains only one record).
Undefined-length records cannot be blocked;
therefore, the record size can be specified
for fixed-length and variable-length
records only. Blocking and deblocking of
fixed-length and variable-length records
are handled automatically.

Fixed-length records are blocked and
deblocked in accordance with the specified
block size and record size. The block size
must be an exact multiple of the record
size.

When variable-length records are
written, deblocking information is
automatically inserted into each record and
block. Four bytes are prefixed to the data
in each record to specify deblocking
information, including two bytes for the
total record size; a further four bytes are
prefixed to the first record in each block,
two of which specify the total block size.
Variable-length records can be in one of
three formats: V-format, VS-format, or
VBS-format.

For V-format records, the programmer
must specify the maximum block size and,
for blocked records, the maximum record
size; in each case, he must allow an
additional four bytes for the deblocking
information. The record size must never
exceed the block size. (For example, if
the maximum data length anticipated is 120
bytes, a block size of not less than 128
bytes must be specified, whether the
records are blocked or not, since unblocked
records are considered to be in blocks of
one record each; if the records are
blocked, the record size must not be less
than 124 bytes, and must be at least four
bytes less than the specified block size.)

The record size specified for VS-format
records can exceed the block size; if
necessary the records are segmented, and
the segments are placed in consecutive
blocks. Each block can contain only one
record or segment of a record, and each
contains two four-byte fields, one to
specify the block length and the other the
record or segment length. For example, if
the record format is specified as
VS(80,200), a record that includes 180
bytes of data will appear in the data set
as two blocks of 80 bytes (8 control bytes
and 72 data bytes) and one block of 44
bytes (8 control bytes and 36 data bytes).

VBS-format differs from VS-format only
in that each block contains as many records
or segments as it can accommodate; each
block is, therefore, substantially the same
size (although there can be a variation of
up to four bytes, since each segment must
contain at least one byte of data). For
example, a block might contain the last
segment of one record, one or more complete
records, and the first segment of another
record.

VS-format and VBS-format records are
known as spanned records because they can
start in one block and be continued in the
next. But the programmer is concerned only
with complete records; segmentation and
reassembly are handled automatically. The
use of spanned records allows the
programmer to select a block size,
independently of record size, that will
combine optimum usage of external storage
space with maximum efficiency of
transmission.

For undefined-length records, all
processing of records is the responsibility
of the programmer. If a length
specification is included in the record,
the programmer must insert it himself, and
he must retrieve the information himself.

Note: 1. Record format, block size, and
record size can be specified in
the DCB parameter of a DD
statement instead of in the
ENVIRONMENT attribute; the
relevant DCB subparameters are
RECFM, BLKSIZE, and LRECL.

2. The record size for a PRINT file
must include one byte for a
printer control character. If
record format, block size, and
record size are not specified
for a PRINT file, the following
default assumptions are made:

Record format 	 V

Record size 	125 bytes

Chapter 9: Stream-Oriented Transmission 115

Line Size and Record Format

The record size for a STREAM OUTPUT file
can be given in the LINESIZE option of an
OPEN statement. For a non-PRINT file, the
value specified in the LINESIZE option is
the actual record size for fixed-length or
undefined-length records, but does not
include the four bytes for deblocking
information in variable-length records.
For a PRINT file, the value specified in
the LINESIZE option is the actual length of
the printed line; it does not include the
printer control character. Thus the
equivalent record size is one byte more
than the line size for fixed-length or
undefined-length records, and five bytes
more for variable-length records.

If the records are unblocked, it is not
necessary to specify a block size. If the
records are blocked, the block size must be
compatible with the record size: for
fixed-length records, it must be an exact
multiple of the record size; for
variable-length (VB-format) records, it
must be at least four bytes larger than the
maximum record size.

If neither line size nor block size are
specified for a PRINT file, a default line
size of 120 characters is applied; there is
no default line size for non-PRINT files.

BUFFER ALLOCATION

A buffer is an internal storage area that
is used for the intermediate storage of
data transmitted to and from a data set.
The use of buffers allows transmission and

computing time to be overlapped, and it may
help speed up processing, especially where
the data set contains V-format or U-format
records or where the amount of processing
per record is irregular. Buffers are
essential for the automatic blocking and
deblocking of records.

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number(n) of
buffers to be allocated for a data set;
this number must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specified or is specified as zero, two
buffers are assumed.

The number of buffers can be specified
in the BUFNO subparameter of a DD statement
instead of in the ENVIRONMENT attribute.

DATA SET ORGANIZATION

The organization of a data set determines
how data is recorded in the data set, and
how the data is subsequently retrieved so
that it can be transmitted to the program.
The F Compiler recognizes three data set
organizations, CONSECUTIVE, INDEXED, and
REGIONAL. A data set that is to be
accessed by stream-oriented transmission
must have CONSECUTIVE organization; since
this is the default for data set
organization, it need not be specified at
all for a STREAM file.

The records in a CONSECUTIVE data set
are arranged sequentially in the order in
which they were written; they can be
retrieved only in the same order (unless
record-oriented transmission is used).

116

After the data set has been created, the
associated file can be opened for input (to
read the data), or for output (to extend
the data set by adding records at the end,
or to replace the contents of the data set
by new data: the effect of using an OUTPUT
file to process an existing data set
depends on the DISP parameter of the
associated DD statement).

volume is reached, or when a data set on a
magnetic tape volume is closed. The LEAVE
option prevents the tape from being
rewound. The REWIND option allows the
action at end of volume or on closing of a
data set to be controlled by the DISP
parameter of the associated DD statement.
The effects of the options are summarized
in Figure 9-4, which also indicates whether
an input/output channel is kept busy during
the repositioning operation.

VOLUME DISPOSITION

The volume disposition options allow the
programmer to specify the action to be
taken when the end of a magnetic tape

ENVIRONMENT 	1 	DISP 	|
option 	1 subparameter |

LEAVE

Positioning of tape
on closing of file

Multi-volume data
sets:
Wound on to end of
current volume'.

Other data sets:
Wound on to end of
data set'.

(Channel busy in
each case)

T
Positioning of tape
at end of volume

No repositioning.
(Channel free)

I

REWIND 	| PASS

|

 KEEP
CATLG

| UNCATLG

| DELETE

F 	
Both LEAVE
	

t
I and REWIND

Neither LEAVE |
ncr REWIND

Wound on to end of 	No repositioning.
data set'. 	 | (Channel free)
(Channel busy)

1
Rewound to beginning of volume and
unloaded.
(Channel free)

Rewound to beginning of volume but not
unloaded.
(Channel free)

REWIND is ignored.

1 Rewound to beginning' Rewound to beginning
| of last data set. 	| of last data set.

|

 (Channel busy) 	| (Channel busy)

'Repositioned at beginning of data set for a BACKWARDS file.

•Figure 9-5. Effect of LEAVE and REWIND Options

Chapter 9: Stream-Oriented Transmission 117

Chapter 10: Record-Oriented Transmission

Introduction

This chapter describes the input and output
statements used in record-oriented
transmission, which is one of two types of
data transmission used for input and output
in PL/I. Those features of PL/I that apply
equally to record-oriented and
stream-oriented transmission, including
files, file attributes, and opening and
closing files, are described in Chapter 8,
which forms a general introduction to this
chapter and Chapter 9.

In record-oriented transmission, data in
a data set is considered to be a collection
of records recorded in any format
acceptable to the computer. No data
conversion is performed during
record-oriented transmission: on input, the
READ statement causes a single record to be
transmitted to a program variable exactly
as it is recorded in the data set; on
output, the WRITE, REWRITE, or LOCATE
statement causes a single record to be
transmitted from a program variable exactly
as it is recorded internally. Although
data is actually transmitted to and from a
data set in blocks, the statements used in
record-oriented transmission are concerned
only with records; the records are blocked
and deblocked automatically.

Data Transmission Statements

The following is a general description of
the record-oriented data transmission
statements; they are described in detail in
Part II, Section J, "Statements."

The variables involved in
record-oriented transmission must be
unsubscripted, of level 1 (element and
array variables not contained in structures
are of level 1 by default), and may be of
any storage class. The variables cannot be
parameters or defined variables. They can
be label, pointer, or event variables, but
such data may lose its validity in
transmission.

There are four statements that actually
cause transmission of records to or from
external storage. They are READ, WRITE,
LOCATE, and REWRITE. A fifth statement,
the DELETE statement, is used to delete
records from an UPDATE file. The
attributes of the file determine which
statements can be used.

The READ Statement

The READ statement can be used with any
INPUT or UPDATE file. It causes a record
to be transmitted from the data set to the
program, either directly to a variable or
to a buffer. In the case of blocked
records, the READ statement causes a record
to be transferred from a buffer to the
variable; consequently, every READ
statement may not cause actual data
transmission from the input device.

The WRITE Statement

The WRITE statement can be used with any
OUTPUT file, DIRECT UPDATE file, but not
with a SEQUENTIAL UPDATE file. It causes a
record to be transmitted from the program
to the data set. For unblocked records,
transmission may be directly from a
variable or from a buffer. For blocked
records, the WRITE statement causes a
logical record to be placed into a buffer;
only when the blocking of the record is
complete is there actual data transmission
to the output device.

The REWRITE Statement

The REWRITE statement causes a record to be
replaced in an UPDATE file. For SEQUENTIAL
UPDATE files, the REWRITE statement
specifies that the last record read from
the file is to be rewritten; consequently a
record must be read before it can be
rewritten. For DIRECT UPDATE files, any
record can be rewritten whether or not it
has first been read.

The LOCATE Statement

The LOCATE statement can be used only with
a BUFFERED OUTPUT SEQUENTIAL or TRANSIENT
file. It allocates storage within an
output buffer for a based variable, setting
a pointer to the location in the buffer as
it does so. This pointer can then be used
to refer to the allocation so that data can
be moved into the buffer. The record is
written out automatically, during execution
of a subsequent WRITE or LOCATE statement
for the file, or when the file is closed.

118

The DELETE Statement

The DELETE statement specifies that a
record in an UPDATE file be deleted. (The
implementation does not erase the record
when a DELETE statement is executed, but
flags it as "deleted.")

The INTO Option

The INTO option can be used in the READ
statement for any INPUT or UPDATE file.
The INTO option specifies a variable to
which the logical record is to be assigned.

READ FILE (DETAIL) INTO (RECORD 1);

The UNLOCK Statement

The UNLOCK statement does not cause data to
be transmitted, but is used to unlock a
record in an EXCLUSIVE DIRECT UPDATE file.
When a record is read from a DIRECT UPDATE
file, it may subsequently be rewritten or
deleted to complete the updating operation;
if the file is EXCLUSIVE, the read
operation automatically locks the record to
prevent interference by other tasks during
this process. The UNLOCK statement makes
the specified record available to tasks
other than that for which the locking READ
statement was issued; it therefore provides
an alternative means of completing the
updating operation.

For further information see "Sharing
Files between Tasks" in Chapter 15.

OPTIONS OF TRANSMISSION STATEMENTS

Options that are allowed for
record-oriented data transmission
statements differ according to the
attributes of the file and the
characteristics of the associated data set.
Lists of all of the allowed combinations
for each type of file are given in Figures
10-5, 10-6, and 10-7, later in this
chapter.

Each option consists of a keyword
followed by a value, which is a file name,
a variable, or an expression. This value
must always be enclosed in parentheses. In
any statement, the options may appear in
any order.

The FILE Option

The FILE option must appear in every
record-oriented statement. It specifies
the name of the file upon which the
operation is to take place. It consists of
the keyword FILE followed by the file name
enclosed in parentheses. An example of the
FILE option is shown in each of the
statements in this section.

This specifies that the next sequential
record is to be assigned to the variable
RECORD_1.

Note that the INTO option can name an
element string variable of varying length;
thus it is possible to read a record whose
length is unknown to the PL/I programmer,
and is not contained in the data. The
current length of the string is set to the
length of the record. The LENGTH built-in
function can be used to find the length of
the record.

The FROM Option

The FROM option must be used in the WRITE
statement for any OUTPUT or DIRECT UPDATE
file. It can also be used in the REWRITE
statement for any UPDATE file. The FROM
option specifies the variable from which
the record is to be written. If this
variable is a string of varying length, the
current length of the string determines the
size of the record.

For files other than DIRECT UPDATE or
SEQUENTIAL UNBUFFERED UPDATE files, the
FROM option can be omitted from a REWRITE
statement. If the last record was read by
a READ statement with the INTO option,
REWRITE without FROM has no effect on the
record in the data set; but if the last
record was read by a READ statement with
the SET option, the record will be updated,
in the buffer, by whatever assignments were
made.

WRITE FILE (MASTER) FROM (MAS_REC);

REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value of
the variable MAS_REC is to be written into
the file MASTER. In the case of the WRITE
statement, it specifies a new record in a
SEQUENTIAL OUTPUT file. The REWRITE
statement specifies that MAS_REC is to
replace the last record read from a
SEQUENTIAL UPDATE file.

Chapter 10: Record-Oriented Transmission 119

The SET Option

The SET option can be used with a READ
statement or a LOCATE statement. It
specifies that a named pointer variable is
to be set to point to the location in the
buffer into which data has been moved
during the READ operation, or which has
been allocated by the LOCATE statement.

READ FILE (LIST) SET (P);

This statement specifies that the value of
the pointer variable P is to be set to the
location in the buffer of the next
sequential record.

The IGNORE Option

The IGNORE option can be used in a READ
statement for any SEQUENTIAL INPUT or
UPDATE file. It includes an expression
whose integral value specifies a number of
records to be skipped over and ignored.

READ FILE (IN) IGNORE (3);

This statement specifies that the next
three records in the file are to be
skipped.

If a READ statement includes none of the
options INTO, SET, and IGNORE, IGNORE(1) is
assumed.

The KEY Option

The KEY option applies only to KEYED files
associated with data sets of INDEXED or
REGIONAL organization. (The types of data
set organization applicable to
record-oriented transmission are discussed
under "Data Set Organization," below.) The
option consists of the keyword KEY followed
by a parenthesized expression, which may be
a character-string constant, a variable, or
any other element expression; if necessary,
the expression is evaluated and converted
to a character string. The rules governing
the length of the character string and what
it represents are discussed below under
"INDEXED Organization" and "REGIONAL
Organization."

The KEY option identifies a particular
record. It can be used in a READ statement
for an INPUT or UPDATE file, or in a
REWRITE or DELETE statement for a DIRECT
UPDATE file. (The KEY option cam be used
in a READ statement for a SEQUENTIAL file
only if the associated data set has INDEXED
organization.)

READ FILE (STOCK) INTO (ITEM)
KEY (STKEY);

This statement specifies that the record
identified by the character-string value of
the variable STKEY is to be assigned to the
variable ITEM.

The KEYFROM and KEYTO Options

The KEYFROM and KEYTO options apply only to
KEYED files associated with data sets of
INDEXED or REGIONAL organization, or to
TRANSIENT files. Each option consists of
the keyword KEYFROM or KEYTO followed by a
parenthesized expression. For KEYFROM, the
expression may be a character-string
constant, a variable, or any other element
expression; if necessary, the expression is
evaluated and converted to a character
string. For KEYTO, the expression must be
a character-string variable. The rules
governing the lengths of the character
strings and what they represent are
discussed below, under "INDEXED
Organization" and "REGIONAL Organization"
(except for TRANSIENT files, which are
discussed under "Teleprocessing.")

The KEYFROM option specifies the
location within the data set where the
record is to he written, or (for TRANSIENT
files) the terminal or process queue to
which the message or record is to be
transmitted. It can be used in a WRITE
statement for a RECORD OUTPUT or DIRECT
UPDATE file, or in a LOCATE statement.

WRITE FILE (LOANS) FROM (LOANREC)
KEYFROM (LOANNO);

This statement specifies that the value of
LOANREC is to be written as the next record
in the file LOANS, and that the value of
LOANNO is to be used as the key.

The KEYTO option specifies the name of
the variable to which the key (or terminal
identifier, if the file is TRANSIENT) of
the record being read is to be assigned.
It can be used in a READ statement for a
SEQUENTIAL INPUT, SEQUENTIAL UPDATE, or
TRANSIENT INPUT file.

READ FILE (DETAIL) INTO (INVTRY)
KEYTO (KEYFLD);

This statement specifies that the next
record in the file DETAIL is to be assigned
to the variable INVTRY, and that the key of
the record is to be assigned to the
variable KEYFLD.

120

The EVENT Option

The EVENT option is specified with the
keyword EVENT followed by the parenthesized
name of an event variable. (The appearance
of a name in the EVENT option constitutes a
contextual declaration of an event
variable.) The option can appear in any
READ, WRITE, REWRITE, or DELETE statement
for an UNBUFFERED file.

The EVENT option specifies that the
input or output operation is to take place
asynchronously (i.e., while other
processing continues) and that record I/O
interrupts (except for UNDEFINEDFILE) are
not to occur until a WAIT statement,
specifying the same event variable, is
executed by the same task. For example:

READ FILE (MASTER) INTO (REC_VAR)
EVENT (RECORD 1);

•
WAIT (RECORD_1);

In this example, when the READ statement is
executed, the input operation is started.
As soon as the input operation is
commenced, in-line processing continues.
No I/O interrupt for RECORD, TRANSMIT, KEY,
or ENDFILE conditions will take place until
the WAIT statement is executed. If, when
the WAIT statement is executed, the input
operation is not complete, and if none of
the four conditions is raised, in-line
processing stops, but the operation
continues. When the operation is
successfully completed, processing
continues with the next statement following
the WAIT statement. If any of the four
conditions arise during execution of the
READ statement, an interrupt will occur
when the WAIT statement is executed.
On-units will be entered in the order in
which the interrupts occur (normally,
TRANSMIT or ENDFILE, KEY, RECORD). Then
upon normal return from all of the on-units
thus entered, processing continues with the
next statement following the WAIT
statement.

Note that although the EVENT option
specifies asynchronous processing, it does
not specify that interrupts will be caused
asynchronously; none of the four conditions
can cause an interrupt until they are
synchronized with processing by the WAIT
statement.

Other interrupts can occur, however.
Any condition that arises during the
in-line processing will, of course, cause
an interrupt if it is enabled. In
addition, if the I/O statement containing
the EVENT option should cause implicit

opening of the file, and if the
UNDEFINEDFILE condition should arise
because of that implicit opening, the
interrupt will occur at the time the
UNDEFINEDFILE condition is raised. Only
the four conditions TRANSMIT, KEY, RECORD,
and ENDFILE can be synchronized by the WAIT
statement.

Once a statement containing an EVENT
option has been executed, the event
variable named in the option is considered
to be active; while it is active, the event
variable cannot be specified again in an
EVENT option. The event variable becomes
inactive again only after execution of the
corresponding WAIT statement.

An input/output event should be waited
for only by the task that initiated the
input/output operation.

The EVENT option is also used with the
CALL statement to specify asynchronous
execution of procedures: see Chapter 17,
"Multitasking."

The EVENT option is implemented for
RECORD input/output statements used as
follows:

Access 	Data Set Organization

SEQUENTIAL
	

CONSECUTIVE
UNBUFFERED
	REGIONAL

DIRECT
	CONSECUTIVE INDEXED

or REGIONAL

Note: The EVENT option should not be used
on a WRITE statement if V or U format
records are being added to a REGIONAL(3)
data set which is being accessed in a
direct update mode.

The NOLOCK Option

The NOLOCK option can be used in a READ
statement that refers to an EXCLUSIVE file.
It specifies that the record accessed by
the READ statement should not be locked
(i.e., it will continue to be available to
tasks other than that which issued the READ
statement).

For further information, refer to
"Sharing Files between Tasks" in Chapter
15.

Chapter 10: Record-Oriented Transmission 121

Processing Modes

Record-oriented transmission offers the
programmer alternative methods of handling
his data. He can process data within the
storage area allocated to his program; this
is termed the move mode because the data is
actually moved into or out of program
storage either directly or via a buffer.
Alternatively, the programmer can process
his data while it remains in a buffer (that
is, without moving it into the storage area
allocated to his program); this is termed
the locate mode, because the execution of a
data transmission statement merely
identifies the location of the storage
allocated to a record in the buffer. The
locate mode is applicable only to BUFFERED
SEQUENTIAL or TRANSIENT files. Which mode
is used is determined by the data
transmission statements and options used by
the programmer.

MOVE MODE

In the move mode, a READ statement causes a
record to be transferred from external
storage to the variable named in the INTO
option (via an input buffer if a BUFFERED
file is used); a WRITE or REWRITE statement
causes a record to be transferred from the
variable named in the FROM option to
external storage (perhaps via an output
buffer). The variables named in the INTO

and FROM options can be of any storage
class.

Consider the following example, which is
illustrated in Figure 10-1:

NEXT: READ FILE(IN) INTO(DATA);

WRITE FILE (OUT) FROM (DATA);
GO TO NEXT;

The first time the READ statement is
executed, a block is transmitted from the
data set associated with the file IN to an
input buffer, and the first record in the
block is assigned to the variable DATA;
further executions of the READ statement
assign successive records from the buffer
to DATA. When the buffer is empty, the
next READ statement causes a new block to
be transmitted from the data set. The
WRITE statement is executed in a similar
manner, building physical records in an
output buffer and transmitting them to the
data set associated with the file OUT each
time the buffer is filled.

The move mode may be simpler to use than
the locate mode since there are no buffer
alignment problems. Furthermore, it can
result in faster execution when there are
numerous references to the contents of the
same record, because of the overhead
incurred by the indirect addressing
technique used in locate mode.

122

Figure 10-1. Input and Output:Move Mode

Chapter 10: Record-Oriented Transmission 123

LOCATE MODE

Locate mode requires the use of based
variables. A based variable is effectively
overlaid on the data in the buffer, and
different based variables can be used to
access the same data by associating the
same pointer with each one; thus the same
data can be interpreted in different ways.
Locate mode can also be used to read
self-defining records, in which information
in one part of the record is used to
indicate the structure of the rest of the
record; for example, this information could
be a count of the number of repetitions of
a subfield, or a code identifying which one
of a class of structures should be used to
interpret the record.

A READ statement causes a block of data
to be transferred from the data set to an
input buffer, if necessary, and then sets
the pointer variable named in the SET
option to point to the location in the
buffer of the next record; the data in the
record can then be processed by reference
to the based variable associated with the
pointer variable. The record is available
only until the execution of the next READ
statement that refers to the same file.

Locate mode frequently provides faster
execution than move since there is less
movement of data, and less storage may be
required. But it must be used carefully;
in particular, the programmer must be aware
of how his data will be aligned in the
buffer and how structured data will be
mapped; structure mapping and data
alignment are discussed in Part II, Section
K.

Figure 10-2 illustrates the following
example, which uses locate mode for input
and move mode for output:

DCL DATA BASED(P);

NEXT: READ FILE(IN) SET(P);

WRITE FILE(OUT) FROM(DATA);
GO TO NEXT;

The first time the READ statement is
executed, a block is transmitted from the
data set associated with the file IN to an
input buffer, and the pointer variable P is
set to point to the first record in the

buffer; any reference to the variable DATA
or to any other based variable qualified by
the pointer P will then in effect be a
reference to this first record. Further
executions of the READ statement set the
pointer variable P to point to succeeding
records in the buffer. When the buffer is
empty, the next READ statement causes a new
block to be transmitted from the data set.

It is doubtful whether the use of locate
mode for both input and output in the above
example would result in increased
efficiency. An alternative would be to use
move mode for input and locate mode for
output, for example:

DCL DATA BASED(P);

NEXT: LOCATE DATA FILE(OUT);
READ FILE(IN) INTO(DATA);

GO TO NEXT;

Each execution of the LOCATE statement
reserves storage in an output buffer for a
new allocation of the based variable DATA
and sets the pointer variable P to point to
this storage. The first execution of the
READ statement causes a block to be
transmitted from the data set associated
with the file IN to an input buffer, and
the first record in the block to be
assigned to the first allocation of DATA;
subsequent executions of the READ statement
assign successive logical records to the
current allocation of DATA. When the input
buffer is empty, the next READ statement
causes a new block to be transmitted from
the data set. Each record is available for
processing during the period between the
execution of the READ statement and the
next execution of the LOCATE statement.
When no further space is available in the
output buffer, the next execution of the
LOCATE statement causes a block to be
transmitted to the data set associated with
the file OUT, and a new buffer to be
allocated.

Note that, in each of the foregoing
examples, if the data set accessed in the
move mode had had unblocked records and the
associated file had been declared
UNBUFFERED, movement of data in internal
storage may have been unnecessary; if
possible, each record would have been read
into and written from the same buffer.

124

•Figure 10-2. Locate Mode Input, Move Mode Output

Chapter 10: Record-Oriented Transmission 125

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
The information is contained in a
parenthesized option list; the general
format is:

ENVIRONMENT (option-list)

The options applicable to
record-oriented transmission, with the
exception of teleprocessing applications,
are:

F(block-size[,record-size]) {V|VS|VBS}(maximum-block-size

[,maximum-record-size])
U(maximum-block-size)

[BUFFERS(n)]

CONSECUTIVE
INDEXED
REGIONAL(1)
REGIONAL(2)
REGIONAL(3)

LEAVE
REWIND

CTLASA
CTL360

[COBOL]

[INDEXAREA[(index-area-size)]]
[NOWRITE]

[GENKEY]

[NCP(decimal-integer-constant)]

[TRKOFL]

For teleprocessing applications (i.e., with
TRANSIENT files), the above options do not
apply, and one of the following options
must be specified:

G(maximum-message-size)

R(maximum-record-size)

The options may appear in any order, and
are separated by blanks. The options
themselves cannot contain blanks.

The options are discussed below under
eleven headings: record format, buffer
allocation, data set organization, volume
disposition, carriage control, data
interchange, data management optimization,
key classification, asynchronous operations
limit, track overflow, and teleprocessing

format. The information supplied by some
of the options can alternatively be
specified in a DD statement or by default.
The DD statement is described in IBM
System/360 Operating System: PL/I(F)
Programmer's Guide.

RECORD FORMAT

Logical records can appear in one of three
formats: fixed-length (F-format),
variable-length (V-format,VS-format, and
VBS-format), or undefined-length
(U-format). The block size and record size
are specified in number of bytes. The
block size must always be stated; if no
record size is specified, the records are
assumed to be unblocked (that is, each
block contains only one record).
Undefined-length records cannot be blocked;
therefore, the record size can be specified
for fixed-length and variable-length
records only. Blocking and deblocking of
fixed-length and variable-length records
are handled automatically.

Fixed-length records are blocked and
deblocked in accordance with the specified
block size and record size. The block size
must be an exact multiple of the record
size.

When variable-length records are
written, deblocking information is
automatically inserted into each record and
block. Four bytes are prefixed to the data
in each record to specify deblocking
information, including two bytes for the
total record size; a further four bytes are
prefixed to the first record in each block,
two of which specify the total block size.
Variable-length records can be in one of
three formats: V-format, VS-format, or
VBS-format.

For V-format records, the programmer
must specify the maximum block size and,
for blocked records, the maximum record
size; in each case, he must allow an
additional four bytes for the deblocking
information. The record size must never
exceed the block size. For example, if the
maximum data length anticipated is 120
bytes, the maximum record size should be
specified as 124 bytes, and a block size of
not less than 128 bytes should be specified
whether the records are blocked or not
(unblocked records are considered to be in
blocks of one record each).

The record size specified for VS-format
records can exceed the block size; if
necessary, the records are segmented, and
the segments are placed in consecutive
blocks. Each block can contain only one

126

record or segment of a record, and each
contains two four-byte fields, one to
specify the block length and the other the
record or segment length. For example, if
the record format is specified as
VS(80,200), a record that includes 180
bytes of data will appear in the data set
as two blocks of 80 bytes (8 control bytes
and 72 data bytes) and one block of 44
bytes (8 control bytes and 36 data bytes).

VBS-format differs from VS-format only
in that each block contains as many records
or segments as it can accommodate; each
block is, therefore, substantially the same
size (although there can be a variation of
up to four bytes, since each segment must
contain at least one byte of data). For
example, a block might contain the last
segment of one record, one or more complete
records, and the first segment of another
record.

VS-format and VBS-format records are
known as spanned records because they can
start in one block and be continued in the
next. But the programmer is concerned only
with complete records; segmentation and
reassembly are handled automatically. The
use of spanned records allows the
programmer to select a block size,
independently of record size, that will
combine optimum usage of external storage
space with maximum efficiency of
transmission.

For undefined-length records, all
processing of records is the responsibility
of the programmer. If a length
specification is included in the record,
the programmer must insert it himself, and
he must retrieve the information himself.

Record format, block size, and record
size can be specified in the DCB parameter
of a DD statement instead of in the
ENVIRONMENT attribute, but all three must
appear together in one place or the other.
The relevant DCB subparameters are RECFM,
BLKSIZE, and LRECL.

BUFFER ALLOCATION

A buffer is an internal storage area that
is used for the intermediate storage of
data transmitted to and from a data set.
The use of buffers allows transmission and
computing time to be overlapped, and it may
help speed up processing, especially where
the amount of processing per record is
irregular. Buffers are essential for the
automatic blocking and deblocking of
records and for locate-mode transmission.

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number (n) of
buffers to be allocated for a data set;
this number must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specified for a BUFFERED file or is
specified as zero, two buffers are assumed.

The number of buffers can be specified
in the BUFNO subparameter of a DD statement
instead of in the ENVIRONMENT attribute.

DATA SET ORGANIZATION

The organization of a data set determines
how data is recorded in a data set volume,
and how the data is subsequently retrieved
so that it can be transmitted to the
program. Records are stored in and
retrieved from a data set either
sequentially on the basis of successive
physical positions, or directly by the use
of keys specified in data transmission
statements. These storage and retrieval
methods provide PL/I with three general
data set organizations: CONSECUTIVE,
INDEXED, and REGIONAL; CONSECUTIVE is
assumed by default if no data set
organization is specified.

In a data set with CONSECUTIVE
organization, records are organized solely
on the basis of their successive physical
positions; records are retrieved only in
sequential order, and keys are not used.
The records of an INDEXED data set are
arranged in logical sequence according to
keys associated with each record; the
records are arranged in ascending key
sequence, and indexes, created and
maintained by the system, are used for
retrieval of records. A data set with
REGIONAL organization is divided into
regions, each of which is identified by a
region number and contains one or more
records; for retrieval, the key supplied
gives the region number at which the search
for the record is to commence.

CONSECUTIVE data sets are the simplest
of the three types to create and use, and
they have the advantage that less internal
and external storage is required. However,
records in a CONSECUTIVE data set can be
updated only in their existing sequence,
and if records are to be inserted a new
data set must be created. Even sequential
updating is not supported for magnetic
tape.

Although an INDEXED data set must be
created sequentially, once it exists
records can be retrieved, updated, added,
or deleted at random. Sequential

Chapter 10: Record-Oriented Transmission 127

processing of an INDEXED data set is slower
than that of a corresponding CONSECUTIVE
data set, because the records it contains
are not necessarily arranged in physical
sequence but are logically chained in order
of ascending key values; furthermore,
random access is less efficient for an
INDEXED data set than for a REGIONAL data
set, because the indexes must be searched
to locate a record. Other disadvantages of
an INDEXED data set are that it requires
more internal and external storage space
than either a CONSECUTIVE or a REGIONAL
data set, and that all volumes of a
multi-volume data set must be mounted even
for sequential processing. Although an
INDEXED data set can contain blocked
records, V-format and U-format records are
not supported.

Direct access of REGIONAL data sets is
more efficient than that of INDEXED data
sets, but they have the disadvantage that
sequential processing may present the
records in random sequence; the order of
sequential retrieval is not necessarily
that in which the records were presented
during sequential creation, nor need it be
related to the relative key values.
Blocked records are not permitted in a
REGIONAL data set, and only REGIONAL(3) can
accept V-format or U-format records.

The use of the record-oriented
transmission statements to process data
sets of each type of organization is
discussed under appropriate headings below.

VOLUME DISPOSITION

The volume disposition options allow the
programmer to specify the action to be
taken when the end of a magnetic tape
volume is reached, or when a data set on a
magnetic tape volume is closed. The LEAVE
option prevents the tape from being
rewound. The REWIND option allows the
action at end of volume or on closing of a
data set to be controlled by the DISP
parameter of the associated DD statement.
The effects of the options are summarized
in Figure 10-3, which also indicates
whether an input/output channel is kept
busy during the repositioning operation.

PRINTER/PUNCH CONTROL

The printer/punch control options CTLASA
and CTL360 apply only to OUTPUT files
associated with CONSECUTIVE data sets.

They specify that the first character of a
record is to be interpreted as a control
character.

1. The CTLASA option specifies USASI
standard control characters.

2. The CTL360 option specifies IBM
System/360 machine code control
characters.

DATA INTERCHANGE

The COBOL option facilitates the
interchange of data between programs
written in PL/I and programs written in
COBOL. It specifies that structures in the
data set associated with the file will be
mapped according to the COBOL(F) algorithm.
The restrictions noted below apply to the
handling of a file with the COBOL option.
Figure 10-4 compares the data types used by
COBOL with PL/I data types.

A file with the COBOL option can be used
only for READ INTO, WRITE FROM, and REWRITE
FROM statements. The file name cannot be
passed as an argument.

If an ON-condition is raised during the
execution of a READ statement, the variable
named in the INTO option cannot be used in
the on-unit. If the completed INTO
variable is required, there must be a
normal return from the on-unit.

The EVENT option can be used only if the
compiler can determine that the PL/I and
COBOL structure maps are identical (i.e.,
all elementary items have identical
boundaries). If the maps are not
identical, or if the compiler cannot tell
whether they are identical, an intermediate
variable is created to represent the level
1 item mapped by the COBOL algorithm. The
PL/I variable is assigned to the
intermediate variable before a WRITE
statement is executed, or assigned from it
after a READ statement has been executed.
Thus the input or output statement that
contains the EVENT option is not the one
that completes the operation; accordingly,
the EVENT option is ignored.

128

Figure 10-3. Effect of LEAVE and REWIND options

DATA MANAGEMENT OPTIMIZATION

The data management optimization options in
the ENVIRONMENT attribute increase program
efficiency, in certain circumstances, when
DIRECT files are used to access INDEXED
data sets.

The INDEXAREA option improves the
input/output speed of a DIRECT INPUT or
DIRECT UPDATE file with INDEXED data set
organization, by having the highest level
of index placed in main storage. The
"index area size" enables the programmer to
limit the amount of main storage he is
prepared to allow for an index area. The
size, when specified, must be a decimal
integer constant whose value lies within
the range zero through 32,767. If an index
area size is not specified, the highest
level index is moved unconditionally into
main storage. If an index area size is
specified, the highest level index is held
in main storage, provided that its size
does not exceed that specified. If the
specified size is less than zero or greater

than 32,767, the compiler issues a warning
message and ignores the option.

The NOWRITE option can be specified only
for DIRECT UPDATE files. It informs the
compiler that no records are to be added to
the data set and that data management
modules concerned solely with adding
records are not required; it thus allows
the size of the object program to be
reduced.

KEY CLASSIFICATION

The GENKEY (generic key) option applies
only to INDEXED data sets. It enables the
programmer to classify keys recorded in a
data set and to use a SEQUENTIAL KEYED
INPUT or SEQUENTIAL KEYED UPDATE file to
access records according to their key
classes.

Chapter 10: Record-Oriented Transmission 129

| COBCL data type 	| PL/I data type

DISPLAY 	|PICTURE with A
land/or X picture
|characters
|CHARACTER

F 	
COMPUTATIONAL
Decimal length

1 to 4 	 FIXED BINARY
(precision < 16)
(integers only)

5 to 9 	 FIXED BINARY
(precision >= 16)
(integers only)

10 to 18 	 No equivalent
	|

|COMPUTATIONAL-1 	|FLOAT (n) BINARY
| 	(for n <= 21)

|FLOAT (n) DECIMAL 	|
| 	(for n 	6)

F 	
|COMPUTATIONAL-2 	|FLOAT (n) BINARY

| 	(for n > 21)
|FIXED (n) DECIMAL 	|
| 	(for n > 6)

|COMPUTATIONAL-3 	|FIXED DECIMAL
| (precision and

|

 scale as in COBOL |
| picture)

•Figure 10-4. Equivalence of COBOL and PL/I
Data

A generic key is a character string that
identifies a class of keys: all keys that
begin with the string are members of that
class. For example; the recorded keys
'ABCD', 'ABCE', and 'ABDF' are all members
of the classes identified by the generic
keys 'A' and 'AB'; and the first two are
also members of the class 'ABC'; and the
three recorded keys can be considered to be
unique members of the classes 'ABCD',
'ABCE', and 'ABDF', respectively.

The GENKEY option allows the programmer
to start sequential reading or updating of
an INDEXED data set from the first
non-dummy record that has a key in a
particular class; the class is identified
by the inclusion of its generic key in the
KEY option of a READ statement.' Subsequent
records can be read by READ statements
without the KEY option. No indication is
given when the end of a key class is
reached.

'Note that, although the first record
having a key in a particular class can be
retrieved by READ KEY, the actual key
cannot be obtained unless the records have
embedded keys, since the KEYTO option
cannot be used in the same statement as the
KEY option.

In the following example, a key length
of more than three bytes is assumed.

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY);

READ FILE(IND) INTO(INFIELD) KEY ('ABC');
•

NEXT: READ FILE (IND) INTO (INFIELD);

GO TO NEXT;

The first READ statement causes the first
non-dummy record in the data set whose key
begins with 'ABC' to be read into INFIELD;
each time the second READ statement is
executed, the non-dummy record with the
next higher key will be retrieved.
Repeated execution of the second RFAD
statement could result in reading records
from higher key classes since no indication
is given when the end of a key class is
reached. It is the responsibility of the
programmer to check each key if he does not
wish to read beyond the key class. Any
subsequent execution of the first read
statement would reposition the data set to
the first record of the key class 'ABC'.

If the data set contains no records with
keys in the specified class, or if all the
records with keys in the specified class
are dummy records; the KEY condition is
raised and the data set is positioned to
the first record.

Note how the presence or absence of the
GENKEY option affects the execution of a
READ statement that supplies a source key
that is shorter than the key length
specified in the KEYLEN subparameter of the
DD statement. GENKEY causes the key to be
interpreted as a generic key, and the data
set is positioned to the first non-dummy
record in the data set whose key begins
with the source key. If the GENKEY option
is not specified, a short source key is
padded on the right with blanks to the
specified key length, and the data set is
positioned to the record that has this
padded key (if such a record exists).

The use of the GENKEY option does not
affect the result of supplying a source key
whose length is greater than or equal to
the specified key length. The source key,
truncated on the right if necessary,
identifies a specific record (whose key can
be considered to be the only member of its
class).

130

ASYNCHRONOUS OPERATIONS LIMIT

The asynchronous operations limit specifies
the number of incomplete input/output
operations with the EVENT option that are
allowed to exist for the file at one time.

The decimal integer constant specified
with NCP must have a value in the range 1
through 99; otherwise, 1 is assumed and an
error message is issued.

This option is equivalent to the NCP
subparameter of the DCB parameter of the DD
statement.

TRACK OVERFLOW

The track overflow option specifies that
records transmitted to a direct-access
storage device can be written on overflow
tracks if necessary.

This option is equivalent to the
specification of "T" in the RECFM
subparameter of the DCB parameter of the DD
statement.

TELEPROCESSING FORMAT

The teleprocessing format options are for
use with TRANSIENT files only;
teleprocessing is discussed later in this
chapter. One of these options must be
specified for TRANSIENT files; they cannot
be specified for DIRECT, SEQUENTIAL, or
STREAM files; and they cannot appear in
conjunction with any other option of the
ENVIRONMENT attribute.

The maximum message size and maximum
record size are specified by decimal
integer constants.

G(maximum-message-size) specifies that
execution of a data transmission statement
will result in the movement of a complete
message to or from the message queue.

R(maximum-record-size) specifies that
execution of a data transmission statement
will result in the movement of one record
of a message to or from the message queue.

For both G and R formats, a buffer is
always used, and its length will depend on
the value of the specified decimal integer
constant. The value that must be specified
will depend on the message format as set up
by the separate message control program.

The PL/I programmer must have details of
the message format in order to write a
message processing program. In general,
the messages and records are treated as if
they were V-format records.

(See also "Teleprocessing," below)

CONSECUTIVE Organization

In a data set with CONSECUTIVE
organization, the records have no keys.
When the data set is created, records are
written consecutively in the order in which
they are presented. The records can be
retrieved only in the order in which they
were written or in the reverse order;
therefore the associated file must have the
SEQUENTIAL attribute. A CONSECUTIVE data
set can have F-format, V-format, VS-format,
VBS-format, or U-format records.
(VS-format and VBS-format records can be
processed only by INPUT or OUTPUT files.)

Note the difference between the
CONSECUTIVE option of the ENVIRONMENT
attribute and the SEQUENTIAL attribute.
CONSECUTIVE specifies the physical
organization of a data set; SEQUENTIAL
specifies how a file is to be processed. A
data set with CONSECUTIVE organization must
be associated with a SEQUENTIAL file; but a
data set with INDEXED or REGIONAL
organization can be associated with either
a SEQUENTIAL or DIRECT file.

A CONSECUTIVE data set on magnetic tape
can be read forwards or backwards. If the
data set is to be read backwards, the
associated file must have the BACKWARDS
attribute. If a data set is first read or
written forwards and then read backwards in
the same program, the LEAVE option should
be specified in the ENVIRONMENT attribute
to prevent normal rewind when the file is
closed (or, with a multi-volume data set,
when volume-switching occurs).
Variable-length records cannot be read
backwards.

Once a CONSECUTIVE data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or SEQUENTIAL
OUTPUT; or it can be opened for SEQUENTIAL
UPDATE, provided that the data set is on a
direct-access storage device. If it is
opened for OUTPUT, DISP=MOD must be
specified in the DD statement; records can
then be added to the end of the data set.
(If DISP=MOD is not specified, the data set
will be overwritten.) Figure 10-5 lists
the data transmission statements and
options that can be used to create and
access a CONSECUTIVE data set.

Chapter 10: Record-Oriented Transmission 131

Figure 10-5. Statements and options permitted for creating and accessing CONSECUTIVE
data sets

SEQUENTIAL UPDATE

When a consecutive data set is accessed by
a SEQUENTIAL UPDATE file, a record must be
retrieved with a READ statement before it
can be updated by a REWRITE statement;
however, every record that is retrieved
need not be rewritten. A REWRITE statement
will always update the last record read.

Consider the following:

The REWRITE statement updates the record
which was read by the second READ
statement. The record that was read by the
first statement cannot be rewritten after
the second READ statement has been
executed.

Intervening READ statements are not
permitted between a READ statement and a
REWRITE statement that refer to the same
record in a data set. For example, the
following is not valid:

132

that record; its length cannot exceed 255
characters. A source key is the
character-string value of the expression
that appears in the KEY or KEYFROM option
of a data transmission statement to
identify the statement to which the record
refers; for direct access of an INDEXED
data set, each transmission statement must
include a source key.

The REWRITE statement will attempt to
update the last record read, which, in this
instance, is the record read by the first
READ statement. (A record accessed by a
READ statement with the EVENT option is not
considered to have been read until the
corresponding WAIT statement has been
executed.) Because of the intervention of
the second READ statement, the ERROR
condition will be raised.

INDEXED Organization

A data set with INDEXED organization must
be on a direct-access device. Its records
are arranged in logical sequence according
to keys that are associated with each
record. A key is a character string that
usually represents an item within the
record, such as a part number, a date, or a
name. Logical records are arranged in the
data set in ascending key sequence
according to the System/360 collating
sequence. Indexes included in the data set
are used by the operating system
data-management routines to locate a record
when the key is supplied. V-format and
F-format records, blocked or unblocked, can
be used in an INDEXED data set.

Unlike CONSECUTIVE organization, INDEXED
organization does not require every record
to be accessed in sequential fashion. An
INDEXED data set must be created
sequentially; but, once it has been
created, the associated file may have the
attribute SEQUENTIAL or DIRECT as well as
INPUT or UPDATE. When the file has the
DIRECT attribute, records may be retrieved,
added, deleted, and replaced at random.

Figure 10-6 lists the data-transmission
statements and options that can be used to
create and access an INDEXED data set.

KEYS

There are two kinds of keys, recorded keys
and source keys. A recorded key is a
character string that actually appears with
each record in the data set to identify

The length of the recorded keys in an
INDEXED data set is defined by the KEYLEN
subparameter of the DD statement that
defines the data set. If the length of a
source key differs from the specified
length of the recorded keys, the source key
is truncated on the right or padded with
blanks on the right to the specified
length.

The recorded keys in an INDEXED data set
may be separate from, or embedded within,
the logical records. If the keys are
embedded within the records, the
subparameter RKP must be included in the DD
statement for the data set to give the
location of the key.

The use of embedded keys obviates the
need for the KEYTO option during sequential
input, but the KEYFROM option is still
required for output. (However, the data
specified by the KEYFROM option may be the
embedded key itself.) In a data set with
unblocked records, a separate recorded key
precedes each record, even when there is
already an embedded key; unblocked records
with embedded keys therefore require double
space for key information. If the records
are blocked, only the key of the last
record in each block is recorded separately
in front of the block.

During the execution of a LOCATE or
WRITE statement that adds a record to a
data set with embedded keys, the value of
the expression in the KEYFROM option is
compared with the key embedded in the
record; if they do not match, the KEY
condition is raised. When the KEY
condition is raised in this way by a LOCATE
statement, the record in the buffer cannot
be transmitted until the key embedded in
the record has been changed to match the
value given in the KEYFROM option; if the
file is closed1 before the key has been
corrected, the key supplied in the KEYFROM
option is automatically substituted for the
embedded key, and the record is then
transmitted.

1In these circumstances, the file could not
be closed explicitly (i.e., by a CLOSE
statement) but only implicitly on
termination of the task that opened the
file.

Chapter 10: Record-Oriented Transmission 133

DUMMY RECORDS

Records within an INDEXED data set are
either actual records containing valid data
or dummy records. A dummy record is
identified by the constant (8)'1'B in its
first byte. Dummy records can be inserted
by the programmer, or they may be
substituted automatically for records that
are deleted; they can be replaced by valid
data. If the subparameter OPTCD=L is
included in the DD statement that defines
the data set, dummy records are not
retrieved by READ statements.

CREATING A DATA SET

When an INDEXED data set is being created,
the associated file must be opened for
SEQUENTIAL OUTPUT, and the records must be
presented in the order of ascending key
values. (If there is an error in the key
sequence, the KEY condition will be
raised.) A DIRECT file cannot be used for
the creation of an INDEXED data set.

Once an INDEXED data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It cannot be
opened for OUTPUT.

SEQUENTIAL ACCESS

A SEQUENTIAL file that is used to access an
INDEXED data set may be opened with either
the INPUT or the UPDATE attribute. The
data transmission statements need not
include source keys, nor need the file have
the KEYED attribute. Sequential access is
in order of ascending recorded-key values;
records are retrieved in this order, and
not necessarily in the order in which they
were added to the data set. Dummy records
are not retrieved if the DD statement that
defines the data set includes the
subparameter OPTCD=L.

The rules governing the relationship
between the READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses an
INDEXED data set are identical to those for
a CONSECUTIVE data set (described above).

Additionally, records can be effectively
deleted from the data set; a DELETE
statement marks a record as a dummy by
putting (8)'1'B in the first byte. The
DELETE statement should not be used to
process a data set with blocked records and
non-embedded keys. (The code (8)'1'B would

overwrite the first byte of the recorded
key.) Note that the EVENT option is not
supported for SEQUENTIAL access of INDEXED
data sets.

During sequential access of an INDEXED
data set, it is possible to reposition the
data set to a particular record by
supplying a source key in the KEY option of
a READ statement, and to continue
sequential reading from that record. (The
associated file must have the KEYED
attribute.) Repositioning can occur in
either a forward or a backward direction.
Thus, a READ statement that includes the
KEY option will cause the record whose key
is supplied to be read; a subsequent READ
statement without the KEY option will cause
the record with the next higher recorded
key to be read.

The effect of supplying a source key
that is shorter than the recorded keys in
the data set differs according to whether
or not the GENKEY option is specified in
the ENVIRONMENT attribute. In the absence
of the GENKEY option, the source key is
padded on the right with blanks to the
length specified in the KEYLEN subparameter
of the DD statement that defines the data
set; and the record with this padded key is
read (if such a record exists). It the
GENKEY option is specified, the source key
is interpreted as a generic key, and the
first record with a key in the class
identified by this generic key is read.
(Refer to "Key Classification;" above.)

DIRECT ACCESS

A DIRECT file that is used to access an
INDEXED data set may be opened with either
the INPUT or the UPDATE attribute. All
data transmission statements must include
source keys; the DIRECT attribute implies
the KEYED attribute.

A DIRECT UPDATE file can be used to
retrieve; add; delete, or replace records
in an INDEXED data set according to the
following conventions:

1. Retrieval: If the DD statement that
defines the data set includes the
subparameter OPTCD=L; dummy records
are not made available by a READ
statement. (The KEY condition is
raised.)

2. Addition: A WRITE statement that
includes a unique key causes a record
to be inserted into the data set. If
the key is the same as the recorded
key of a dummy record, the new record
replaces the dummy record. If the key

134

is the same as the recorded key of a
record that is not marked as deleted,
or if there is no space in the data
set for the record, the KEY condition
is raised.

3. Deletion: The record specified by the
source key in a DELETE statement is
retrieved, marked as deleted, and
rewritten into the data set. Deletion
is possible only if OPTCD=L was
specified in the DD statement that
defined the data set when it was
created. If the data set has blocked
records with non-embedded keys
(RKP=0), records cannot be deleted.

(The code (8)'1'B would overwrite the
recorded keys.)

4. Replacement: The record specified by a
source key in a REWRITE statement is
replaced by the new record. Unblocked
records can be replaced without being
read. If the data set contains
blocked records, a record must first
be retrieved with a READ statement and
then replaced with a REWRITE
statement; no further transmission
statements for the same file may be
issued between such a READ statement
and the corresponding REWRITE
statement.

Figure 10-6. Statements and options permitted for creating and accessing INDEXED
data sets (Part 1 of 2)

Chapter 10: Record-Oriented Transmission 135

1The complete file declaration would include the attributes FILE, RECORD, and
ENVIRONMENT(INDEXED); if any of the options KEY, KEYFROM, and KEYTO is used, it must
also include the attribute KEYED. For example:
DECLARE MASTER FILE RECORD SEQUENTIAL OUTPUT BUFFERED KEYED ENVIRONMENT(INDEXED);

By omitting the attributes that would be applied by default, this can be shortened to:
DECLARE MASTER FILE RECORD KEYED ENVIRONMENT(INDEXED);

2If a SEQUENTIAL file associated with an INDEXED data set is declared UNBUFFERED, the
compiler will change the declaration to BUFFERED. Thus, a declaration of UNBUFFERED
gains nothing, but prevents the use of blocked records.

Figure 10-6. Statements and options permitted for creating and accessing INDEXED
data sets (Part 2 of 2)

REGIONAL Organization

A data set with REGIONAL organization is
divided into regions, each of which is
identified by a region number, and each of
which may contain one record or more than
one record, depending on the type of
REGIONAL organization. The regions are
numbered in succession, beginning with
zero, and a record is accessed by
specifying its region number, and perhaps a
key, in a data transmission statement. A
key is a character string that usually
represents an item such as a part number, a
date, or a name.

REGIONAL organization of a data set
permits the programmer to control the
physical placement of records in the data
set, and enables him to optimize the access
time for a particular application. Such
optimization is not available with
CONSECUTIVE or INDEXED organization, in
which successive records are written either
in strict physical sequence or in logical
sequence depending on ascending key values;
neither of these methods takes full
advantage of the characteristics of
direct-access storage devices. REGIONAL
data sets are confined to direct-access
devices.

A REGIONAL data set can be created in a
similar manner to a CONSECUTIVE or INDEXED

data set, records being presented in the
order of ascending region numbers;
alternatively, direct access can be used,
in which records can be presented in random
sequence and inserted directly into
preformatted regions. Once a REGIONAL data
set has been created, it can be accessed by
a file with the attributes SEQUENTIAL or
DIRECT as well as INPUT or UPDATE. When
the file has the DIRECT attribute, records
can be retrieved, added, deleted, and
replaced at random.

Records within a REGIONAL data set are
either actual records containing valid data
or dummy records. The nature of the dummy
records depends on the type of REGIONAL
organization; the three types of REGIONAL
organization are described below.

Figure 10-7 lists the data transmission
statements and options that can be used to
create and access a REGIONAL data set.

KEYS

There are two kinds of keys, recorded keys
and source keys. A recorded key is a
character string that immediately precedes
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the

136

character-string value of the expression
that appears in the KEY or KEYFROM option
of a data transmission statement to
identify the record to which the statement
refers. When a record in a REGIONAL data
set is accessed, the source key represents
a region number, and may also represent a
recorded key.

The length of the recorded keys in a
REGIONAL data set is defined by the KEYLEN
subparameter of the DD statement that
defines the data set. Unlike the keys for
INDEXED data sets, recorded keys in a
REGIONAL data set are never embedded within
the record.

TYPES OF REGIONAL ORGANIZATION

There are three types of REGIONAL
organization:

1. A REGIONAL(1) data set contains
unblocked F-format records that do not
have recorded keys. Each region in
the data set contains only one record;
therefore, each region number
corresponds with a relative record
position within the data set.

2 A REGIONAL(2) data set contains
unblocked F-format records that have
recorded keys. Each region in the
data set contains only one record.
Direct access of a REGIONAL(2) data
set employs the region number
specified in a source key to locate
the required region. Once the region
has been located, a sequential search
for space to add a record, or for a
record that has a recorded key
identical with that supplied in the
source key, can be made.

3. A REGIONAL(3) data set contains
unblocked F-format, V-format, or
U-format records with recorded keys.
Each region in the data set
corresponds with a track on a
direct-access device, and can contain
one or more records. Direct access of
a REGIONAL(3) data set is similar to
that for a REGIONAL(2) data set.

REGIONAL(1) ORGANIZATION

In a REGIONAL(1) data set, since there are
no recorded keys, the region number serves
as the sole identification of a particular
record. The character-string value of the
source key must represent an unsigned
decimal integer that does not exceed

16777215. Only the characters 0 through 9
and the blank character are valid in the
source key; leading blanks are interpreted
as zeros. If more than eight characters
appear in the key; only the rightmost eight
are used as the region number; if there are
fewer than eight characters; blanks
(interpreted as zeros) are inserted on the
left.

Dummy Records

A dummy record in a REGIONAL(1) data set is
identified by the constant (8)'1'B in its
first byte. Although such dummy records
are automatically inserted in the data set
either when it is created or when a record
is deleted, they are not ignored when the
data set is read; the PL/I program must be
prepared to recognize them. Dummy records
can be replaced by valid data.

Creating Data Set

A REGIONAL(1) data set can be created
either sequentially or by direct access.

When a SEQUENTIAL OUTPUT file is used to
create the data set; records must be
presented in ascending order of region
numbers; any region that is omitted from
the sequence is filled with a dummy record.
If there is an error in the sequence, or if
a duplicate key is presented, the KEY
condition will be raised. When the file is
closed; any space remaining at the end of
the data set is filled with dummy records.

If a DIRECT OUTPUT file is used to
create the data set, the whole of the space
allocated to the data set is filled with
dummy records when the file is opened.

Once a REGIONAL(1) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE; or
for DIRECT INPUT or UPDATE. It cannot be
opened for OUTPUT.

Sequential Access

A SEQUENTIAL file that is used to access a
REGIONAL(1) data set may be opened with
either the INPUT or for UPDATE attribute.
The data transmission statements must not
include the KEY option; but the file may
have the KEYED attribute, since the KEYTO
option can be used. If the
character-string variable specified in the

Chapter 10: Record-Oriented Transmission 137

KEYTO option has more than eight
characters, the value returned (the region
number) is padded on the left with blanks;
if it has fewer than eight characters, it
is truncated on the left.

Sequential access is in the order of
ascending region numbers; records are
retrieved in this order, and not
necessarily in the order in which they were
added to the data set. All records are
retrieved, whether dummy or actual, and the
PL/I program should be prepared to
recognize dummy records.

The rules governing the relationship
between READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL(1) data set are identical with
those for a CONSECUTIVE data set (described
above).

Direct Access

A DIRECT file that is used to access a
REGIONAL(1) data set may be opened with
either the INPUT or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute.

A DIRECT UPDATE file can be used to
retrieve; add, delete, or replace records
in a REGIONAL(1) data set according to the
following conventions:

1. Retrieval: All records, whether dummy
or actual, are retrieved. The program
must be prepared to recognize dummy
records.

2. Addition: A WRITE statement
substitutes a new record for the
existing record (actual or dummy) in
the region specified by the source
key.

3. Deletion: The record specified by the
source key in a DELETE statement is
replaced by a dummy record.

4. Replacement: The record specified by
the source key in a REWRITE statement
whether dummy or actual, is
overwritten.

REGIONAL(2) ORGANIZATION

In a REGIONAL(2) data set, each record is
identified by a recorded key that
immediately precedes the record. The
actual position of a record in the data set

relative to other records is determined not
by its recorded key, but by the region
number that is supplied in the source key
of the WRITE statement that adds the record
to the data set.

When a record is added to the data set,
it is written with its recorded key in the
first available space after the beginning
of the track that contains the region
specified. When a record is read, the
search for a record with the appropriate
recorded key begins at the start of the
track that contains the region specified.
Unless it is limited by the LIMCT
subparameter of the DD statement that
defines the data set, the search for a
record or for space to add a record
continues right through to the end of the
data set and then from the beginning until
the whole of the data set has been covered.
The closer a record is to the specified
region; the more quickly it can be
accessed.

Source Keys

The character-string value of the source
key can be thought of as having two logical
parts, the region number and a comparison
key. On output, the comparison key is
written as the recorded key; on input; it
is compared with the recorded key.

The rightmost eight characters of the
source key make up the region number, which
must be an unsigned decimal integer that
does not exceed 16777215. The region
specification can include only the
characters 0 through 9 and the blank
character; leading blanks are interpreted
as zeros. A substring beginning at the
left of the source key and containing the
number of characters specified in the
KEYLEN subparameter of the DD statement
that defines the data set is the comparison
key; if the source key is shorter than the
specified key length, it is extended on the
right with blanks. To retrieve a record,
this substring must exactly match the
recorded key of the record. The comparison
key can include the region number, in which
case the source key and the comparison key
are identical; alternatively, part of the
source key may be unused. The comparison
key is always equal to KEYLEN; if the
source key is longer than KEYLEN+8, the
characters in the source key between the
comparison key and the region number are
ignored.

Consider the following examples of
source keys (the character "b" represents a
blank):

138

KEY ('JOHNbDOEbbbbbb12363251')

The rightmost eight characters make up the
region specification. Assume that the
associated DD statement has the
subparameter KEYLEN=14. In retrieving a
record, the search will begin with the
beginning of the track containing region
number 12363251; and it will continue until
a record is found having the recorded key
of JOHNbDOEbbbbbb.

If the subparameter were KEYLEN=22, the
search still would begin at the same place,
but since the comparison and the source key
are the same length, the search would be
for a record having the recorded key
'JOHNbDOEbbbbbb12363251'.

KEY ('JOHNbDOEbbbbbbDIVISIONb523bbbb35627')

In this example, the rightmost eight
characters contain three blanks; which are
interpreted as zeros. The search will
begin at record number 00035627. If
KEYLEN=14 is specified, the characters
DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED
BINARY (21) and NAME is declared
CHARACTER(15). The key might be specified
as :

KEY (NAME || COUNTER)

The value of COUNTER will be converted to a
character string of eleven characters.
(The rules for conversion specify that a
binary value of this length, when converted
to character, will result in a string of
length 11, three blanks followed by eight
decimal digits.) The value of the
rightmost eight characters of the converted
string will be taken to be the region
specification. Then if the keylength
specification is KEYLEN=15, the value of
NAME will be taken to be the comparison
specification.

Dummy Records

A REGIONAL(2) data set can contain dummy
records which are recognizable by their
keys: the key of a dummy record has the
constant (8) '1'B in its first byte. The
first data byte of a dummy record contains
the sequence number of the record on the
track.

Dummy records can be replaced by valid
data. They are inserted automatically
either when the data set is created or when
a record is deleted, and they are ignored
when the data set is read. (Unlike INDEXED
data sets, REGIONAL data sets do not

require the subparameter OPTCD=L in the DD
statement.)

Creating a Data Set

A REGIONAL(2) data set can be created
either sequentially or by direct access.

When a SEQUENTIAL OUTPUT file is used to
create the data set, records must be
presented in ascending order or region
numbers; any region that is omitted from
the sequence is filled with a dummy record.
If there is an error in the sequence,
including an attempt to place more than one
record in the same region; the KEY
condition will be raised. When the file is
closed; any space remaining at the end of
the data set is filled with dummy records.

If a DIRECT OUTPUT file is used to
create the data set; the whole of the space
allocated to the data set is filled with
dummy records when the file is opened.
Records can be presented in random order,
and no condition is raised by duplicate
keys or duplicate region specifications.
Each record is substituted for the first
dummy record on the track that contains the
region specified in the source key; if
there are no dummy records on the track;
and an extended search is permitted by the
LIMCT subparameter; the record is
substituted for the first dummy record
encountered during the search. (Note that
it is possible to place records with
identical recorded keys in the data set.)

Once a REGIONAL(2) data set has been
created; the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE; or
for DIRECT INPUT or UPDATE. It cannot be
opened for OUTPUT.

Sequential Access

A SEQUENTIAL file that is used to access a
REGIONAL(2) data set may be opened with
either the INPUT or the UPDATE attribute.
The data transmission statements must not
include the KEY option, but the file may
have the KEYED attribute since the KEYTO
option can be used. The KEYTO option
specifies that the recorded key only is to
be assigned to the specified variable. If
the character-string variable specified in
the KEYTO option has more characters than
are specified in the KEYLEN subparameter,
the value returned (the recorded key) is
extended on the right with blanks; if it
has fewer characters than specified by
KEYLEN, the value returned is truncated on
the right.

Chapter 10: Record-Oriented Transmission 139

Sequential access is in the order of
ascending region numbers. Records are
retrieved in this order, and not
necessarily in the order in which they were
added to the data set; the recorded keys do
not affect the order of sequential access.
Dummy records are not retrieved.

The rules governing the relationship
between READ and REWRITE statements for a
SFQUENTIAL UPDATE file that accesses a
REGIONAL(2) data set are identical with
those for a CONSECUTIVE data set (described
above).

Direct Access

A DIRECT file that is used to access a
REGIONAL(2) data set may be opened with
either the INPUT or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute.

1. Retrieval: Dummy records are not made
available by a READ statement. The
KEY condition is raised if an actual
record with the specified recorded key
is not found.

2. Addition: A WRITE statement
substitutes the new record for the
first dummy record on the track
containing the region specified by the
source key. If there are no dummy
records on this track, and an extended
search is permitted by the LIMCT
subparameter, the new record replaces
the first dummy record encountered
during the search.

3. Deletion: The record specified by the
source key in a DELETE statement is
replaced by a dummy record.

4. Replacement: The record specified by
the source key in a REWRITE statement
must exist; a REWRITE statement cannot
be used to replace a dummy record.

Note that if the data set contains
records with duplicate recorded keys, the
record farthest from the beginning of the
data set may never be retrieved during
DIRECT access.

REGIONAL(3) ORGANIZATION

A REGIONAL(3) data set differs from a
REGIONAL(2) data set (described above) only
in the following respects:

1. Each region number identifies a track
on the direct-access device that
contains the data set; the region
number must not exceed 32767.

2. A region can contain one or more
records.

3. The data set can contain F-format,
V-format, or U-format unblocked
records. Dummy records cannot be
inserted when a data set is created
with V-format or U-format records
because their lengths cannot be known
before they are written; however, the
operating system maintains a capacity
record at the beginning of each track,
in which it records the amount of
space available on that track.

Source keys for a REGIONAL(3) data set
are interpreted exactly as those for a
REGIONAL(2) data set, and the search for a
record, or for space to add a record; is
conducted in a similar manner.

Dummy Records

Dummy records for REGIONAL(3) data sets
with F-format records are identical with
those for REGIONAL(2) data sets.

V-format and U-format dummy records are
identified by the fact that they have dummy
recorded keys ((8)'1'B in the first byte).
The four control bytes in each V-format
dummy record are retained; but otherwise
the contents of V-format and U-format dummy
records are undefined. V-format and
U-format dummy records are inserted in a
data set only when a record is deleted; the
space they occupy cannot be used again.

Creating a Data Set

A REGIONAL(3) data set can be created
either sequentially or by direct access.

When a SEQUENTIAL OUTPUT file is used to
create the data set; records must be
presented in ascending order of region
numbers, but the same region number can be
specified for successive records. If there
is an error in the sequence, the KEY
condition will be raised. If a track
becomes filled by records for which the
same region number was specified, the
region number is automatically incremented
by one; an attempt to add a further record
with the same region number will raise the
KEY condition (sequence error).

140

If a DIRECT OUTPUT file is used to
create the data set, the whole of the space
allocated to the data set is initialized
when the data set is opened; for F-format
records, the space is filled with dummy
records and dummy keys, and for V-format
and U-format records, the capacity record
for each track is written to indicate empty
tracks. Records can be presented in random
order, and no condition is raised by
duplicate keys or duplicate region
specifications. If the data set has
F-format records, each record is
substituted for the first dummy record in
the region (track) specified in the source
key; if there are no dummy records on the
track, and an extended search is permitted
by the LIMCT subparameter, the record is
substituted for the first dummy record
encountered during the search. If the data
set has V-format or U-format records, the
new record is inserted on the specified
track, if space is available; otherwise, if
an extended search is permitted, the new
record is inserted in the next available
space.

Once a REGIONAL(3) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It cannot be
opened for OUTPUT.

Sequential Access

A SEQUENTIAL file that is used to access a
REGIONAL(3) data set may be opened with
either the INPUT or UPDATE attribute. The
data transmission statements must not
include the KEY option, but the file may
have the KEYED attribute since the KEYTO
option can be used. The KEYTO option
specifies that the recorded key only is to
be assigned to the specified variable. If
the character-string variable specified in
the KEYTO option has more characters than
are specified in the KEYLEN subparameter,
the value returned (the recorded key) is
extended on the right with blanks; if it
has fewer characters than specified by
KEYLEN, the value returned is truncated on
the right.

Sequential access is in the order of
ascending relative tracks. Records are
retrieved in this order, and not
necessarily in the order in which they were
added to the data set; the recorded keys do
not affect the order of sequential access.
Dummy records are not retrieved.

The rules governing the relationship
between READ and REWRITE statements for a

SEQUENTIAL UPDATE file that accesses a
REGIONAL(3) data set are identical with
those for a CONSECTIVE data set (described
above).

Direct Access

A DIRECT file that is used to access a
REGIONAL(3) data set may be opened with
either the INPUT or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute.

1. Retrieval: Dummy records are not made
available by a READ statement. The
KEY condition is raised if an actual
record with the specified recorded key
is not found.

2. Addition: In a data set with F-format
records; a WRITE statement substitutes
the new record for a dummy record in
the region (track) specified by the
source key. If there are no dummy
records on the specified track, and an
extended search is permitted by the
LIMCT subparameter, the new record
replaces the first dummy record
encountered during the search. If the
data set has V-format or U-format
records, a WRITE statement inserts the
new record after all other records on
the specified track, if space is
available; otherwise, if an extended
search is permitted, the new record is
inserted in the next available space.

3. Deletion: A record specified by the
source key in a DELETE statement is
replaced by a dummy record. The space
occupied by an F-format record can be
re-used; space occupied by V-format or
U-format records is not available for
re-use.

4. Replacement: The record specified by
the source key in a REWRITE statement
must exist; a REWRITE statement cannot
be used to replace a dummy record.

Note: 1. The EVENT option should be used
with caution when V-format or
U-format records are being added
to a REGIONAL(3) data set.

2. If the data set contains records
with duplicate recorded keys, the
record farthest from the
beginning of the data set may
never be retrieved during DIRECT
access.

Chapter 10: Record-Oriented Transmission 141

Figure 10-7. Statements and options permitted for creating and accessing REGIONAL data
sets (Part 1 of 2)

142

1The complete file declaration would include the attributes FILE, RECORD, and
ENVIRONMENT (INDEXED); if any of the options KEY, KEYFROM, and KEYTO is used, it must
also include the attribute KEYED. For example:

DECLARE MASTER FILE RECORD SEQUENTIAL OUTPUT BUFFERED KEYED ENVIRONMENT (REGIONAL(1));

By omitting the attributes that would be applied by default, this can be shortened to:
DECLARE MASTER FILE RECORD KEYED ENVIRONMENT (REGIONAL(1));

Figure 10-7. Statements and options permitted for creating and accessing REGIONAL data
sets (Part 2 of 2)

Teleprocessing

The teleprocessing facilities of PL/I
are provided by an extension of the basic
record-oriented transmission facilities
with the addition of the TRANSIENT file
attribute and the PENDING condition. The F
Compiler provides a communicating link
between PL/I message processing programs
using these features and the QTAM (Queued
Telecommunications Access Method)
facilities of the operating system.

Figure 10-9, at the end of this section
on teleprocessing, is a programming example
designed to illustrate that the PL/I
teleprocessing extension is a simple
extension of the existing record-oriented
transmission facilities, rather than to
represent a typical user's message
processing program.

A QTAM message control program1 (MCP)
handles messages originating from and
destined for a number of remote terminals,
each of which is identified by a terminal
name carried with the message. These
messages are transmitted to and from the
PL/I message processing program via queues
in main storage. (These queues are
supported by corresponding intermediate
queues in a disk data set. The PL/I

1for more information about the message
control program, see IBM System/360
Operating System: QTAM Message Control
Program.

program has access only to the main storage
queues, by means of a single intermediate
buffer for each file.) The exact message
format depends on the MCP, but each message
will carry the terminal name with it. A
message may be a complete unit, or may
consist of a number of records so that it
can be split up for processing; the
ENVIRONMENT attribute is used to inform the
compiler of the message format. The PL/I
programmer must have this message format
information to enable him to write the
message processing program.

The "data set" associated with each
TRANSIENT file is in fact an input or
output message queue set up by the MCP. A
READ statement for the file will take the
next message (or the next record from the
current message) from the associated queue,
assign the data part to the variable named
in the INTO option (or set a pointer to
point to the data in the buffer), and save
the terminal name by assigning it to the
variable named in the KEYTO option. (The
PENDING condition is raised if the input
queue is empty when the READ statement is
executed.) A WRITE or LOCATE statement
will transmit the processed message or
record to the output queue, using the
element expression specified in the KEYFROM
option to identify the destination terminal
or process queue.

Chapter 10: Record-Oriented Transmission 143

The TRANSIENT Attribute

The TRANSIENT attribute, which is an
alternative to the DIRECT and SEQUENTIAL
attributes, indicates that the contents of
the data set associated with the file are
re-established each time the data set is
accessed. In effect, this means that
records can be continually added to the
data set by one program during the
execution of another program that
continually removes records from the data
set. Thus the data set can be considered
to be a continuous queue through which the
records pass in transit between the message
control program and the message processing
program. The queue is always accessed
sequentially.

The data set associated with a TRANSIENT
file differs from those associated with
DIRECT and SEQUENTIAL files in that its
contents are dynamic; reading a record
removes it from the data set. Such a data
set can never be created or accessed by a
DIRECT or SFQUENTIAL file.

With the F Compiler, the TRANSIENT
attribute can be specified only for RECORD
KEYED BUFFERED files with either the INPUT
or the OUTPUT attribute. (Since the file
must be BUFFERED, the EVENT option cannot
be used for teleprocessing operations.)
The file must also have the ENVIRONMENT
attribute with one of the two
teleprocessing format options (G and R); no
other ENVIRONMENT options are allowed.

For TRANSIENT INPUT files, the file name
or title must be the name of a queue set up
by the message control program. For
TRANSIFNT OUTPUT files, any name can be
declared, since the file is reassociated
for each output operation with a queue
determined by the terminal name; however,
the element expression specified in the
KEYFROM option must have as its value a
recognized terminal or process queue
identification. Note that the DD
statements for both TRANSIENT INPUT and
TRANSIENT OUTPUT files are DD DUMMY
statements, since the "data sets" are
defined by the message control program and
their association with the PL/I files is
handled automatically by the system.

Error Handling

The conditions that can be raised during
teleprocessing transmission are TRANSMIT,
RECORD, ERROR, and PENDING.

The TRANSMIT condition can be raised
only on input, and is as described for
other types of transmission.

The RECORD condition is raised in the
same circumstances as for other types of
transmission. (The messages and records
are treated as V-format records.)

The ERROR condition is raised as for
other types of transmission; it is also
raised when the expression in the KEYFROM
option is missing or detectably invalid.
Note that if the expression is
syntactically valid but does not represent
a terminal name recognized by the MCP, the
message may be lost in the system without
indication.

The PENDING condition can be raised only
during execution of a READ statement for a
TRANSIENT file. It is raised when the
associated queue is empty; standard system
action is to wait at the READ statement
until a message is available. When the
PENDING condition is raised, the value
returned by the ONKEY built-in function is
a null string.

Note: When the R format option is specified
in the ENVIRONMENT attribute, a message is
transmitted one record at a time. There is
no ON-condition or other automatic means
for detecting the end of the message; the
user is responsible for arrang ing the
indication of the end of the message
(possibly by using the first record as a
header giving the necessary control
information.)

Statements and Options

The READ statement is used for input, with
either the INTO option or the SET option;
the KEYTO option must be given. If the
message originates from a terminal; the
terminal name is assigned to the KEYTO
option. If a processing program placed the
message on the process queue, the terminal
name will be zeroes. In this case; the
PL/I Library assigns a blank field to the
variable in the KEYTO option. If the
terminal name is shorter than the
character-string variable named in the
KEYTO option, it is padded on the right
with blanks. If the KEYTO variable is a
varying-length string, its length is set to
that of the terminal name. The terminal
name should not be longer than the KEYTO
variable, but in any case will not be
longer than 8 characters. The data part of
the message or record is assigned to the
variable named in the INTO option, or the
pointer variable named in the SET option is
set to point to the data in the buffer.

Either the WRITE or the LOCATE statement
may be used for output; either statement
must have the KEYFROM option -- the first

144

eight characters of the value of the
KEYFROM expression are used to identify the
destination terminal or process queue. The
data part of the message is moved to the
buffer from the variable named in the FROM
option of the WRITE statement; or, in the
case of LOCATE, a pointer variable is set
to point to the location of the data in the
buffer.

The list of statements and options
permitted for TRANSIENT files is given in
tabular form in Figure 10-8. Some examples
follow:

READ FILE(IN) INTO(INREC) KEYTO(TERM);

WRITE FILF(OUT) FROM(OUTREC)
KEYFROM(TERM);

The above example illustrates the use of
move mode in teleprocessing applications.
The buffer for file IN contains the next
message (or record from a message,
depending on the message format) from the
input queue. The input queue will also be
named IN unless the file has been opened
with a TITLE option specifying a different
queue name. The message format will have
been determined by the message control
program, and the file declaration for IN
must include this information in the
ENVIRONMENT attribute.

The READ statement causes the message or
record to be moved from the buffer into the
variable INREC; if the buffer is empty when
the READ statement is executed (i.e., there
are no messages in the queue), the PENDING
condition is raised, and, normally,
execution will wait until a message is
available. The name of the originating
terminal is assigned to TERM.

After processing, the message or record
is held in OUTREC. The WRITE statement
moves it to the output buffer, together
with the value of TERM (which will still
contain the originating terminal name
unless another name has been assigned to it
during processing). From the buffer, the
message will be automatically transmitted
to the correct queue for the destination
terminal, as specified by the value of
TERM.

Since the output queue is determined
from the destination terminal name, the

file name OUT has no significance outside
the PL/I program. However, the file would
need the TRANSIENT, KEYED, and BUFFERED
attributes, and the correct message format
in the ENVIRONMENT attribute.

READ FILE(IN) SET(INPTR) KEYTO(TERM);

WRITE FILE(OUT) FROM(MESSAGE)
KEYFROM(TERM):

This example is similar to the previous
one, except that locate mode input is used;
the message data is processed in the input
buffer, using the based variable MESSAGE,
which has been declared with the pointer
variable INPTR. (The data of the message
will be aligned on a doubleword boundary.)
The WRITE statement moves the processed
data from the input to the output buffer;
otherwise its effect is as described for
the WRITE statement in the first example.

The technique used in this example would
be useful in applications where the
differences between processed and
unprocessed messages were relatively
simple; since the maximum size of input and
output messages would be the same. If the
length and structure of the output message
could vary widely, depending on the text of
the input message, locate mode output could
be used to advantage; after the input
message had been read in, a suitable based
variable could be located in the output
buffer (using the LOCATE statement), where
further processing would take place. The
message would be transmitted immediately
before execution of the next WRITE or
LOCATE statement for the file.

Note that although the EVENT option is
not permitted; data transmission could be
overlapped with processing in an MVT
operating system by means of the PL/I
multitasking facilities described in
Chapter 15. For example, the read-in
routine could invoke the processing
routines as subtasks; each subtask could
independently invoke the write-out routine.
In this way, the next message would be read
as soon as the last message had been passed
on to a processing routine, instead of
waiting for the processing routine to
finish.

Chapter 10: Record-Oriented Transmission 145

Figure 10-8. Statements and options permitted for TRANSIENT files

The program in Figure 10-9 handles two
types of message. The format of the
messages is a single character, 'D' or 'T'
surrounded by blanks. The 'D' character
causes the date to be returned to the
inquiring terminal, and 'T' causes the time
to be returned. Any other character is an
error. Note that the DD statement for the
files IN and OUT would be DD DUMMY
statements.

In the example, each inquiry is fully
serviced before control returns to
GET MESSAGE to obtain the next message.
Response could be greatly improved in an
MVT system by use of the multitasking
facilities of PL/I. If the routines
DATE_ROUTINE, TIME_ROUTINE, and ERROR were
invoked as subtasks of CLOCK, control would
return to GET_MESSAGE as soon as the
appropriate handling routine had been
invoked, rather than after it had finished.

Summary of Record-Oriented Transmission

The following points cover the salient
features of record-oriented transmission:

1. A SEQUENTIAL file specifies that the
data set records may be accessed,
created, or modified, in a particular
order, that is, from the first record
of the data set to the last record of

the data set (or from the last to the
first if the BACKWARDS attribute has
been specified).

2. A DIRECT file specifies that the data
set records may be accessed, created,
or modified, in random order. The
particular record of the data set to
be operated upon is identified by a
key.

3. A data set that is accessed, created,
or modified by a SEQUENTIAL file may
or may not have recorded keys. If it
does, the keys can be ignored while
accessing sequentially, or they may be
extracted from the data set or placed
into the data set by the KEYFROM and
KEYTO options. In general, the most
efficient way to create a data set
containing recorded keys is as a
SEQUENTIAL OUTPUT file. It then can
be accessed as a DIRECT file.

4. SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files may be positioned to a
particular record within the data set
by a READ operation that specifies the
key of the desired record.
Thereafter, successive READ statements
without the KEY option will access the
records sequentially. This kind of
accessing may be used only if the data
set has INDEXED organization and if
the file has the KEYED attribute.

146

Figure 10-9. Teleprocessing Programming Example

Chapter 10: Record-Oriented Transmission 147

5. Existing records of a data set in a
SEQUENTIAL UPDATE file can be
rewritten, modified, ignored, or
deleted. The DELETE statement used
with this type of file specifies that
the last record read is to be
deleted. 1 Operation with a DIRECT
UPDATE file, however, can specify
which record is to be deleted by means
of a key; also, records can be added
to the data set by means of the WRITE
statement. An existing record in an
UPDATE file can be replaced through
use of a REWRITE statement.

6. When a file has the DIRECT UPDATE
EXCLUSIVE attributes, it is possible
to protect individual records that are
read from the data set. For an
EXCLUSIVE file, any READ statement
without a NOLOCK option automatically
locks the record read. No other task
operating upon the same file can
access a locked record until it is
unlocked by the locking task. Any
task referring to a locked record will
wait at that point until the record is
unlocked. A record can be explicitly
unlocked by the locking task through
execution of a REWRITE, DELETE,
UNLOCK, or CLOSE statement. Records
are unlocked automatically upon
completion of the locking task. The
EXCLUSIVE attribute applies only to
the file and not the data set.
Consequently, record protection is
provided only if all tasks refer to
the data set through use of the same
file; if they refer to the same data
set using different files, the
protection does not apply. In
addition, the data set to which
reference is made by more than one
task through the same file must be
opened by a parent of all these tasks.
Note that a reference to a file
parameter and its associated argument
are references to the same file.

7. A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
statement may be used with OUTPUT
files, and DIRECT UPDATE files, but a
REWRITE statement may be used with
UPDATE files only. Moreover, for
DIRECT files, a REWRITE statement uses
the KEY option to identify the
existing record to be replaced; a
WRITE statement uses the KEYFROM
option, which not only specifies where
the record is to be written in the
data set, but also specifies, except

1If the DELETE statement is used with a
sequential file, the data set must have
INDEXED organization.

for REGIONAL(1), an identifying key to
be recorded in the data set.

8. Records of a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file can be skipped
over and ignored by use of the IGNORE
option of a READ statement. The
expression of the IGNORE option
specifies the number of records to be
skipped. A READ statement in which
only the FILE option appears indicates
that one record is to be skipped.

9. Teleprocessing support is provided by
an extension of the basic
record-oriented transmission
facilities. TRANSIENT files are
associated with queues of messages
either incoming from or outgoing to
remote terminals. Such files must be
KEYED and BUFFERED, and the
ENVIRONMENT attribute must be used to
specify the message format. TRANSIENT
files can be accessed by READ, WRITE,
and LOCATE statements, which cannot
have the EVENT option.

Examples of Declarations for RECORD Files

Following are examples of declarations of
files, including the ENVIRONMENT attribute:

DECLARE FILE#3 INPUT DIRECT
ENVIRONMENT(V(328) REGIONAL(3));

This declaration specifies only three file
attributes: INPUT, DIRECT, and ENVIRONMENT.
Other implied attributes are FILE (implied
by any of the attributes) and RECORD and
KEYED (implied by DIRECT). Scope is
EXTERNAL, by default. The ENVIRONMENT
attribute specifies that the data set is of
the REGIONAL(3) organization and contains
unblocked varying-length records with a
maximum length of 328 bytes. Note that a
maximum length record will contain only 320
bytes of data to be used by the program,
because 8 bytes are required for control
information in such V-format records. The
KEY option must be specified in each READ
statement that refers to this file.

DECLARE INVNTRY UPDATE BUFFERED
ENVIRONMENT (F(100)
INDEXED BUFFERS(4));

This declaration also specifies only three
file attributes: UPDATE, BUFFERED, and
ENVIRONMENT. Implied attributes are FILE,
RECORD, and SEQUENTIAL (the last two
attributes are implied by BUFFERED). Scope
is EXTERNAL, by default. The data set is
of INDEXED organization, and it contains
fixed-length records of 100 bytes each.
Four buffers are to be allocated for use in

148

accessing the data set. Note that although
the data set actually contains recorded
keys, the KEYTO option cannot be specified
in a READ statement, since the KEYED
attribute has not been specified.

Note that for both of the above
declarations, all necessary attributes are
either stated or implied in the DECLARE
statement. None of the attributes can be
changed in an OPEN statement or in a DD
statement. The second declaration might
have been written:

DECLARE INVNTRY
ENVIRONMENT(F(100) INDEXED);

With such a declaration, INVNTRY can be
opened for different purposes. It could,
for example, be opened as follows:

OPEN FILE (INVNTRY)
UPDATE SEQUENTIAL BUFFERED;

With this OPEN statement, the file
attributes would be the same as those
specified (or implied) in the DECLARE
statement in the second example above (the
number of buffers would have to be stated
in the associated DD statement). The file
might be opened in this way, then closed,
and then later opened with a different set
of attributes, for example:

OPEN FILE (INVNTRY)
INPUT SEQUENTIAL KEYED;

This OPEN statement allows records to be
read with either the KEYTO or the KEYED
option. Because the file is SEQUENTIAL and
the data set is INDEXED, the data set is
INDEXED, the data set may be accessed in a
purely sequential manner; or, by means of a
READ statement with a KEY option, it may be
accessed randomly. A KEY option in a READ
statement with a file of this description
causes a specified record to be obtained.
Subsequent READ statements without a KEY
option access records sequentially,
beginning with the next record.

DECLARE IN KEYED BUFFERED TRANSIENT
ENVIRONMENT (G(50));

This declaration for a teleprocessing file
specifies only four attributes. Implied
attributes are FILE and RECORD (implied by
either KEYED or BUFFERED). The INPUT
attribute would be applied by default. The
data set associated with the file would be
a queue named IN (unless the file is opened
with a TITLE option specifying a different
queue name). Input messages will be
transmitted as complete units; as specified
by the ENVIRONMENT attribute, with a
maximum length of 50 bytes. The queue can
be accessed sequentially by a READ
statement with the KEYTO option.

Chapter 10: Record-Oriented Transmission 149

Chapter 11: Editing and String Handling

The data manipulation performed by the
arithmetic, comparison, and bit-string
operators are extended in PL/I by a variety
of string-handling and editing features.
These features are specified by data
attributes, statement options, built-in
functions, and pseudo-variables.

The following discussions give general
descriptions of each feature, along with
illustrative examples.

Editing by Assignment

The most fundamental form of editing
performed by the assignment statement
involves converting the data type of the
value on the right side of the assignment
symbol to conform to the attributes of the
receiving variable. Because the assigned
value is made to conform to the attributes
of the receiving field, the precision or
length of the assigned value may be
altered. Such alteration can involve the
addition of digits or characters to and the
deletion of digits or characters from the
converted item. The rules for data
conversion are discussed in Chapter 4,
"Expressions and Data Conversion," and in
Part II, Section F, "Problem Data
Conversion and Assignment."

ALTERING THE LENGTH OF STRING DATA

When a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string and also, if
necessary, is truncated or extended on the
right to conform to the declared length of
the receiving string. For example, assume
SUBJECT has the attributes CHARACTER (10),
indicating a fixed-length character string
of ten characters. Consider the following
statement:

SUBJECT = 'TRANSFORMATIONS';

The length of the string on the right is
fifteen characters; therefore, five
characters will be truncated from the right
end of the string when it is assigned to
SUBJECT. This is equivalent to executing:

SUBJECT = 'TRANSFORMA'.

If the assigned string is shorter than
the length declared for the receiving
string variable, the assigned string is
extended on the right either with blanks,
in the case of a character-string variable,
or with zeros, in the case of a bit-string
variable. Assume SUBJECT still has the
attributes CHARACTER (10). Then the
following two statements assign equivalent
values to SUBJECT:

SUBJECT = 'PHYSICS';

SUBJECT = 'PHYSICSbbb';

The letter b indicates a blank character.

Let CODE be a bit-string variable with
the attributes BIT(10). Then the following
two statements assign equivalent values to
CODE:

CODE = '110011'B;

CODE = '1100110000'B;

Note, however, that the following
statements do not assign equivalent values
to SUBJECT if it has the attributes
CHARACTER (10):

SUBJECT = '110011'B;

SUBJECT = '1100110000'B;

When the first statement is executed, the
bit-string constant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT = '110011bbbb';

The second of the two statements
requires only a conversion from bit-string
to character-string type and is equivalent
to:

SUBJECT = '1100110000';

A string value, however, is not extended
with blank characters or zero bits when it
is assigned to a string variable that has
the VARYING attribute. Instead, the length
specification of the receiving string
variable is effectively adjusted to
describe the length of each assigned
string. Truncation will occur, though, if
the length of the assigned string exceeds
the maximum length declared for the
varying-length string variable.

150

For the F Compiler the length, in
characters or bits of a string variable or
intermediate string result is limited to
32,767.

OTHER FORMS OF ASSIGNMENT

In addition to the assignment statement,
PL/I provides other ways of assigning
values to variables. Among these are two
methods that involve input and output
statements: one in which actual input and
output operations are performed, and one in
which data movement is entirely internal.

Input and Output Operations

Although the assignment statement is
concerned with the transmission of data
between storage locations internal to a
computer, input and output operations can
also be treated as related forms of
assignment in which transmission occurs
between the internal and external storage
facilities of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be
performed within internal storage either
before the record is written or after it is
read.

Stream-oriented operations, on the other
hand, do provide a variety of editing
functions that can be applied when data
items are read or written. These editing
functions are similar to those provided by
the assignment statement, except that any
data conversion always involves character
type, conversion from character type on
input, and conversion to character type on
output.

The STRING Option in GET and PUT Statements

The STRING option in GET and PUT statements
allows the statements to be used to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In both
GET and PUT statements, the FILE option,
specified by FILE (file-name), is replaced
by the STRING option, as shown in the
following formats:

GET STRING (character-string-variable)
data-specification;

PUT STRING (character-string-variable)
data-specification;

The GET statement specifies that data items
to be assigned to variables in the data
list are to be obtained from the specified
character string. The PUT statement
specifies that data items of the data list
are to be assigned to the specified
character-string variable. The
"data-specification" is the same as
described for input and output. In
general, it takes one of the following
forms:

DATA [(data-list)]

LIST (data-list)

EDIT (data-list) (format-list)

Although the STRING option can be used
with each of the three modes of
stream-oriented transmission; it is most
useful with edit-directed transmission;
which considers the input stream to be a
continuous string of characters. For
list-directed and data-directed GET
statements; individual items in the
character string must be separated by
commas or blanks; for data-directed GET
statements; the string
must also include the transmission-
terminating semicolon, and each data item
must appear in the form of an assignment
statement. Edit-directed transmission
provides editing facility by means of the
format list.

The STRING option permits data gathering
or scattering operations to be performed
with a single statement, and it allows
stream-oriented processing of character
strings that are transmitted by
record-oriented statements.

Consider the following statement:

PUT STRING (RECORD) EDIT
(NAME; PAY#; HOURS*RATE)
(A(12), A(7); P'$999V.99');

This statement specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12
character positions of the string named
RECORD, and that the character-string value
of PAY# is to be assigned to the next seven
character positions of RECORD. The value
of HOURS is then to be multiplied by the
value of RATE, and the product is to be
edited into the next seven character
positions, according to the picture
specification.

Frequently, it is necessary to read
records of different formats, each of which
gives an indication of its format within

Chapter 11: Editing and String Handling 151

the record by the value of a data item.
The STRING option provides an easy way to
handle such records; for example:

READ FILE (INPUTR) INTO (TEMP):
GET STRING (TEMP) EDIT (CODE) (F(1));
IF CODE 1 = 1 THEN GO TO OTHER_TYPE;
GET STRING (TEMP) EDIT (X,Y,Z)

(X(1), 3 F(10,4));

The READ statement reads a record from the
input file INPUTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to CODE. The code is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items
in the record to X,Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(1) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within internal storage. In the
following example, assume that the file
OUTPRT is eventually to be printed.

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(X(1), A(12), X(10), A(7); X(10),
P'$999V.99');

WRITE FILE (OUTPRT) FROM (RECORD);

The PUT statement specifies, by the X(1)
spacing format item, that the first
character assigned to the character-string
variable is to be a single blank, the ASA
carriage-control code that specifies a
single space before printing. Following
that, the values of the variables NAME and
PAY# and of the expression HOURS*RATE are
assigned. The format list specifies that
ten blank characters are to be inserted
between NAME and PAY# and between PAY# and
the expression value. The WRITE statement
specifies that record transmission is to be
used to write the record into the file
OUTPRT.

THE PICTURE SPECIFICATION

Picture specifications extend the editing
facilities available in PL/I, and provide
the user with greater control over his data
formats. A picture specification consists

of a sequence of character codes enclosed
in quotation marks which is either, part of
the PICTURE attribute, or part of the P
(picture) format-item:

DECLARE PRICE 	PICTURE'$Z9V99';
PUT FILE(SYSPRINT) EDIT

('PART NUMBER', PART#)
(A(12), P'AAA99X');

Picture specifications are of two types:

• numeric character specifications

• character-string picture specifications

A numeric character specification in a
PICTURE attribute indicates that the data
item represents a numeric quantity, but
that it is to be stored as a
character-string and indicates how the
numeric value is to be represented in the
string. A numeric character, specific in a
P format item, indicates how a numeric
value is; or is to be; represented as a
character-string on the external medium.

A character-string picture specification
is an alternative way of describing a
fixed-length character string; with the
additional facility of indicating that any
position in the string, may only contain
characters from certain subsets of the
complete set of characters available on the
IBM System/360 Operating System.

The concepts of the two types of picture
specifications are described separately
below; and a detailed description of each
picture character, together with examples
of its use, appears in Part II; Section D,
"Picture Specification Characters". It is
sufficient here to note that the presence
of an A or X picture character, defines a
picture specification as a character-string
picture specification; otherwise it is a
numeric character specification.

Numeric Character Specifications

A numeric character specification specifies
that the associated data item has a numeric
value, but is to be maintained within the
computer (or, is represented in the
external medium) as a character string. It
also specifies the form the
character-string is to take, and exactly
how the numeric value is represented in the
string. For example:

DCL PRICE PICTURE'$Z9V99';

This specifies that PRICE is to be
represented by a character-string of length
5. The first character is always $, the

152

second will be a blank or non-zero digit,
and the third, fourth and fifth characters
will be digits. The numeric value is the
four characters which can represent digits,
regarded as FIXED DECIMAL (4,2), and is
always positive. 13.25 is represented as
'$1325' and .95 as '$b095'.

The numeric character specification has
two major uses:

• For data items which will be concerned
with input/output operations, but they
may be used anywhere in a program where
numeric data can occur. However, on
IBM System/360 Operating System, most
numeric operations on pictured data are
considerably less efficient than the
same operations on coded numeric data.

• The second use stems from the fact that
a pictured data item effectively has
two values. When the item is used in a
numeric context, the numeric value is
obtained from or stored into the
character-string, by the conversion
process defined by the picture
specification; when the item is used in
a character context the actual
character-string which represents the
value is used. For example:

DCL COUNT PICTURE'999' INITIAL(0),
STRING CHAR (3);

COUNT = COUNT +1;
STRING = COUNT;

The initial representation of COUNT is
'000'. In the first assignment
statement this is converted to FIXED
DECIMAL (3,0), the addition is
performed, and the result is converted
back to the pictured form '001'. In
the second assignment statement the
value of string is set to '001'.

Note particularly that "character
context" includes defining. A numeric
character data-item may be defined on a
character-string and vice versa.

When a character-string value is
assigned to a numeric character
data-item (whether by direct
assignment, or as the result of
stream-oriented I/O), the value is
checked for consistency with the
picture specification, and the
CONVERSION condition is raised if it is
inconsistent. For example:

COUNT = STRING;

The CONVERSION condition will be raised
unless each character of STRING is a
digit.

The '9' Picture Character in Numeric
Character Specifications

The picture character '9' is the simplest
form of numeric character specification. A
string of n, '9' picture characters
specifies that the item is to be
represented by a fixed-length
character-string of length n, each
character of which is a digit (zero through
nine). The numeric value is the value of
the digits as an unsigned decimal number
(i.e., FIXED DECIMAL (n,0). For example:

DCL DIGIT PICTURE'9'
COUNT PICTURE'999',
XYZ PICTURE '(10)9';

The last example shows an alternative way
of writing the picture specification '9'
ten times.

Example of use:

DCL 1 CARD-IMAGE,
2 DATA CHAR(72),
2 IDENTIFICATION CHAR(3),
2 SEQUENCE PIC'99999';

SEQUENCE = SEQUENCE + 1;
WRITE FILE(OUTPUT) FROM(CARD-IMAGE);

(Note that the definition of '9' in a
character-string picture is different in
that the corresponding character can be
blank or a digit.)

The Z * Picture Characters

It is often preferable to replace leading
zeros in numbers by blanks. In pictures
this is accomplished by using the Z picture
specification character. A picture
specification containing only Z's and 9's
has one or more Z's optionally followed by
one or more 9's. The representation of
numeric data is as for the '9' picture
specification except that if the digit to
be held would otherwise be zero and if all
digit positions to the left would also be
zero, then the character-string will
contain a blank in this position. For
example:

DCL PAGE-NUMBER PICTURE'ZZ9';

The value 197 is held as '197', 69 as
'b69', 5 as 'bb5' and zero as 'bb0'. With
a picture specification of all Z's the
value zero is held as an all-blank string.

Chapter 11: Editing and String Handling 153

The asterisk picture specification
character has the same effect as the 'Z'
character except that an '*' is held in the
string instead of a blank. This can be
used, for example, when printing cheques,
when it is desired not be leave blank
spaces within fields. For example:

DCL CREDIT PICTURE '$**9.99';

(The $ and . characters are described
below.) A value of 95 is held as
' $**0.95 ' ; a value of 12350 is held as
'$123.50'.

The V Picture Character

Up to now numeric character specifications
have only represented non-negative integer
values. The V picture specification
character indicates the position of an
assumed decimal point within the
character-string. For example:

DCL VALUE PICTURE 'Z9V999';

The string '12345' represents the numeric
value 12.345. Note that the V character in
the picture specification does not specify
a character position in the
character-string representation. In
particular, on assignment to the data item
a decimal point is not included in the
character string.

The Insertion Picture Characters: B . , /

A decimal point picture character(.) can
appear in a numeric picture specification.
It merely indicates that a point is to be
included in the character representation of
the value. Therefore, the decimal point is
a part of its character-string value. The
decimal point picture character does not
cause decimal point alignment during
assignment; it is not a part of the
variable's arithmetic value. Only the
character V causes alignment of decimal
points. For example:

DECLARE SUM PICTURE '999V.99';

SUM is a numeric character variable
representing numbers of five digits with a
decimal point assumed between the third and
fourth digits. The actual point specified
by the decimal point insertion character is
not a part of the arithmetic value; it is,
however, part of its character-string
value. (The decimal point picture
character can appear on either side of the
character V. See Part II, Section D,

"Picture Specification Characters.") The
following two statements assign the same
character string to SUM:

SUM = 123;

SUM = 123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the following
declaration:

DECLARE RATE PICTURE '9V99.99';

Let RATE be used as follows:

RATE = 7.62;

When this statement is executed, decimal
point alignment occurs on the character V
and not on the decimal point picture
character that appears in the picture
specification for RATE. If RATE were
printed, it would appear as '762.00', but
its arithmetic value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification; the
decimal point picture character can appear
more than once; this allows digit groups
within the numeric character data item to
be separated by points, as is common in
Dewey decimal notation and in the numeric
notations of some European countries.

Because a decimal point picture
character causes a period character to be
inserted into the character-string value of
a numeric character data item, it is called
an insertion character. PL/I provides
three other insertion characters: comma
(,), slash(/), and blank(B), which are used
in the same way as the decimal point
picture character except that a comma,
slash, or blank is inserted into the
character string. Consider the following
statements:

DECLARE RESULT PICTURE '9.999.999,V99';

RESULT = 1234567;

The character-string value of RESULT would
be '1.234.567,00'. Note that decimal point
alignment occurs before the two rightmost
digit positions, as specified by the
character V. If RESULT were assigned to a
coded arithmetic field, the value of the
data converted to arithmetic would be
1234567.00.

154

The $ Picture Character

The ($) picture character controls the
appearance of the currency symbol ($) in
specified positions of numeric character
data items. For example, a dollar sign can
be appended to the left of a numeric
character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '$99V.99';

PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
'$12.45'. Its arithmetic value, however,
is 12.45.

The picture specification can also
specify floating-point and British sterling
formats, as well as scaling factors for
fixed-point values. These formats are
discussed in Part II, Section D, "Picture
Specification Characters."

of indicating signs in numeric data held on
punched cards, by superimposing a 12-punch
(to represent +) or an 11-punch (to
represent -) on top of a column containing
a digit (usually the last one in a field).
The resulting card-code is, in most cases,
the same as that for an alphabetic
character, e.g., 12-punch superimposed on 0
through 9 gives A through I, 11-punch
superimposed on 0 through 9 gives J through
R. The 12-0 and 11-0 combinations are not
characters in the PL/I set but are within
the set of characters accepted by the IBM
System/360 Operating System implementations
for character data.

The T picture specification character
specifies a character in the
character-string representation which will
hold a digit and sign, in the
representation described above, i.e., 12-0
or A through I for positive or zero, 11-0
or J through R for negative. It can appear
anywhere a '9' picture specification
character could have occurred. For
example:

DCL CREDIT PICTURE 'ZZV9T';
Sign Specification in Numeric Character
Specifications

There are several ways in which signed
information may be held in a numeric
character data item. The simplest of these
is the S character specification. This
specifies a character in the
character-string representation which
contains '+' if the value is positive or
zero, and '-' if the value is negative. It
must occur either to the right or to the
left of all digit positions. For example:

DCL ROOT PICTURE 'S999';

50 is held as '+505', zero as '+000' and
-243 as '-243'. Similarly the '+' picture
character specifies a corresponding
character position containing '+' for
positive or zero, and blank for negative
values; the '-' picture character specifies
a corresponding character position
containing blank for positive or zero, and
'-' for negative values.

Overpunched Sign Specification Characters,
T I R

An alternative way of representing signed
values, which does not require an
additional character in the string, is by
an overpunched sign specification. This
representation has arisen from the custom

The character-string representation of
CREDIT is 4 characters. +21.05 is held as
'210E'. -0.07 is held as 'bb0P'.

The 'I' picture specification character
specifies a character position which holds
the representation of a digit overpunched
with a 12-punch if the value is positive or
zero; but just a digit if the value is
negative.

The 'R' picture specification character
specifies a character position which holds
the representation of a digit overpunched
with an 11-punch if the value is negative,
but just a digit if the value is positive.
For example:

GET EDIT (X) (P'R99');

will set X to (+)132 on finding '132' in
the next 3 positions of the input stream,
but -132 on finding 'J32'.

Other Numeric Character Facilities

Further details of usage of the above
picture specification characters, together
with details of picture specification
characters for floating signs and currency
symbols, floating point values, and
sterling values, appear in Part II, Section
D, "Picture Specification Characters".

Chapter 11: Editing and String Handling 155

The full list of numeric character
specification characters is
9,V,Z,*,Y,(.),(,),1,B,S,+,-,$,CR,DB,T,I,R,K
,E,F,8,7,6,P,G,H,M, of which all except
K,V,F,G,M specify the occurrence of a
character in the character-string
representation.

BIT-STRING HANDLING

The following examples illustrate some of
the facilities of PL/I that can be used in
bit-string manipulations.

Character-string Picture Specifications

A character-string picture specification is
an alternative way of describing a
fixed-length character string, with the
additional facility of indicating that any
position in the string, may only contain
characters from certain subsets of the
complete set of characters available on the
IBM System/360 Operating System.

A character-string picture specification
is recognised by the occurrence of an A or
X picture specification character. The
only valid characters in a character-string
picture specification are A, X and 9. Each
of these specifies the presence of one
character position in the character which
can contain the following:

'X' any character recognised by the
particular implementation (for the
IBM System/360 Operating System,
all 256 possible bit combinations
represented by the 8-bit byte).

'A' any alphabetic character, or blank.

'9' any digit, or blank. Note the
difference from the '9' picture
specification character in numeric
character specifications.

When a character-string value is assigned,
or transferred, to a pictured
character-string data item, the particular
character in each position is checked for
validity, as specified by the corresponding
picture specification character, and the
CONVERSION condition is raised for an
invalid character. For example:

DECLARE PART# PICTURE 'AAA99X';

The following values are valid for
assignment to PART#.

'ABC12M'
'bbb09/'
'XYZb13'

The following values are not (the invalid
characters are underscored);

'AB123M'
'ABC1/2'
'Mb#A5;'

DECLARE 1 PERSONNEL_RECORD,
2 NAME,

3 LAST CHARACTER(15),
3 FIRST CHARACTER(10),
3 MIDDLE CHARACTER(1),

2 CODE_STRING,
3 MALE BIT(1),
3 SECRETARIAL BIT(1),
3 AGE,

4 (UNDER_20,
TWENTY _TO_30,
OVER_30) BIT(1),

3 HEIGHT,
4 (OVER_6,

FIVE_SIX_TO_6,
UNDER_5_6) BIT(1),

3 WEIGHT,
4 (OVER_180,

ONE_TEN_TO_180,
UNDER_110) BIT(1),

3 EYES,
4 (BLUE,

BROWN,
HAZEL,
GREY,
OTHER) BIT(1),

3 HAIR,
4 (BROWN,

BLACK,
BLOND,
RED,
GREY,
BALD) BIT(1),

3 EDUCATION,
4 (COLLEGE,

HIGH_SCHOOL,
GRAMMAR_SCHOOL) BIT(1);

This structure contains NAME, a minor
structure of character-strings, and
CODE_STRING, a minor structure of
bit-strings. By default, the elements of
PERSONNEL-RECORD have the UNALIGNED
attribute. Consequently, CODE_STRING is
mapped with eight elements per byte, that
is, in the same way as a bit-string of
length 25.

Each of the first two bits of the string
represents only two alternatives: MALE or
¬MALE and SECRETARIAL or ¬SECRETARIAL. The
other categories (at level 3) list several
alternatives each. (Note that the level
number 4 and the attributes BIT(1) are
factored for each category.]

156

The following portion of a program might
be used with PERSONNEL RECORD:

INREC: READ FILE(PERSONNEL)
INTO (PERSONNEL_RECORD);

IF (,MALE & SECRETARIAL
& UNDER_20
& UNDER_5_6
& UNDER_110
& BLUE
& (HAIR.BROWN|BLOND)
& HIGH SCHOOL)

|

 (MALE & SECRETARIAL
& OVER_30
& OVER_6
& OVER_180
& EYES.GREY
& BALD
& COLLEGE)

THEN PUT LIST (NAME);

GO TO INREC;

Another way to program the same
information retrieval operation, as shown
in the following coding, would result in
considerably shorter execution time:

DECLARE PERS_STRING BIT(25) DEFINED
CODE STRING;

IF PERS_STRING
= '0110000100110000100000010'B
THEN GO TO OUTP;

IF PERS_STRING
= '0110000100110000001000010'B
THEN GO TO OUTP;

IF PERS_STRING
= '1000110010000010000001100'B
THEN GO TO OUTP;

GO TO INREC;

OUTP: PUT LIST (NAME);

GO TO INREC;

In this example, the bit string PERS_STRING
is defined on the minor structure
CODE_STRING. Bit-string constants are
constructed to represent the values of the
information being sought. The bit string
then is compared, in turn, with each of the
bit-string constants. Note that the first
and second constants are identical except
that the first tests for brown hair and the
second tests for blond hair. These two
variations are specified in the first
example by (HAIR.BROWN|BLOND).

Note that the second method of testing
PERSONNEL_RECORD could not be used if the
structure were ALIGNED (the base identifier
for overlay defining must be UNALIGNED).

The first method, if it were used, would be
more efficient with an ALIGNED structure.

The tests might also be made with a
series of IF statements, either nested or
unnested, in which each bit would be tested
with a single IF statement. It would
require a greater amount of coding, but it
would be faster at execution time than an
IF statement containing many bit-string
operators.

CHARACTER-STRING AND BIT-STRING BUILT-IN
FUNCTIONS

PL/I provides a number of built-in
functions, some of which also can be used
as pseudo-variables, to add power to the
string-handling facilities of the language.
Following are brief descriptions of these
functions (more detailed descriptions
appear in Part II, Section G, "Built-In
Functions and Pseudo-Variables"):

The BIT built-in function specifies that
a data item is to be converted to a bit
string. The built-in function allows a
programmer to specify the length of the
converted string, overriding the length
that would result from the standard rules
of data conversion.

The CHAR built-in function is exactly
the same as the BIT built-in function,
except that the conversion is to a
character string of a specified length.

The SUBSTR built-in function, which can
also serve as a pseudo-variable in a
receiving field, allows a specific
substring to be extracted from (or assigned
to, in the case of a pseudo-variable) a
specified string value.

The INDEX built-in function allows a
string, either a character string or a bit
string, to be searched for the first
occurrence of a specified substring, which
can be a single character or bit. The
value returned is the location of the first
character or bit of the substring, relative
to the beginning of the string. The value
is expressed as a binary integer. If the
substring does not occur in the specified
string, the value returned is zero.

The LENGTH built-in function gives the
current length of a character string or bit
string. It is particularly useful with
strings that have the VARYING attribute.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For

Chapter 11: Editing and String Handling 157

System/360 implementations, the character
is hexadecimal FF.

The LOW built-in function provides a
string of a specified length that consists
of repeated occurrences of the lowest
character in the collating sequence. For
System/360 implementations, the character
is hexadecimal 00.

The REPEAT built-in function permits a
string to be formed from repeated
occurrences of a specified substring. It
is used to create string patterns.

The STRING built-in function, which can
also be used as a pseudo-variable,
concatenates all the elements in an
aggregate variable variable into a single
string element.

The BOOL built-in function allows up to
16 different Boolean operations to be
applied to two specified bit strings.

The UNSPEC built-in function, which can
also be used as a pseudo-variable,
specifies that the internal coded
representation of a value is to be regarded
as a bit string with no conversion.

The TRANSLATE built-in function
translates a specified string according to
a translation table defined by two other
strings.

The VERIFY built-in function verifies
that each character or bit in a given
source string is represented in a given
verification string; in other words, it
tests the validity of each character or bit
according to user-specified criteria.

158

Chapter 12: Subroutines and Functions

Arguments and Parameters

Data can be made known in an invoked
procedure by extending the scope of the
names identifying that data to include the
invoked procedure. This extension of scope
is accomplished by nesting procedures or by
specifying the EXTERNAL attribute for the
names.

There is yet another way in which data
can be made known in an invoked procedure,
and that is to specify the names as
arguments in a list in the invoking
statement. Each argument in the list is an
expression, a file name, a statement label
constant or variable, or an entry name that
is to be passed to the invoked procedure.

Since arguments are passed to it, the
invoked procedure must have some way of
accepting them. This is done by the
explicit declaration of one or more
parameters in a list in the PROCEDURE or
ENTRY statement that is the entry point at
which the procedure is invoked. A
parameter is a name used within the invoked
procedure to represent another name (or
expression) that is passed to the procedure
as an argument. Each parameter in the
parameter list of the invoked procedure has
a corresponding argument in the argument
list of the invoking statement. This
correspondence is taken from left-to-right;
the first argument corresponds to the first
parameter, the second argument corresponds
to the second parameter, and so forth. In
general, any reference to a parameter
within the invoked procedure is treated as
a reference to the corresponding argument.
The number of arguments and parameters must
be the same. The maximum number of
parameters permitted at any entry point is
64.

The example below illustrates how
parameters and arguments may be used:

In procedure PRMAIN, NAME is declared as
a character string, and ITEM as a bit
string. The CALL statement in PRMAIN
invokes the procedure called OUTSUB, and
the parenthesized list included in this
procedure reference contains the two
arguments being passed to OUTSUB. The
PROCEDURE statement defining OUTSUB
declares two parameters, A and B. When
OUTSUB is invoked, NAME is associated with
A and ITEM is associated with B. Each
reference to A in OUTSUB is treated as a
reference to NAME and each reference to B
is treated as a reference to ITEM.
Therefore, the PUT LIST (A,B) statement
causes the values of NAME and ITEM to be
written into the standard system output
file, SYSPRINT.

Note that the passing of arguments
usually involves the passing of names and
not merely the values represented by these
names. (In general, the name that is
passed is usually the address of the value
or an address that can be used to retrieve
the value.) As a result, storage allocated
for a variable before it is passed as an
argument is not duplicated when the
procedure is invoked. Any change of value
specified for a parameter actually is a
change in the value of the argument. Such
changes are in effect when control is
returned to the invoking block.

A parameter can be thought of as
indirectly representing the value that is
directly represented by an argument. Thus,
since both the argument and the parameter
represent the same value, the attributes of
a parameter and its corresponding argument
must agree. For example, an obvious error
exists if a parameter has the attribute
FILE and its corresponding argument has the
attribute FLOAT. However, there are cases
in which such an error may not be so
obvious, for example, when an argument is a
constant. Certain inconsistencies between
the attributes of an argument and its
associated parameter can be resolved by
specifying, in an invoking procedure, the

Chapter 12: Subroutines and Functions 159

ENTRY attribute for an entry name to be
invoked. The ENTRY attribute specification
provides the facility to specify that the
compiler is to generate coding to convert
one or more arguments to conform with the
attributes of the associated parameters.
This topic is discussed later in this
chapter in the sections "The ENTRY
Attribute" and "Dummy Arguments."

A name is explicitly declared to be a
parameter by its appearance in the
parameter list of a PROCEDURE or ENTRY
statement. However, its attributes, unless
defaults apply, must be explicitly stated
within that procedure in a DECLARE
statement.

Parameters, therefore, provide the means
for generalizing procedures so that data
whose names may not be known within such
procedures can, nevertheless, be operated
upon. There are two types of generalized
procedures that can be written in PL/I:
subroutine procedures (called simply,
subroutines) and function procedures
(functions).

Subroutines

(The discussion in this section applies to
synchronous operation and does not
completely cover asynchronous operation,
although the rules apply generally to all
subroutines, whether or not the CALL
statement contains one of the multitasking
options. Multitasking is discussed in
Chapter 15, "Multitasking.")

A subroutine is a procedure that usually
requires arguments to be passed to it in an
invoking CALL statement. It can be either
an external or internal procedure. A
reference to such a procedure is known as a
subroutine reference. The general format
of a subroutine reference is as follows:

CALL entry-name [(argument[,argument]...)];

Note that a subroutine can also be invoked
through the CALL option of an INITIAL
attribute specification.

Whenever a subroutine is invoked, the
arguments of the invoking statement are
associated with the parameters of the entry
point, and control is then passed to that
entry point. The subroutine is thus
activated, and execution begins.

Upon termination of a subroutine,
control normally is returned to the
invoking block. A subroutine can be
terminated normally in any of the following
ways:

1. Control reaches the final END
statement of the subroutine.
Execution of this statement causes
control to be returned to the first
executable statement logically
following the statement that
originally invoked the subroutine.
There is an exception, however: return
of control from a subroutine invoked
by the CALL option is to the statement
containing the CALL option at the
point immediately following that
option. Either of these is considered
to be a normal return.

2. Control reaches a RETURN statement in
the subroutine. This causes the same
normal return caused by the END
statement.

3. Control reaches a GO TO statement that
transfers control out of the
subroutine. (This is not permitted if
the subroutine is invoked by the CALL
option.) The GO TO statement may
specify a label in a containing block
(the label must be known within the
subroutine), or it may specify a
parameter that has been associated
with a label argument passed to the
subroutine. Although this is
considered to be normal termination of
the subroutine, it is not normal
return of control, as effected by an
END or RETURN statement.

With synchronous operation, a STOP or
EXIT statement encountered in a subroutine
abnormally terminates execution of that
subroutine and of the entire program
associated with the procedure that invoked
it.

The following example illustrates how a
subroutine interacts with the procedure
that invokes it:

A: PROCEDURE;
DECLARE RATE FLOAT (10), TIME FLOAT(5),

DISTANCE FLOAT(15), MASTER FILE;

CALL READCM (RATE, TIME, DISTANCE,
MASTER);

END A;

160

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

Functions

A function is a procedure that usually
requires arguments to be passed to it when
it is invoked. It cannot be executed
asynchronously with the invoking procedure.
Unlike a subroutine, which is invoked by a
CALL statement or CALL option, a function
is invoked by the appearance of the
function name (and associated arguments) in
an expression. Such an appearance is
called a function reference. Like a
subroutine, a function can operate upon the
arguments passed to it and upon other known
data. But unlike a subroutine, a function
is written to compute a single value which
is returned, with control, to the point of
invocation, the function reference. This
single value can be of arithmetic, string
(including picture data), locator, or area

type. The maximum number of different data
types or precisions returned by one
function may not exceed 256. An example of
a function reference is contained in the
following procedure:

In the above procedure, the assignment
statement

X = Y**3+SPROD(A,B,C);

contains a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are
applied to each argument and parameter.
(The default precision is that defined for
System/360 implementations.) Hence, the
attributes are consistent, and the
association of the arguments with the
parameters produces no error.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed; otherwise, the statement
associated with the ELSE clause is
executed. In either case, the executed
statement is a RETURN statement.

The RETURN statement is the usual way by
which a function is terminated and control
is returned to the invoking procedure. Its
use in a function differs somewhat from its
use in a subroutine; in a function, not
only does it return control but it also
returns a value to the point of invocation.
The general form of the RETURN statement,
when it is used in a function, is as
follows:

RETURN (element-expression);

The expression must be present and must
represent a single value; i.e., it cannot
be an array or structure expression. It is
this value that is returned to the invoking
procedure at the point of invocation.
Thus, for the above example, SPROD returns
either 0 or the value represented by U*V*W,
along with control to the invoking
expression in MAINP. The returned value
then effectively replaces the function
reference, and evaluation of the invoking
expression continues.

Chapter 12: Subroutines and Functions 161

A function can also be terminated by
execution of a GO TO statement. If this
method is used, evaluation of the
expression that invoked the function will
not be completed, and control will go to
the designated statement. As in a
subroutine, the transfer point specified in
a GO TO statement may be a parameter that
has been associated with a label argument.
For example, assume that MAINP and SPROD
have been defined as follows:

MAINP: PROCEDURE;

GET LIST (A,B,C,Y);
X = Y**3+SPROD(A,B,C,LAB1);

LAB1: CALL ERRT;

END MAINP;

SPROD: PROCEDURE (U,V,W,Z);
DECLARE Z LABEL;

IF • U > V + W
THEN CO TO Z;
ELSE RETURN (U*V*W);

END SPROD;

In MAINP, LAB1 is explicitly declared to
be a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LAB1 is
associated with parameter Z. Since the
attributes of Z must agree with those of
LAB1, Z is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. If U is
greater than V + W, the THEN clause is
executed, control returns to MAINP at the
statement labeled LAB1, and evaluation of
the expression that invoked SPROD is
discontinued. If U is not greater than V +
W, the ELSE clause is executed and a return
to MAINE is made in the normal fashion.
Additional information about the use of
label arguments and label parameters is
contained in the section "Relationship of
Arguments and Parameters" in this chapter.

Note: In some instances, a function may be
so defined that it does not require
arguments. In such cases, the appearance
of the function name within an expression
will be recognized as a function reference
only if the function name has been
explicitly or contextually declared to be

an entry name. See "The ENTRY Attribute"
in this chapter for additional information.

Attributes of Returned Values

The attributes of the value returned by a
function may be declared in two ways:

1. They may be declared by default
according to the first letter of the
function name.

2. They may be explicitly declared in the
RETURNS option of the PROCEDURE (or
ENTRY) statement for the function.

Note that the value of the expression in
the RETURN statement is converted within
the function, whenever necessary, to
conform to the attributes specified by one
of the two methods above.

In the previous examples of MAINP and
SPROD, the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. Thus, these attributes
must be determined from the first letter of
its name; S. The attributes of the
returned value are therefore FLOAT and
DECIMAL. Since these are the attributes
that the returned value is expected to
have; no conflict exists.

Note: Unless the invoking procedure
provides the compiler with information to
the contrary; the attributes assumed for
the value returned by a function to the
invoking procedure are always determined
from the first letter of the function name.

The RETURNS Option: The way in which
attributes can be declared for the returned
value in the PROCEDURE or ENTRY statement
is illustrated in the following example.
Assume that the PROCEDURE statement for
SPROD has been specified as follows:

I SPROD: PROCEDURE (U,V,W,Z) RETURNS(FIXED
BINARY);

With this declaration, the value returned
by SPROD will have the attributes FIXED and
BINARY. However, since these attributes
differ from those that would be determined
from the first letter of the function name,
this difference must be stated in the
invoking procedure to avoid a possible
error. The PL/I programmer communicates
this information to the compiler with the
'RETURNS attribute specified in a DECLARE
statement in the invoking procedure.

The RETURNS Attribute: The RETURNS
attribute is specified in a DECLARE
statement for an entry name. It specifies

162

the attributes of the value returned by
that function. It further specifies, by
implication, the ENTRY attribute for the
name; consequently, it is an entry name
attribute specification. Unless default
attributes for the entry name apply, any
invocation of a function must appear within
the scope of a RETURNS attribute
declaration for the entry name. For an
internal function, the RETURNS attribute
can be specified only in a DECLARE
statement that is internal to the same
block as the function procedure.

The general format of the RETURNS
attribute is:

RFTURNS (attribute-list)

Built-In Functions

Similar to function procedures that a
programmer can define for himself is a
comprehensive set of pre-defined functions
called built-in functions.

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also other necessary or useful
functions related to language facilities,
such as functions for manipulating strings
and arrays.

A RETURNS attribute specifies that within
the invoking procedure the value returned
from the named entry point is to be treated
as though it had the attributes given in
the attribute list. The word treated is
used because no conversion is performed in
an invoking block upon any value returned
to it. Therefore, if the attributes of the
returned value do not agree with those in
the attribute list of the RETURNS
attribute, an error will probably result.

In order to specify to the compiler that
coding for MAINP is to handle the FIXED
BINARY value being returned by SPROD, the
following declaration must be given within
MAINP:

DECLARE SPROD RETURNS (FIXED BINARY);

It is important to note some of the
things that are implied in the above
discussion. Principally, it should be
remembered that during compilation of the
invoking block, there is no way for the
compiler to check a function procedure to
determine the attributes of the value it
returns. In the absence of explicit
information in a RETURNS attribute
specification, the compiler can only assume
that the attributes will be consistent with
the attributes implied by the first letter
of the function name. This is true even if
the function procedure is contained in the
invoking procedure. If the returned value
does not have the attributes that the
invoking procedure is prepared to receive,
no conversion can be performed. The
RETURNS attribute must be declared for a
function that returns any value with
attributes not consistent with default
attributes for the function name.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in
functions can return array or structure
values, whereas a programmer-defined
function can return only an element value.

Note: Some built-in functions may actually
be compiled as in-line code rather than as
procedure invocations. All are referred to
in a PL/I source program, however, by
function references, whether or not they
result in an actual procedure invocation.

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for any
built-in function name. The use of the
name in a function reference is recognized
without need for any further
identification; attributes of values
returned by built-in functions are known by
the compiler.

But since built-in function names are
PL/I keywords, they are not reserved; the
same identifiers can be used as
programmer-defined names. Consequently,
ambiguity might occur if a built-in
function reference were to be used in a
block that is contained in another block in
which the same identifier is declared for
some other purpose. To avoid this
ambiguity, the BUILTIN attribute can be
declared for a built-in function name in
any block that has inherited, from a
containing block, some other declaration of
the identifier. Consider the following
example.

Chapter 12: Subroutines and Functions 163

Assume that in external procedure A,
SQRT is neither explicitly nor contextually
declared for some other use. Consequently,
any reference to SQRT would refer to the
built-in function of that name. In B,
however, SORT is declared to be a
floating-point binary variable, and it
cannot be used in any other way. Finally,
in C, SQRT is declared with the BUILTIN
attribute so that any reference to SQRT
will be recognized as a reference to the
built-in function and not to the
floating-point binary variable declared in
B.

Note that a variable having the same
identifier as a built-in function can be
contextually declared by its appearance on
the left-hand side of an assignment symbol
(in an assignment statement, a DO
statement, or a repetitive specification)
or in the data list of a GET statement,
provided that it is neither enclosed within
nor immediately followed by an argument
list. (This does not apply to the names
ONCHAR, ONSOURCE, and PRIORITY which are
pseudo-variables that do not require
arguments.) For example, if the statement
SQRT = 1 had appeared in procedure B
instead of the explicit declaration, SQRT
would have been contextually declared as a
floating-point decimal variable.

A programmer can even use a built-in
function name as the entry name of a
programmer-written function and, in the
same program, use both the built-in
function and the programmer-written
function. This can be accomplished by use
of the BUILTIN attribute and the ENTRY
attribute. (The ENTRY attribute, which is
used in a DECLARE statement to specify that
the associated identifier is an entry name,

is discussed in a later section of this
chapter.)

The following example illustrates use of
the ENTRY attribute in conjunction with the
BUILTIN attribute.

The use of SQRT as the label of the
first PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. Since, in this case, SQRT is not the
built-in function, the entry name must be
explicitly declared in A (and the RETURNS
attribute is specified because the
attributes of the returned value are not
apparent in the function name). The
function reference in the assignment
statement in A thus refers to the
programmer-written SQRT function. In the
begin block, the identifier SQRT is
declared with the BUILTIN attribute.
Consequently, the function reference in the
assignment statement in B refers to the
built-in SQRT function.

If a programmer-written function using
the name of a built-in function is
external, any procedure containing a
reference to that function name must also
contain an entry declaration of that name;
otherwise a reference to the identifier
would be a reference to the built-in
function. In the above example, if the
PROCEDURE B were not contained in A, there
would be no need to specify the BUILTIN

164

attribute; so long as the identifier SQRT
is not known as some other name, the
identifier would refer to the built-in
function.

If a programmer-written function using
the name of a built-in function is
internal, any reference to the identifier
in the containing block would be a
reference to the programmer-written
function, provided that its name is known
in the block in which the reference is
made. No entry name attributes would have
to be specified if attributes to the
returned value could be inferred from the
entry name.

Relationship of Arguments and Parameters

When a function or subroutine is invoked, a
relationship is established between the
arguments of the invoking statement or
expression and the parameters of the
invoked entry point. This relationship is
dependent upon whether or not dummy
arguments are created.

DUMMY ARGUMENTS

In the introductory discussion of arguments
and parameters, it is pointed out that the
name of an argument, not its value, is
passed to a subroutine or function.
However, there are times when an argument
has no name. A constant, for example, has
no name; nor does an operational
expression. But the mechanism that
associates arguments with parameters cannot
handle such values directly. Therefore,
the compiler must provide storage for such
values and assign an internal name for
each. These internal names are called
dummy arguments. They are not accessible
to the PL/I programmer, but he should be
aware of their existence because any change
to a parameter will be reflected only in
the value of the dummy argument and not in
the value of the original argument from
which it was constructed.

A dummy argument is always created for
any of the following cases:

1. If an argument is a constant (see
note, below)

2. If an argument is an expression
involving operators

3. If an argument is an expression in
parentheses

4. If an argument is a variable whose
data attributes are different from the
data attributes declared for the
parameter in an entry name attribute
specification appearing in the
invoking block

5. If an argument is itself a function
reference containing arguments

6. If, for the F Compiler, an argument is
a controlled array or string
associated with a simple parameter,
unless the asterisk notation is used.

In all other cases, the argument name is
passed directly. The parameter becomes
identical with the passed argument; thus,
changes to the value of a parameter will be
reflected in the value of the original
argument only if a dummy argument is not
passed.

A task variable cannot be passed as an
argument if this would cause a dummy
argument to be created.

Note: When a dummy argument is created for
an argument that is a constant, the
attributes of the dummy argument will be
those indicated by the constant. For
example, if SUB is a subroutine that
expects to be passed a fixed binary
argument, the statement

CALL SUB(2);

will lead to error, since the dummy
argument will be fixed decimal. This can
be avoided either by assigning the value 2
to a fixed binary variable and passing the
variable name, e.g.,

I=2;
CALL SUB(I);

or by using the ENTRY attribute.

THE ENTRY ATTRIBUTE

There is no way during compilation of a
subroutine or function that the compiler
can know the attributes of arguments that
will be passed to a parameter. The
compiler must assume that the attributes of
each argument will agree with the
attributes of its associated parameter.
Wherever there is disagreement, the program
must provide, in the invoking procedure, an
ENTRY attribute declaration for the entry
name of the subroutine or function being
invoked. The general form of the ENTRY
attribute is as follows:

ENTRY [(parameter-attribute-list
[,parameter-attribute-list]...)]

Chapter 12: Subroutines and Functions 165

Note that the above format allows the
keyword ENTRY to be specified without
accompanying parameter attribute lists, as
it might be used to identify a function
entry name that does not require arguments.

Each parameter attribute list in the
ENTRY attribute specification corresponds
to one parameter of the subroutine or
function involved and specifies the
attributes of that parameter. In general,
if the attributes of an argument do not
agree with those of its corresponding
parameter (as specified in a parameter
attribute list), a dummy argument is
constructed for that argument if conversion
is possible. The dummy argument contains
the value of the original argument
converted to conform with the attributes of
the corresponding parameter. Thus, when
the subroutine or function is invoked, it
is the dummy argument that is passed to it.

If an ENTRY attribute with parameter
attribute lists is not used, the compiler
assumes that the arguments are compatible
and acts according to the default
attributes of the parameters. If the
argument attributes do not agree with the
attributes of the corresponding parameter,
no conversion occurs, and an error probably
results. For example, if a fixed decimal
argument, which should be byte aligned, is
passed to a procedure which expects a fixed
binary argument, then a specification
interrupt probably occurs when the argument
is treated as fullword binary.

When the above form of the ENTRY
attribute is used, each parameter of the
subroutine or function must be accounted
for. If there is no need to specify the
attributes of a particular parameter, its
place must be kept by a comma. For
example, the statement:

DECLARE SUBR ENTRY (FIXED „FLOAT);

specifies that SUBR is an entry name that
has three parameters: the first and third
have the attributes FIXED and FLOAT,
respectively, while the attributes of the
second are presumably the same as those of
the argument being passed. Since the
attributes of the second parameter are not
stated, no assumptions are made and no
conversions are performed.

As mentioned earlier, the ENTRY
attribute may be specified without
parameter attribute lists. It is used in
this way to indicate that the associated
identifier is an entry name. Such an
indication is necessary if an identifier is
not otherwise recognizable as an entry
name, that is, if it is not explicitly or
contextually declared to be an entry name
in one of the following ways:

1. By its appearance as a label of a
PROCEDURE or ENTRY statement
(explicit)

2. By its appearance immediately
following the keyword CALL
(contextual)

3. By its appearance as the function name
in a function reference that contains
an argument list (contextual)

Therefore, if a reference is made to an
entry name in a block in which it does not
appear in one of these three ways, the
identifier must be given the ENTRY
attribute explicitly, or by implication
(see "Note" below), in a DECLARE statement
within the block. For example, assume that
the following has been specified:

Assume also that A is an external
procedure and RANDOM is an external
function that requires no arguments and
returns a random number. As the procedure
is shown above, RANDOM is not recognizable
within A as an entry name, and the result
of the PUT statement therefore is
undefined. In order for RANDOM to be
recognized within A as an entry name, it
must be declared to have the ENTRY
attribute. For example:

Now, RANDOM is recognized as an entry
name, and the appearance of RANDOM in the
PUT statement cannot be interpreted as
anything but a function reference.
Therefore, the PUT statement results in the
output transmission of the random number
returned by RANDOM.

Note: The ENTRY attribute is implied -- and
therefore need not be stated explicitly --
for an identifier that is declared in a
DECLARE statement to have the RETURNS
attribute.

166

Entry Names as Arguments

When an entry name is specified as an
argument of a function or subroutine
reference, one of the following applies:

1. If the entry name argument, call it M,
is specified with an argument list of
its own, it is recognized as a
function reference; M is invoked, and
the value returned by M effectively
replaces M and its argument list in
the containing argument list.

2. If the entry name argument appears
without an argument list, but within
an operational expression or within
parentheses, then it is taken to be a
function reference with no arguments.
For example:

CALL A((B));

This passes, as the argument to
procedure A, the value returned by the
function procedure B.

3. If the entry name argument appears
without an argument list and neither
within an operational expression nor
within parentheses, the entry name
itself is passed to the function or
subroutine being invoked. In such
cases, the entry name is not taken to
be a function reference, even if it is
the name of a function that does not
require arguments. For example:

CALL A(B);

This passes the entry name B as an
argument to procedure A.

There is an exception to this rule,
however: if an identifier is known as
an entry name and appears as an
argument and if the parameter
attribute list for that argument
specifies an attribute other than
ENTRY, the entry name will be invoked
and its returned value passed. For
example:

In this case, B is invoked and its
returned value is passed to C.

Consider the following example:

In this example, assume that CALLP,
SUBR, and RREAD are external. In CALLP,
both RREAD and SUBR are explicitly declared
to have the ENTRY attribute. (Actually,
the explicit declaration for SUBR is used
principally to provide information about
the characteristics of the parameters of
SUBR.) Four arguments are specified in the
CALL SUBR statement. These arguments are
interpreted as follows:

1. The first argument, RREAD, is
recognized as an entry name (because
of the ENTRY attribute declaration).
This argument is not in conflict with
the first parameter as specified in
the parameter attribute list in the
ENTRY attribute declaration for SUBR
in CALLP. Therefore, since RREAD is
recognized as an entry name and not as
a function reference, the entry name
is passed at invocation.

2. The second argument, SQRT(R), is
recognized as a function reference
because of the argument list
accompanying the entry name. SQRT is
invoked, and the value returned by
SQRT is assigned to a dummy argument,
which effectively replaces the
reference to SQRT. The attributes of
the dummy argument agree with those of

Chapter 12: Subroutines and Functions 167

the second parameter, as specified in
the parameter attribute list
declaration. When SUBR is invoked,
the dummy argument is passed to it.

3. The third argument, S, is simply a
decimal floating-point element
variable. However, since its
attributes do not agree with those of
the third parameter, as specified in
the parameter attribute list
declaration, a dummy argument is
created containing the value of S
converted to the attributes of the
third parameter. When SUBR is
invoked, the dummy argument is passed.

4. The fourth argument, LAB1, is a
statement-label constant. Its
attributes agree with those of the
fourth parameter. Put since it is a
constant, a dummy argument is created
for it. When SUER is invoked, the
dummy argument is passed.

In SUBR, four parameters are explicitly
declared in the PROCEDURE statement. If no
further explicit declarations were given
for these parameters, arithmetic default
attributes would be supplied for each.
Therefore, since NAME must represent an
entry name, it is explicitly declared with
the ENTRY attribute, and since TRANPT must
represent a statement label, it is
explicitly declared with the LABEL
attribute. X and J are arithmetic, so the
defaults are allowed to apply.

Note that the appearance of NAME in the
CALL statement does not constitute a
contextual declaration of NAME as an entry
name. Such a contextual declaration can be
made only if no explicit declaration
applies, and the appearance of NAME in the
PROCEDURE statement of SUER constitutes an
explicit declaration of NAME as a
parameter. If the attributes of a
parameter are not explicitly declared in a
complementary DECLARE statement, arithmetic
defaults apply. Consequently, NAME must be
explicitly declared to have the ENTRY
attribute; otherwise, it would be assumed
to be a binary fixed-point variable, and
its use in the CALL statement would result
in an error.

simple parameters, and those that have the
CONTROLLED attribute, i.e., controlled
parameters.

A simple parameter may be associated
with an argument of any storage class.
However, if more than one generation of the
argument exists, the parameter is
associated only with that generation
existing at the time of invocation.

A controlled parameter must always have
a corresponding controlled argument. Such
an argument cannot be subscripted, cannot
be an element of a structure, and cannot
cause a dummy to be created. If more than
one generation of the argument exists at
the time of invocation, the parameter
corresponds to the entire stack of these
generations. Thus, at the time of
invocation, a controlled parameter
represents the current generation of the
corresponding argument. A controlled
parameter may be allocated and freed in the
invoked procedure, thus allowing the
manipulation of the allocation stack of the
associated argument. A simple parameter
cannot be specified in an ALLOCATE or FREE
statement.

Parameter Bounds and Lengths

If an argument is a string or an array, the
length of the string or the bounds of the
array must be declared for the
corresponding parameter. The number of
dimensions and the bounds of an array
parameter or the length of a string
parameter must be the same as that for the
current generation of the corresponding
argument. Usually, this can be assured
simply by specifying actual numbers for the
bounds or length of the parameter.
However, the actual bounds or length may
not always be known at the time that the
subroutine or function is written.
Whenever this is the case, bounds or length
for a simple parameter may be specified by
asterisks; bounds or length for a
controlled parameter may be specified
either by asterisks or by expressions.

ALLOCATION OF PARAMETERS

A parameter cannot be declared to have any
of the storage class attributes STATIC,
AUTOMATIC, or BASED. It can, however, be
declared to have the CONTROLLED attribute.
Thus, there are two classes of parameters,
as far as storage allocation is concerned:
those that have no storage class, i.e.,

Simple Parameter Bounds and Lengths

When the actual length or bounds of a
simple parameter are not known, they can be
specified in a DECLARE statement by
asterisks. When an asterisk is used, the
length or bounds are taken from the current
generation of the corresponding argument;
if no current generation exists, any
reference to the variable is an error. If

168

an asterisk is used to represent the bounds
of one dimension of an array parameter, the
bounds of all other dimensions of that
parameter must be specified by asterisks.

Controlled Parameter Bounds and Lengths

The bounds or length of a controlled
parameter can be represented in a DECLARE
statement either by asterisks or by element
expressions.

Asterisk Notation: When asterisks are
used, length or bounds of the controlled
parameter are taken from the current
generation of the corresponding argument.
Any subsequent allocation of the controlled
parameter uses these same bounds or length,
unless they are overridden by a different
length or bounds specification in the
ALLCCATE statement. If no current
generation of the argument exists, the
asterisks only determine the dimensionality
of the parameter, and an ALLOCATE statement
in the invoked procedure must specify
bounds or length for the controlled
parameter before other references to the
parameter can be made.

Expression Notation: The bounds or length
of a controlled parameter can also be
specified by element expressions. These
expressions are evaluated at the time of
allocation. Each time the parameter is
allocated, the expressions are re-evaluated
to give current bounds or length for the
new allocation. However, such expressions
in a DECLARE statement can be overridden by
a bounds or length specification in the
ALLOCATE statement itself.

If a current generation of the argument
exists at the time of invocation, the
expressions evaluated at invocation must
give the same bounds or length as the
argument. If a current generation does not
exist, then no requirements are made on the
values of these expressions. They are
evaluated each time the parameter is
allocated, except in those cases where the
expressions are overridden by a bounds or.
length specification in the ALLOCATE
statement itself. For example:

In the procedure MAIN, the arrays A, B, C,
and D are declared with the CONTROLLED
storage class attribute; NAME and I are
AUTOMATIC by default.

When SUB1 is invoked, A and B, which
have been allocated as declared, are
passed. SUB1 declares its parameters with
the asterisk notation. The ALLOCATE
statement, however, specifies bounds for
the arrays; consequently, the allocated
arrays, which are actually a second
generation of A and B, have bounds
different from the first generation (if no

Chapter 12: Subroutines and Functions 169

bounds were specified in the ALLOCATE
statement, the bounds of the new generation
would be identical to those of the first
generation).

After control returns to MAIN, the first
FREE statement frees the second generation
of A and B (allocated in SUB1 as
parameters), and the second FREF statement
frees the first generation (allocated in
MAIN).

When SUB2 is invoked, C and D are passed
to X and Y, NAME is passed to NAMEA, and I
is passed to N. In SUB2, X and Y are
declared with bounds that depend upon the
value of I (passed to N). When X and Y are
allocated, this value determines the bounds
of the allocated array.

Although NAME (corresponding to NAMEA)
is not controlled, the asterisk notation
for the length of NAMEA indicates that the
length is to be picked up from the
declaration of the argument (NAME).

ARGUMENT AND PARAMETER TYPES

In general, an argument and its
corresponding parameter may be of any data
organization and type. For example, an
argument may be a statement label, provided
that the corresponding parameter is
declared with the LABEL attribute; it may
be an entry name, provided that the
corresponding parameter is an entry name,
and so on. However, not all
parameter/argument relationships are so
clear-cut. Some need further definition
and clarification. Such cases are given
below.

If a parameter is an element, i.e., a
variable that is neither a structure nor an
array, the argument must be an element
expression. If the argument is a
subscripted variable, the subscripts are
evaluated before the subroutine or function
is invoked and the name of the specified
element is passed. If the argument is a
constant, the attributes of the
corresponding parameter must agree with the
attributes indicated by the constant,
unless the ENTRY attribute is specified for
the entry name.

If a parameter is an array, the argument
must be an array expression or an element
expression. If the argument is an element
expression, the corresponding parameter
attribute list must specify the bounds of
the array parameter. (Note, however, that
in this case the bounds in the parameter
attribute list cannot be asterisks.) This
causes the construction of a dummy array

argument, whose bounds are those of the
array parameter. The value of the element
expression then becomes the value of each
element of the dummy array argument.

If a parameter is a structure, the
argument must be a structure expression or
an element expression. If the argument is
an element expression, the corresponding
parameter attribute list must specify the
structure description of the structure
parameter (only level numbers need be used
-- see the discussion of the ENTRY
attribute in Part II, Section I,
"Attributes," for details). This causes
the construction of a dummy structure
argument, whose description matches that of
the structure parameter. The value of the
element expression then becomes the value
of each element of the dummy structure
argument. The relative structuring of the
argument and the parameter must be the
same; the level numbers need not be
identical. The element value must be one
that can be converted to conform with the
attributes of all the elementary names of
the structure.

If a parameter is an element label
variable, the argument must be either an
element label variable or a label constant.
If the argument is a label constant, a
dummy argument is constructed.

If the parameter is an array label
variable, the argument must be an array
label variable, an element label variable,
or a label constant. If the argument is
either of the latter two, the corresponding
parameter attribute list must specify that
the parameter is a label array, giving the
bounds of that array. This causes the
construction of a dummy array label
argument, whose bounds are those of the
label array parameter.

If a parameter is an entry name, the
argument must be an entry name. Note that
the name of a mathematical built-in
function can be passed as an argument, but
no other built-in function names can be
passed.

If a parameter is a file name, the
argument must be a file name. The
attributes of the file name parameter are
always ignored.

If a parameter is a fixed-length string
variable, the argument should be a
fixed-length string. If the argument is of
varying length, a parameter attribute list
describing the parameter as a fixed-length
string must be given in the invoking
procedure. Similarly, if a parameter is a
varying-length string variable, the
argument should be a varying-length string.
If the argument is of fixed length, a

170

parameter attribute list describing the
parameter as a varying-length string must
be given in the invoking procedure.
Whenever a varying-length string argument
is passed to a non-varying string parameter
whose length is undefined (i.e. specified
by an asterisk), the maximum length of the
argument is passed to the invoked
procedure. This is true even when the
argument is an element; the object of
passing the maximum length rather than the
current length is to maintain a consistent
rule for both element and array arguments.
(If the argument were a varying-length
string array passed to a non-varying
undefined-length parameter, only one length
could be passed, and this would naturally
be the maximum length.)

Example:

DECLARE A CHARACTER(50) VARYING,
PROC1 ENTRY (CHARACTER(*));

A='123';
CALL PROC1(A);

PROC1: PROCEDURE (B);
DECLARE B CHARACTER(*),

C CHARACTER(5);

C=B || '45';
/* C='123bb' NOT '12345' */

the generic reference; it is that member
whose parameters match the arguments in
number and attributes.

A generic name must be declared with the
GENERIC attribute. The general format of
this attribute is as follows:

generic-name GENERIC (member-declaration
(,member-declaration]...)

Each member declaration corresponds to
one procedure entry point in the family.
It specifies the entry name of the member,
followed by the ENTRY attribute and its
associated parameter attribute list; this
list gives the number and attributes of the
parameters for that entry name. For
example, consider the following statement:

DECLARE CALC GENERIC
(FXDCAL ENTRY(FIXED,FIXED),
FLOCAL ENTRY(FLOAT,FLOAT);
MIXED ENTRY (FLOAT,FIXED));

This statement defines CALC as a generic
name having three members, FXDCAL, FLOCAL,
and MIXED. One of these three function
procedures will be invoked by a generic
reference to CALC, depending on the
characteristics of the two arguments in
that reference. For example, consider the
following statement:

Z= X + CALC(X,Y);

In this example, to pass A, a dummy of
length 50 (i.e., the maximum length of A)
is created. In the concatenation
operation, '45' is concatenated at the
right of the character string of length 50
(which contains '123' followed by 47
blanks). The result is then truncated to
fit into C, which has length 5, so that
C='123bb'.

If a parameter is a locator variable of
either pointer or offset type, the argument
must be a locator variable of either type.
If the types differ, a dummy argument is
created. (See also Chapter 14, "Based
Variables and List Processing.")

Generic Names and References

A generic name represents a family of
procedure entry points, each member of
which can be invoked by a generic
reference, that is, a procedure reference
using the generic name in place of the
actual entry name. The member invoked is
determined according to the number and
attributes of the arguments specified in

If X and Y are floating-point and
fixed-point, respectively, MIXED will be
invoked.

Passing an Argument to the Main Procedure

A single argument can be passed using the
PARM field in the EXEC statement for the
step executing the PL/I program. See IBM
System/360 Operating System, PL/I (F)
Programmer's Guide. If this facility is
used, the first argument should be declared
as a VARYING character string; the maximum
length is 100, and the current length is
set equal to the argument length at object
time. The argument can also be a
fixed-length character string. For
example:

TOM: PROC (PARAM) OPTIONS (MAIN);
DCL PARAM CHAR(100) VARYING;

The value in the PARM field of the EXEC
statement for the execution job step will
be passed to TOM.

Chapter 12: Subroutines and Functions 171

Chapter 13: Exceptional Condition Handling and Program Checkout

When a PL/I program is executed, a large
number of exceptional conditions are
monitored by the system and their
occurrences are automatically detected
whenever they arise. These exceptional
conditions may be errors, such as overflow
or an input/output transmission error, or
they may be conditions that are expected
but infrequent, such as the end of a file
or the end of a page when output is being
printed. When checking out a program, a
programmer can also get a selective flow
trace and dumps by specifying that the
occurrence of any one of a list of
identifiers be treated as an exceptional
condition.

Each of the conditions for which a test
may be made has been given a name, and
these names are used by the programmer to
control the handling of exceptional
conditions. The list of condition names is
part of the PL/I language. For keyword
names and descriptions of each of the
conditions, see Part II, Section H,
"ON-Conditions."

Enabled Conditions and Established Action

A condition that is being monitored, and
the occurrence of which will cause an
interrupt, is said to be enabled. Any
action specified to take place when an
occurrence of the condition causes an
interrupt, is said to be established.

Most conditions are checked for
automatically, and when they occur, the
system will take control and perform some
standard action specified for the
condition. These conditions are enabled by
default, and the standard system action is
established for them.

The most common system action is to
raise the ERROR condition. This provides a
common condition that may be used to check
for a number of different types of errors,
rather than checking each error type
individually. Standard system action for
the ERROR condition is:

1. If the condition is raised in a major
task, the FINISH condition is raised
and, subsequently, the major task is
terminated.

2. If the condition is raised in any
other task, that task is terminated.

The programmer may specify whether or
not some conditions are to be enabled, that
is, are to be checked for so that they will
cause an interrupt when they arise. If a
condition is disabled, an occurrence of the
condition will not cause an interrupt.

All input/output conditions and the
ERROR, FINISH, and AREA conditions are
always enabled and cannot be disabled. All
of the computational conditions and the
program checkout conditions may be enabled
or disabled. The program checkout
conditions and the SIZE condition must be
explicitly enabled if they are to cause an
interrupt; all other conditions are enabled
by default and must be explicitly disabled
if they are not to cause an interrupt when
they occur.

Condition Prefixes

Enabling and disabling can be specified for
certain conditions by a condition prefix.
A condition prefix is a list of one or more
condition names, enclosed in parentheses
and separated by commas, and connected to a
statement (or a statement label) by a
colon. The prefix always precedes the
statement and any statement labels. A
condition name in a prefix list indicates
that the corresponding condition is enabled
within the scope of the prefix. Some
condition names can be preceded by the word
NO, without a separating blank or
connector, to indicate that the
corresponding condition is disabled.

Scope of the Condition Prefix

The scope of the prefix, that is, the part
of the program throughout which it applies,
is usually the statement to which the
prefix is attached. The prefix does not
apply to any functions or subroutines that
may be invoked in the execution of the
statement.

A condition prefix to an IF statement
applies only to the evaluation of the
expression following the IF; it does not
apply to the statements in the THEN or ELSE
clauses, although these may themselves have
prefixes. Similarly, a prefix to the ON
statement has no effect on the statements
in the on-unit. A condition prefix to a DO

172

statement applies only to the evaluation of
any expressions in the DO statement itself
and not to any other statement in the DO-
group.

Condition prefixes to the PROCEDURE
statement and the BEGIN statement are
special (though commonly used) cases. A
condition prefix attached to a PROCEDURE or
BEGIN statement applies to all the
statements up to and including the
corresponding END statement. This includes
other PROCEDURE or BEGIN statements nested
within that block. It does not apply to
any procedures lying outside that block,
which may be invoked during execution of
the program.

The enabling or disabling of a condition
may be redefined within a block by
attaching a prefix to statements within the
block, including PROCEDURE and BEGIN
statements (thus redefining the enabling or
disabling f the condition within nested
blocks). Such a redefinition applies only
to the execution of the statement to which
the prefix is attached. In the case of a
nested PROCEDURE or BEGIN statement, it
applies only to the block the statement
defines, as well as any blocks contained
within that block. When control passes out
of the scope of the redefining prefix, the
redefinition no longer applies. A
condition prefix can be attached to any
statement except a DECLARE or ENTRY
statement.

The ON Statement

A system action exists for every condition,
and if an interrupt occurs, the system
action will be performed unless the
programmer has specified an alternate
action in an ON statement for that
condition, and that ON statement has been
executed. The purpose of the ON statement
is to establish the action to be taken when
an interrupt results from an exceptional
condition that has been enabled, either by
default or by a condition prefix.

Note: The action specified in an ON
statement will not be executed during any
portion of a program throughout which the
condition has been disabled.

The form of the ON statement is:

ON condition-name [SNAP] on-unit
SYSTEM;

(See Part II, Section J, "Statements" for a
full description.)

The keyword SYSTEM followed by a
semicolon specifies standard system action
whenever an interrupt occurs. It
re-establishes system action for a
condition for which some other action has
been established. The on-unit is used by
the programmer to specify an alternate
action to be taken whenever an interrupt
Occurs.

The SNAP option specifies that when an
interrupt occurs, debugging information
will be written in a debugging file. The
form and content of the information depends
upon the implementation. For the F
Compiler, it is a list of all active
procedures. The information is written in
the standard system file SYSPRINT. If SNAP
is specified, the action of the SNAP option
precedes the action of the on-unit. If
SNAP SYSTEM is specified, the system action
message is followed immediately by a list
of active procedures.

The on-unit must be either a
single,unlabeled, simple statement or an
unlabeled begin block. The single
statement cannot be a RETURN, FORMAT, or
DECLARE statement. It cannot be either of
the two compound statements, IF and ON, or
a DO-group. (PROCEDURE, BEGIN, END, and DO
statements can never appear as single
statements.) The implementation limit for
the number of ON-units which can be active
at any time is 127. The begin block, if it
appears, can contain any statement except
RETURN, although the RETURN statement can
appear within a procedure nested in the
begin block.

The single statement on-unit, or the
begin block on-unit, is executed as though
it were a procedure (without parameters)
that was called at the point in the program
at which the interrupt occurred. If the
on-unit is a single statement it behaves
exactly as though it were enclosed by
PROCEDURE and END statements; when
execution reaches the END statement of the
unit, control returns to the point from
which the block was invoked. Just as with
a procedure, control may be transferred out
of an on-unit by a GO TO statement; in this
case, control is transferred to the point
specified in the GO TO, and a normal return
does not occur.

Note: The specific point to which control
returns from an on-unit varies for
different conditions. In some cases, it
returns to the point that immediately
follows the action in which the condition
arose. In other cases, control returns to
the actual point of interrupt, and the
action is reattempted. An example of the
latter case is the return from the on-unit
of an ON CONVERSION statement. When an
interrupt occurs as the result of a

Chapter 13: Exceptional Condition Handling and Program Checkout 173

conversion error, control returns from the
on-unit to reattempt conversion of the
character that caused the error (on the
assumption that the invalid character has
been changed during execution of the
on-unit). If the invalid character is not
changed, the ERROR condition is raised.

The Null On-Unit

A special case of an on-unit is the null
statement. The effect of this is to say
"when an interrupt occurs as a result of
this condition, do nothing."

Use of the null on-unit is not the same
as disabling, for two reasons: first, a
null on-unit may be specified for any
condition, but not all conditions can be
disabled; and, second, disabling a
condition, if possible, may save time by
avoiding any checking for this condition.
If a null on-unit is specified, the system
must still check for occurrence of the
condition, transfer control to the on-unit
whenever an interrupt occurs, and then,
after doing nothing, return from the
on-unit.

Note: With the F Compiler, a null on-unit
for the CONVERSION condition will not cause
a permanent loop if a conversion error
occurs, because no conversion is
re-attempted unless the invalid character
is changed in the on-unit. If it is not
changed, the ERROR condition is raised.

Scope of the ON Statement

The execution of an ON statement associates
an action specification with the named
condition. Once this association is
established, it remains until it is
overridden or until termination of the
block in which the ON statement is
executed.

An established interrupt action passes
from a block to any block it activates, and
the action remains in force for all
subsequently activated blocks unless it is
overridden by the execution of another ON
statement for the same condition. If it is
overridden, the new action remains in force
only until that block is terminated. When
control returns to the activating block,
all established interrupt actions that
existed at that point are re-established.
This makes it impossible for a subroutine
to alter the interrupt action established
for the block that invoked the subroutine.

If more than one ON statement for the
same condition appears in the same block,
each subsequently executed ON statement
permanently overrides the previously
established condition. No re-establishment
is possible, except through execution of
another ON statement with an identical
action specification (or re-execution,
through some transfer of control, of an
overridden ON statement).

The REVERT Statement

The REVERT statement is used to cancel the
effect of one or more previously executed
ON statements. It can affect only ON
statements that are internal to the block
in which the REVERT statement occurs and
which have been executed in the same
invocation of that block. The effect of
the REVERT statement is to cancel the
effect of any ON statement for the named
condition that has been executed in the
same block in which the REVERT statement is
executed. It then re-establishes the
action that was in force at that time of
activation of that block. This statement
has the form:

REVERT condition-name;

A REVERT statement that is executed in a
block in which no on-unit has been
established for the named condition is
treated as a null statement.

The SIGNAL Statement

The programmer may simulate the occurrence
of an ON condition by means of the SIGNAL
statement. An interrupt will occur unless
the named condition is disabled. This
statement has the form:

SIGNAL condition-name;

The SIGNAL statement causes execution of
the interrupt action currently established
for the specified condition. The principal
use of this statement is in program
checking, to test the action of an on-unit,
and to determine that the correct action is
associated with the condition.

If the signaled condition is not
enabled, the SIGNAL statement is treated as
a null statement.

174

The CONDITION Condition

The ON-condition of the form:

CONDITION (identifier)

allows a programmer to establish an on-unit
that will be executed whenever a SIGNAL
statement is executed specifying CONDITION
and that identifier.

As a debugging aid, this condition can
be used to establish an on-unit whose
execution results in printing information
that shows the current status of the
program. The advantage of using this
technique is that the statements of the
on-unit need be written only once. They
can be executed from any point in the
program through placement of a SIGNAL
statement.

Following is an example of how the
CONDITION condition might be included in a
program:

ON CONDITION (TEST) BEGIN;
•
•

END;

Execution of the begin block would be
caused wherever the following statement
appears:

SIGNAL CONDITION (TEST);

The CONDITION condition always is
enabled, but it can be raised only by the
SIGNAL statement.

The CHECK Condition

The CHECK condition is an important tool
provided in PL/I for program testing. The
keyword CHECK in a prefix list is followed
by a parenthesized name list. The names in
the list may be statement label constants,
entry names, and variables, including array
and structure variables, label variables,
task variables, event variables, area
variables, and locator variables.
Subscripted names are not allowed but
qualified names can be used. Parameters,
and variables with the DEFINED or BASED
attributes cannot be checked.

The CHECK prefix may be attached only to
PROCEDURE or BEGIN statements, and
therefore, it always applies to an entire
block.

An interrupt will generally occur

immediately after the execution of a
statement in which the value of a variable
in a check list may have been altered.
Exceptions are as follows:

1. With the F Compiler, during
data-directed input, the interrupt
occurs after the first checked
variable receives its value.

2. With statement labels and entry names,
the interrupt occurs immediately
before the execution of the statement
or the invocation of the entry name.

The system action for the CHECK condition
is to print the identifier causing the
interrupt and, if it is a variable (other
than a program control variable); to print
its new value in the form of data-directed
output. For label variables and other
program control variables, only the
variable is printed; no value is included.

Thus, by preceding a block with a CHECK
prefix, as shown in the example in Figure
11-1, the programmer can obtain selective
dumps in a readable format by specifying
variables; he can obtain a flow trace by
specifying labels and entry names.

The CHECK condition may also be
specified in an ON statement, if other than
system action is required. This gives the
user all the facilities of PL/I, including
the simplicity of data-directed output for
controlling and editing his debugging
information.

The SUBSCRIPTRANGE Condition

Another ON condition that is used
principally for program checkout, but that
may also be used in production, is the
SUBSCRIPTRANGE condition. This condition
must be enabled in a condition prefix.
When it is enabled, each subscript in an
array reference is checked every time it is
evaluated to see that it lies within the
specified bounds. The condition is raised
if any subscript is too high or too low.

Since this checking involves a
substantial overhead, it usually is used
only in program testing, and is removed for
production programs.

The STRINGRANGE Condition

The STRINGRANGE condition is not enabled
unless it appears in a condition prefix.
It is raised by an invalid reference to the

Chapter 13: Exceptional Condition Handling and Program Checkout 175

SUBSTR built-in function and
pseudo-variable, the arguments to which
must lie within certain bounds (see "SUBSTR
String Built-in Function," in Section G).
It allows execution to continue with a
SUBSTR reference that has been revised
either automatically (that is, by standard
system action) or by the programmer using
an on-unit.

Condition Built-In Functions and Condition
Codes

When an on-unit is invoked, it is as if it
were a procedure without arguments. It is
therefore impossible to pass to the on-unit
any information about the interrupt (other
than the name of the condition). To assist
the programmer in making use of on-units,
some special functions are provided that
may be used to inquire about the cause of
an interrupt and possibly to attempt to
correct the error.

These condition built-in functions can
be used only in on-units or in blocks
invoked by on-units. They are listed in
Part II, Section G, "Built-In Functions and
Pseudo-Variables."

The condition built-in functions provide
information such as the name of the
procedure in which the interrupt occurred,
the character or character string that
caused a conversion interrupt, the value of
the key used in the last record
transmitted, and so on. Some can be used
as pseudo-variables for error correction.

The ONCODE function provides a binary
integer whose value depends on the cause of
the last interrupt. This function, used in
conjunction with the ERROR condition,
allows the programmer to deal with errors
that may be detected by the implementation,
but that are not represented by condition
names in the language.

Example of Use of ON-Conditions

The routine shown in Figure 13-1
illustrates the use of the ON statement,
the SIGNAL and REVERT statements, and
condition prefixes. The routine reads
batches of cards containing test readings.
Each batch has a header card with a sample
number, called SNO, of zero and a trailer
card with SNO equal to 9999. If a
conversion error is found, one retry is
attempted with the error character set to
zero. Two data fields are used to
calculate a subscript; if the subscript is

out of range, the sample is ignored. If
there is more than one subscript error or
more than one conversion error in a batch,
that batch is then ignored.

The numbers to the right of each line
are card sequence numbers, which are not
part of the program itself.

The CHECK prefixes in cards 1 and 25 are
included to help with debugging; in a
production program, they would be removed.
The prefix in card 1 specifies that
interrupts will occur at the following
times: just before the statements HEADER,
NEWBATCH, and BADBATCH are executed; just
before the procedure INPUT is invoked; and
whenever the value of the variable SAMPLE
changes. Since no ON statement has been
executed for the CHECK condition, system
action is performed. This will result in
the appropriate name being written on
SYSPRINT (together with the new value in
the case of SAMPLE).

Since the labels used within the
internal procedure INPUT are not known in
DIST, they cannot be specified in a CHECK
list for DIST. A separate CHECK prefix is
therefore inserted just before the
procedure statement heading INPUT. This
check list specifies the labels in INPUT,
and the array TABLE.

It is worth noting again that the CHECK
condition prefix can be applied only to
PROCEDURE and BEGIN blocks, and not to
individual statements. The first statement
executed is the ON ENDFILE statement in
card 9. This specifies that the external
procedure SUMMARY is to be called when an
ENDFILE interrupt occurs. This action
applies within DIST and within INPUT and
within all other procedures called by DIST,
unless they establish their own action for
ENDFILE.

Throughout the procedure, any conditions
except SIZE, SUBSCRIPTRANGE, STRINGRANGE,
and CHECK are enabled by default; and for
all conditions except those mentioned
explicitly in ON statements, the system
action applies. This system action, in
most cases, is to generate a message and
then to raise the ERROR condition. The
action specified for the ERROR condition in
card 13 is to display the contents of the
card being processed. When the ERROR
action is completed, the FINISH condition
is raised, and execution of the program is
terminated.

The statement in card 10 specifies
action to be taken whenever a CONVERSION
interrupt occurs. Since this action
consists of more than one statement, it is
bracketed by BEGIN and END statements.

176

The main loop of the program starts with
the statement HEADER. Since the CHECK
condition is enabled for HEADER, an
interrupt will occur before HEADER is
executed. The READ statement with the INTO
option will cause a CHECK condition to be
raised for the variable specified in the
INTO option (unless, for the F Compiler,
the EVENT option is used); consequently,
the input is listed in the form of
data-directed output.

The card read is assumed to be a header
card. If it is not, the SIGNAL CONVERSION
statement causes execution of the BEGIN
block, which in turn calls a procedure (not
shown here) that reads on, ignoring cards
until it reaches a header card. The begin
block ends with a GO TO statement that
terminates the on-unit.

The GET statement labeled NEWBATCH uses
the STRING option to get the different test
numbers that have been read into the

Figure 13-1. A Program Checkout Routine

Chapter 13: Exceptional Condition Handling and Program Checkout 177

character string READINGS, which is an
element of SAMPLE. Since the variables
named in the data list are not explicitly
declared, their appearance causes implicit
declaration with the attributes FLOAT
DECIMAL (6).

The array TABLE is initialized to zero
before the procedure INPUT is called. This
procedure inherits the on-units already
established in DIST, but it can override
them.

The first statement of INPUT establishes
a new action for CONVERSION interrupts.
Whenever an interrupt occurs, the ONCODE is
tested to check that the interrupt is due
to an illegal P format input character and
that the illegal character is a blank. If
the illegal character is a blank, it is
replaced by a zero, and control is
transferred to ERR1.

ERR1 is internal to the procedure INPUT.
The statement, REVERT CONVERSION, nullifies
the ON CONVERSION statement executed in
INPUT and restores the action specified for
conversion interrupts in DIST (which causes
the batch to be ignored).

After a routine is called to write an
error message, control goes to IN2, which
retries the conversion. If another
conversion error occurs, the interrupt
action is that specified in cards 10 and
11.

The second ON statement in INPUT
establishes the action for a SUBSCRIPTRANGE
interrupt. This condition must be

explicitly enabled by a SUBSCRIPTRANGE
prefix for an interrupt to occur. If an
interrupt does occur, the on-unit causes a
transfer to ERR2, which establishes a new
on-unit for SUBSCRIPTRANGE interrupts,
overriding the action specified in the ON
statement in card 35. Any subsequent
subscript errors in this batch will,
therefore, cause control to go to BADBATCH,
which signals the CONVERSION condition as
it existed in the procedure DIST. Note
that on leaving INPUT, the on-action
reverts to that established in DIST, which
in this case calls SKIPBCH to get to the
next header card.

After establishment of a new on-unit, a
message is printed, and a new sample card
is read.

The statement labeled IN1 reads an
80-column card image into the structure
SAMPLE. A READ statement does not cause
input data to be checked for validity, so
the CONVERSION condition cannot arise.

The statement IN2 checks and edits the
data in card columns 11 through 19
according to the picture format item. A
non-numeric character (including blank) in
these columns will cause a conversion
interrupt, with the results discussed
above.

The next statement (card 41) has a
SUBSCRIPTRANGE prefix. The data just read
is used to calculate a double subscript.
If either subscript falls outside the
bounds declared for TABLE, an interrupt
occurs. If both fall outside the range,
two interrupts occur.

178

Chapter 14: Based Variables and List Processing

The purpose of this chapter is to describe
the PL/I based storage facilities currently
implemented by the F Compiler, and to give
some indication of their use.

Introduction

Storage allocation is the association of
the requisite amount of storage with a
variable; it is effectively a two-way
process: the storage is associated with a
variable, and the variable is associated
with the storage. Allocation will be made
either statically (that is, before the
program is executed), or dynamically (that
is, during execution). A statically
allocated variable remains allocated for
the duration of the program, but a
dynamically allocated variable may
relinquish its storage before the program
has finished.

The storage class attributes determine
which kind of allocation is to apply to a
given variable. STATIC specifies that
allocation will be made statically;
AUTOMATIC, CONTROLLED, and BASED each
specify a type of dynamic allocation.
Automatic storage is allocated
automatically on entry to the block in
which the variable is declared, and freed
automatically when the block is terminated;
once freed, the value of the variable is
lost. Controlled storage allocation is
under the direct control of the programmer,
using the ALLOCATE and FREE statements.
Based storage allocation is also under the
direct control of the programmer, but with
some essential differences from controlled
allocation.

When the programmer reallocates a
controlled variable without first freeing
it, the value of the earlier allocation is
not lost. All values are held, but in such
a way that only one value is available for
use at a given time. Effectively, the
values are stacked. On the other hand,
when a based variable is reallocated
without first being freed, all the values
are not only held, but are also available
for use at any time.

Whenever a based variable is allocated,
a pointer variable is set to a value
relating to the address of the allocation;
by including this pointer variable in a
reference to the based variable, the
programmer can distinguish between

different allocations of one based
variable. In other words, reference to the
based variable can be qualified by a
pointer value. The pointer variable is one
of two types of locator variable. The
other type, the offset variable, is
discussed later.

The based variable can be a structure
containing a locator for another
allocation, which in turn can contain a
locator for yet another allocation, and so
on. This is the fundamental concept
underlying PL/I list processing; different
allocations can be chained together in a
specific order. In fact, they can be
chained together in several different
orders at once by using several different
sets of locators. Thus, for example, it is
possible to sort a list without duplicating
the list items or moving them around; any
sequence can be specified by a set of
locators. This facility can also be used
to chain like items together without
necessarily implying a particular order.

A list or chain of associated based
variables could be scattered over a large
area of storage, linked only by pointers.
However, to facilitate input/output and
assignment, the based variables can be
collected together into a reserved area.
The relative locations of the items can
then be established. The reason for this
provision is that the value of a pointer is
absolute and refers to only one allocation
of a variable; for example, if a list of
associated based structures containing
pointers were written out and later read in
again, this would constitute a
reallocation, within which the pointer
values would be meaningless because the
addresses would be different. However,
another kind of locator variable, called an
offset variable, is available, which
establishes the location of an item
relative to the start of an area. Because
it is relative, the value of an offset
variable retains its meaning across
input/output and assignment.

As well as providing a list processing
facility, based storage allows the
programmer to make more efficient use of
record-oriented input/output. This type of
input/output normally involves the use of
intermediate buffers and work areas; but a
based variable can be virtually overlaid on
a buffer, and processing can take place
within the buffer. Several separate based
variables can be effectively overlaid on
the same buffer at once; this allows easy

Chapter 14: Based Variables and List Processing 179

handling of files containing different
types of record. (The type of record would
be designated within the record itself; the
correct based variable could then be
determined from a test made after the
record has been read into the buffer.)
This type of input/output using based
variables is the PL/I form of locate mode
input/output.

Based Variables and Pointer Variables

A based variable is a variable that can be
allocated in more than one location in
storage, thus simultaneously representing a
number of values, any of which can be
retrieved by specifying a pointer variable
associated with the relevant storage
location.

When a based variable is declared, it is
associated with a pointer variable. The
form of the declaration is:

identifier BASED (pointer-variable)

Example:

DECLARE X BASED (P);

This declaration also contextually declares
P to be a pointer variable unless an
explicit declaration for P exists. Pointer
variables can be declared explicitly, with
the following format:

identifier POINTER

When an unqualified reference is made to
the based variable, the value of the
pointer variable included in the
declaration will be used to determine which
allocation is concerned. For example:

X = X + 1;

In this statement, the pointer variable
used to determine the location of X will in
both cases be P; that is, the references to
X are implicitly qualified by the pointer
P. Note, however, that X could have been
explicitly qualified by other pointer
variables. Explicit pointer qualification
is discussed below.

POINTER QUALIFICATION

Reference to a based variable can be
explicitly qualified by means of the
following format:

pointer-variable -> based-variable

The pointer variable must be neither
subscripted nor based; a qualified name is
allowed. For example:

P -> X = Q -> X;

This statement means simply that the value
of one allocation of X is to be assigned to
another allocation of X; the X allocated in
the location associated with P is to be
made equal to the X allocated in the
location associated with Q. The appearance
of P and Q in the statement contextually
declares them as pointer variables, unless
explicit declarations exist for P and Q.

The arrow, or pointer qualifier, is a
composite symbol made up of a minus sign
followed by a greater-than sign. Its
equivalent in the 48-character set is PT.
It does not signify an operation; its
function is similar to that of the period
symbol in an ordinary qualified name.

RULES AND RESTRICTIONS

Full details of the rules governing based
variables and pointer variables are given
under the respective attributes in Section
I, Attributes. However, the following
points should be carefully noted:

1. Based variables may not have the
EXTERNAL, VARYING, or INITIAL
attributes.

2. The bounds of based arrays and the
lengths of based strings must be
declared using decimal integer
constants, with the exception that the
REFER option (see "The REFER Option"
in this chapter) allows one adjustable
array bound, string length, or area
size to be declared within a based
structure.

3. Based label arrays cannot be
initialized by subscripted label
prefixes.

4. Based variables cannot be checked by
means of a CHECK condition prefix.

5. Based variables cannot be transmitted
using data-directed input/output.

6. The pointer variable qualifying a
based variable (whether implicitly or
explicitly) cannot itself be based,
nor can it be subscripted; it must be
an element variable, or an element of
a structure; a qualified name is
allowed. (Arrays of pointer variables
are allowed, but the value of an
element of such an array would have to

180

be assigned to an element pointer
variable before it could be used to
qualify a based reference.)

7. Pointer variables cannot be operands
of any operators except the comparison
operators = and ¬=. The value of a
pointer variable can be compared with
that of any other locator variable, or
with a locator value returned by a
function.

8. Assignment of a pointer variable value
can be made only to another locator
variable.

9. Pointer variables cannot be
transmitted using STREAM input/output.

10. The pointer variable declared with a
based variable is not given the value
of the NULL built-in function by the
declaration.

11. Only the INITIAL CALL form of the
INITIAL attribute is allowed in
pointer declarations.

12. The implementation of offsets and
pointers does not support bit
addressing. This restriction has no
practical effect on ALIGNED bit
strings. With UNALIGNED bit strings
belonging to arrays or structures,
however, only offsets or pointers to
major structures or minor structures
with byte (or higher) alignment should
be used.

Note: The allocation of a based variable
will always take at least eight bytes of
storage, even if the based variable is a
bit-string variable of length 1.

Pointer Defining

A pointer variable can be defined on
another pointer variable using overlay or
correspondence defining.

SELF-DEFINING DATA

A self-defining record is one which
contains, within itself, information about
its own fields, such as the length of a
string. PL/I allows the programmer to
declare a based structure in a way that is
designed to help manipulate such data. The
F Compiler supports this to a limited
extent: a based structure can be declared
to have one adjustable array bound, string
length

,
	area size, governed by a

variable contained within the structure
itself. This variable is given a value
when the structure is allocated; the value
is assigned from a variable outside the
structure. Note that the variable outside
the structure is used only on allocation
(either by an ALLOCATE statement or by a
LOCATE statement); for any other reference
to the structure (such as READ with SET,
discusse d later in this chapter), the
variable inside the structure will apply.

The REFER Option

The REFER option is used in the declaration
of a based structure to specify that, on
allocation of the structure, the value of a
variable outside the structure is to be
assigned to an element of the structure,
and that this value will be the length,
size, or bound of another element of the
same allocation of the structure.

The REFER option has the following
general form:

element-variable REFER (element-variable)

The element variables must be unsubscripted
fixed binary integer variables, and can be
fullword or halfword, but must have the
same precision. The variable on the
left-hand side of the keyword must not
belong to the structure; it can be
qualified or pointer-qualified. The
variable on the right-hand side must belong
to the structure.

For example:

DCL 1 STR BASED (P),
2 Y FIXED BINARY,
2 Z (B.X REFER (Y));

This declaration specifies that the based
structure STR will consist f an array Z
and an element Y; when STR is allocated,
the upper bound of Z is set equal to the
current value of B.X, and this value is
assigned to Y. For any other reference to
the variable, the bound value is taken from
Y.

Note that this option can be used only
once in a declaration. If it is used to
specify an array bound, the bound must be
the upper bound of the leading dimension of
the element with which it is used, and the
dimension must belong to the last element
in the structure declaration, or to a minor
structure containing the last element.

Chapter 14: Based Variables and List Processing 181

For example:

DCL 1 STR BASED (P),
2 A,

3 B FIXED BINARY,
3 C (20),

2 D,
3 B FIXED BINARY,
3 C (0:X REFER (D,B), 0:9);

In this declaration, the REFER option is
used to specify an adjustable upper bound
|for the array D.C; in this case, it could
not have appeared in any place other than
that shown. Note that even though the rule
states that the variable on the right-hand
side of the REFER keyword must belong to
the structure containing the REFER option,
this variable must still be sufficiently
qualified to avoid ambiguity with members
of other structures. In this case, a
reference to B alone would not be
sufficient, since structure A also contains
a member named B. This would apply even if
A and D were separate major structures.

Note: Since the adjustable bound must be
part of the leading dimension of the
element with which it is declared, it is
not possible for that element to inherit a
dimension from a higher level. (Inherited
dimensions would automatically become the
leading dimensions of the lower-level
member.)

For example:

DCL 1 STR BASED (P),
2 D (10),

3 E (50),
3 F (50);

In this declaration, both E and F would
have implied bounds of 1:10, inherited from
D; the REFER option could not have been
used with them but could have been used
with D (in place of 10).

If the REFER option is used to specify a
string length, that string must be an
element variable, and it must be the last
element variable in the structure
declaration.

If the element variable on the
right-hand side of REFER varies during the
program then:

1. The structure must not be freed until
the element variable is restored to
the value it had when allocated;

2. The structure must not be written out
while the element variable has a value
greater than the value with which it
was allocated.

3. The structure may be written out when

the element variable has a value equal
to or less than the value it had when
allocated. The number of elements or
the string length actually written
will be that indicated by the current
value of the variable.

For example:

DCL 1 REC BASED (P),
2 N,
2 A (M REFER(N)),

M INITIAL (100);

ALLOCATE REC;

N = 86;

WRITE FILE (X) FROM (REC);

In this example, 86 elements of REC are
written. It would be an error to attempt
to free REC at this point, since N must be
restored to the value it had when allocated
(i.e. 100). If N was assigned a value
greater than 100, an error would occur when
the WRITE statement was encountered.

Pointer Setting, Based Storage Allocation,
and Input/Output

Before a reference can be made to a based
variable, the qualifying pointer variable
must have a value. This value can be set
in any of five different ways:

1. With the SET option of a READ
statement;

2. By a LOCATE statement;

3. By an ALLOCATE statement;

4. By assignment of the value of another
locator variable, or a locator value
returned by a user-defined function;

5. By assignment of an ADDR built-in
function value.

Note that the actual value is in all
cases set by the implementation. The
programmer has no direct control over
addressing; he cannot, for example, assign
a constant to a pointer variable.

A special form of assignment to a
pointer variable is made using the NULL
built-in function. This assigns a special
value to the pointer, that cannot be
related to any address; its purpose is to
give a positive indication that the pointer
does not currently identify any allocation
of a variable.

182

READ WITH SET

The READ statement with the SET option has
the following basic format:

READ FILE (file-name)
SET (pointer-variable);

The pointer variable can be any variable
that represents a single pointer value.
This form of the READ statement causes a
record to be read into a buffer and the
specified pointer variable to be set to
point to the buffer. A based variable
reference, qualified by the same pointer,
will then relate to the fields of the
record.

A based variable used to describe a
record in a buffer is effectively overlaid
on the buffer. The result of a reference
to an element of the based variable is the
same as it would be if the record had been
read directly into the structure described.

If the REFER option is used in the
declaration of a structure, and the pointer
to the structure is set by a READ statement
with the SET option, the value for the
appropriate array bound, string length, or
area size is taken from the variable inside
the structure (i.e., from the record
itself), not from the variable outside the
structure. For example:

In this example, when REC is first
allocated, the array A has 100 elements and
N has the value 100. On execution of the
READ statement, however, the number of
elements in the array is specified in that
part of the record effectively overlaid by
N; the value of M has no effect.

LOCATE WITH AND WITHOUT SET

The LOCATE statement has the following
basic format:

LOCATE based-variable FILE (file-name)
[SET (pointer-variable)];

The pointer variable can be any variable
that represents a single pointer value.

This statement allocates storage, in an
output buffer, for a based variable. The
action is similar to that of the READ and
SET, in that the based variable is, in
effect, overlaid on the buffer. In this
case, however, data is moved (by subsequent
statements) into the output buffer in such
a way that the fields of the record are
located relative to the elements of the
based variable; the record is automatically
written onto the specified file immediately
before execution of the next WRITE, LOCATE,
or CLOSE statement (or implicit close
operation) for the file. This means that
the programmer must assign values to the
variable after allocation and before the
next input/output operation on the file.

Again, a pointer variable is set to
point to the buffer. This pointer variable
will be that specified in the SET option,
if the option appears; if the option is
omitted, the pointer variable that was
declared with the specified based variable
is set.

ALLOCATE WITH AND WITHOUT SET

The ALLOCATE statement, as used with based
variables, has the following basic format:

ALLOCATE based-variable [IN(area-variable)]
[SET(pointer-variable)];

The effect of this statement is similar
to that of the LOCATE statement, in that it
allocates storage for the based variable
and sets a pointer to point to the
allocation. In this case, however, no
output is implied; the storage is not
allocated in a buffer. If the SET option
appears, the specified pointer variable is
set; if the option is omitted, the pointer
variable that was declared with the
specified based variable is set.

The IN option, if included, specifies
that the allocation is to be made within
the reserved area of storage named. Areas
are discussed in detail later in this
chapter. The area variable can be any
variable that represents a single area; the
pointer variable can be any variable that
represents a single pointer value.

Chapter 14: Based Variables and List Processing 183

POINTER ASSIGNMENT

The value of a pointer variable may be
assigned to another pointer variable in a
simple assignment statement. Assume that P
and Q are pointer variables and that P has
a valid pointer value.

Q = P;

This statement specifies that Q is to be
set to point to the same location that P
points to. A reference to a based variable
qualified by Q will then be effectively
identical to a reference to the same based
variable qualified by P. For example
(assuming that X is a based variable
associated with the pointer P by
declaration), the references X, P -> X, and
Q -> X will be identical in effect.

The ADDR Built-in Function

The value returned by the ADDR built-in
function is a valid pointer value that
specifies the location of a data variable
named as the argument of the function
reference. For example:

P = ADDR (X);

Execution f this statement will give
the pointer variable P a value so that it
points to the location of the data variable
X. The value of an ADDR function reference
can be assigned to a locator variable only.

The argument can be a variable that
represents an element, an array, a
structure, an area, an element of an array,
a minor structure, or an element of a
structure. The value returned is always a
pointer value. Note that if a based
variable has not been allocated, its ADDR
is undefined; however, the ADDR value of an
unallocated controlled variable is null.

The ADDR of an element of an array or
structure returns a value that relates to
the address of the element. However, a
pointer qualifying a subscripted or
qualified variable is assumed to point to
the array or structure in which the element
is contained, not to the element itself.
For example:

DCL A (10,10) CHARACTER (20) BASED (P),
B CHARACTER (20) BASED (Q),
C (10,10) CHARACTER (20);

Given this declaration,if ADDR (C) is
assigned to P, then A (1,1) will refer to
the first element of C. If ADDR (C(2,3))
is assigned to Q, then B is effectively

overlaid on the third element in the second
row of C. (This technique, like the other
overlaying techniques made possible by the
use of based variables and pointers, is
extremely powerful; however, such
techniques should be used only with the
understanding that the compiler has no
means of recognizing incompatibilities
between the attributes of the based
variable and the attributes of the variable
being effectively overlaid.)

Since ADDR returns a single value only,
the elements of an array or structure
argument must occupy successive locations
in storage. For example:

DCL A(10,10);

For the array declared above, ADDR would
not be permitted for the cross-section
A(*,10), because each element in the
cross-section would belong to a different
row, and would be separated from its column
neighbor by other elements in its row.
ADDR would, however, be permitted for the
cross-section A(10,*); this cross-section
consists of one entire row whose elements
occupy successive locations in storage.

Note also that since the F Compiler
implementation of based storage does not
support bit addressing, the argument to the
ADDR built-in function must be aligned on a
byte (or higher) boundary. In the case of
bit strings belonging to unaligned arrays
and structures, therefore, ADDR should be
used only for the level 1 name or for minor
structures that are not composed entirely
of bit strings.

The NULL Built-in Function

The NULL built-in function requires no
arguments; it returns a null pointer value
(that is, a special pointer value that
cannot relate to any address in storage).
Its purpose is to provide a positive
indication that a pointer does not
currently identify any allocation of a
variable. Examples of its use include the
following:

1. If NULL is assigned to a pointer at
the start of a program, a later test
of the pointer against NULL will show
whether a based variable qualified by
the pointer has been allocated or not.

2. A terminal pointer in a chain can be
set to the value of NULL so that the
beginning or end of the chain can be
recognized.

184

Freeing Based Storage

The storage that has been associated with a
based variable by one of the allocation
methods described above can be freed
explicitly or, in certain cases,
implicitly, for possible re-use. Once the
storage for a based variable has been
freed, a reference to the associated
pointer becomes invalid.

THE FREE STATEMENT

The FREE statement, as applied to based
variables, has the following basic format:

FREE qualified-reference
(IN(area-variable)]
(,qualified-reference
(IN(area-variable)]]...;

where "qualified-reference" is defined as:

(pointer-variable ->] based-variable

This statement frees the storage
associated with one or more allocations of
one or wore specified based variables. The
allocations are identified by the current
values of the specified pointers. If a
pointer is omitted, it is assumed to be
that declared with the based variable
concerned.

IN (area-variable) must be specified if
the allocation was made within an area;
otherwise, it must be omitted. Areas are
discussed later in this chapter.

The amount of storage freed depends on
the attributes of the based variable,
including the current value of any
adjustable bound or length specification.
The programmer is responsible for ensuring
that the amount freed coincides with the
amount originally allocated. For example:

DECLARE 1 S BASED (P),
2 N,
2 X(M REFER (N));

M = 50;
ALLOCATE S;
/*X HAS 50 ELEMENTS AND THE VALUE OF N IS
SET TO 50*/

M = 80; /*THIS HAS NO EFFECT ON THE
CURRENT ALLOCATION OF S*/
F -> N = 10;
FREE S;

/*THIS IS IN ERROR BECAUSE STORAGE
EQUIVALENT TO 40 ELEMENTS OF X IS LEFT
UNFREED*/

Based storage allocated in a task cannot
be freed by a FREE statement in a
descendant task, unless it has been
allocated within an area belonging to the
descendant task (that is, an area that was
allocated in the descendant task).

It is an error to attempt to free based
variables that have not been allocated.

IMPLICIT FREEING

In certain circumstances, based storage is
freed without the use of an explicit FREE
statement, as follows:

1. Storage that has been allocated by the
LOCATE statement is freed after the
variable is written out.

2. Storage that has been effectively
allocated by a READ statement with the
SET option is freed by the next read
or close operation on the file.

3. All storage is freed at the end of the
task in which it was allocated, unless
it was allocated within an area
belonging to another task. (Storage
allocated within an area is freed on
termination of the task in which the
area was allocated.)

Areas and Offsets

Based variables can be allocated within an
area of storage that has been reserved by
allocation of an area variable. This has
the effect of grouping the data items
together so that they can be easily
transmitted or assigned as a single unit
while still retaining their individual
identities. The items stay in their
relative locations, which can be identified
by offsets from a pointer that identifies
the start of the area. This does not mean
that pointers cannot be used within areas;
however, offsets have the advantage of
remaining valid during area transmission
and assignment.

Offsets, like pointers, can be used to
build chains of data; however, they cannot
be used directly as based variable
qualifiers nor can they appear in a SET
option. Assignment from pointer to offset
implies conversion to offset; similarly,
assignment from offset to pointer implies

Chapter 14: Based Variables and List Processing 185

conversion to pointer. Hence, an offset
variable can be given a value by assigning
a pointer value to it; and, in order to use
an offset as a qualifier, its value is
assigned to a nonbased pointer.

AREA VARIABLES

The AREA attribute defines an area of
storage that is to be reserved for the
allocation of based variables. It has the
following general format:

AREA ((expression)]

The number of bytes of storage is
specified by the integral value of the
expression, if present; otherwise, an
implementation defined value of 1000 bytes
is assumed. This value is the size of the
area.

The implementation defined maximum size
of an area is 32,767 bytes.

The size of an area is the amount of
storage that is reserved by the area
allocation for the allocation of based
variables. The amount of the reserved
storage that is actually in use is known as
the extent of the area; it is defined as
the amount of storage between the start of
the reserved area and the end of that
unfreed allocation which is furthest from
the start of the area. In addition to the
declared size, the implementation requires
an extra 16 bytes of control information,
giving such details as the size, and the
length of the current extent. These 16
bytes are allocated immediately before the
start of the reserved area, and are added
to the area size to obtain the length of
the area (that is, the actual amount of
storage needed for the area allocation).
The distinction between area size and
length is important to the discussion of
area input/output later in this chapter.

Example:

DECLARE A STATIC AREA(2000),
B AREA,
C AREA (N);

This statement specifies that:

1. A is a static area variable reserving
2000 bytes of storage. (The size of
an area of static storage class, if
specified, must be specified as an
unsigned fixed decimal integer
constant.)

2. B is an automatic area variable
reserving 1000 bytes of storage.

3. C is an automatic area variable whose
size depends on the value of N current
at the time of entry to the block.

Rules and Restrictions

The following rules apply to area
variables:

1. Data of the area type cannot be
converted to any other data type; an
area can be assigned to an area
variable only.

2. No operators can be applied to area
variables.

3. Only the INITIAL CALL form of the
INITIAL attribute is allowed with area
variables.

4. When an area is allocated, it is
automatically given the EMPTY state
(see "The EMPTY Built-in Function" in
this chapter, for explanation of
EMPTY).

OFFSET VARIABLES

Declaration of an offset variable must be
explicit. The OFFSET attribute has the
following form:

OFFSET (variable)

The variable within the parentheses must
be an unsubscripted level 1 based area
variable.

The function of an offset variable is to
provide a locator value that points to the
location of a based variable relative to
the start of a based area. If the
containing area is transmitted or assigned,
the offsets will still point to the correct
locations of the components.

Example:

DECLARE A AREA BASED(P),
O OFFSET(A),

X BASED(Q);

This declaration specifies that A is a
based area variable, that the value of 0
will point to a location relative to the
start of A, and that X is a based variable.
If X were now allocated within A, the value
of its pointer could be assigned to 0 to
establish the location of X relative to the
start of A. If A and 0 were written out
and then read back in again, 0 would still

186

point to X relative to the start of A,
although the pointer for A itself would
have been reset.

Rules and Restrictions

The following rules apply to offset
variables:

1. Offset variables cannot be used to
qualify a based reference.

2. Assignment of an offset value can be
made only to a locator variable. When
an offset value is assigned to an
offset variable, the area variables
named in the OFFSET attributes are
ignored. A pointer value can be
assigned to an offset variable, with
implicit conversion.

3. Offset variables cannot be operands of
any operators except the comparison
operators = and ¬=. The value of an
offset variable can be compared with
that of any other locator variable, or
with a locator value returned by any
function.

4. Offset variables cannot be transmitted
using STREAM input/output.

5. Offset variables cannot appear in any
SET option.

ALLOCATION WITHIN AN AREA

Based variables are allocated within an
area by means of an ALLOCATE statement with
the IN option. This sets a pointer which
can be converted to offset by assignment to
an offset variable. For example:

The first ALLOCATE statement causes the
area A to be allocated, reserving 1000

bytes of storage for allocation of based
variables, and sets V.

The second ALLOCATE statement causes B
to be allocated within the area V -> A, and
sets P.

The third ALLOCATE statement causes
another allocation of B (different from P
-> B) to be made within the area V -> A,
and sets Q.

The assignment statement causes the
value of Q to be converted to offset
(relative to the pointer V) and assigned to
P -> O. Thus, the first allocation of the
structure B contains an offset value that
points to the second allocation of B. The
setting of offset values is discussed
below.

SETTING OFFSET VALUES

An offset variable can be given a value by
assignment only, since it cannot appear in
a SET option, nor is any implicit setting
possible. In the above example, P -> 0 was
given its value by assignment from Q.
Note, however, that the reference 0 ->
VALUE, for example, would be invalid, since
offsets cannot be used as qualifiers.

The NULLO Built-in Function

The NULLO built-in function is the offset
equivalent of the NULL built-in function as
used with pointers. It requires no
arguments, and returns a null value that
can be assigned to offset variables only.

Note: A null offset value cannot be
converted to a null pointer value, nor can
a null pointer value be converted to a null
offset value. Therefore, the value of the
NULLO built-in function cannot be assigned,
even indirectly, to a pointer variable; nor
can the value of the NULL built-in function
be assigned to an offset variable. For
example:

The second and fourth assignments in the
above example would be invalid. They could

Chapter 14: Based Variables and List Processing 187

be made valid by inserting IF statements,
such as the following:

AREA ASSIGNMENT AND INPUT/OUTPUT

The value of an area expression can be
assigned to one or more area variables by
an assignment statement. Area-to-area
assignment has the effect of freeing all
allocations in the target area and then
assigning the extent of the source area to
the target area, in such a way that all
allocations in the source area maintain
their locations relative to each other;
that is, any gaps left by freeing
operations in the source area are
maintained during the assignment (such a
gap might have been left, for example, if
the second of three contiguous allocations
had been freed; if the gaps were
automatically closed up, some offset values
might lose their meaning).

If a source area containing no
allocations is assigned to a target area,
the effect is merely to free all
allocations in the target area.

A possible use for area assignment is to
allow for expansion of a list of based
variables beyond the bounds of its original
area. When an attempt is made to allocate
a based variable within an area that
contains insufficient free storage to
accommodate it, the AREA condition is
raised (see below). The on-unit for this
condition could be to change the value of a
pointer qualifying the reference to the
inadequate area, so that it pointed to a
different area; on return from the on-unit,
the allocation would be attempted again,
within the new area. Alternatively, the
on-unit could write out the area and reset
it to EMPTY.

The EMPTY Built-in Function

The EMPTY built-in function requires no
arguments and returns an area of zero size
and extent. The effect is to free all
allocations in the target area.

Example:

The AREA ON-Condition

The AREA condition is raised in any of the
following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
contains insufficient storage to
accommodate the extent of the source
area.

3. When a SIGNAL AREA statement is
executed.

The ONCODE built-in function can be used
to determine whether the condition was
raised by an allocation, an assignment, or
a SIGNAL statement.

On normal return from the on-unit, the
action is as follows:

1. If the condition was raised by an
allocation, 	the allocation is re-
attempted. If the on-unit has changed
the value of a pointer qualifying the
reference to the inadequate area so
that it points to another area, the
allocation is attempted within the
new area. Note that if the on-unit
does not effectively correct the
fault, a loop may result.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interrupt.

If no on-unit is specified, the system
will comment and raise the ERROR condition.

Input and Output

The area facility is designed to allow easy
input and output of complete lists of based
variables as one unit, to and from RECORD
files. The control information is
transmitted with the area. Consequently,

188

the record length required is governed by
the area length (i.e., area size + 16): the
RECORD condition is raised if the length of
an area named in the INTO option of a READ
statement, or in the FROM option of a WRITE
statement, differs from the relevant record
length. Note that even though the RECORD
condition is raised, incorrect control
information will be transmitted; when an
area is written out, it must not be read
back into an area of different size.

In the case of READ with SET, the length
of the input area in the buffer is equal to
the length of the area used to create the
record.

AREA AND OFFSET DEFINING

An offset can be defined on an offset,
using overlay or correspondence defining.
In the declarations of the defined offset
and the base offset, the variables named in
the two OFFSET attributes need not be the
same.

Similarly, an area can be defined on an
area, using overlay or correspondence
defining. The base area must have a size
equal to that of the defined area.

Communication Between Procedures

Similarly to variables of other data types,
locator and area variables in one procedure
can be related to those in another
procedure by means of arguments and
parameters, and the general rules are as
described in Chapter 12, "Subroutines and
Functions." There are necessarily some
restrictions, which will be explained in
the following discussion; but a general
rule is that where it is possible to assign
the value of one variable to another
variable, it is also possible to relate the
two variables by an argument and a
parameter.

ARGUMENTS AND PARAMETERS

A locator argument of either pointer or
offset type can be passed to a locator
parameter only. The parameter can be of
either type, but if the argument type
differs from the parameter type, a dummy
argument is created by the compiler, and a
change in the value of the parameter will
not be reflected in the value of the
original argument.

Pointer to Pointer

No conversion is necessary when a pointer
argument is passed to a pointer parameter;
normally, therefore, no dummy argument is
created, and a change in the value of the
parameter will be reflected in the value of
the argument. Note, however, that this
reflected change could be avoided, if
necessary, by passing the argument as an
expression in parentheses: this causes a
dummy argument to be created. For example:

In this example, a change in the value
of S will be reflected in the value of Q,
but a change in the value of R will have no
effect on P.

Offset to Pointer

Passing an offset argument to a pointer
parameter implies conversion to a dummy
pointer argument, which is then passed to
the entry point. The entry must be
declared with the POINTER attribute in the
parameter attribute list. For example:

In this example, the values of P and 0
are used to obtain the value of the dummy
pointer argument to be passed to PROC4.

Chapter 14: Based Variables and List Processing 189

Offset to Offset

When an offset argument is passed to an
offset parameter, variables named in the
OFFSET attribute of the offset declarations
are ignored, just as they are ignored for
offset assignment; if they differ, the fact
that they differ does not imply conversion
to a dummy argument. For example:

In this example, OA would be passed
directly to OB.

Pointer to Offset

Passing a pointer argument to an offset
parameter implies conversion to a dummy
offset argument, which is then passed to
the entry point. The entry must be
declared with the OFFSET attribute in the
parameter attribute list, and the two
OFFSET attribute specifications must name

In this example, the values of P and Q
are used to obtain the value of the dummy
offset argument to be passed to PROC8.

The variable following the keyword
OFFSET is not considered during selection
of a generic entry point.

Area to Area

An area argument can be passed only to an
area parameter. If the size of the
argument differs from the size appearing in
the parameter attribute list of the
relevant entry declaration, the argument is
first assigned to a dummy area argument
with the size specified in the entry
declaration; the dummy argument is then
passed to the entry point.

The size of an area argument is not
considered during selection of a generic
entry point.

RETURNS FROM ENTRY POINTS

An entry point can return a locator value
or an area; hence, the PROCEDURE and ENTRY
statements and the RETURNS attribute may
specify the POINTER, OFFSET, or AREA
attributes.

Locator Returns

Either type of locator variable can appear
in a RETURN statement in a procedure that
returns a locator value. If the procedure
is to return an offset value but the RETURN
statement specifies a pointer, there is
implicit conversion to offset, and vice
versa. For example:

The values of 0 and P are used to obtain
the pointer value to be returned.

The values of Q and R are used to obtain
the offset value to be returned. Note that
the OFFSET attribute is specified in the
PROCEDURE statement complete with the name
of the relevant area variable; the keyword
OFFSET alone is not sufficient.

190

Similarly, a locator value returned by a
function may undergo implicit conversion.
For example:

The value of P and the value returned by
0 are used to obtain the pointer value to
be assigned to Q.

Area Returns

If a return statement identifies an area
that has an extent different from that
specified in the relevant PROCEDURE or
ENTRY statement, assignment is made to a
dummy area with the correct extent, thus
effectively performing a conversion.

VARIABLE LENGTH PARAMETER LISTS

In PL/I, a procedure can have only a fixed
number of parameters, all of which must be
specified. However, by passing an array of
pointers as a single argument, it is
possible to simulate a variable length
parameter list, since the array can have
adjustable bounds.

The following procedure sorts a variable
number of based character-string variables
according to their values in relation to
the collating sequence. The pointers
qualifying these based variables are passed
as an array argument to the procedure.

Assume that the calling procedure
contains an array of pointers, KEYPOINTS,
with one dimension, which is named as an
argument in the CALL statement, and whose
elements each point to a based
character-string variable.

After execution of this procedure, the
elements of KEYPOINTS will have been
rearranged so that the first element points
to the based variable with the lowest value
according to the collating sequence, the
second element points to the based variable
with the next lowest value, and so on.
Thus, the based variables will have been
logically sorted without changing the
physical order of the data.

Examples of List Processing Technique

The following examples illustrate the use
of based storage, locator variables, and
areas, for list processing and
input/output.

Chapter 14: Based Variables and List Processing 191

Figure 14-1. Example of Two-Directional Chain

Example 1

This procedure builds a two-directional
chain through items that are allocated in
the calling procedure and identified in
turn by passing a pointer parameter. Each
item consists of an allocation of a basic
structure that contains two pointers and a
data value (in this case, a character
string). One pointer identifies the
preceding item, and the other identifies
the following item. The ends of the chain
are recognized by a null value for a
contained pointer (for example, the
backwards pointer in the first item is
null). The locations of the ends of the
chain are identified by a head pointer and
a tail pointer. Figure 14-1 shows a
diagrammatic representation of the chain.

/*EXAMPLE 1*/
BUILD_CHAIN: PROCEDURE(ELEMPTR);

DECLARE
1 ELEMENT BASED(ELEMPTR),

2 BACK_CHAIN POINTER,
2 FWD_CHAIN POINTER,
2 DATA CHARACTER(50),

ELEMPTR POINTER,
(HEAD, TAIL) POINTER STATIC EXTERNAL;

/*ASSUME THAT HEAD AND TAIL ARE
INITIALLY ASSIGNED THE VALUE OF THE
NULL BUILT-IN FUNCTION IN THE PROCEDURE
THAT CALLS BUILD_CHAIN*/

IF HEAD=NULL
THEN /*FIRST ELEMENT*/

HEAD=ELEMPTR; /*SET HEAD POINTER*/

ELSE /*NOT FIRST ELEMENT*/
TAIL->FWD_CHAIN=ELEMPTR;
/*UPDATE FWD CHAIN*/

192

BACK_CHAIN=TAIL;
/*UPDATE BACK CHAIN*/

TAIL=ELEMPTR; /*UPDATE TAIL POINTER*/

FWD CHAIN=NULL; /*SET END INDICATOR OF
FWD-CHAIN*/
END BUILD CHAIN;

Note that the parameter ELEMPTR may
identify a nonbased structure, provided
that this structure has the same
structuring and attributes as ELEMENT.

Example 2

This procedure deletes an item from the
chain created by the procedure in example
1. The item to be deleted is identified by
a pointer parameter.

/* EXAMPLE 2 */
ALTER_CHAIN: PROCEDURE(ELEMPTR);

DECLARE
1 FLEMENT BASED(ELEMPTR),

2 BACK_CHAIN POINTER,
2 FWD_CHAIN POINTER,
2 DATA CHARACTER(50),

ELEMPTR POINTER,
(HEAD, TAIL) POINTER STATIC EXTERNAL,
(PRED, SUCC) POINTER STATIC;

/*SET POINTERS TO PREDECESSOR AND
SUCCESSOR OF ELEMENT BEING DELETED.
PRED AND SUCC ARE USED BECAUSE
BACK_CHAIN AND FWD_CHAIN, BEING BASED,
CANNOT BE USED AS QUALIFIERS*/

PRED=BACK_CHAIN;
SUCC=FWDCHAIN;

/*UPDATE FORWARD CHAIN*/
IF PRED=NULL

THEN HEAD=SUCC; /*DELETE HEAD*/
ELSE PRED->FWD_CHAIN=SUCC;

/*UPDATE BACKWARD CHAIN*/
IF SUCC=NULL

THEN TAIL=PRED; /*DELETE TAIL*/
ELSE SUCC->BACK_CHAIN=PRED;

END ALTER_CHAIN;

Example 3

This procedure builds a sequential list
through several allocations of an area
variable. Within each area allocation, the
procedure builds a chain of structure
allocations, each of which contains an
offset identifying the following item in
the chain, a character string value, and a
value (passed from the calling procedure)
indicating the length of the string. The
location of the first item in the chain is
indicated by an offset attached to the
area. This offset is part of a structure
containing the first offset and the area;
consequently, the area is a level 2

variable. Since a level 2 variable cannot
be named in the OFFSET attribute, a dummy
level 1 area variable is effectively
overlaid on the level 2 area, and this
dummy is named in the OFFSET attributes.

The procedure sets pointers to the start
of the area and to each item in the area.
These pointers are external, and are
therefore known to the calling procedure.

Each area allocation is in output buffer
space, and when filled, is written onto a
data set, using locate-mode output. This
output process is controlled by an on-unit
for the AREA condition. The items in the
area are chained by offsets to ensure that
the chain is not invalidated by
input/output operations on the list. It is
assumed that the output file is opened and
closed by the calling procedure.

/*EXAMPLE 3*/
BUILD_LIST: PROCEDURE(N);

DECLARE
N FIXED BINARY,
1 LIST BASED(LISTPTR),

2 FIRST OFFSET(DUMMY);
2 BODY AREA,

1 ELEM BASED(ELEMPTR);
2 CHAIN OFFSET(DUMMY),
2 STRING,

3 LENGTH FIXED BINARY,
3 DATA CHARACTER(N REFER
(LENGTH)),

(ELEMPTR, LISTPTR) POINTER STATIC
EXTERNAL, /*THESE POINTERS ARE
INITIALIZED TO NULL BY THE CALLING
PROCEDURE*/
LFILE FILE RECORD SEQUENTIAL
EXTERNAL,
LASTELEM POINTER STATIC,
DUMMY AREA BASED(DPTR);

ON AREA
BEGIN; /*ALLOCATE OUTPUT BUFFER

SPACE*/
LOCATE LIST FILE(LFILE) SET
(LISTPTR);
DPTR=ADDR(BODY);
LASTELEM=NULL; /*INDICATES NEW
AREA*/
END;

IF LISTPTR=NULL
THEN SIGNAL AREA; /*CREATE FIRST AREA*/
ALLOCATE ELEM IN (BODY); /*ELEMPTR IS
SET AUTOMATICALLY*/
IF LASTELEM=NULL /*SET FORWARD CHAIN*/
THEN FIRST=ELEMPTR; /*FIRST FLEMENT
OF AREA*/
ELSE LASTELEM->CHAIN=ELEMPTR; /*OTHER
ELEMENTS*/

CHAIN=NULLO; /*SET END-OF-CHAIN
INDICATOR*/
LASTELEM=ELEMPTR; /*SAVE POINTER TO NEW
ELEMENT*/

END BUILD_LIST;

Chapter 14: Based Variables and List Processing 193

Note that LFILE in examples 3 and 4
should have a record length of 1020 to
accommodate the records created by
allocations of the structure LIST. This is
made up of 1000 bytes (default size for an
area) plus 16 bytes of area control
information, plus 4 bytes for the offset
variable FIRST.

Example 4

This procedure sequentially retrieves
the list items created by the procedure in
example 3. The procedure sets a pointer to
the next item in the list, or if the item
has been retrieved, sets the pointer to
null.

/*EXAMPLE 4*/
GET_ELEMENT: PROCEDURE;
/*ASSUME THE SAME DECLARATIONS AS IN
EXAMPLE 3, AND ASSUME THAT LISTPTR IS
INITIALIZED TO NULL BY THE CALLING
PROCEDURE*/

ON ENDFILE(LFILE)
BEGIN;

ELEMPTR=NULL; /*ALL ELEMENTS
RETRIEVED*/
CLOSE FILE(LFILE);
GO TO EXIT;

END;

IF LISTPTR=NULL /*FIRST ELEMENT TEST*/
THEN DO;

OPEN FILE(LFILE);
GO TO READ_AREA;

END;

IF LASTELEM->CHAIN=NULLO /*END-OF-AREA
TEST*/
THEN READ_AREA: /*READ RECORD INTO
BUFFER*/

DO;
READ FILE(LFILE) SET (LISTPTR);
DPTR=ADDR(BODY);
ELEMPTR=FIRST; /*SET PTR TO FIRST
ELEMENT*/
END;

ELSE ELEMPTR=LASTELEM->CHAIN; /*SET
POINTER TO FOLLOWING ELEMENT*/
LASTELEM=ELEMPTR; /*SAVE POINTER TO NEW

ELEMENT*/
EXIT: END GET_ELEMENT;

194

Chapter 15: Multitasking

The use of a computing system to execute a
number of operations concurrently is
broadly termed multiprogramming. The PL/I
programmer can make use of the
multiprogramming capability of the system
by means of the multitasking facilities
described in this chapter.

Introduction

A PL/I program is a set of one or more
procedures, each of which consists of a set
of PL/I statements. The execution of these
statements constitutes one or more tasks,
each of which can be identified by a
different task name. A task is dynamic; it
exists only while the program is being
executed. This distinction between the
program and its execution is essential to
the discussion of multitasking. One set of
statements could be executed several times
in different tasks.

When the multitasking facilities are not
used, the execution of a program
constitutes a single task, with a single
flow of control; when a procedure invokes
another procedure, control is passed to the
invoked procedure, and execution of the
invoking procedure is suspended until the
invoked procedure passes control back to
it. This serial type of operation is said
to be synchronous; when the programmer is
concerned only with synchronous operations,
the distinction between program and task is
relatively unimportant.

With multitasking, the invoking
procedure does not relinquish control to
the invoked procedure. Instead, an
additional flow of control is established,
so that both procedures can be executed (in
effect) concurrently. This process is
known as attaching a task. The attached
task is a subtask of the attaching task.
Any task can attach a number of subtasks.
The task that has control at the outset is
called the major task. This parallel type
of operation is said to be asynchronous.

The diagram shown in Figure 15-1
illustrates the difference between
synchronous and asynchronous operations.
The arrowed lines represent the control
flows. Procedures A and B are executed
synchronously; C and D are executed
asynchronously.

When several procedures are executed as
asynchronous tasks, individual statements
are not necessarily executed simultaneously
by different tasks; whether this occurs
depends on the state and resources of the
system. Hence, at any given time, it may
be necessary for the system to select its
next action from a number of different
tasks. Each task has a priority value
associated with it, which governs this
selection process. The programmer can
control the priority of the task, within
limits, if he wishes to do so; otherwise,
the priority value is set automatically.

Figure 15-1. Synchronous and Asynchronous
Operation

It may be that one task is to run
independently of other concurrent tasks for
some time, but then become dependent on
some other task (for example, one task may
require the result of another task before
it can be completed). To allow for this,
provision has been made for one task to
await the completion of an operation at any
stage of another task before carrying on.
This process is known as task
synchronization. Information about the
state of an operation can be held by an
event variable, to which an event name
refers. By specifying an event name in a

Chapter 15: Multitasking 195

WAIT statement, the programmer can cause
the task to wait for completion of the
associated operation before proceeding.

The programmer can apply the EVENT
option to tasks and certain input/output
operations, in which case the value of the
event variable is set automatically as a
result of the operation concerned; or he
can set the value explicitly.

The EVENT option allows an input/output
operation to proceed asynchronously with
the task that initiated it; at any time
subsequent to the initiation of the
input/output operation, the task can await
its completion. For example, a task can
display a message to the operator and,
instead of waiting for a reply, can
immediately proceed, pausing later to deal
with the reply.

In general, the rules associated with
the synchronous invocation of procedures
apply equally to the asynchronous
attachment of tasks. For example, on-units
established prior to attachment of a
subtask are inherited by the subtask, just
as if the initial block of the subtask had
been synchronously invoked. However,
asynchronous operation introduces some
extra considerations, such as the fact that
a number of concurrent tasks can
independently refer to one variable. This
necessitates some extra rules, which are
described in this chapter.

Multitasking also requires some extra
rules and provisions for input/output. For
example, without special provision, there
would be nothing to prevent one task from
operating on a record in a DIRECT UPDATE
file while another task was operating on
the same record; to cope with this, the
EXCLUSIVE file attribute is provided.

Tasks can be terminated in a number of
different ways. Normal termination occurs
when control for the task reaches a RETURN
or END statement. The EXIT statement
specifies abnormal termination of the task
and its subtasks, while the STOP statement
specifies abnormal termination of the major
task (even if STOP is executed in a
subtask). When a task is terminated, any
of its subtasks that are still active are
abnormally terminated.

Multitasking may allow the central
processing unit and input/output channels
to be used more efficiently, by reducing
the amount of waiting time. It does not
necessarily follow that an asynchronous
program will be more efficient than an
equivalent synchronous program (although it
may be easier to write). It depends on the
amount of overlap possible between
operations with varying amounts of

input/output; if the overlap is slight,
multitasking could be the less efficient
method, because of the increased system
overheads.

Specifying Use of Multitasking Facilities

When multitasking is to be used, the
keyword TASK must be specified in the
options list of the PROCEDURE statement for
the external procedure. OPTIONS(TASK)
cannot be specified for internal
procedures; these are called as tasks by
use of one or more of the multitasking
options on the invoking CALL statement, as
explained below.

Creation of Tasks

The programmer specifies the creation of an
individual task by using one or more of the
multitasking options with a CALL statement.
Once a procedure has been activated by
execution of such a CALL statement, all
blocks synchronously activated as a result
of its execution become part of the created
task, and all tasks attached as a result of
its execution become subtasks of the
created task. The created task itself is a
subtask of the task executing the CALL
statement. All programmer-created tasks
are subtasks of the major task.

THE CALL STATEMENT

The CALL statement for asynchronous
operation has the same form as that for
synchronous operation, except for the
addition of one (or any combination) of the
multitasking options, TASK, EVENT, or
PRIORITY. These options, in addition to
their individual meanings (listed below),
all specify that the invoked procedure is
to be executed concurrently with the
invoking procedure.

The CALL statement for asynchronous
operation can specify arguments to be
passed to the invoked procedure, just as it
could if the operation were to be
synchronous.

196

The TASK Option

The TASK option has the following format:

TASK [(element-task-name)]

The task name can be subscripted and/or
qualified. Without the task name, the
option merely specifies asynchronous
operation. If the task is to have a name,
the option must appear complete with the
task name, which is thus contextually
declared to have the TASK attribute, unless
an explicit declaration exists. This is
the only way in which a task can acquire a
name. (Explicit declaration of a task
variable does not associate the task name
with any task.) The name can be used to
control the priority of the task at some
other point, by means of the PRIORITY
pseudo-variable and built-in function. The
task name has no other use to the PL/I
programmer.

The EVENT Option

The EVENT option has the following format:

EVENT (element-event-name)

The event name can be subscripted and/or
qualified. When this option is used, the
event name is contextually declared to have
the EVENT attribute (unless an explicit
declaration exists) and is associated with
the completion of the task created by the
CALL statement. Another task can then be
made to wait for completion of this task by
specifying the event name in a WAIT
statement of the other task.

An event variable has two separate
values: a completion value that indicates
whether or not the event is complete, and a
status value that indicates whether the
event has been abnormally completed. The
completion value is a single bit, and the
status value is a fixed binary number of
default precision ((15,0) for the F
Compiler). When the CALL statement is
executed, the completion value of the event
variable is set to '0 ' B (for "incomplete")
and the status value to zero (for "not
abnormally completed"). On termination of
the created task, the completion value is
set to '1'B, and, in the case of abnormal
termination, the status value is set to 1
(if it is still zero).

The EVENT option can also be specified
on the READ, WRITE, REWRITE, and DELETE
statements, and on the DISPLAY statement
with the REPLY option (see Chapter 10,
"Record-Oriented Transmission"). In these

cases, it allows other processing to
continue while the input/output operation
is being executed.

The PRIORITY Option

When a number of tasks simultaneously
require attention, a choice has to be made
by the system. Under the operating system,
this choice is based on the relative
importance of the various tasks: a task
that has a higher priority value than the
others will receive attention first. Note
that tasks other than those executing the
user's program may require attention from
the system, and may have a higher priority
than any of the user's tasks.

The PRIORITY option has the following
format:

PRIORITY (expression)

If this option appears in the CALL
statement, the expression is evaluated to a
binary integer m, of precision (n,0), where
n is implementation-defined (15 for the F
Compiler). The priority of the created
task is then made m relative to the task
executing the CALL statement. With the F
Compiler the lowest absolute priority
possible is 0; the highest absolute
priority possible is 234. (See "Priority
of Tasks," in this chapter.)

If the option does not appear, the
priority of the attached task is equated to
that of the task variable named in the TASK
option, if any, or else equated to the
priority of the attaching task.

Examples

1. CALL PROCA TASK(T1);

2. CALL PROCA TASK(T2) EVENT(ET2);

3. CALL PROCA TASK(T3) EVENT(ET3)
PRIORITY(-2);

4. CALL PROCA PRIORITY(1);

The CALL statements in the above
examples create four different tasks that
execute one procedure, PROCA. In example
3, the subtask T3 has a lower priority than
the attaching task, while in example 4, the
unnamed subtask has a higher priority than
the attaching task.

Chapter 15: Multitasking 197

Priority of Tasks

A priority specified in a PL/I source
program is a relative value; the actual
value depends on factors outside the source
program.

Under the IBM System/360 Operating
System, the priority associated with each
job step is provided by the programmer,
using the PRTY parameter in the JOB
statement, or the DPRTY parameter of the
EXEC statement. This priority can have any
number from 0 through 14: the higher the
number, the higher the priority. The
priority of the major task of the PL/I
program when it is first entered is given
by

Priority= (16*(job step priority))+10

This is the maximum priority for the
program; that is, the highest priority that
any task of the PL/I program can have. If
an attempt is made to create a subtask with
a higher priority than the maximum
priority, the subtask will be executed at
the maximum priority. Priority can be
reduced to zero, but not below (a priority
of less
than zero will be treated as zero
priority).

These conventions must be interpreted
carefully when the PRIORITY built-in
function or pseudo-variable is used. The
effect of the statement

PRIORITY(T)=N;

is to set the priority of the task T equal
to the priority of the current task plus
the integral value of the expression N. If
the priority thus calculated would be
higher than the maximum priority or less
than zero, the implementation ensures that
the priority is set to the maximum, or
zero, respectively.

The PRIORITY built-in function returns
the relative priority of the named task
(that is, the difference between the actual
priority of the named task and the actual
priority of the current task). Consider a
task, T1, that attaches a subtask, T2, that
itself attaches a subtask, T3. If task T2
executes the sequence of statements

PRIORITY(T3)=3;
X=PRIORITY(T3);

X will not necessarily have the value 3.
If, for example, task T2 had an actual
priority of 24, and the maximum priority
were 26, then execution of the first
statement would result in task T3 having a
priority of 26, not 27. Relative to task

T2, task T3 would have a priority of 2;
hence, after execution of the second
statement, X would have a value of 2.

Between execution of the two statements,
control could pass to task T1, which could
change the priority of task T2, in which
case the value of X would depend on the new
priority. For example, given the same
original priorities as before, task T3
would have a priority of 26 after execution
of the first statement. If the priority of
task T2 were now changed to 20 by its
attaching task, T1, execution of the second
statement would result in X having a value
of 6.

Coordination and Synchronization of Tasks

The rules for scope of names apply to
blocks in the same way whether or not they
are invoked as, or by, subtasks; thus, data
and files can be shared between
asynchronously executing tasks. Hence, a
high degree of cooperation is possible
between tasks, but this necessitates some
coordination. Certain additional rules are
introduced to deal with sharing of data and
files between tasks, and the WAIT statement
is provided to allow task synchronization.

SHARING DATA BETWEEN TASKS

It is the programmer's responsibility to
ensure that two references to the same
variable cannot be in effect at one
instant. He can do so by including an
appropriate WAIT statement at a suitable
point in his source program to force
temporary synchronization of the tasks
involved. Subject to this qualification,
and the normal rules of scope, the
following additional rules apply:

1. Static variables can be referred to in
any task in which they are known.

2. Regardless of task boundaries, an
automatic variable can be referred to
in any block in which it is known, or
to which it is passed as an argument,
or in which it is referred to using an
appropriate based variable. (Note
that unless a dummy argument is
created, the value of an argument can
change at any time; the current value
is used when any reference is made by
any task.)

3. Controlled variables can be referred
to in any task in which they are
known. However, not all allocations

198

are known in each task. When a task
is initiated, only the latest
allocation, if any, of each controlled
variable is known to the attached
task. Both tasks may refer to this
allocation. Subsequent allocations in
the attached task are known only
within the attached task; subsequent
allocations within the attaching task
are known only within the attaching
task. A task can free only its own
allocations; an attempt to free
allocations made by another task will
have no effect. No allocations of the
controlled variable need exist at the
time of attaching. It is not
permissible for a task to free a
controlled allocation shared with a
subtask if the subtask will later
refer to the allocation. When a task
is terminated, all allocations of
controlled storage made within that
task are freed.

4. Based variables allocated within an
area are freed when the area is freed;
unless contained in an area allocated
by another task, all based variable
allocations (including areas) are
freed on termination of the task that
allocated them.

5. Any allocation of any variable of any
storage class can be referred to in
any task by means of an appropriate
based variable reference. The
programmer must ensure that the
required variable has been allocated
at the time of reference.

1. If a subtask shares a file with its
attaching task, the subtask must not
close the file. A subtask must not
access a shared file after its
attaching task has closed the file,
even if the attaching task reopens the
file beforehand.

2. If a task shares a file with one of
its subtasks, it may close the shared
file, provided that the subtask will
make no subsequent attempt to access
the file.

If a file name is known to a task and
its subtask, and the associated file was
not open when the subtask was attached,
then the file is not shared; the effect is
as if the task and its subtask were
separate tasks to which the file name were
known. That is, each task may separately
open, access, and close the file. 'This
type of operation is guaranteed only for
files that are DIRECT in both tasks. Note
that if one task opens a file, no ether
task can provide the correspondin g close
operation.

It is possible for two or more tasks to
operate simultaneously on the same record
in a DIRECT UPDATE file; this can be
avoided by use of the EXCLUSIVE file
attribute.

The EXCLUSIVE Attribute

SHARING FILES BETWEEN TASKS

A file is shared between a task and its
subtask if the file is open at the time the
subtask is attached. The rules concerning
such shared files are given below, first as
applied to the subtask, and then as applied
to the attaching task.

When access to a record is restricted to
one task, the record is said to be locked
by that task. The EXCLUSIVE attribute,
which can be specified for DIRECT UPDATE
files only, provides a temporary locking
mechanism to prevent one task from
interfering with an operation by another
task. Figure 15-2 shows the effects of
various operations on an EXCLUSIVE file.

Chapter 15: Multitasking 199

Unlocked

Proceed

Current State of Addressed Record
	 -T

1 Locked by this task !Locked by another task

Proceed 	 1 	Wait for unlock

1 	Proceed 	 1 	Wait for unlock
1

11. Proceed 	 1 	Wait for unlock
12. Unlock' record 	1

1 	 1

V 	
UNLOCK 	 No effect 	 1 	Unlock record 	1 	No effect

V 	
Unlock all locked records, and proceed with closing operation

1 Terminate Task |Unlock all records locked by task. Close file, if opened in this task

'The unlocking occurs at the end of the operation, on normal return from any on-units
entered because of the operation (that is, at the corresponding WAIT statement when
the EVENT option has been specified). If an abnormal return is made from such an
on-unit, it is the programmer's responsibility to ensure that the record is unlocked.
If the EVENT option has been specified with a READ statement, the operation is not
completed until the corresponding WAIT statement is reached; in the meantime, no
attempt to delete or rewrite the record should be made.

I 	
Figure 15-2. Effect of Operations on EXCLUSIVE Files

| 	Attempted
1
| 	Operation

1 READ NOLOCK

1 READ 	 11. Lock record
1 	 12. Proceed

1 DELETE/REWRITE 11. Lock record
1 	 12. Proceed
1 	 13. Unlock' record

1 CLOSE FILE

THE WAIT STATEMENT

The WAIT statement has the following
format:

WAIT (event-name [,event-name]...)
[(element-expression)];

Full details of the WAIT statement are
given in Part II, Section J, "Statements";
the following is a shorter description,
providing background to the present
discussion.

The WAIT statement specifies that the
task executing it will go into a waiting
state (that is, execution f the WAIT
statement will be extended) until such time
as some or all of the named events have
been completed. An event is complete when
its completion value is '1'B. Note that
the WAIT statement must specify event
names, not task names.

The number of events to be awaited is
given by the integral value of the
expression, if present; otherwise all the
named events have to be complete before the
task can continue.

An event variable named in the list may
be associated with an input/output
operation that has been initiated by the
task executing the WAIT statement. In this
case, execution of the WAIT statement has
the following effect:

1. If transmission ends (or has ended)
normally, the event variable is set
complete.

2. If the transmission ends (or has
ended) requiring input/output
conditions to be raised, the event
variable is set abnormal (i.e., its
status value is set to 1) and all the
required conditions are raised. The
event variable is set complete on
return from the last on-unit. The
order in which conditions are raised
does not depend on the order in which
the event names appear in the list.

If an abnormal return is made from an
on-unit entered from the WAIT operation,
the associated event variable is set
complete, the WAIT operation is terminated,
and control for the task passes to the
point specified by the abnormal return.

Example

P1: PROCEDURE;
•

CALL P2 EVENT(EP2);
CALL P3 EVENT(EP3);
WAIT (EP2, EP3) (1);

END P1;

200

In this example, the task executing P1 will
proceed until it reaches the WAIT
statement; it will then await the
completion of either the task executing P2,
or that executing P3, before continuing.

TESTING AND SETTING EVENT VARIABLES

The two values, completion and status, of
an event variable can be retrieved by the
built-in functions COMPLETION and STATUS.

The COMPLETION function returns the
current completion value of the event
variable named in the argument. This value
is '0'B if the event is incomplete, or '1'B
if the event is complete.

The STATUS function returns the current
status value of the event variable named in
the argument. This value is nonzero if the
event variable has been set abnormal, or 0
if it is normal.

These two built-in functions can also be
used as pseudo-variables; thus, either of
the two values of an event variable can be
set independently. Alternatively, it is
possible to assign the composite value of
one event variable to another by specifying
the event variables in an assignment
statement. Thus, the setting of an event
variable can be controlled by the
programmer. By this means, he can mark the
stages of a task; and, by using a WAIT
statement in one task and an event
assignment (from the COMPLETION built-in
function or another event variable) in
another task, he can synchronize any stage
of one task with any stage of another.

The programmer should not attempt to
assign a completion value to an event
variable currently associated with an
entire task or with an input/output event.
An input/output event is never complete
until the associated WAIT statement is
executed.

Other ways in which an event variable
can be set have already been discussed
(such as specifying the event name in the
EVENT option of a CALL statement). Full
details of event variables will be found
under "The EVENT Attribute" in Part II,
Section I, *Attributes." See also "The
EVENT Option," in Chapter 10,
"Record-Oriented Transmission."

Note

When tasks are being synchronized, the
following points should be kept in mind:

1. Under the operating system, an event

must not be waited for by two or more
different tasks.

2. With the F Compiler, an input/output
event can be awaited only by the task
that initiated it.

3. The following example shows one way in
which two tasks, T1 and T2, could
enter an infinite waiting state:

Task T1 	 Task T2 (Event E2)

COMPLETION(EV)='0'B;

WAIT (E2);
WAIT (EV);

COMPLETION(EV)='1'B; .
RETURN;

THE DELAY STATEMENT

The DELAY statement (see Part II,
Section J, "Statements") allows a task to
wait for a specified period, without
reference to an event variable.

Termination of Tasks

A task is terminated by the occurrence of
one of the following:

1. Control for the task reaches a RETURN
or END statement for the initial
procedure of the task.

2. Control for the task reaches an EXIT
statement.

3. Control for the task, or for any other
task, reaches a STOP statement.

4. The block in which the task was
attached is terminated (either
normally or abnormally).

5. The attaching task itself is
terminated.

Termination is normal only if item (1) of
the above list applies. In all other
cases, termination is abnormal.

To avoid unintentional abnormal
termination of a subtask, an attaching task
should always wait for completion of the
subtask before the task itself is allowed
to be terminated.

Chapter 15: Multitasking 201

When a task is terminated, the following Programming Example
actions are performed:

1. All input/output events that have been
initiated in the task and are not yet
complete are set complete, and their
status values are set to 1; the
results of the input/output operations
are not defined.

2. All files that have been opened during
the task and have not yet been closed
are closed; all input/output
conditions are disabled while this
action is taking place.

3. All allocations of controlled
variables made by the task are freed.

4. All allocations of based variables
made by the task are freed, except
those it has allocated within an area
allocated by another task (these are
freed when the area is freed).

5. All active blocks (including all
active subtasks) in the task are
terminated.

6 If the EVENT option was specified when
the task was attached, the completion
value of the associated event variable
is set to '1'B. If the status value
is still zero, and termination is
abnormal, the status value is set to
1. Note, however, that termination of
a subtask that has active subtasks has
no effect on the completion values of
event variables associated with these
active subtasks.

7. All records locked by the task are
unlocked.

Note: If a task is terminated while it is
assigning a value to a variable, the value
of the variable is undefined after
termination. Similarly, if a task is
terminated while it is creating or updating
an OUTPUT or UPDATE file, the effect on the
associated data set is undefined after
termination. It is the responsibility of
the programmer to ensure that assignment
and transmission are properly completed
before termination of the task performing
these operations.

This example shows an application of
multitasking to a banking system. The
program is divided into a batch section and
a real-time section. Each section
constitutes a subtask of the major task;
each subtask has other subtasks attached to
it that perform the various data processing
routines necessary in each section. The
use of several subtasks increases the
program efficiency by permitting overlap
between the input/output operations and the
operations performed by the central
processing unit.

The batch section of the program
processes batches of cards that contain
account information (such as cheques
cashed, deposits made, or loan account
details) and, after a certain number of
transactions, produces a statement.

The real-time section of the program
provides a means of communication between
itself and the operator, using the DISPLAY
statement with the REPLY option. This
facility permits the user to issue commands
to the program through the operator's
console. These commands can:

1. Cause management or credit
information, bank statements, or
similar information to be made
immediately available.

2. Initiate or terminate processing.
Thus the user can initiate the
processing of card batches, terminate
a section of processing, terminate the
entire program, or reply to a call for
clarification of mispunched data.

The functions of the various tasks that
make up the program, and their relationship
to each other, are shown in Figure 15-3.
Suggested coding for the ONLINE and PROCESS
procedures is given below. These
procedures are internal to the BANKER
procedure, as are all the procedures in the
program in this case. If they had been
external procedures, the PROCEDURE
statements would have needed the OPTIONS
(TASK) option.

202

ONLINE: PROCEDURE;
DECLARE COMMAND CHARACTER(30) VARYING,

COMTYPE(8) CHARACTER(30) VARYING,
COUNT(8) FIXED BINARY INITIAL ((8)0),
ID CHARACTER (72) VARYING,
XL(8) LABEL,
ENDBEVT EVENT EXTERNAL;

COMTYPE(1) = 'CREDIT';
COMTYPE(2) = 'STATEMENT';
COMTYPE(3) = 'INFORMATION';
COMTYPE(4) = 'CALL BATCH';
COMTYPE(5) = 'END BATCH';

COMTYPE(8) = 'END PROGRAM';

START: 	DISPLAY ('NEXT COMMAND') REPLY (COMMAND);
/*TASK IS IN WAITING STATE UNTIL REPLY IS RECEIVED*/

X: 	DO I = 1 TO 8;
IF COMMAND = COMTYPE (I)

THEN GO TO XL(I);
END;
DISPLAY ('UNRECOGNIZABLE COMMAND, REPEAT')

REPLY (COMMAND);
GC TO X;

XL(1):

XL(2):

XL(5):

DISPLAY ('ACCOUNT ID') REPLY (ID);
COUNT(1) = COUNT(1) + 1;
CALL CREDIT (ID) PRIORITY (-1); /*ATTACH CREDIT TASK*/
CO TO START;

COMPLETION (ENDBEVT) = '1'B;
/*SETS EVENT COMPLETE IN BATCH. BATCH
WILL TERMINATE WHEN ALL CARDS READ IN*/
GO TO START;

END ONLINE;

Chapter 15: Multitasking 203

PROCESS: PROCEDURE;
DECLARE ANS CHARACTER (30) VARYING,

(READEVT, ENDEVT, TEVREAD,
TEVUPDT, TEVRED) EVENT EXTERNAL;

WS: 	WAIT (READEVT, ENDBEVT) (1);
IF COMPLETION(READEVT)= ' 1 ' B THEN GO TO READIN;
WAIT (TEVREAD, TEVUPDT, TEVRED) (3);

EXS: 	EXIT;
/*IF 'END BATCH' COMMAND WAIT FOR ASSOCIATED
TASKS BEFORE BATCH IS TERMINATED*/

READIN: COMPLETION (READEVT) = '0'B;
CALL READER TASK (PR1) PRIORITY (-1) EVENT (TEVREAD);
CALL UPDATE TASK (PR2) PRIORITY (-2) EVENT (TEVUPDT);
CALL RED TASK (PR4) PRIORITY (-3) EVENT (TEVRED);
WAIT (TEVREAD, TEVUPDT, TEVRED) (3);
DISPLAY ('CARDS PROCESSED') REPLY (ANS);
IF ANS = 'WAIT' THEN GO TO WS; /*WAIT FOR COMMAND*/
IF ANS = 'READ' THEN GO TO READIN; /*PROCESS NEXT PATCH*/

END PROCESS;

204

|CREDIT: PROC(X); 	|
r->|What is X's credit |

|rating? 	 |
L 	 J

1
|STATEMENT: PROC(Y):|

F–F->|Print statement for|
|Y's account.
I 	 J

r 	1
|MANIFO: PROC; 	|

F->| Extract management |
|information. 	|
I 	 /

|CREDIT: PROC(Z); 	|
F-> | What is Z's credit |
| 	|rating?

V
Other
tasks

Major task 	 PRIORITY = P
	 1
BANKER: PROC OPTIONS(MAIN, TASK);|
Function:
Initialization, e.g., open master|
files.
Attach on-line control task: 	F---->

CALL ONLINE TASK(CONTROL)
PRIORITY (-1) EVENT (TEVCTRL);|

WAIT (for command or CONTROL 	<--1
termination):

If command, attach subtask
BATCH, then return to WAIT F-1

If termination, end program 	| |
	 J 	|

V
Subtask BATCH 	PRIORITY = P-2

PROCESS: PROC;

Subtask CONTROL 	PRIORITY = P-1
r
ONLINE: PROC;
Function:
DISPLAY ('Next command')
REPLY (command)
Attach task according to command, or
satisfy a WAIT statement in a diff-
erent task by completing its event
variable. The same procedure can be
attached several times as different
tasks.
Priorities should be in the range
(P-3) to (P-10).

|
V

|WAIT satisfied|

	 j

Function:
Initialization of card processing
routines.
WAIT1 (for 'Read' or 'End batch'
commands).
CALL (processing tasks).
WAIT2 (for cards to be processed)
DISPLAY ('Cards processed, any
more?').
REPLY ('No more', 'Read', or
'Wait'):

If 'No more': terminate BATCH.
If 'Read': return to CALL.
If 'Wait': return to WAIT1.

I. 	 J

F
<--I

F-- -1

1

V
Subtask PR1 PRIORITY = P-11

r 	 1
READER: PROC;
Function:
Read cards into array (which
must have at least three
rows). When one row is
filled, test for completion
of processing of next row by
subtask PR2 before con-
tinuing to read.

L 	

V
Subtask PR2 	PRIORITY = P-12

r
UPDATE: PROC;
Function:
Process array information; check
that each row is full before
processing.
Update master files, transaction
files.
When statement 'page' is full,
attach task to print statement.
Transfer information on a 'RED'
account to a 'RED' array for
processing by 'RED' procedure.
	 T-

|
V

Subtask PR3 	PRIORITY = P-15

|STATEMENT: PROC(Account ID);
|Function:
|Print statement for the account |
|identified.
I. 	

V
Subtask PR4 PRIORITY = P-13

r
RED: PROC;
Function:
Treatment of 'RED' accounts.
If necessary attach task
for treatment of 'VERY RED'
accounts.

V
Subtask PR5 PRIORITY = P-14

r
|VERYRED: PROC;
Function:
Print letter for account
owner, and owner's name for
branch manager.

L-

Figure 15-3. Flow Diagram for Programming Example of Multitasking

Chapter 15: Multitasking 	205

Chapter 16: Compile-Time Facilities

Introduction This chapter is concerned with the first
stage; the actual compilation of a program
is not discussed.

Compile tine is generally defined as that
time during which a user's source program
is compiled, or translated, into an
executable object program. Ordinarily, 	Preprocessor Input and Output
changes to a source program may not be made
at this time.

However, with PL/I, the programmer does
have some control over his source program
during compile time. His source program
can contain special statements (identified
by a leading %) that can cause parts of the
source program to be altered in various
ways:

1. Any identifier appearing in the source
program can be changed.

2. If conditional compilation is desired,
the programmer can indicate which
sections of his program are to be
compiled.

3. Strings of text residing in a user
library or a system library can be
incorporated into the source program.

PL/I makes source program alteration at
compile time possible by a somewhat
different approach to compile time
processing. Compile time as defined in
PL/I has two stages:

1 The Preprocessor Stage -- During this
stage, the user's source program is
scanned for preprocessor statements,
special statements that cause the
preprocessor to alter the text being
scanned. These statements are
considered part of the source program,
and appear freely intermixed with the
statements and other text of the
source program. The altered source
program, resulting from the action of
the preprocessor statements, then
serves as input to the second stage.
Note that the preprocessor stage is
optional; the publication IBM
System/360 Operating System PL/I(F)
Programmer's Guide, describes how this
stage can be used or avoided for the
F-level PL/I Compiler.

2. The Processor Stage -- During this
stage, the output from the first stage
is compiled into an executable object
program.

The preprocessor interprets preprocessor
statements and acts upon the source program
accordingly. Input to the preprocessor is
a sequence of characters that is the user's
source program. It contains preprocessor
statements freely intermixed with the rest
of the user's source program. Preprocessor
statements are identified by a leading
percent symbol (%) and are executed as
they are encountered by the preprocessor
(with the exception of preprocessor
procedures, which must be invoked in order
to be executed). One or more blanks may
separate the percent symbol from the
statement.

While checking the preprocessor
statements for correct format and such, the
preprocessor also checks the rest of the
source program text to insure that there
are no unmatched comment or
character-string delimiters. A percent
symbol appearing within a comment or
character string is considered to be part
of that comment or string. This is the
extent of the checking done at this stage
on all text other than preprocessor
statements.

Output from the preprocessor consists of
a new character string called the
preprocessed text, which consists of the
altered source program and which serves as
input to the processor stage. Note that
preprocessor statements are replaced by
blanks in the preprocessed text.

PREPROCESSOR SCAN

The preprocessor starts its scan of the
input text at the beginning of the string
and scans each character sequentially. As
long as a preprocessor statement is not
encountered, the characters are placed into
the preprocessed text in the same order and
general form in which they were scanned.
However, when a preprocessor statement is
encountered, it is executed. This
execution can cause the scanning of the
source program and the subsequent formation

206

of preprocessed text to be altered in
either of two ways:

1. The executed statement may cause the
preprocessor to continue the scan from
a different point in the program.
This new point may very well be one
that has already been scanned.

2. The executed statement may initiate
replacement activity. That is, it may
cause an identifier not appearing in a
preprocessor statement to be replaced
when that identifier is subsequently
encountered in the scan. The
replacement value will then be written
into the preprocessed text in place of
the old identifier (see "Rescanning
and Replacement" below for details).

The scan is terminated when an attempt
is made to scan beyond the last character
in the source program. The preprocessed
text is completed and the second stage of
compilation can then begin.

Rescannin g and Replacement

For an identifier to be replaced by a new
value, the identifier must first be
activated for replacement. Initially, an
identifier is activated by its appearance
in a preprocessor DECLARE statement (i.e.,
a % DECLARE statement). (It can be
deactivated by appearing in a % DEACTIVATE
statement and it can be reactivated by
appearing in a % ACTIVATE statement.)
After it has been activated initially, it
must be given a replacement value. This is
usually done via the execution of a
preprocessor assignment statement. Once an
identifier has been activated and been
given a value, any occurrence of that
identifier in text other than preprocessor
statements is replaced by that value,
provided that the identifier is still
active when it is encountered by the scan.
The new value is not immediately inserted
into the preprocessed text, however; it
must be checked to see whether or not it,
or any part of it, is subject to
replacement by still another value (a
rescan is made to determine this). If it
cannot be replaced, it is inserted into the
preprocessed text; if it can be replaced,
replacement activity continues until no
further replacements can be made. Thus,
insertion of a value into preprocessed text
takes place only after all possible
replacements have been made. Note that the
deactivation of an identifier causes it to
lose its replacement capability but not its
value. Hence, the subsequent reactivation
of such an identifier need not be

accompanied by the assignment of a
replacement value.

For example, if the source program
contained the following sequence of
statements:

%DECLARE A CHARACTER, B FIXED;
%A = 'B+C';
%B = 2;
X = A;

then the following would be inserted into
the preprocessed text in place of the above
sequence:

X = 2+C;

In this example, the first statement is
a preprocessor DECLARE statement that
activates A and B and also establishes them
as preprocessor variables. (An identifier
must be established as a preprocessor
variable before it can be assigned a value
in a preprocessor statement; it can be so
established only through a preprocessor
DECLARE statement.) The second and third
statements are preprocessor assignment
statements; the second assigns the
character string 'B+C' to A, and the third
assigns the constant 2 to B. The fourth
statement is a nonpreprocessor statement¹
and, therefore, is not executed at this
stage. However, because this statement
contains A, and A is a preprocessor
variable that has been activated for
replacement, the current value of A will
replace it in that statement. Thus, the
string 'B+C' replaces A in the statement.
But this string contains the preprocessor
variable B. Upon checking B, the
preprocessor finds that it has been
activated and that it has been assigned a
value of 2. Hence, the value 2 replaces B
in the string. Further checking shows that
2 cannot be replaced; scanning resumes with
+C which, again, cannot be replaced. Thus,
the chain of replacements comes to an end
and the resulting statement is inserted
into the preprocessed text.

Note that the preprocessor variable B
has a default precision of (5,0) and,
therefore, actually contains 2 preceded by
four zeros. When this value replaces B in
the string 'B+C' it is converted to a
character string and becomes 2 preceded by
seven blanks (the rules for conversion of
decimal fixed-point values to character

'For the purpose of this discussion, a
nonpreprocessor statement is any statement
or set of one or more identifiers that
appears in the source program but is not
contained in a preprocessor statement, nor
in a preprocessor procedure, nor in a
comment.

Chapter 16: Compile-Time Facilities 	207

string are followed). See the section
"Preprocessor Expressions" for details.

Also note that each time a replacement
occurs, a blank is appended to each end of
the replacement value. Hence, in the above
example, the first replacement results in a
blank being appended to each end of the
string 'B+C', and the second replacement
results in another blank being appended to
each side of the 2 that replaces the B.
The result, therefore, will have nine
additional blanks immediately before the 2,
one additional blank immediately after the
2, and one additional blank immediately
after the C.

Replacement values must not contain
percent symbols, unmatched quotation marks,
or unmatched comment delimiters.

The following example illustrates how
compile-time facilities can be used to
speed up the execution of a DO-loop.

A programmer might include the following
loop in his program:

DO I=1 TO 10; Z(I)=X(I)+Y(I);

END;

The following sequence would accomplish the
same thing, but without the requirements of
incrementing and testing during execution
of the compiled program:

%DECLARE I FIXED;
%I=1;
%LAB:;
Z(I)=X(I)+Y(I);
%I=I+1;
%IF I<=10 %THEN %GO TO LAB;
%DEACTIVATE I;

The first statement activates I and
establishes it as a preprocessor variable.
The second statement assigns the value 1 to
I. This means that subsequent encounters
of the identifier I in non-preprocessor
statements will be replaced by 1 (provided
that I remains activated). The third
statement is a preprocessor null statement
that is used as the transfer target for the
preprocessor GO TO statement appearing
later.

The fourth statement, not being a
preprocessor statement, is only scanned for
replacement activity; it is not executed.
The first time that this statement is
scanned, I has the value 1 and has been
activated. Therefore, each occurrence of I
in this statement is replaced by 1 and the
following is inserted into the preprocessed
text being formed:

Z(1)=X(1)+Y(1);

Note that each 1 is actually preceded by
seven blanks of its own in addition to the
one replacement blank shown.

As before, each number from 1 through 9
is preceded by seven blanks in addition to
the replacement blank shown; 10 is preceded
by six blanks in addition to the
replacement blank shown.

When the value of I reaches 11, control
falls through to the %DEACTIVATE statement.
This statement is interpreted as follows:
subsequent encounters of the identifier I
in source program text are not to be
replaced by the value 11 in the
preprocessed text being formed; each I will
be left unmodified, either for the
remainder of the scan or at least until I
is reactivated by a %ACTIVATE statement.
If I is again activated, it will still have
the value 11 (unless an intervening
preprocessor assignment statement has
established a new value for I).

Preprocessor Variables

A preprocessor variable is an identifier
that has been specified in a %DECLARE
statement with either the FIXED or
CHARACTER attribute. No other attributes
can be declared for a preprocessor
variable. Defaults are applied, however.
A preprocessor variable declared with the
FIXED attribute is also given the
attributes DECIMAL and, for the F Compiler,

'precision (5,0) by default (this is also
the maximum precision); a CHARACTER
preprocessor variable is given the VARYING
attribute with no maximum length. No
contextual or implicit declaration of
identifiers is allowed in preprocessor
statements.

The fifth statement increments the value
of I by 1 and the sixth statement, a
preprocessor IF statement, tests the value
of I. If I is not greater than 10, the
scan is resumed at the statement labeled
LAB; otherwise, the scan continues with the
text immediately following the %GO TO
statement. Hence, for each increment of I,
up to and including 10, the assignment
statement is rescanned and each occurrence
of I is replaced its current As by value.

208

integer constant. Note that the
properties of the division operator
are affected. For example, the
expression 3/5 evaluates to 0, rather
than to 0.6.

4. The conversion of a fixed-point
decimal number to a character string
always results in a string of length
8. (Leading zeros in the number are
replaced by blanks and an additional
three blanks are appended to the left
end of the number, one of which is
replaced by a minus sign if the number
is negative.)

A character string in an expression
being assigned to a preprocessor variable
may include preprocessor variables,
references to preprocessor procedures,
constants, and operators; preprocessor
statements cannot be included in such
strings. Note that if the programmer
desires to insert a multiple character
operator such as 1 = into preprocessed text,
the operator must appear in the source
program as an entity. For example, one
cannot have a 1 A in the source program and
expect a %A='=' statement to generate the
operator ,= in the preprocessed text. The
reason is that all replacements cause a
blank to be appended to each end of the
replacement value. Thus, the hypothetical
case cited would result in b=b (where each
b represents a blank) being inserted into
the preprocessed text.

Preprocessor Procedures

A preprocessor procedure is an internal
function procedure that can be executed
only at the preprocessor stage. Its syntax
differs from other function procedures in
that its PROCEDURE and END statements must
each have a leading percent symbol. The
format of a preprocessor procedure is as
follows:

%label: [label:]... PROCEDURE [(identifier
[,identifier] ...)]
{RETURNS(CHARACTER|FIXED)};

[label:]...RETURN
(preprocessor-expression);

•

% [label:] ... 	END [label];

More than one RETURN statement may
appear. The general rules governing the
statements that can appear within a
preprocessor procedure are given in the

The scope of a preprocessor variable
encompasses all text except those
preprocessor procedures that have
redeclared that variable. The scope of a
preprocessor variable that has been
declared in a preprocessor procedure is the
entire procedure (there is no nesting of
preprocessor procedures).

When a preprocessor variable has been
given a value, that value replaces all
occurrences of the corresponding identifier
in text other than preprocessor statements
during the time that the variable is
active. If the preprocessor variable is
inactive (or if it has no value),
replacement activity cannot occur for the
corresponding identifier.

A preprocessor variable is activated
initially by its appearance in the %DECLARE
statement. It can be deactivated and
subsequently reactivated by its appearance
in %DEACTIVATE and %ACTIVATE statements,
respectively. Deactivation of a
preprocessor variable does not strip it of
its value; in other words, an inactive
preprocessor variable retains the value it
had while it was active and can be altered
by a preprocessor statement or procedure if
sc desired.

Preprocessor Expressions

Preprocessor expressions are written and
evaluated in the same way as source program
expressions, with the following exceptions:

1 The operands of a preprocessor
expression can consist only of
preprocessor variables, references to
preprocessor procedures, decimal
integer constants, bit-string
constants, character-string constants,
and references to the built-in
function SUBSTR. Repetition factors
are not allowed with the string
constants and the arguments of a
reference to SUBSTR must be
preprocessor expressions.

2. The exponentiation symbol (**) cannot
be used as an arithmetic operator.

3. For arithmetic operations, only
decimal integer arithmetic of
precision (5,0) is performed; that is,
each operand is converted to a decimal
fixed-point value of precision (5,0)
before the operation is performed, and
the decimal fixed-point result is
converted to precision (5,0) also.
Any character string being converted
to an arithmetic value must be in the
form of an optionally signed decimal

Chapter 16: Compile-Time Facilities 209

description of the %PROCEDURE statement in
Part II, Section J, "Statements." One
thing should be noted, however: no
statement appearing within a preprocessor
procedure can have a leading percent
symbol.

INVOCATION OF PREPROCESSOR PROCEDURES

A preprocessor procedure is invoked by a
function reference in the usual sense;
i.e., by the appearance of the entry name
and its associated argument list (if any)
in an expression. The function reference
can appear in a preprocessor statement or
in a nonpreprocessor statement. However,
at least one condition must be met for the
function to be invoked: regardless of where
the reference appears, the function can be
invoked if and only if the entry name used
in that reference has been explicitly
declared with the ENTRY and RETURNS
attributes in a %DECLARE statement. This,
and not its appearance as a label of a
%PROCEDURE statement, is what establishes
it as an entry name; in fact, it is not
even necessary for the preprocessor
procedure to have been scanned before the
reference is encountered (the procedure has
only to be in the source program somewhere
-- anywhere -- when the reference is
encountered). This is the only condition
that must be met for a preprocessor
procedure to be invoked by a reference in a
preprocessor statement.

A second condition must be met if the
reference to the preprocessor procedure is
made in a nonpreprocessor statement: the
entry name used in the reference must be
active at the time the reference is
encountered. Entry names of preprocessor
functions are the same as preprocessor
variables as far as activation and
deactivation is concerned; i.e., they must
be activated initially by a %DECLARE
statement and they can be deactivated and
reactivated thereafter by %DEACTIVATE and
%ACTIVATE statements. Thus, since the
first condition requires that the entry
name appear in a %DECLARE statement, this
second condition would be restrictive only
if the entry name had later appeared in a
%DEACTIVATE statement.

The value returned by a preprocessor
function (i.e., the value of the
preprocessor expression in the RETURN
statement) always replaces the function
reference and its associated argument list.
Note that for a reference made in a
preprocessor statement, the replacement is
only for that particular execution of the
statement; a subsequent scanning of the
statement would again result in the
invocation of the function.

ARGUMENTS AND PARAMETERS FOR PREPROCESSOR
FUNCTIONS

The number of arguments in a preprocessor
function reference must always agree with
the number of parameters accounted for in
the ENTRY attribute specified for that
function in a %DECLARE statement. If
parameters are not accounted for, the
preprocessor assumes that the corresponding
procedure has none and no arguments are
passed. If, however, parameters are
accounted for, the preprocessor expects to
find a parenthesized list of arguments,
separated by commas and equal in number to
the parameters accounted for in the
procedure reference. The number of
parameters accounted for in the ENTRY
attribute and the actual number of
parameters in the %PROCEDURE statement,
however, need not be the same. The
arguments are interpreted according to the
type of statement (preprocessor or
nonpreprocessor) in which the function
reference appears. The arguments in the
argument list are evaluated before any
match is made with the parameter list. If
there are more arguments than parameters,
the excess arguments on the right are
ignored. (Note that for a function
reference argument, the function is invoked
and executed, even if the argument is
ignored later.) If there are fewer
arguments than parameters, the excess
parameters on the right are given values of
zero, for FIXED parameters, or the null
string, for CHARACTER parameters. The
usual rules concerning the creation of
dummy arguments apply if the function
reference is in a preprocessor statement,
but dummy arguments are always created if
the function reference occurs in a
nonpreprocessor statement.

If the function reference appears in a
nonpreprocessor statement, the arguments
are interpreted as character strings and
are delimited by the appearance of a comma
or a right parenthesis occurring outside of
balanced parentheses. For example, the
argument list (A(B,C),D) has two arguments,
namely, the string A(B,C) and the string D.
Each argument is then scanned for possible
replacement activity. Both the procedure
name and its argument list must be found at
one replacement level. Thus, only the
commas and parentheses seen in the text
being scanned when the procedure name is
encountered are considered in this context.
After all replacements have been made, each
resulting argument is converted to the type
indicated by the corresponding parameter
attribute in the ENTRY attribute
declaration for the function entry name
(i.e., the ENTRY attribute declaration in
the %DECLARE statement). No conversion is
performed if a corresponding parameter

210

Returned Value

The value returned by a preprocessor
function to the point of invocation is
represented by the preprocessor expression
in the RETURN statement of that function.
Before being returned, this value is
converted (if necessary) to the attribute
(CHARACTER or FIXED) specified in the
RETURNS option of the function's %PROCEDURE
statement. The attribute of the returned
value must be consistent with the attribute
specified with the RETURNS attribute in the
ENTRY attribute specification of the
%DECLARE statement for the entry name. If
the point of invocation is in a
nonpreprocessor statement, the value is
scanned for replacement activity after it
has replaced the function reference. The
replacement of a function reference in a
nonpreprocessor statement involves
surrounding the replacement value by blanks
(one blank on each end) in the same way
that it does for the replacement of an
identifier by the value of the preprocessor
variable.

Note that the rules for preprocessor
expressions do not permit the value
returned by a preprocessor procedure to
contain preprocessor statements.

When the scan encounters the last
statement, A is active and is thus eligible
for replacement. Since VALUE is also
active, the reference to it in the last
statement causes the preprocessor to invoke
the preprocessor function procedure of that
name. However, before the arguments A and
3 are passed to VALUE, A is replaced by its
value Z (assigned to A in a previous
assignment statement), and 3 is converted
to fixed-point to conform to the attribute
of its corresponding parameter. VALUE then
performs a concatenation of these arguments
and the parentheses and returns the
concatenated value, that is, the string Z
(3), to the point of invocation. The
returned value replaces the function
reference and the result is inserted into
the preprocessed text. Thus, the
preprocessed text generated by the above
sequence is as follows (replacement blanks
are not shown):

DECLARE (Z(10),Q) FIXED;
Q = 6+Z(3);

Examples of Preprocessor Functions

In the statements below, VALUE is a
preprocessor function procedure that
returns a character string of the form
arg1(arg2), where arg1 and arg2 represent

The preprocessor function procedure GEN
defined in the following example can
generate GENERIC declarations for up to 99
parameters. Only four are generated in
this example, however.

Assume that the source program contains

Chapter 16: Compile-Time Facilities 211

the following sequence:

%DCL GEN ENTRY (CHAR, FIXED, FIXED,
CHAR) RETURNS (CHAR);

DCL A GEN (A,2,5,FIXED),...;

%GEN: PROC (NAME,LOW,HIGH,ATTR)
RETURNS(CHAR);

DCL (NAME, SUFFIX, ATTR, STRING)
CHAR, (LOW, HIGH, I,J) FIXED;

STRING='GENERIC(';
DO I=LOW TO HIGH; /* ENTRY DCL

LOOP */
IF I>9
THEN SUFFIX=SUBSTR(I, 7, 2);

/* 2 DIGIT*/
ELSE SUFFIX=SUBSTR(I, 8, 1);

/*1 DIGIT*/
STRING=STRING||NAME||SUFFIX||

' ENTRY (';
DO J=1 TO I; /* PAR ATTR LIST*/

STRING=STRING||ATTR;
IF J<I /* PARAM ATTR

SEPARATOR */
THEN STRING=STRING||',';
ELSE STRING=STRING||')';

END;
IF I<HIGH /* ENTRY DCL

SEPARATOR*/
THEN STRING=STRING',';
ELSE STRING=STRING||')';

END;
RETURN (STRING);

% END;

The following is generated into
preprocessed text:

DCL A GENERIC(A2 ENTRY (FIXED,FIXED),
A3 ENTRY (FIXED, FIXED,

FIXED),
A4 ENTRY (FIXED, FIXED,

FIXED, FIXED),
A5 ENTRY (FIXED, FIXED,

FIXED, FIXED, FIXED)),

Note that the above example refers to
the built-in function SUBSTR. It is the
only built-in function that can be invoked
at the preprocessor stage. It can be
invoked by a reference in either a
preprocessor or a nonpreprocessor
statement.

Use of the SUBSTR Built-In Function

A reference to SUBSTR in a nonpreprocessor
statement is executed by the preprocessor
only if the name SUBSTR is active. The

built-in function SUBSTR can be activated
only by a %ACTIVATE statement. If the
identifier SUBSTR is given the ENTRY
attribute in a %DECLARE statement, it is
assumed to refer to a user-defined
preprocessor procedure of that name. The
arguments in a nonpreprocessor statement
reference to the built-in function SUBSTR
are interpreted in the same way that
arguments in any nonpreprocessor statement
reference to a preprocessor function are
interpreted, that is, as character strings.

A preprocessor statement reference to
SUBSTR is always valid.

The Preprocessor DO-Group

The preprocessor DO-group can provide
iterative execution of the preprocessor
statements contained within the group. The
format of the preprocessor DO-group is as
follows:

%[label:]... DO i=m1 TO m2[BY m3]];
BY m3 [TO m2]

%[label:]... END[label]; -processor

In the above format, i must be a
preprocessor variable and ml, m2, and m3
must be preprocessor expressions. The
label that can follow the keyword END must
be one of the labels preceding the keyword
DO. Preprocessor DO-groups may be nested
and multiple closure is allowed.

Control cannot be transferred into a
preprocessor DO-group specifying iteration,
except by way of a return from a
preprocessor procedure invoked from within
the group.

Both preprocessor statements and text
other than preprocessor statements can
appear within a preprocessor DO-group.
However, only the preprocessor statements
are executed; nonpreprocessor statements
are scanned but only for possible
replacement activity.

Noniterative preprocessor DO-groups are
useful as THEN or ELSE clauses of %IF
statements.

The expansion of a preprocessor DO-group
is the same as that shown under the
nonpreprocessor DO statement in Part II,
Section J, "Statements."

The example below results in the same
expansion generated for the example of
preprocessor loop expansion in the section

212

"Rescanning and Replacement" in this
chapter:

%DECLARE I FIXED;
%DO I=1 TO 10;
Z(I)=X(I)+Y(I);
%END;
%DEACTIVATE I;

The second example under "Returned
Value" shows how preprocessor DO-groups can
be used within a preprocessor procedure
(percent symbols must be omitted, of
course).

Inclusion of External Text

Strings of external text can be
incorporated into the source program at the
preprocessor stage by use of the %INCLUDE
statement. Such text, once incorporated,
is called included text and may consist of
both preprocessor and nonpreprocessor
statements. Hence, included text can
contribute to the preprocessed text being
formed.

The general format and the rules
governing the use of the %INCLUDE statement
are presented in Part II, Section J,
"Statements."

The text specified by a %INCLUDE
statement is incorporated into the source
program immediately after the point at
which the statement is executed. The scan
therefore continues with the first
character in the included text. All
preprocessor statements in this text are
executed and replacements are made where
required.

Preprocessor procedures whose
declarations appear in external text can be
invoked only after that external text
becomes included text. The result of a
preprocessor procedure reference
encountered before that procedure has been
incorporated into the source program is
undefined.

Assume that PAYRL is a member of the
data set SYSLIB and contains the following
structure declaration:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER (30) VARYING,
3 FIRST CHARACTER (15) VARYING,
3 MIDDLE CHARACTER (3) VARYING,

2 MAN_NO FIXED DECIMAL (6,0),
3 REGLR FIXED DECIMAL (8,2),
3 OVERTIM FIXED DECIMAL (8,2),

2 RATE,
3 REGLAR FIXED DECIMAL (8,2),
3 OVERTIME FIXED DECIMAL (8,2);

Then the following sequence of
preprocessor statements:

%DECLARE PAYROLL CHARACTER;
%PAYROLL='CUM_PAY';
%INCLUDE PAYRL;
%DEACTIVATE PAYROLL;
%INCLUDE PAYRL;

will generate two identical structure
declarations into the preprocessed text,
the only difference being their names,
CUM_PAY and PAYROLL. Execution of the
first %INCLUDE statement causes the text in
PAYRL to be incorporated into the source
program. When the scan encounters the
identifier PAYROLL in this included text,
it replaces it by the current value of the
active preprocessor variable PAYROLL,
namely, CUM_PAY. Further scanning of the
included text results in no additional
replacements. The scan then encounters the
%DEACTIVATE statement. Execution of this
statement deactivates the preprocessor
variable PAYROLL and makes the identifier
ineligible for replacement. When the
second %INCLUDE statement is executed, the
text in PAYRL once again is incorporated
into the source program. This time,
however, scanning of the included text
results in no replacements whatsoever,
because none of the identifiers in the
included text are active. Thus, two
structure declarations, differing in name
only, are inserted into preprocessed text.

Preprocessor Statements

This section lists those statements that
can be used at the preprocessor stage and
briefly discusses those preprocessor
statements that have not yet been explained
in this chapter. All of the preprocessor
statements, their formats, and the rules
governing their use are described in the
section "Preprocessor Statements" in Part
II, Section J, "Statements."

But first, some unrelated comments
pertaining to preprocessor statements in
general should be made:

1. Some keywords appearing in

Chapter 16: Compile-Time Facilities 213

preprocessor statements can be
abbreviated as shown in Part II,
Section C, "Keywords and
Abbreviations."

2. Comments can appear within
preprocessor statements wherever
blanks can appear; however, such
comments are never inserted into
preprocessed text.

3. All preprocessor statements can be
labeled. Such labels must appear
immediately following the % (only
blanks can intervene). All labels
must be unsubscripted statement label
constants. (Labels on %DECLARE
statements are ignored.)

The functions performed by the following
preprocessor statements have already been
discussed in this chapter:

% ACTIVATE
% DEACTIVATE
% DECLARE
% DO
% END
% INCLUDE
% PROCEDURE
RETURN

Note that the preprocessor RETURN
statement cannot have a leading % because
it can be used only within a preprocessor
procedure, and all percent symbols must be
omitted therein.

Four other statements can be executed at
the preprocessor stage:

% assignment
% GO TO
% IF
% null

The preprocessor assignment statement is
used to evaluate preprocessor expressions
and to assign the result to a preprocessor
variable. All, of the examples shown in
this section make use of this statement.

The % GO TO statement causes the
preprocessor to interrupt its sequential
scanning and continue it elsewhere in the
source program, specifically at the label
specified in the % GO TO. Thus, it can be
useful for rescanning or avoiding text.

The % IF statement can be used to
control the sequence of the scan according
to the value of a preprocessor expression.
It must have a THEN clause and it can have
an ELSE clause. Each clause, as well as
each preprocessor statement within the
clause, must be preceded by a %. Nesting
of %IF statements is allowed and must
follow the same rules that apply for the
nesting of nonpreprocessor IF statements.

The preprocessor null statement is the
same as a nonpreprocessor null statement
(except for the %). It can be used to
provide transfer targets for %GO TO
statements or it can be used in nested %IF
statements to balance the %ELSE clauses.
For example, %ELSE%; is a null ELSE clause.

214

Chapter 17: Optimization and Efficient Performance

This chapter is concerned with general
efficiency. It provides information on the
ways in which execution speed, compilation
speed, and storage use can be improved, and
it includes a list of common errors to
avoid.

Introduction

For a given application, several object
programs are possible, each of which would
produce the required result. However they
would have varying degrees of efficiency in
terms of machine time and storage use. The
efficiency of a PL/I object program depends
on two basic factors:

1. The way in which the programmer writes
the source program

2. The way in which the compiler treats
the source program

These two factors are interrelated.
Firstly, the compiler can perform a limited
amount of optimization (i.e., briefly, it
can alter the program during compilation so
that the object program uses less machine
time but still gives the required result);
but the programmer can control the degree
of optimization, using the PL/I options
ORDER and REORDER and the OPT compiler
option. Secondly, the compiler does not
necessarily generate identical object code
for a given PL/I item (such as an
assignment) every time that item appears in
a source program. For example, an
assignment may be made either directly or
via a compiler-created temporary variable;
data conversion may be performed by in-line
code or may require a library call. The
method selected depends on the nature of
the data. A knowledge of the circumstances
in which the compiler generates more
efficient object code can be borne in mind
by the programmer while he is writing the
source program.

The remainder of this chapter is
organized in two main sections. The first,
headed "Effect of Compilation on Object
Program Efficiency," deals primarily with
the compiler and the circumstances in which
it generates more efficient code. The
second section, headed "Programming
Techniques," provides lists of hints that
the programmer can follow to obtain
different types of efficiency (e.g.,
reduced storage requirements; increased

execution speed). It also provides a list
of the errors most likely to be encountered
by a programmer when he is first using
PL/I.

Effect of Compilation on Object Program
Efficiency

The fifth version of the F Compiler is
capable of optimizing loops and subscripts
(see below). This optimization requires
the use of extra compiler phases, with a
consequent increase in compilation time;
moreover, the results are not guaranteed in
certain cases of error. For this reason,
provision is made for the programmer to
control the degree of optimization by using
the ORDER and REORDER options on the blocks
within the PL/I program itself and by using
the OPT compiler option in the EXEC
statement for a particular compilation of
the program.

The compiler will also, as part of its
normal function (i.e., without the use of
special optimization phrases), select the
more efficient of two methods for many
operations, provided that the nature of the
data allows it to do so. Such operations
include simple assignments, evaluation of
string built-in functions, and data
conversions.

PL/I OPTIONS: ORDER AND REORDER

Strictly speaking, the order in which the
statements of a PL/I source program are to
be executed is specified by the order in
which they appear in the source program,
even if the code could be reordered so as
to produce the same result more
efficiently. The order of execution is
normally sequential except where modified
by a control statement such as GO TO. (See
"Control Statements" in Chapter 5,
"Statement Classification.")

The programmer can vary the degree of
language stringency imposed on the compiler
by using the ORDER and REORDER options on
the PROCEDURE and BEGIN statements.
REORDER specifies a partial relaxation of
the rules to allow the compiler more
freedom in optimization. This relaxation
is such that if computational or system
action interrupts occur during execution of

215 Chapter 17: Optimization and Efficient Performance

the block, the result is not necessarily
the same as it would be under the strict
rules.

The selected option applies to all
nested blocks unless overridden; if neither
option is specified, the option that
applies to the containing block will be
assumed. If the block is an external
procedure, it will be assumed to have the
ORDER option unless REORDER is explicitly
specified.

The ORDER Option

The ORDER option specifies that the normal
language rules are not to be relaxed; i.e.,
any optimization must be such that the
execution of a block always produces a
result that is in accordance with the
strict definition of PL/I. This means that
the values of variables set by execution of
all statements prior to computational or
system action interrupts are guaranteed in
an on-unit entered as a result of the
interrupt, or anywhere in the program
afterwards.

Note that the strict definition now
allows the compiler to optimize common
expressions,' where safely possible, by
evaluating them once only and saving the
result, rather than re-evaluating for each
reference. Consequently object programs
produced by the fifth version of the
compiler may differ from those produced by
previous versions in respect of the number
of computational or system action
conditions raised during execution.

The REORDER Option

The REORDER option specifies that execution
of a block must produce a result that is in
accordance with the strict definition of
PL/I unless a computational or system
action interrupt occurs during execution of
the block; the result is then allowed to
deviate as follows:

1. After a computational or system action
interrupt has occurred during

'A common expression is an expression that
occurs more than once in a program but is
obviously intended to result in the same
value each time that it is evaluated, i.e.,
if a later expression is identical to an
earlier expression, with no intervening
modification to any operand, the
expressions are said to be common.

execution of the block, the values of
variables modified, allocated, or
freed in the block are guaranteed only
after normal return from an on-unit or
when accessed by the ONCHAR and
ONSOURCE built-in functions.

2. The values of variables modified,
allocated, or freed in an on-unit for
a computational or system action
condition (or in a block activated by
such an on-unit) are not guaranteed on
return from the on-unit into the
block, except for values modified by
the ONCHAR and ONSOURCE
pseudo-variables.

A program is in error if a computational
or system action interrupt occurs during
the execution of the block and this
interrupt is followed by a reference to a
variable whose value is not guaranteed in
such circumstances.

Effect of ORDER and REORDER Options --
Example

The following example illustrates the
effect of the ORDER and REORDER options:

X: PROCEDURE ORDER;
DECLARE (A,B,C) (10,10);
ON UFL PUT LIST ('UFL WHEN M=',M);
ON OFL BEGIN;

PUT LIST ('OFL WHEN M=',M);
GO TO RESTART;
END;

RESTART: GET DATA(M,B,C,D,K);
CALL Y;
PUT DATA(M,A);
GO TO RESTART;

Y: PROCEDURE REORDER;
DO I = 1 TO 10;
DO J = 1 TO 10;
A(I,J)=B(I+K,J)*C(J,I+K)+D/I+D/K;
END; END;
END Y;

END X;

In this example, since the values of D and
K are not modified anywhere in procedure Y,
the language permits a compiler to keep I
and J in registers, move the computation of
the expression D/K out of both loops, and
move the computation of the expressions
(D/I and I+K out of the inner loop; thus if

216

this movement was carried out, 2 the
expression DIK would be evaluated once
instead of 100 times, and the expressions
D/I and I+E would be evaluated ten times
instead of 100 times. Any attempt to use
A, I, or J after an overflow interrupt in
procedure Y, and before another value has
been assigned to them, would be an error.

COMPILER OPTION: OPT=N

The OPT compiler option, specified in the
PARM field of the EXEC statement for a
compilation, allows the programmer to
control the optimization for a particular
compilation. For the fifth version of the
F Compiler, the option can be specified
with one of three values:

OPT=0 requests fast compilation and, as a
secondary consideration, reduction
of the storage space required by
the object program at the expense
of execution time.

OPT=1 requests fast compilation and, as a
secondary consideration, reduction
of object program execution time at
the expense of storage space.

OPT=2 requests reduction of object
program execution time at the
expense of compilation time.

The extra optimization phases of the
compiler (i.e., those concerned mainly with
loop and subscript optimization) are
invoked only when OPT=2 is specified.

2The (F) Compiler only optimizes subscript
expressions, so the expressions DIE and D/I
will not be moved out of the loops.

LOOP AND SUBSCRIPT OPTIMIZATION

Four types of loop' and subscript
optimization are attempted by the compiler
when the compiler option OPT=2 is
specified. However, the compiler will not
necessarily be able to perform the
optimization in every case; its ability to
do so is affected by several factors, such
as the use of subscripts nested within
subscripts, the use of loops containing
procedure or begin blocks, or the choice of
ORDER and REORDER options.

The section headed "Methods of
Improvement when OPT=2," under "Improving
Speed of Execution," later in this chapter,
gives a list of rules that the programmer
should follow, when using OPT=2, so as to
give the compiler the best chance of
carrying out the loop and subscript
optimization. In the descriptions of the
four types of optimization, below, the
indicated choice of block option should be
interpreted as follows: where it is
indicated that optimization will be
effected for both ORDER and REORDER, the
specification of REORDER will probably
result in the greater degree of
optimization; however, even where REORDER
is stated to be necessary for a particular
type of optimization, there will usually be
some optimization when ORDER is specified.

The four types of loop and subscript
optimization are as follows:

1. Loop control mechanism: The object
code for loop control (i.e., the
necessary comparison and branching
instructions generated by the
compiler) will be simplified wherever
possible, The block option may be
ORDER or REORDER.

2. Loop control variables: The object
code for control variables used as
subscripts will be simplified wherever
possible. The block option should be
REORDER.

3. Array expressions: Array expressions
(which are effectively a type of loop,
since the specified operation is
performed on each element in turn)
will be optimized by a combination of
the two techniques mentioned above.

'For the purpose of this discussion, a loop
is considered to be either an iterative
DO-group or an array expression. The
discussion does not apply to loops
specified by GO TO statements or to
repetitive specifications in data lists for
stream-oriented transmission.

Chapter 17: Optimization and Efficient Performance 217

The block option may be ORDER or
REORDER

4. Subscript lists: Common expressions
appearing in subscript lists will be
evaluated at the point of the first
occurrence of the common expressions,
and the result will be saved for other
occurrences of the expression. (This
applies both inside and outside of
loops.) Subscript expressions that
occur within a loop, but whose values
never change during the execution of
the loop, will be evaluated outside of
the loop. The block option should be
REORDER. (Note the difference between
the two types of expression and their
treatment: a common expression, which
appears more than once in the program,
is evaluated at its first occurrence;
the ether type of expression, which
occurs within a loop and has a value
that remains constant throughout all
the iterations of the loop, is
evaluated before it occurs. In the
latter case, therefore, the compiler
reorders the code.)

ASSIGNMENT HANDLING

When the expression on the right-hand side
of an assignment statement is an
operational expression, or where data
conversion is necessary, the assignment is
usually made via an intermediate temporary
which holds the result of the expression.
(See Chapter 4, "Expressions and Data
Conversion.") However, the fifth version of
the F Compiler produces optimized code that
does not use temporary storage in the
following cases, provided that the
FIXEDOVERFLOW and SIZE conditions are
disabled or cannot be raised, and provided
that the operands are of suitable scale and
precision:

1. Simple fixed decimal assignments (for
example, A = A + constant; X = A + B ;
X = A * B + C;).

2. Simple expressions and assignments
that involve only character-string
variables and character-string
constants (for example, X = A||B;).

The block option may be ORDER or REORDER,
and the OPT compiler option may have any of
the three possible values.

IN-LINE OPERATIONS

Operations are performed at execution time
in two different ways: they may be handled
by calls to PL/I library routines or they
may be handled directly by in-line code.
The saving in execution time for an
operation performed in-line can be of the
order of ten to one or more in relation to
a similar operation handled by a library
call; the overall effect on program
execution will depend on the number of
times these operations are used in a
program. It will repay the user,
therefore, to recognize those operations
that are performed in-line and those that
require a library call, and to arrange his
program to use the former wherever
possible. The majority of the in-line
operations are concerned with data
conversion and string handling.

Data Conversion

The data conversions performed in-line are
shown in Figure 17-1. A conversion outside
the range or condition given, or marked
"Not done," is performed by a library call.

Note all of the picture characters
available can be used in a picture
specification involved in an arithmetic
conversion. The only ones permitted are:

1. V and 9

2. Drifting or nondrifting characters $,
S, +, -

3. Zero suppression characters Z, *

4. Insertion characters „ 	/, B

For in-line conversions, picture
specifications with this subset of
characters are divided into three types:

Picture type 1: Picture specifications
consisting entirely of 9s with (optionally)
a V and a leading or trailing sign or
currency symbol and up to four insertion
characters. Examples of type 1 pictures
are '99V999', '99', 'S99V9', '99V+',
'$99.99'

Picture type 2: Picture specifications with
zero suppression characters and
(optionally) insertion characters and a
sign or currency symbol character. Also,
type 1 pictures with more than four
insertion characters. Examples of type 2
pictures are 'ZZZ', '**/**9', 'ZZ9V.99',
'+ZZ.ZZ', '$/////99'

218

Picture type 3: Picture specifications
with drifting strings and (optionally)
insertion characters and a sign or currency
symbol character. Examples of type 3
pictures are '$$$$', '-,--9', 'S/SS/S9',
'+++9.V9', '$$$9-'

positions in the source and the

Chapter 17: Optimization and Efficient Performance 219

target. (For example a conversion
from FIXED DECIMAL (6,8) or FIXED
DECIMAL (5,-3) to PIC '999V99' will
require a library call.)

4. The picture specification may have
certain characteristics that make the
conversion difficult to handle
in-line:

Sometimes a conversion involving a
pictured item is not performed in-line even
though the picture specification conforms

of This be tc one the above types. may

example, 'ZZV.ZZ', '++V++').

Conversion

Target

FIXED BINARY

FIXED DECIMAL

FLOAT

Bit string

Character string
or Picture

FIXED BINARY

FIXED DECIMAL

and FLOAT

r

| 	Source

Bit string

Bit string 	Source must be nonbased, and source
and target must be aligned with <2040

L1___ 	 _1_ 	 1 	 1 	J
•Figure 17-1. Implicit Data Conversions Performed In-Line

If either scale factor = 0 and the
other scale factor <= 0, then the opt.
code may be 0

If source scale factor = 0, then the
opt. code may be 0(whether SIZE is
enabled or not)

String must be fixed-length, aligned,
and with length <256

Source scale factor must be 0
String must be fixed-length with
length <256 Picture types 1, 2 or 3

If source and target scales have the
same sign and are non-zero, then the
opt. code (SIZE disabled) must be 1

Source precision must be <10

Source scale factor must be zero
String must be fixed-length, aligned,
and with length <256

Source scale factor must be >= 0
String must be fixed-length and
length <256

Picture types 1, 2 and 3 For picture
types 1 and 2 with no sign, the Opt.
code may be 0

+- 	
Scale factor must = 0

Target precision must be <=9 and scale
factor must = 0

Source and target may be single or
double length

String must be fixed-length, aligned,
and with length <256

+- 	
Source string must be nonbased, fixed
length, aligned, and with length <256

Source must be nonbased,
fixed-length, length aligned, and
with length <32

Comments and Conditions

FIXED BINARY

FIXED BINARY

FIXED DECIMAL

|.

FLOAT

FIXED BINARY

FIXED DECIMAL

FLOAT

Bit string

FIXED DECIMAL

FLOAT

Bit String

Character string

Picture

220

Conversion

Source
	 Target

1—

Character string

Picture

0 0
0 0

1

1

Minimum Opti- |

mization Code

SIZE | SIZE Disabled|Enabled

+- 	+ 	1

O 0

	-1
0

0

1 	Not done
O Not done

Not done

O | 	0

0
.a.

Not done
	1

	1
|

Picture 	 Picture types 1, 2 or 3
	 +- 	
Label 	Label

F 	 +- 	
| 	 Pointer/Offset 	|Pointer/Offset

•Figure 17-1. Implicit Data Conversions Performed In-Line (continued)

Comments and Conditions

+-

Target length must be <=256
Source and target lengths must be <=256

Source and target lengths must be
<=256

1—
String must be fixed-length with
length <256

Pictures must be identical

Source precision must be <10
If picture has a sign, then the opt.
code must be 1

Source precision must be <10

String Handling

The string operations and built-in
functions performed in-line are shown in
Figures 17-2 and 17-3. Note that even the
string functions indicated as always being
performed in-line may sometimes require a
library call. For example, if the
expression in the BIT or CHAR function
requires an implicit conversion not handled
in-line, the appropriate library routine
will be called.

Programming Techniques

In PL/I there are often several different
ways of producing a given effect. One of
these ways will usually be more efficient
from a particular point of view than

another, depending largely on the method of
implementation of the language features
concerned. However, it should be realized
at the outset that a primary cause of
program inefficiency occurs at the problem
definition stage, before any actual
programming is done: PL/I cannot be used to
full advantage unless the problem is
defined in terms of PL/I.

The third part deals with the use of
storage. Then follows a list of common
errors to avoid, and finally a short list
of additional hints.

a. Improving the speed of compilation

b. Improving the speed of execution.

The purpose of this section is to help
the programmer make the best use of the
PL/I (F) Compiler. The first two parts are
presented from two different viewpoints:

221 Chapter 17: Optimization and Efficient Performance

String Operation Comments and Conditions
T

Assign Non-adjustable, aligned, fixed-
	 -+ 	

 Non-adjustable, aligned, fixed-
length bit string <2048 bits long length bit string <2048 bits long

(OPT=0)

Non-adjustable, aligned, bit
string <2048 bits long

Non-adjustable, unaligned, fixed-
length bit string that is a
scalar element of an AUTOMATIC,
BASED or STATIC structure with no
adjustable bounds or extents

Non-adjustable, aligned, VARY-
ING bit string <2048 bits long

Non-adjustable, unaligned, fixed-
length bit string that is a
scalar element of an AUTOMATIC,
BASED or STATIC structure with no
adjustable bounds or extents. The
string must be 1 bit long.

Note: The assign-
ment VARYING string
to fixed-length
string is not
handled in-line

'And', 'Not', 'Or'

Fixed-length or VARYING
character string <256 characters
long

Fixed-length or VARYING character
string <256 characters long

Non-adjustable, ALIGNED, fixed-length or VARYING bit strings, with
length:

fixed-length - <2048 bits
VARYING - 532 bits

Compare

Concatenate

STRING function

Non-adjustable fixed-length character strings <256 characters long
Non-adjustable, ALIGNED, fixed-length or VARYING bit strings, with
length:

fixed-length - <2048 bits
VARYING - <=32 bits

Non-adjustable fixed-length or VARYING character strings <256
characters long
Non-adjustable, aligned, fixed-length or VARYING bit strings <=32
bits long

| 	
Notes:
1. Operations with VARYING strings require OPT=1.
2. If the expression in an IF statement is a bit string satisfying the conditions for

the source string when OPT=0, then, if the string is <10 bits long, in-line code
is generated to test the value of the string.

•Figure 17-2. Conditions under which the String Operations are Handled In-Line

Scalars and non-adjustable contiguous array or structure variables

222

Comments and Conditions

Non-adjustable, ALIGNED bit
strings, where the third
argument is one of the logical
operators 'and', 'not', 'or' or
exclusive 'or'

Always

Second argument must be a
non-adjustable character string
<256 characters long

Always

STRINGRANGE must be disabled

First argument must be a
fixed-length character string
of length <= 256. If a third
argument is given, both second
and third arguments must be
character-string constants; if
a third argument is not given,
the second argument may be any
fixed-length character-string
argument, including constants.

r
| String
Function

BIT

BOOL

CHAR

INDEX

LENGTH

SUBSTR

TRANSLATE

+- 	
Always

UNSPEC Always

VERIFY The first and second arguments
must be fixed-length character
strings of length <= 256 and <=
4096 respectively. If second
argument is a constant, the
function is partially performed
at compile time. If both
arguments are variables, the
function is performed at
execution time. In both cases,
no library call is necessary.

•Figure 17-3. Conditions under which the
String Functions are Handled
In-Line

IMPROVING SPEED OF COMPILATION

The following measures are suggested for
use where compilation time is an important
factor.

1. Allocate as much storage to the
compiler as possible, using the
SIZE=999999 option on the EXEC
statement. This reduces the chances
of bringing the spill mechanism into
operation.

2. Keep the number of BEGIN blocks and

procedures to a minimum. Do not use
BEGIN-END to effect statement
grouping; this is more simply obtained
by use of DO-groups.

3 Try to avoid using the ATR, XREF,
LIST, DECK, and CHAR48 compiler
options, and specify OPT=0 or 1 rather
than 2.

4. Avoid features which give rise to
large dictionary entries and large
amounts of text. For example,

DCL A PIC '(4000)X';

occupies one complete dictionary
block.

5. Use of the following features causes
optional compiler phases to be loaded:
ALLOCATE, LIKE, CHECK, iSUB defining,
built-in functions with aggregate
arguments, GENERIC entry names,
DELAY/DISPLAY. If any of these
features can be completely avoided
without extensively increasing the
source code, there will be a
corresponding increase in compilation
speed.

6. On re-runs, further slight increases
in efficiency can be obtained by

a. removing all unreferenced labels
and data;

b. correcting all source errors, and,
where possible, minimizing the
number of diagnostic messages
produced, including such messages
as "FILE/STRING option missing in
GET/PUT statement";

c. subdividing the program if the
auxiliary storage has been used;

d. specifying the NOSOURCE option;

e. specifying the FLAGS option.

See also "Compiler Storage," under
"Reducing Storage Requirements," below.

IMPROVING SPEED OF EXECUTION

By using the OPT=2 compiler option and the
REORDER block option, the programmer allows
the compiler to optimize loops and
subscripts (see "Effect of Compilation on
Object Program Efficiency," above).
However, there is a significant increase in
compilation time and results are not
guaranteed in certain cases of error. The
recommended procedure is to specify REORDER

Chapter 17: Optimization and Efficient Performance 223

where possible in the program but to
suppress the optimization phases in the
early stages of developing the program, by
using OPT=0 or 1; when the program is fully
developed it can be compiled during OPT=2.

Even when OPT=0 or 1 is specified, the
programmer can increase the execution speed
by following certain rules; and when OPT=2
is specified, he can increase the amount of
optimization by following another set of
rules. For this reason, the information in
this part is given first in terms of OPT=0
or 1, and then in terms of OPT=0.

Methods of improvement when OPT=0 or 1

The following measures are suggested for
use where both compilation time and
execution time are important factors. Note
that while some of these measures may slow
down the compilation, this is offset by the
fact that others will accelerate it. In
the main, there should be no serious
increase in compilation time.

1. If the use of storage is not as
important as speed of execution, use
OPT=1. Avoid the STMT option as code
will be generated. Use of the
statement/offset table is more
efficient since no code is generated.

2. Avoid unnecessary program segmentation
and block structure; all procedures,
ON-units and BEGIN blocks need
prologues and epilogues, the
initialization and housekeeping for
which carry a considerable overhead.
(Prologues and epilogues are described
in Appendix C of this publication.)
Whenever possible, use GOTO or IF
statements to control program logic,
rather than the CALL statement.

3. Branching in IF statements can be
improved by using DO and END
statements to bracket a THEN clause,
rather than using a GOTO statement in
the THEN clause. For example:

IF A=B THEN DO;
C=D;
E=F;

END;
L: etc.

is more efficient than

IF A=B THEN GO TO L;
C=D;
E=F;

L: etc.

4. When GO TO is used in an IF statement,

more efficient object code is produced
by the GO TO if it refers to a label
within the same block rather than to a
label outside the block.

5. Keep IF clauses simple; separate any
multiple conditions into a series of
simple IF statements. For example:

IF A=B
THEN IF C=D
THEN IF E=F

THEN GO TO M;

6. Avoid extensive use of adjustable
arrays and/or CONTROLLED storage.

7. Use constants wherever possible
instead of expressions.

8. Exercise care in specifying precision.
For example,

DCL A FIXED DEC(8,4),
B FIXED DEC(10,0),
C FIXED DEC(10,1);

C=A+B;

This requires almost twice as much
code as it would if P had been
declared (10,4), because the
evaluation of A+B requires a scale
factor of 4.

9. Use the PICTURE attribute only when
necessary. For example, use FIXED
DECIMAL(5,0) instead of PIC'999V99'.
If a picture field is used in more
than one arithmetic operation, convert
it once and then use the new form in
each operation. This holds for any
conversion required more than once.

If it is necessary to use data with
the PICTURE attribute in arithmetic
expressions, use pictures that will be
handled in-line, as this considerably
reduces execution time. Pictures with
all 9s, a V and a non-drifting sign
are particularly useful. For example:

'999'
'$99v99'
's99'
'V999'

10. Internal switches and counters, and
data involved in substantial
computation or used for subscripts,
should be declared BINARY; data
required for output should be kept in
DECIMAL form.

Note: On model 50 machines and above
half-word binary instructions are

024

Bit strings used as logical switches
should be specified according to the
number of switches required. In the
examples below, (a) is preferable to
(b), and (b) to (c):

1. Single Switches

(a) DCL SW BIT(1) INIT ('1'B);
•

IF SW THEN DO;
•

•

(b) DCL SW BIT(8) INIT('1'B);
•

IF SW THEN DO;
•

•

(c) DCL SW BIT(8) INIT('1'B);

IF SW = '10000000'B THEN DO;

2. Multiple Switches

(a) DCL B BIT(8);
•

B = '11100000'B;

•

IF B = '11100000' THEN DO;

•

(b) DCL B BIT(3);
•

•

B = '111';
•

•

IF
•
 B = '111'B THEN DO;

slower than full-word binary. Key
variables should therefore be declared
full-word binary, but not precision 31
as this inhibits certain types of
optimization. Precisions of (16,0) or
(17,0) are recommended.

11. Keep data conversions to a minimum.
Some possible methods follow:

a. Use additional variables. For
example, if a problem specifies
that a character variable has to
be regularly incremented by 1,

DCL CTLNO CHAR(18);

CTLNO = CTLNO+1;

requires two conversions, while

DCL CTLNO CHAR(8),
DCTLNO DEC FIXED;

DCTLNO=DCTLNO+1;
CTLNO=DCTLNO;

requires only one conversion.

b. Take special care to make
structures match when it is
intended to move data from one
structure to another.

c. Avoid mixed mode arithmetic,
especially the use of character
strings in arithmetic
calculations.

12. Declare arrays in the procedure in
which they are used, instead of
passing them as arguments. Declare
subscript variables in the block in
which they are used, as FIXED BINARY
(16,0).

13. In multiple assignments to subscripted
variables, restrict the assignment to
three variables.

14 	If a subscripted item is referred to
more than once with the same
subscript, assign the element to a
scalar variable:

R=(A(I)+1/A(I))+A(I)**A(I);

should be replaced by

ASUB=A(I);
R=(ASUB+1/ASUB)+ASUB**ASUB;

15. Bit strings should, if possible, be
specified as multiples of eight bits.

Chapter 17: Optimization and Efficient Performance 225

(c) DCL (SW1,SW2,SW3) BIT(1);

SW1, SW2, SW3, = '1'B;

IF SW1&SW2&SW3 THEN DO;

If bit string data is to be held in
structures, such structures should be
declared ALIGNED.

16. Note that concatenation operations are
time-consuming.

17. Varying-length strings are not as
efficient as fixed-length strings.

18. Fixed-length strings are not efficient
if their length is not known at
compile time, as in the following
example:

DCL A CHAR(N);

19. Avoid using the SIZE, SUBSCRIPTRANGE,
STRINGRANGE and CHECK ON-conditions,
except during debugging. Debugging
aids should be removed from the
program before running it as a
production job.

20. Do not refer to the DATE built-in
function more than once in a run; it
is expensive. Instead, refer to the
function once and save the value in a
variable for subsequent use; e.g.
instead of

PAGEA= TITLEA||DATE;
PAGEB= TITLEB||DATE;

it is more efficient to write

DTE=DATE;
PAGEA=TITLEA||DTE;
PAGEB=TITLEB||DTE;

21. Allocate sufficient buffers to prevent
the program becoming I/O bound.

22. Use blocked output records.

23. Open a number of files in a single
OPEN statement.

24. In STREAM input/output, use long data
lists instead of splitting up
input/output statements.

25. Use EDIT-directed input/output in
preference to LIST- or DATA-directed.

26. Consider the use of overlay defining
to simplify transmission to or from a
character string structure. For
example:

DCL 1 IN,
2 TYPE CHAR(2),
2 REC,

3 A CHAR(5),
3 B CHAR(7),
3 C CHAR(66);

GET EDIT(IN) (A(2),A(5),A(7),A(66));

In the above example, each
format-item/data-field pair is matched
separately, code being generated for
each matching operation. It would be
more efficient to define a character
string on the structure and apply the
GET statement to the string:

DCL STRNG CHAR(80) DEF IN;

GET EDIT (STRNG) (A(80));

27. If a file is declared DIRECT, INDEXED,
then the ENVIRONMENT options INDEXAREA
and NOWRITE should be applied if
possible.

28 	If storing and restoring of registers
can be omitted, a call to an ENTRY
which is declared as REDUCIBLE will be
optimized. If string and restoring of
registers cannot be omitted, and
thereby optimization cannot be carried
out, a call to an ENTRY should be
declared IRREDUCIBLE.

Methods of Improvement when OPT=2

When it is intended that OPT=0 will be used
for the final compilation, the programmer
should use REORDER wherever possible and
should observe the following points while
writing the program. (Note that this
information is given for guidance only:
full optimization may not necessarily take
place if the advice is followed;
conversely, some optimization may take
place if the advice is not followed.) The
following items obstruct loop and subscript
optimization, and should be avoided
wherever possible:

1. Subscript expressions that are not
fixed-point binary or that contain
nested subscripts or function
references.

2. The SUBSCRIPTRANGE condition; this
should be enabled only when necessary.

226

3. DO statements that have more than one
iterative specification and/or a WHILE
clause.

4. Control variables that are not real
fixed-point binary integer element
variables.

5. Expressions in TO and BY clauses other
than decimal integer constants or
single variables and expressions of
real fixed-point binary integer type.

6. The SIZE condition when enabled for
iterative DO statements.

7. Loops that contain any of the
following:

a. GET DATA statements

b. References to programmer-defined
functions

c. Procedure calls

d. Procedures or begin blocks

e. Statements that are likely to
raise conditions other than
computational or system action
conditions if the compilation
contains on-units for such
conditions. (For example, if the
compilation contains an on-unit
for an input/output condition, the
use of input/output statements
within loops should be avoided
wherever possible.)

8. Arrays that are parameters and/or do
not have constant bounds.

9. Any of the following types of
variable:

a. Variables with the EXTERNAL
attribute

b. Based variables and variables that
are either defined or defined upon

c. Variables that are parameters.

d. Variables used as arguments to
either the ADDR built-in function

or a programmer-defined function
returning a pointer value.

e. Variables used as arguments to an
internal procedure when there are
any pointers in the compilation

f. Variables used as arguments to
external procedures (other than
built-in functions: when there are
any external pointers in the
compilation or when any argument

to one such procedure is an
internal pointer.

10. If storing and restoring of registers
can be omitted, a call to an ENTRY
which is declared as REDUCIBLE will be
optimized. If storing and restoring
of registers cannot be omitted, and
thereby optimization cannot be carried
out, a call to an ENTRY should be
declared IRREDUCIBLE.

Use of Storage

If object program storage saving is to be
given precedence over execution speed, the
OPT=0 compiler option should be applied to
the compilation. Apart from this, the
programmer can bear the following
information in mind while writing his
program:

1. Wherever possible, data for
computation should be binary, rather
than decimal. Note that fixed binary
variables of precision less than 16
(including those with default
precision) require only two bytes per
element against four bytes for those
with precision greater than 15.

2. If a file declared as INDEXED is to be
used for DIRECT UPDATE but will not
have records added to it, the use of
the ENVIRONMENT option NOWRITE will
save data management about 5000 bytes
of storage.

3. The Alignment Attributes: These allow
the user to provide alignment for
string and arithmetic data as follows:

ALIGNED: Arithmetic:
FIXED DECIMAL: byte
FLOAT(DOUBLE): doubleword
Other: word

String: byte

UNALIGNFD: Arithmetic and character
string: byte

Bit string: bit

Thus the UNALIGNED attribute can be
used to obtain denser packing of data
in main storage, with the minimum of
padding.

Area, pointer, offset, label, task and
event data are always aligned on word
or doubleword boundaries (see Figure
K-1). They can never be UNALIGNED.

In data aggregates, the explicitly
declared alignment for the aggregate
applies to each element in the

Chapter 17: Optimization and Efficient Performance 227

aggregate. In structures, however,
this alignment can be overridden by an
alignment specified for a particular
base element.

For example:

DCL 1 STR UNALIGNED,
2 A,
2 B ALIGNED,
2 C;

Here A and C will be UNALIGNED and B
will be ALIGNED.

inherited from D, but it is
also the default for F if D had
not been declared ALIGNED)

G is CHAR UNALIGNED

The user must take care that the
alignment attributes are correct when
matching variables for:

1. Use of the DEFINED attribute

2. Arguments and associated
parameters

3. Accessing different generations
of a based variable.

(In a multiprogramming environment, the
storage used by object programs can be
reduced by use of the shared library
facility described in the PL/I (F)
Programmer's Guide. The effect of this
facility will vary between different
installations, since the shareable library
is built selectively at system generation
time.)

AVOIDING COMMON ERRORS

This is a list of the errors and pitfalls
most likely to be encountered when writing
a PL/I source program. Some of the items
concern misunderstood or overlooked
language rules, while others result from
failure to observe the implementation
conventions and restrictions of the PL/I
(F) compiler, and are indicated by (I)
appearing after the item.

Default attributes now depend on the
data type of the element concerned,
both for data items and for data
aggregates. These defaults are:

UNALIGNED All string data and
PICTURE items

ALIGNED 	All arithmetic data i.e.,
BINARY
DECIMAL
FIXED
FLOAT
COMPLEX

For example:

DCL A PIT(4),

(B CHAR(10), X) UNALIGNED,
(C BIT(12), Y FIXED) ALIGNED;

Here A is UNALIGNED by default, I is
ALIGNED by default, and B, C, X and Y,
are as explicitly declared.

DCL (A1(80) CHAR(6), A2(80) BINARY)
ALIGNED,
B1 (3,3) BIT(2),

C1 (3,3) CHAR(4),
Dl (100) DECIMAL;

Source Program and General Syntax

Here A1 and A2 are as explicitly
declared, B1 and C1 are UNALIGNED by
default, and D1 is ALIGNED by default.

DCL 1 A,
2 B,
2 C BIT(4) UNALIGNED,
2 D ALIGNED,

3 E BIT(2),
3 F,

2 G CHAR(10);

Here A i s a major structure
B is FLOAT DECIMAL ALIGNED by

default
C is explicitly UNALIGNED
D is a minor structure
E is BIT ALIGNED (inherited from

D)
F is FLOAT DECIMAL ALIGNED by
default(here ALIGNED is

1. Keypunch transcription errors may
occur unless particular care is taken
when writing the following characters:

1 (numeral), I (letter), | (or),

/ (slash), ' (quotation mark);

(not), 7 (seven),
> (greater than);

L (letter), < (less than).

O (letter), 0 (zero);

S (letter), 5 (five);

Z (letter), 2 (two);

(break character),
-- (minus sign);

228

2. Ensure that the source program is
completely contained within the
margins specified by the SORMGIN
option. 	(I)

3. Inadvertent omission of certain
symbols may give rise to errors that
are difficult to trace. Common errors
are: unbalanced quotation marks;
unmatched parentheses; unmatched
comment delimiters (e.g., /* punched
instead of */ when closing a comment);
and missing semicolons.

4. Reserved keyword operators in the
48-character set (e.g., GT, CAT) must
in all cases be preceded and followed
by a blank or comment.

5. Care should be taken to ensure that
END statements correctly match the
appropriate DO, BEGIN, and PROCEDURE
statements.

6. In some situations, parentheses are
required when their necessity is not
immediately obvious. In particular,
the expression following WHILE and
RETURN must be enclosed in
parentheses.

Program Control

1. The procedure to be given initial
control at execution time must have
the OPTIONS(MAIN) attribute. If more
than one procedure has the MAIN
option, the first one gets
control. 	(I)

2. When a procedure of a program is
invoked while it is still active, it
is said to be used recursively.
Attempting the recursive use of a
procedure that has not been given the
RECURSIVE attribute may result in a
program interrupt after exit from the
procedure. This will occur if
reference is made to AUTOMATIC data of
an earlier invocation of the
procedure.

Declarations and Attributes

1. DECLARE statements for AUTOMATIC
variables are in effect executed at
entry to a block; sequences of the

following type are therefore likely to
lead to unpredictable storage
requests:

A: PROC;
N=4;
DCL B(N) FIXED;

•

END;

2. Missing commas in DECLARE statements
are a common source of error. For
example, a comma must follow the entry
for each element in a structure
declaration.

3. External identifiers should neither
contain more than seven characters,
nor start with the letters IHE. 	(I)

4. In a PICTURE declaration, the V
character indicates the scale factor,
but does not in itself produce a
decimal point on output. The point
picture character produces a point on
output, but is purely an editing
character and does not indicate the
scale factor. In a decimal constant,
however, the point does indicate the
scale factor. For example:

DCL A PIC'99.9',
B PIC'99V9',
C PIC'99.V9';

A,B,C=45.6;
PUT LIST (A,B,C);

This will cause the following values
to be put out for A, B, and C,
respectively:

04.5 	456 	45.6

If these values were now read back
into the variables by a GET LIST
statement, A, B, and C would be set to
the following respective values:

004 	56.0 	45.6

If the PUT statement were then
repeated, the result would be:

00.4 	560 	45.6

5. Separate external declarations of the
same identifier must not specify
conflicting attributes, either
explicitly or by default. If this
occurs the compiler will not be able
to detect the conflict. PL/I also
requires that if an INITIAL value is
specified in one declaration of a
STATIC EXTERNAL variable, the same
INITIAL value should appear in every
declaration of that variable.

Chapter 17: Optimization and Efficient Performance 229

6. An identifier cannot be used for more
than one purpose within its scope.
Thus, the use of X in the following
sequence of statements would be in
error:

PUT FILE (X) LIST (A,B,C); X=Y+Z;
X: M=N;

7. It is advisable to declare all entry
points, associated parameter lists,
and any return values, to avoid
inadvertent clashes of attributes.

If the attributes of the data items in
an argument list do not match those
declared for the ENTRY, a dummy
argument is created with the correct
attributes, and the data item is
converted into the dummy. For
example:

DCL X ENTRY (FIXED, CHAR(4)),
Y FIXED, Z FIXED(1,0);

Y=45;
Z=0;
CALL X(Y,Z);

X:PROC(A,B);
DCL A FIXED,

B CHAR(4);
END;

In the above example, a dummy
is created for the second argument, Z,

and is passed to X as 'bbb0'

If the attributes declared for X in
the entry name declaration were
incompatible with the attributes of
the arguments in the CALL statement,
the compiler would issue a diagnostic
message, and at execution time no
conversion would take place. However,
if the attributes declared for X in
the entry name declaration conflicted
with the attributes of the

corresponding parameters in the
PROCEDURE statement, the compiler
would not detect the disagreement, and
at execution time the consequences of
such an error would, in general, be
unpredictable.
For example, if X were declared

DCL X ENTRY (FLOAT, CHAR(4));

then 45 would be passed as FLOAT, but
would be interpreted by X as FIXED,
possibly with disastrous results.

Similarly, attributes declared for
RETURN values must agree in the
invoking and invoked procedures;
however, the actual expression
returned may be of any data type and
will be converted to that declared.
For example:

DCL X RETURNS (CHAR(4));
DCL A CHAR(4);

X: PROC CHAR(4);
RETURN (I*J*K);
END X;

A=X;

The precision of decimal integer
constants should be taken into account
when such constants are passed. For
example:

CALL ALPHA(6);

ALPHA: PROCEDURE(X);
DCL X FIXED DECIMAL;
END;

The above example is incorrect because
X will be given a default precision,
while the constant, 6, will be passed
with precision (1,0).

8 When a data item requires conversion
to a dummy, and the called procedure
alters the value of the parameter,
note that the dummy is altered, not
the original argument. For example:

DCL X ENTRY (FIXED, FIXED),
A FIXED,
B FLOAT;

CALL X(A,B);

END X;

9. When the attributes for a given
identifier are incompletely declared,
the rest of the required attributes
are supplied by default. The
following default assumptions should
be carefully noted.

FLOAT DECIMAL REAL is assumed for
implicitly declared arithmetic
variables, unless the initial letter
is in the range I through N, when
FIXED BINARY REAL is assumed.

If a variable is explicitly declared
and any of the base, scale, or mode
attributes is specified, the others
are assumed to be from the set
FLOAT/DECIMAL/REAL. For example:

DCL I; 	/*I IS FIXED BINARY
(15,0) REAL
AUTOMATIC*/

230

DCL J REAL; /*J IS FLOAT DECIMAL
(6) REAL
AUTOMATIC*/

DCL K STATIC; /*K IS FIXED BINARY
(15,0) REAL
STATIC*/

DCL L FIXED; /*L IS FIXED DECIMAL
(5,0) REAL
AUTOMATIC*/

10 The precision of complex expressions
is not obvious. For example, the
precision of 1 + 1I is (2,0), that is,
the precision follows the rules for
expression evaluation.

11 When a procedure contains more than
one entry point, with different
parameter lists on each entry, make
sure that no references are made to
parameters other than those associated
with the point at which control
entered the procedure. For example:

A: PROCEDURE(P,Q);
P=Q+8; RETURN;

B: ENTRY(R,S);
R=P+S; /*THE REFERENCE TO P

IS AN ERROR*/
END;

12. Based storage is allocated in terms of
doublewords; therefore, even for the
smallest item, at least eight bytes
are required. 	(I)

13. The variable used in the REFER option
must be referred to unambiguously.
For example:

DCL 1 A,
2 Y FIXED BIN,
2 Z FLOAT,

1 B,
2 Y FIXED BIN
2 T(1:N REFER(B.Y));

In any references to this declaration,
Y must be fully qualified to prevent a
possible ambiguity.

14. A pointer qualifier (explicit or
implicit) may not be based or
subscripted. 	(I)

15. Conflicting contextual declarations
must be avoided. P is often used as
the name of a pointer and it must not
then assume by default the
characteristics of another data type.
For example:

B BASED (P),

P AUTO,

P is first contextually declared to be
a pointer and then, by default, to be
FLOAT DECIMAL.

16. BASED variables cannot be used as
arguments or parameters. 	(I)

17. Offsets must be declared with a level
1 unsubscripted based area.

Assignments and Initialization

1. When a variable is accessed, it is
assumed to have a value which has been
previously assigned to it and which is
consistent with the attributes of the
variable. If this assumption is
incorrect, either the program will
proceed with incorrect data or a
program interrupt will occur. Such a
situation can result from failure to
initialize the variable, or it can
occur as a result of the variable
having been set in one of the
following ways:

a. by the use of the UNSPEC
pseudo-variable

b. by RFCORD-oriented input

c. by overlay defining a picture on a
character string, with subsequent
assignment to the character string
and then access to the picture

d. by passing as an argument a
variable assigned in a different
procedure, without matching the
attributes of the parameter.

Failure to initialize a variable will
result in the variable having an
unpredictable value at execution time.
Do not assume this value to be zero.

Failure to initialize a subscript can
be detected by checking for subscripts
out of range, when debugging the
program.

2. Any attempt to write out a variable or
array that has not been initialized
may well cause a data interrupt to
occur. For example:

DCL A(10) FIXED;
A(1)=10;
PUT LIST (A);

Chapter 17: Optimization and Efficient Performance 231

To avoid the data interrupt, the array
should be initialized before the
assignment statement, thus:

A=0;

Note that this problem can also occur
as a result of CHECK system action for
an uninitialized array. If the CHECK
condition were enabled for the array
in the above example, and system
action were taken, the results, and
the way in which the program
terminates, would be unpredictable.
The same problem arises when PUT DATA
is used.

3. Note the distinction between
= (assignment) and = (comparison).
The statement

A=B=C;

means "compare B with C and assign the
result (either '1'B or '0'B) to A,

performing type conversion if
necessary."

4. Assignments that involve conversion
should be avoided if possible.

5. In the case of initialization of or
assignment to a fixed length string:
if the assigned value is shorter than
the string, it is extended on the
right with blanks (for a character
string) or zeros (for bit strings).
For example:

DCL A CHAR(6),
B CHAR(3) INIT('CR');
A=B;

After the execution of the above
statements, B would contain CRb, and A
would contain CRbbbb.

6. It is not possible to assign a cross
section of an array of structures in a
single statement; the whole of an
array of structures, or a single
element may be referenced, but not a
cross section. 	(I)

7. When SIZE is disabled, the result of
an assignment which would have raised
SIZE is unpredictable:

FIXED BINARY: The result of an
assignment here -- which includes, for
instance, source language assignments
and the conversions implied by
parameter matching -- may be to raise
FIXEDOVERFLOW.

FIXED DECIMAL: Truncation to the
nearest byte may occur, without
raising an interrupt. If the target

precision is even, an extra digit may
be inserted in the high-order byte.

Arithmetic and Logical Operations

1. The rules for expression evaluation
should be carefully noted, with
particular reference to priority of
operations. The following examples
show the kind of mistake that can
occur:

X>Y|Z is not equivalent to X>Y|X>Z
but is equivalent to (X>Y)|Z

X>Y>Z is not equivalent to X>Y&X>Z
but is equivalent to (X>Y)>Z

The clause IF A=B||C is equivalent
to IF A= (B||C) ,not to IF (A=B) ||C

All operation sequences of equal
priority are evaluated left to right,
except for **, prefix +, prefix -, and
1 , which are evaluated right to left.
Thus, the statement

A=B**-C**D;

is equivalent to

A=B**(-(C**D));

The normal use of parentheses is to
modify the rules of priority; however,
it may be convenient to use redundant
parentheses as a safeguard or to
clarify the operation.

2. Conversion is governed by
comprehensive rules which must be
thoroughly understood if unnecessary
trouble is to be avoided. Some
examples of the effect of conversion
follow.

a. DECIMAL FIXED to BINARY FIXED can
cause unexpected results if
fractions are involved:

DCL I FIXED BIN(31,5) INIT(1);
I = I+.1;

The value of I is now 1.0625.
This is because .1 is converted to
FIXED BINARY(5,4), so that the
nearest binary approximation is
0.0001B (no rounding occurs). The
decimal equivalent of this is
.0625. A better result would have
been achieved by specifying .1000
in place of .1. (See also item f.
below.)

232

b. If arithmetic is performed on
character string data, the
intermediate results are held in
the maximum precision:

DCL A CHAR(6) INIT('123.45');
DCL B FIXED(5,2);
B=A; 	/*B HAS VALUE 123.45*/
B=A+A; /*B HAS VALUE 246.00*/

c. The rules for arithmetic to bit
string conversion affect
assignment to a bit string from a
decimal constant:

DCL A BIT(1),
D BIT(5);

A=1; /*A HAS VALUE '0'*/
D=1; /*D HAS VALUE '00010'B*/
D='1'B; /*D HAS VALUE

'10000'*/
IF A=1 THEN GO TO Y;

ELSE GO TO X;

The branch will be to X, because
the assignment to A resulted in
the following sequence of actions:

(1) The decimal constant, 1, is
assumed to be FIXED DECIMAL
(1,0) and is assigned to
temporary storage with the
attributes FIXED BINARY(4,0),
taking the value '0001';

(2) This value is now treated as a
bit string of length (4), so
that it becomes '0001'B;

(3) The resultant bit string is
assigned to A. Since A has a
declared length of 1, and the
value to be assigned has
acquired a length of 4,
truncation occurs at the
right, and A has a final value
of '0'B.

To perform the comparison
operation in the IF statement,

'0' and 1 are converted to FIXED
BINARY and compared
arithmetically. They are unequal,
giving a result of "false" for the
relationship A=1.

In the first assignment to D, a
sequence of actions similar to
that described for A takes place,
except that the value is extended
at the right with a zero, because
D has a declared length that is 1
greater than that of the value to
be assigned.

d. Assignment of arithmetic values to
character strings involves

conversion according to the rules
for LIST-directed output.

Example 1

DCL A CHAR(4),
B CHAR(7);

A='0'; /*A HAS VALUE '0bbb'*/
A=0; /*A HAS VALUE 'bbb0'*/
B=1234567; /*B HAS VALUE

'bbb1234'*/

Note: The three blanks are
necessary to allow for the
possibility of a minus sign and/or
a decimal or binary point, with
provision for a single leading
zero before the point.

Example 2

DCL CTLNO CHAR(8) INIT('0');
DO I=1 TO 100;

CTLNO=CTLNO+1;

• END;

In this example, a conversion
error occurs because of the
following sequence of actions:

(1) The initial value of CTLNC,
that is, '0bbbbbbb', is
converted to FIXED
DECIMAL(5,0) for the addition,
giving a temporary value of
00000.

(2) The decimal constant, 1,
assumed to be FIXED
DECIMAL(1,0), is added; in
accordance with the rules for
addition, the precision of the
result is (6,0), giving a
value of 000001.

(3) This value is now converted to
a character string of length
9, value 'bbbbbbbbl', in
preparation for the assignment
back to CTLNO.

(4) Because CTLNO has a length of
S, the assignment causes
truncation at the right; thus,
CTLNO has a final value that
consists entirely of blanks.
This value cannot be
successfully converted to

233 Chapter 17: Optimization and Efficient Performance

arithmetic type for the second
iteration of the loop.

e. FIXED division can result in
unexpected overflows or
truncation. For example, the
expression

25+1/3

would yield a value of 5.33...3.
To obtain a result of 25.33...3,
it would be necessary to write

25+01/3

The explanation is that constants
have the precision and scale
factor with which they are
written, while FIXED division
results in a value of maximum
implementation- defined precision.
The results of the two evaluations
are reached as follows:

C=A; /*WILL NOT RAISE CONV
CONDITION*/

A=C; /*WILL RAISE CONV*/

Note also (A, B, C as declared
above):

A=123456; /*A HAS VALUE
123456*/

/*B HAS VALUE
'123456'*/

C=123456; /*C HAS VALUE
'bbb123'*/

C=A; /*C HAS VALUE '123456'*/

g. A decimal fixed-point element with
a declared even precision (P,Q)
may have an effective precision of
(P+1,Q), as the high-order byte
may not be non-zero. The SIZE
condition can be used to eliminate
this effect:

DCL (A,B,C) FIXED DECIMAL (6,0);
ON SIZE;

•

(SIZE): A = B + C;

This ensures that the high-order
byte of A is zero after the
assignment.

f. Checking of a picture is performed
only on assignment into the
picture variable:

DCL A PIC'999999',
B CHAR(6) DEF A,
C CHAR(6);

B='ABCDEF';

DO-groups

1. The scope of a condition prefix
applied to a DO statement is limited
to execution of the statement itself;
it does not apply to execution of the
entire group.

2. An iterative DO group is not executed
if the terminating condition is
satisfied at initialization:

I=6;
DO J=I TO 4;

X=X+J;
END;

X is not altered by this group, since
BY 1 is implied. Iterations can step
backwards, and if BY -1 had been
specified, three iterations would have
taken place.

3. Expressions in a DO statement are
assigned to temporaries with the same
characteristics as the expression, not
the variable. For example:

234

DCL A DECIMAL FIXED(5,0);
A=10;
DO I=1 TO A/2;

END;

This loop will not be executed,
because A/2 has decimal precision
(15,10), which, on conversion to
binary (for comparison with I),
becomes binary (31,34).

Five iterations would result if the DO
statement were replaced by

ITEMP=A/2;
DO I=1 TO ITEMP;

4. DO-groups cannot be used as ON-units.

1. DCL (P, IA, IB, IC) POINTER;

DO P=IA,IB,IC;

2. DCL (P, IA) POINTER;

DO WHILE(P=IA);

Data Aggregates

1. Array arithmetic should be thought of
as a convenient way of specifying an
iterative computation. For example:

DCL A(10,20);
•

5. Upper and lower bounds of iterative
DO-groups are computed once only, even
if the variables involved are
reassigned within the group. This
applies also to the BY expression.

Any new values assigned to the
variables involved would take effect
only if the DO-group was started
again.

6. In a Do-group with both a control
variable and a WHILE clause, the
evaluation and testing of the WHILE
expression is carried out only after
determination (from the value of the
control variable) that iteration may
be performed. For example, the
following group would be executed at
most once:

DO I=1 WHILE(X>Y);

END;

7. I is frequently used as the control
variable in a DO-group, for example:

DO I=1 TO 10;

Within the scope of this implicit
declaration, I might be contextually
declared as a pointer, for example:

DCL X BASED(I);

The two statements are in conflict and
will produce a diagnostic message.
When I is a pointer variable, it can
only be used in a DO-group in one of
the following ways:

A=A/A(1,1);

has the same effect as

DCL A(10,20);

DO I=1 TO 10;
DO J=1 TO 20;
A(I,J)=A(I,J)/A(1,1);
END; END;

Note that the effect is to change the
value of A(1,1) only, since the first
iteration would produce a value of 1
for A(1,1). If the programmer wished
to divide each element of A by the
original value of A(1,1), he could
write

B=A(1,1);
A=A/B;

or alternatively,

DCL A(10,20),
B(10,20);

B=A/A(1,1);

2. Note the effect of array
multiplication:

DCL (A,B,C) (10,10);
•

•
A=B*C;

235 Chapter 17: Optimization and Efficient Performance

1. Assignments made to a varying string
by means of the SUBSTR pseudo-variable
do not set the length of the string.
A varying string initially has an
undefined length, so that if all
assignments to the string are made
using the SUBSTR pseudo-variable, the
string still has an undefined length
and cannot be successfully assigned to
another variable or written out. The
SUBSTR pseudo-variable cannot be
applied to a numeric picture.

2. The user must ensure that the lengths
of intermediate results of string
expressions do not exceed 32767 bytes.
This applies particularly to variable
string lengths, as there is no
object-time length checking. (I)

Functions and Pseudo-Variables

would result in the ERROR condition
being raised in the event of a
transmission error during the first
GET operation, and the required branch
would not be taken (assuming that no
previous ON statement applies).
Furthermore, the ON statement would be
executed after each execution of the
GET statement.

2. An on-unit cannot be entered by means
of a GOTO statement. To execute an
on-unit deliberately, the SIGNAL
statement can be used.

3. CONVERSION on-units entered as a
result of an invalid conversion (as
opposed to SIGNAL) should either
change the invalid character (by means
of the ONSOURCE or ONCHAR
pseudo-variable), or else terminate
with a GOTO statement. Otherwise, the
system will print a message and raise
the ERROR condition.

4. At normal exit from an AREA on-unit,
the standard system action is to try
again to make the allocation. Unless
the on-unit makes the allocation
possible, therefore, the on-unit will
be entered again and an indefinite
loop will be created. To avoid this,
the amount allocated should be
modified in the on-unit; for example,
the EMPTY built-in function could be
used, or a pointer variable could be
changed.

This does not effect matrix
multiplication; it is equivalent to:

DCL (A,B,C) (10,10);

DO I=1 TO 10;
DO J=1 TO 10;
A(I,J)=B(I,J)*C(I,J);
END; END;

Strings

Input/Output

1. When UNSPEC is used as a
pseudo-variable, the expression on the
right is converted to a bit string.
Consequently, the expression must not
be invalid for such conversion; for
example, if the expression is a
character string containing characters
other than 0 or 1, a conversion error
will result.

ON-conditions and ON-units

1. Note the correct positioning of the ON
statement. If the specified action is
to apply when the named condition is
raised by a given statement, the ON
statement must be executed before that
statement. The statements:

GET FILE (ACCTS) LIST (A,B,C);
ON TRANSMIT (ACCTS) GO TO TRERR;

1. The UNDEFINEDFILE condition may be
raised if a STREAM file is reopened
with attributes or options that
conflict with attributes, options, or
parameters previously specified for
it. For example, if a file originally
opened with a LINESIZE of 100 is
subsequently reopened with a LINESIZE
of 131, the UNDEFINEDFILE condition
will be raised if the DCB subparameter
BLKSIZE is not specified on the DD
card, or if it is specified as less
than 132. Difficulties of this nature
can be avoided by the use of different
file names, or by using the same file
name with different TITLE option
specifications. 	(I)

2. The UNDEFINEDFILE condition is raised
not only by conflicting language
attributes (such as DIRECT with
PRINT), but also by the following:

a. Block size smaller than record

236

size. This condition is not
raised if spanned (VS- or
VBS-format) records are used.

open the file will not raise this
condition again.

(I)
b. LINESIZE exceeding the permitted

maximum.

c. Blocked records specified for
REGIONAL organization.

d. U- or V-format records specified
for INDEXED, REGIONAL(1), or
REGIONAL(2) organizations.

e. KEYLEN not specified for creation
of INDEXED, REGIONAL(2), or
REGIONAL(3) data sets.

f. Attempting to open an INDEXED data
set for DIRECT OUTPUT.

g. Attempting to open a CONSECUTIVE
data set with DIRECT or KEYED
attributes.

h. Specifying an RKP option, for an
INDEXED data set, with a value
resulting in KEYLEN+RKP exceeding
LRECL.

i. Specifying a V-format logical
record length of less than 18
bytes for STREAM data sets.

J .
 Specifying, for F-format blocked

records, a block size which is not
an integral multiple of the record
size.

3. If a file is to be used for both input
and output, it must not be declared
with either the INPUT or the OUTPUT
attribute. The required option can be
specified on the OPEN statement.
There must be no conflict between file
attributes specified in the
declaration and those specified by the
OPEN statement.

4. Input/output lists must be surrounded
by a pair of parentheses; so must
iteration lists. Therefore, two pairs
of outer parentheses are required in

GET LIST ((A(I) DO I=1 TO N));

5. The last eight bytes of a source key
to access a regional data set must be
the character string representation of
a fixed decimal integer. When
generating the key, the rules for
arithmetic to character string
conversion should be considered. For
example, the following group would be
in error:

DCL KEYS CHAR(S);
DO I=1 TO 10;

KEYS=I;
WRITE FILE(F) FROM (R)
KEYFROM (KEYS);

END;

k. Specifying, for V-format records,
a logical record length that is
not at least four bytes smaller
than the specified block size.

The default for I is FIXED
BINARY(15,0), which requires not 8 but
9 characters to contain the character
string representation of the
arithmetic values.

1. Attempting to open a paper-tape
reader for OUTPUT or UPDATE.

m. Attempting to open a file with the
UNBUFFERED attribute for blocked
records.

n. Attempting to use blocked records
in the system input stream (SYSIN
DD DATA or SYSIN DD *) with an
UNBUFFERED file. The default
record format for the system input
stream is FB-format. Since this
stream is not checked on input,
the presence of FB-format records
will not be detected until an
attempt is made to open the file,
when UNDEFINEDFILE will be raised.

Note: If the UNDEFINEDFILE condition
is raised because either the key
length or the block size is not
specified, a subsequent attempt to

6. Note that the file must have the KEYED
attribute if the KEY, KEYFROM, or
KEYTO options are to be used in any
input/output statement referring to
that file.

7. The standard file names SYSIN and
SYSPRINT are implicit only in GET and
PUT statements. Any other reference,
such as those in ON statements or
RECORD-oriented input/output
statements, must be explicit.

8. PAGESIZE and LINESIZE are not file
attributes, that is, they cannot be
included in a DECLARE statement for
the file; they are options on the OPEN
statement.

9. When an edit-directed data list is
exhausted, no further format items
will be processed, even if the next

Chapter 17: Optimization and Efficient Performance 237

format item does not require a
matching data item. For example:

DCL A FIXED(5),
B FIXED(5,2);

GET EDIT (A,B) (F(5),F(5,2),X(70));

The X(70] format item will not be
processed. To read a following card
with data in the first ten columns
only, the SKIP option can be used:

GET EDIT (A,B) (F(5), F(5,2)) SKIP;

10. The number of data items represented
by an array or structure name
appearing in a data list is equal to
the number of scalar elements in the
array or structure; thus if more than
one format item appears in the format
list, successive elements will be
matched with successive format items.
For example:

DCL 1 A,
2 B CHAR(5),
2 C FIXED(5,2);

PUT EDIT (A) (A(5),F(5,2));

B will be matched with the A(5) item,
and C will be matched with the F(5,2)
item.

11. Arrays are transmitted in row major
order (e.g., A(1,1), A(1,2), A(1,3),
... A(2,1), ... 	etc.)

12. Strings used as input data for GET
DATA and GET LIST must be enclosed in
quotation marks.

13. The 48-character representation of a
semicolon (,.) is not recognized as a
semicolon if it appears in a
DATA-directed input stream; the 11-S-6
punch must be used. 	(I)

14 If a new record is added by direct
access to an INDEXED data set whose
overflow areas are already full, a
record will be irretrievably lost.
The position of the new record, in
relation to the existing records on
the track, will determine whether it
is the new record or an existing one
that is lost. If the new record would
follow the last existing record on the
track, the new record will be lost
Otherwise, the last existing record on
the track will be lost. In either
case, the KEY condition will be
raised.

15. The user must be aware of two
limitations of PUT DATA; (i.e., no

data list). Firstly, its use with an
ON statement is restricted because the
data known to PUT DATA would be the
data known at the point of the
on-unit. Secondly, and more serious,
the data will be put out as normal
data-directed output, which means that
any unallocated or unassigned data may
raise a CONVERSION or other condition.

If the on-unit

ON ERROR PUT DATA;

is used in an outer block, it must be
remembered that variables in inner
blocks are not known and therefore
will not be dumped. It would be a
good practice, therefore, to repeat
the on-unit in all inner blocks during
debugging.

If an error does occur during
execution of the PUT DATA statement,
and this statement is within an ERROR
on-unit, the program will recursively
enter the ERROR on-unit until no more
storage remains for the operation.
Since this could be wasteful of
machine time and printout, the ERROR
on-unit should be turned off once it
is activated. Instead of:

ON ERROR PUT DATA;

better code would be:

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT DATA;
END;

When PUT DATA is used without a
data-list every variable known at that
point in the program is transmitted in
data-directed output format to the
specified file. Users of this
facility, however, should note that:

a) Uninitialized decimal
fixed-point data may raise the
CONVERSION condition or a data
interrupt.

b) Unallocated controlled data will
cause arbitrary values to be
printed and, in the case of
decimal fixed-point, may raise
the CONVERSION condition or a
data interrupt.

16. Use of locate mode I/O. A pointer set
in READ SET or LOCATE SET may not be
valid beyond the next operation on the
file, or beyond a CLOSE statement. In
OUTPUT files, WRITE and LOCATE
statements can be freely mixed.

238

For UPDATE files, the REWRITE
statement with no options must be used
if it is required to rewrite an
updated record. The result of this
REWRITE is always to rewrite the
contents of the last buffer onto the
data set.

For example:

3 READ FILE (F) SET (P);
•
•

5 P->R = S;

•

7 REWRITE FILE (F);
•

11 READ FILE (F) INTO (X);

15 REWRITE FILE (F);

19 REWRITE FILE (F) FROM (X);

Notes:

Statement 7 will rewrite a record
updated in the buffer.

Statement 15 will only rewrite
exactly what was read, i.e., it
will not change the data set at
all.

Statement 19 will raise ERROR,
since there is no preceding
READ statement.

the second case, the embedded key
is overwritten with the KEYFROM
string, and the record is
transmitted.

Thus the condition may be raised
by a CLOSE statement or by an END
statement that causes implicit
closing. Until the error is
corrected, the record cannot be
transmitted and no further
operation can be carried out on
the file.

If a LOCATE statement was used in
the addition of KEYED records to
any type of REGIONAL data set
then, if the RECORD condition is
raised, the key value presented at
subsequent operations must not be
less than the current one.

17. Allocation and freeing of based
variables: If a reference is made, at
object time, to a BASED variable that
has not been allocated storage, an
unpredictable interrupt (protection,
addressing or specification) may
occur.

18. Areas, pointers, offsets and
structures containing any of these
cannot be used with STREAM I/O. PUT
DATA cannot be used with BASED
variables.

When a based variable is freed, the
associated pointer no longer contains
useful information. This pointer can
only be used again if:

1. It is re-allocated with the same
or another based variable, or,

There are two cases where it is not
possible to check for the KEY
condition on a LOCATE statement until
transmission of a record is attempted.
(This will generally occur on
execution of the next PL/I output
statement for this file.)

These are:

2. A value is assigned to it from an
offset or another pointer

A based variable allocated in an
area must be freed in that area.
For example:

DCL A AREA, B BASED (X);
ALLOCATE B IN (A);

1. When there is insufficient room in
the specified region to output the
record on a REGIONAL(3) V- or
U-format file. Neither the record
raising the condition nor the
current record are transmitted.

2. When the embedded key differs from
the KEYFROM in an ISAM file.

If this LOCATE statement is to
transmit the last record before
the file is closed, in case 1, the
record is not transmitted, and in

FREE B; 	 /* ILLEGAL */
FREE B IN (A); 	/* LEGAL */

ADDITIONAL HINTS

Declarations and Attributes

1. Do not rely too heavily on default

239 Chapter 17: Optimization and Efficient Performance

attributes. Explicit declarations
help to clarify the source program
logic, and in some cases (for
example, precision) reduce the
chance of error.

2. Variables declared FIXED BINARY or
FLOAT BINARY are automatically
aligned on the proper word
boundary, regardless of whether
they are single or part of an
aggregate. FIXED DECIMAL
variables are stored in packed
decimal format and the System/360
decimal instructions are used in
operations involving them. FLOAT
DECIMAL variables are stored in
floating-point format; operations
involving them are carried out
using the floating-point
instruction set.

Assignments and Initialization

1. High order zeros will be inserted
if required on assignment to or
initialization of an arithmetic
variable:

DCL A FIXED DECIMAL (5,2) INIT (12);
/*A HAS VALUE 012.00*/

DCL B FIXED BINARY (15,0);
B=12;
/*B HAS VALUE 000000000001100B*/

2. Arrays may be initialized by
assignment from an element
expression:

DCL A(10);
A=0;

The value will be assigned to each
element of the array. Similarly,
when an element expression is
assigned to a structure, its value
will be assigned to each element
of the structure:

DCL 1B,
2 C BIT(1),
2 D CHAR(1),
2 E CHAR(4);

B=0;

As a result of this assignment,
the values of the various elements
will be:

C '0'B
D 'b'
E 'bbb0'

Do-groups

Iterations can step backwards, and the
expression in the WHILE clause can refer to
the control variable, e.g.,

DO I=N+2*L BY -X WHILE (I>0);
END;

The control variable can be modified within
the loop.

It is possible to transfer from within a
DO-loop to a label on the END statement for
the group. This has the effect of
incrementing the control variable without
intermediate processing; control will not
fall through. It is also possible to
transfer out of an iterative DO group
before the terminating value of the control
variable is reached.

Functions

The arguments in a function reference can
be modified by the function.

ON-conditions and On-units

Note the scope of condition prefixes:

(SIZE):A:PROC;

(NOSIZE):IF M>N THEN DO;
J=E+F;
END;

END A;

In the above example, SIZE is disabled
only during the evaluation of the
expression M>N; SIZE is enabled for the
assignment J=E+F.

240

Part II 	Rules and Syntactic Descriptions

Section A: Syntax Notation

Throughout this publication, wherever a
PL/I statement -- or some other combination
of elements -- is discussed, the manner of
writing that statement or phrase is
illustrated with a uniform system of
notation.

This notation is not a part of PL/I; it
is a standardized notation that may be used
to describe the syntax -- or construction
-- of any programming language. It
provides a brief but precise explanation of
the general patterns that the language
permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order
in which the elements may (or must) appear,
the punctuation that is required, and the
options that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
PL/I:

1. A notation variable is the name of a
general class of elements in the
programming language. A notation
variable must consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
with a letter.

b. A combination of lower-case and
upper-case letters. There must be
one portion in all lower-case
letters and one portion in all
upper-case letters, and the two
portions must be separated by a
hyphen.

All such variables used are defined in
the manual either syntactically, using
this notation, or are defined
semantically.

Examples:

a. digit. This denotes the
occurrence of a digit, which may
be 0 through 9 inclusive.

b. file-name. This denotes the
occurrence of the notation
variable named file name. An
explanation of file name is given
elsewhere in the manual.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are used to
indicate a language keyword.

2. A notation constant denotes the
literal occurrence of the characters
represented. A notation constant
consists either of all capital letters
or of a special character.

Example:

DECLARE identifier FIXED;

This denotes the literal occurrence of
the word DECLARE followed by the
notation variable "identifier," which
is defined elsewhere, followed by the
literal occurrence of the word FIXED
followed by the literal occurrence of
the semicolon (;).

3. The term "syntactic unit," which is
used in subsequent rules, is defined
as one of the following:

a. A single notation variable or
notation constant.

b. Any collection of notation
variables, notation constants,
syntax-language symbols, and
keywords surrounded by braces or
brackets.

4. Braces {} are used to denote grouping
of more than one element into a
syntactic unit.

Example:

{FIXED}
identifier

FLOAT

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates
that the variable "identifier" must be
followed by the literal occurrence of
either the word FIXED or the word
FLOAT.

5. The vertical stroke | indicates that a
choice is to be made.

Example:

identifier {FIXED|FLOAT}

This has exactly the same meaning as

242

the above example. Both methods are
used in this manual to display
alternatives.

Example:

[digit] ...

6. Square brackets [denote options.
Anything enclosed in brackets may
appear one time or may not appear at
all. Brackets can serve the
additional purpose of delimiting a
syntactic unit. Vertical stacking
within brackets means that no more
than one of the stacked syntactic
units can appear.

Example:

{[lower-bound:] upper-bound} | *

This denotes the occurrence of either
a literal asterisk or the variable
"upper-bound," but not both. If
"upper-bound" appears, it can
optionally be preceded by the
syntactic unit composed of the
variable "lower-bound" and the literal
colon.

7. Three dots ... denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

The variable "digit" may or may not
occur since it is surrounded by
brackets. If it does occur, it may be
repeated one or more times.

8. Underlining is used to denote an
element in the language being
described when there is conflict
between this element and one in the
syntax language.

Example:

operand {&||} operand

This denotes that the two occurrences
of the variable "operand" are
separated by either an "and" (&) or an
"or" (|). The constant | is

underlined in order to distinguish the
"or" symbol in the PL/I language from
the "or" symbols in the syntax
language.

Section A: Syntax Notation 243

60-CHARACTER SET

Section B: Character Sets with EBCDIC and Card-Punch Codes

244

48-CHARACTER SET

Note: When using the 48-character set, the
following rules should be observed:

1. The two periods that replace the colon
must be immediately preceded by a
blank if the preceding character is a
period.

2. The two slashes that replace the
percent symbol must be immediately
preceded by a blank if the preceding
character is an asterisk, or
immediately followed by a blank if the
following character is an asterisk.

3. The sequence "comma period" represents
a semicolon except when it occurs in a
comment or character string, or when
it is immediately followed by a digit.

4. When the F Compiler option CHAR48 is
specified on the EXEC statement for
the compilation (see IBM System/360
Operating System, PL/I (F)
Programmer's Guide), 60-character set
symbols may be freely intermixed with
48-character set symbols and will be
accepted by the compiler as valid
input.

5. The semicolon, which is not in the
48-character set, must always be
represented by the proper 11-8-6 punch
(i.e., the character sequence ,. is
not recognized as a semicolon).

6. 48-character set "reserved" words
(e.g.,GT,LE,CAT,etc.,) must be
preceded and followed by a blank or a
comment. If they are not, the
interpretation by the compiler is
undefined and may not therefore, be
what the user intended.

A record containing.part or all of a
48-character set reserved word must be
3 characters or more in length.

Section B: Character Sets With EBCDIC and Card-Punch Codes 245

Section C: Keywords and Keyword Abbreviations

Keyword 	 Abbreviation
ABS (x)
%ACTIVATE 	 %ACT
ADD(x,y,p[,q])
ADDR(x)
ALIGNED
ALL(x)
ALLOCATE
ALLOCATION(x)
ANY(x)
AREA
AREA[(size)]
ATAN(x[,y])
ATAND(x[,y])
ATANH(x)
AUTOMATIC 	 AUTO
BACKWARDS
BASED(pointer-variable)
BEGIN
BINARY 	 BIN
BINARY(x[,p[,q]]) 	 BIN(x[,p[,q]])
BIT(length)
BIT(expression[,size])
BOOL(x,y,w)
BUFFERED 	 BUF
BUFFERS(n)
BUILTIN
BY
BY NAME
CALL entry-name
CEIL(x)
CHAR(expression[,size])
CHARACTER(length) 	 CHAR(length)
CHECK (name-list)
CLOSE
COBOL
COLUMN(w) 	 COL (w)
COMPLETION(event-name)
COMPLEX 	 CPLX
COMPLEX(a,b) 	 CPLX(a,b)
CONDITION(name)
CONJG(x)
CONSECUTIVE
CONTROLLED 	 CTL
CONVERSION 	 CONV
COPY
COS(x)
COSD(x)
CCSE(x)
COUNT(file-name)
CTLASA
CTL360
DATA
DATAFIELD
DATE
%DEACTIVATE 	 %DEACT
DECIMAL 	 DEC
DECIMAL(x[,p[,q]]) 	DEC(x[,p[,q]])
DECLARE 	 DCL
%DECLARE 	 %DCL
DEFINED 	 DEF
DELAY(n)
DELETE
DIM(x,n)

Use of Keyword
built-in function
preprocessor statement
built-in function
built-in function
attribute
built-in function
statement
built-in function
built-in function
condition
attribute
built-in function
built-in function
built-in function
attribute
attribute, option of OPEN statement
attribute
statement
attribute
built-in function
attribute
built-in function
built-in function
attribute
option of ENVIRONMENT attribute
attribute
clause of DO statement
option of the assignment statement
statement or option of INITIAL attribute
built-in function
built-in function
attribute
condition
statement
option of ENVIRONMENT attribute
format item
built-in function, pseudo-variable
data attribute
built-in function, pseudo-variable
condition
built-in function
option of ENVIRONMENT attribute
attribute
condition
option of GFT statement
built-in function
built-in function
built-in function
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
STREAM I/O transmission mode
built-in function
built-in function
preprocessor statement
attribute
built-in function
statement
preprocessor statement
attribute
statement
statement
built-in function

246

Keyword 	 Abbreviation 	Use of Keyword
DIRECT 	 attribute
DISPLAY 	 statement
DIVIDE(x,y,p[,q]) 	 built-in function
DO 	 statement
%DO 	 preprocessor statement
EDIT 	 STREAM I/O transmission mode
ELSE 	 clause of IF statement
%ELSE 	 clause of %IF statement
EMPTY 	 built-in function
END 	 statement
%END 	 preprocessor statement
ENDFILE(file-name) 	 condition
ENDPAGE(file-name) 	 condition
ENTRY 	 attribute or statement
ENVIRONMENT 	 ENV 	 attribute
ERF(x) 	 built-in function
ERFC(x) 	 built-in function
ERROR 	 condition
EVENT 	 option of CALL, READ, WRITE, REWRITE, and

DELETE statements, attribute
EXCLUSIVE 	 EXCL 	 attribute
EXIT 	 statement
EXP(x) 	 built-in function
EXTERNAL 	 EXT 	 attribute
F(block-size[,record-size]) 	 option of ENVIRONMENT attribute
FILE 	 attribute
FILE(file-name) 	 option of GET and PUT statements,

specification of RECORD I/O statements
FINISH 	 condition
FIXED 	 attribute
FIXED(x[,p[,q]]) 	 built-in function
FIXEDOVERFLOW 	 FOFL 	 condition
FLOAT 	 attribute
FLOAT(x[,p]) 	 built-in function
FLOOR(x) 	 built-in function
FORMAT(format-list) 	 statement
FREE 	 statement

FROM(variable) 	 option of WRITE or REWRITE statements
G(max-message-size) 	 option of ENVIRONMENT attribute
GENERIC 	 attribute
GENKEY 	 option of ENVIRONMENT attribute
GET 	 statement
GO TO 	 GOTO 	 statement
%GO TO 	 %GOTO 	 preprocessor statement
HBOUND(x,h) 	 built-in function
HIGH(i) 	 built-in function
IF 	 statement
%IF 	 preprocessor statement
IGNORE(n) 	 option of READ statement
IMAG(x) 	 built-in function, pseudo-variable
IN 	 option of ALLOCATE and FREE statements
%INCLUDE 	 preprocessor statement
INDEX(string,config) 	 built-in function INDEXAREA

[(index-area-size)] 	 option of ENVIRONMENT attribute
INDEXED 	 option of ENVIRONMENT attribute
INITIAL 	 INIT 	 attribute
INPUT 	 attribute, option of the OPEN statement
INTERNAL 	 INT 	 attribute
INTO(variable) 	 option of READ statement
KEY(file-name) 	 condition
KEY(x) 	 option of READ, DELETE, and REWRITE

statements
KEYED 	 attribute, option of OPEN statement
KEYFROM(x) 	 option of WRITE statement
KEYTO(variable) 	 option of READ statement
LABEL 	 attribute

Section C: Keywords and Keyword Abbreviations 247

Keyword
LENGTH(string)
LBOUND(x,n)
LEAVE
LIKE
LINE(w)
LINENO(file-name)

|LINESIZE(w)
LIST
LOCATE
LOG (x)
LOG2(x)
LOG10(x)
LOW(i)
MAIN
MAX(xi,x2...xn)
MIN(x1,x2...xn)
MOD(x1,x2)
MULTIPLY(x1,x2,p[,q])
NAME(file-name)
|NCP(n)
NOCHECK

NOCONVERSION
NOFIXEDOVERFLOW

NOLOCK
NOOVERFLOW

NOSIZE

NOSTRINGRANGE

NOSUBSCRIPTRANGE

NOUNDERFLOW

NOWRITE
NOZERODIVIDE

NULL
NULLO
OFFSET(area-name)
ON
ONCHAR
ONCOUNT
ONCODE
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS(list)

I ORDER
OUTPUT
OVERFLOW
PAGE
PAGESIZE(w)
|PENDING(file-name)
PICTURE
POINTER
POLY(a,x)
POSITION(i)
PRECISION(x,p[,q])
PRINT
PRIORITY(x)

Use of Keyword
built-in function
built-in function
option of ENVIRONMENT attribute
attribute
format item, option of PUT statement
built-in function
option of OPEN statement
STREAM I/O transmission mode
statement
built-in function
built-in function
built-in function
built-in function
option of PROCEDURE statement
built-in function
built-in function
built-in function
built-in function
condition
option of ENVIRONMENT attribute
condition prefix identifier

(disables CHECK)
condition prefix identifier

(disables CONVERSION)
condition prefix identifier

(disables FIXEDOVERFLOW)
option of READ statement
condition prefix identifier

(disables OVERFLOW)
condition prefix identifier

(disables SIZE)
condition prefix identifier

(disables STRINGRANGE)
condition prefix identifier

(disables SUBSCRIPTRANGE)
condition prefix identifier

(disables UNDERFLOW)
option of ENVIRONMENT attribute
condition prefix identifier

(disables ZERODIVIDE)
built-in function
built-in function
attribute
statement
built-in function, pseudo-variable
built-in function
built-in function
built-in function
built-in function
built-in function
built-in function, pseudo-variable
statement
option of PROCEDURE statement
option of PROCEDURE and BEGIN statements
attribute, option of the OPEN statement
condition
format item, option of PUT statement
option of the OPEN statement
condition
attribute
attribute
built-in function
attribute
built-in function
attribute, option of OPEN statement
option of CALL statement

Abbreviation

NOCONV

NOFOFL

NOOFL

NOSTRG

NOSUBRG

NOUFL

NOZDIV

OFL

PIC
PTR

POS (i)
PREC(x,p[,q])

248

SEQL

Keyword
PRIORITY[(task-name)]
PROCEDURE
%PROCEDURE
PROD(x)
PUT
R(max-record-size)
READ
REAL
REAL(x)
RECORD
RECURSIVE
REENTRANT
REFER
REGIONAL(1|2|3)
!REORDER
REPEAT(string,i)
REPLY(c)
RETURN

RETURNS

REVERT
REWIND
REWRITE
ROUND(x,n)
SEQUENTIAL
SET(pointer-variable)

SIGN(x)
SIGNAL
SIN(x)
SIND(x)
SINH (x)
SIZE
SKIP[(x)]

SNAP
SQRT(x)
STATIC
STATUS(event-name)
STOP
STREAM

| STRING (x)
STRINGRANGE
STRING(string-name)
iSUB
SUBSCRIPTRANGE
SUBSTR(string,i[,j])
SUM(x)
SYSIN
SYSPRINT
SYSTEM
TAN(x)
TAND(x)
TANH(x)
TASK
TASK[(task-name)]
THEN
%THEN
TIME
TO
TITLE(x)
TRANSIENT TRANSLATE(s,r[,p])

TRANSMIT
TRKOFL
TRUNC(x)
U(max-block-size)

Use of Keyword
built-in function, pseudo-variable
statement
preprocessor statement
built-in function
statement
option of ENVIRONMENT attribute
statement
attribute
built-in function, pseudo-variable
attribute, option of OPEN statement
option of PROCEDURE statement
option of PROCEDURE statement
option of BASED attribute
option of ENVIRONMENT attribute
option of PROCEDURE and BEGIN statements
built-in function
option of DISPLAY statement
statement
attribute, option of PROCEDURE and

ENTRY statements
statement
option of ENVIRONMENT attribute
statement
built-in function
attribute
option of ALLOCATE, LOCATE, and

READ statements
built-in function
statement
built-in function
built-in function
built-in function
condition
format item, option of GET and
PUT statements

option of ON statement
built-in function
attribute
built-in function, pseudo-variable
statement
attribute, option of OPEN statement
built-in function, pseudo-variable
condition
option of GET and PUT statements
dummy variable of DEFINED attribute
condition
built-in function, pseudo-variable
built-in function
name of standard system input file
name of standard system output file
option of the ON statement
built-in function
built-in function
built-in function
attribute, option of PROCEDURE statement
option of CALL statement
clause of IF statement
clause of %IF statement
built-in function
clause of DO statement
option of OPEN statement
attribute
built-in function
condition
option of ENVIRONMENT attribute
built-in function
option of ENVIRONMENT attribute

Abbreviation

PROC
%PROC

STRG

SUBRG

Section C: Keywords and Keyword Abbreviations 249

Keyword
UNALIGNED
UNBUFFERED
UNDEFINEDFILE(file-name)
UNDERFLOW
UNLOCK
UNSPEC(x)
UPDATE
V(max-block-size
[,max-record-size])

VARYING
VBS(max-block-size
[,max-record-size])

VERIFY(expr-1,expr-2)
VS(max-block-size
[,max-record-size])

WAIT
WHILE
WRITE
ZERODIVIDE

Abbreviation
UNAL
UNBUF
UNDF(file-name)
UFL

VAR

ZDIV

Use of Keyword
attribute
attribute, option of OPEN statement
condition
condition
statement
built-in function, pseudo-variable
attribute, option of OPEN statement

option of ENVIRONMENT attribute
attribute

option of ENVIRONMENT attribute
built-in function

option of ENVIRONMENT attribute
statement
clause of DO statement
statement
condition

250

Section D: Picture Specification Characters

Picture specification characters appear in
either the PICTURE attribute or the P
format item for edit-directed input and
output. In either case, an individual
character has the same meaning. A
discussion of the concepts of picture
specifications appears in Part I, Chapter
11, "Editing and String Handling."

Picture characters are used to describe
the attributes of the associated data item,
whether it is the value of a variable or a
data item to be transmitted between the
program and external storage.

A picture specification always describes
a character representation that is either a
character-string data item or a numeric
character data item. A character-string
pictured item is one that can consist of
alphabetic characters, decimal digits, and
other special characters. A numeric
character pictured item is one in which the
data itself can consist only of decimal
digits, a decimal point and, optionally, a
plus or minus sign. Other characters
generally associated with arithmetic data,
such as currency symbols, can also be
specified, but they are not a part of the
arithmetic value of the numeric character
variable, although the characters are
stored with the digits and are considered
to be part of the character-string value of
the variable.

Arithmetic data assigned to a numeric
character variable is converted to
character representation. Editing, such as
zero suppression and the insertion of other
characters, can be specified for a numeric
character data item. Editing cannot be
specified for pictured character-string
data.

Data assigned to a variable declared
with a numeric picture specification (or
data to be written with a numeric picture
format item) must be either internal coded
arithmetic data or data that can be
converted to coded arithmetic. Thus,
assigned data can contain only digits and,
optionally, a decimal point and a sign. It
should not contain any other character,
even though that character (for example, a
currency symbol) is specified in the
picture specification and is to be inserted
into the data as part of its
character-string value; if it does, the
CONVERSION condition is raised.

Numeric character data to be read using
the P format item must conform to the
specification contained in the P format
item, including editing characters. If the
indicated character does not appear in the
input stream, the CONVERSION condition is
raised.

Data assigned to a variable declared
with a character-string picture
specification (or data to be written with a
character-string picture format item)
should conform, character by character (or
be convertible, character by character) to
the picture specification; if it does not,
the CONVERSION condition is raised.

Figures in this section illustrate how
different picture specifications affect the
representation of values when assigned to a
pictured variable or when printed using the
P format item. Each figure shows the
original value of the data, the attributes
of the variable from which it is assigned
(or written), the picture specification,
and the character-string value of the
numeric character or pictured
character-string variable.

Picture Characters for Character-String Data

Only three picture characters can be used
in character-string picture specifications:

X specifies that the associated position
can contain any character whose internal
bit configuration can be recognized by
the computer in use.

A specifies that the associated position
can contain any alphabetic character or
a blank character.

9 specifies that the associated position
can contain any decimal digit or a blank
character.

No insertion characters can be specified.
At least one A or X must appear.

Figure D-1 gives examples of
character-string picture specifications.
In the figure, the letter b indicates a
blank character. Note that assignments are
left-adjusted, and any necessary padding
with blanks is on the right.

Section D: Picture Specification Characters 251

Figure D-1. Pictured Character-String Examples

Picture Characters for Numeric Character

Data

Numeric character data must represent
numeric values; therefore, the associated
picture specification cannot contain the
characters X or A. The picture characters
for numeric character data can specify
detailed editing of the data.

A numeric character variable can be
considered to have two different kinds of
value, depending upon its use. They are
(1) its arithmetic value and (2) its
character-string value.

The arithmetic value is the value
expressed by the decimal digits of the data
item, the assumed location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric character variable is
used whenever the variable appears in an
expression that results in a coded
arithmetic value or whenever the variable
is assigned to a coded arithmetic, numeric
character, or bit-string variable. In such
cases, the arithmetic value of the numeric
character variable is converted to internal
coded arithmetic representation.

The character-string value is the value
expressed by the decimal digits of the data
item, as well as all of the editing and
insertion characters appearing in the
picture specification. The
character-string value does not, however,
include the assumed location of a decimal
point, as specified by the picture
character V. The character-string value of
a numeric character variable is used
whenever the variable appears in a

character-string expression operation or in
an assignment to a character-string
variable, whenever the data is printed
using list-directed or data-directed
output, or whenever a reference is made to
a character-string variable that is defined
on the numeric character variable. In such
cases, no data conversion is necessary.

The picture characters for numeric
character specifications may be grouped
into the following categories:

• Digit and Decimal-Point Specifiers

• Zero Suppression Characters

• Insertion Characters

• Signs and Currency Symbol

• Credit, Debit, and Overpunched Signs

• Exponent Specifiers

• Scaling Factor

• Sterling Pictures

The picture characters in these groups
may be used in various combinations.
Consequently, a numeric character
specification can consist of two or more
parts such as a sign specification, an
integer subfield, a fractional subfield
and, for floating-point, an exponent field.
A sterling picture specification contains
separate fields for pounds, shillings, and
pence; the pence field can have an integer
subfield and a fractional subfield.

252

A major requirement of the picture
specification for numeric character data is
that each field must contain at least one
picture character that specifies a digit
position. This picture character, however,
need not be the digit character 9. Other
picture characters, such as the zero
suppression characters (Z or * or Y), also
specify digit positions. At least one of
these characters must be used to define a
numeric character specification.

For the F Compiler the maximum length of
a picture describing a numeric field, after
expansion of iteration factors, is 255.

DIGIT AND DECIMAL-POINT SPECIFIERS

The picture characters 9 and V are used in
the simplest form of numeric character
specifications that represent fixed-point
decimal values.

Figure D-2 gives examples of numeric
character specifications.

9 specifies that the associated position
in the data item is to contain a decimal
digit.

V specifies that a decimal point is
assumed at this position in the
associated data item. However, it does
not specify that an actual decimal point
is to be inserted. The integer and
fractional parts of the assigned value
are aligned on the V character;
therefore, an assigned value may be
truncated or extended with zero digits
at either end. (Note that if
significant digits are truncated on the
left, the result is undefined and a SIZE
interrupt will occur, if SIZE is
enabled.) If no V character appears in
the picture specification of a
fixed-point decimal value (or in the
first field of a picture specification
of a floating-point decimal value), a V
is assumed at the right end of the field
specification. This can cause the
assigned value to be truncated, if
necessary, to an integer. The V
character cannot appear more than once
in a picture specification. The V is
considered to be a subfield delimiter in
the picture specification; that is, the
portion preceding the V and the portion
following it (if any) are each a
subfield of the specification.

Figure D-2. Pictured Numeric Character Examples

Section D: Picture Specification Characters 253

ZERO SUPPRESSION CHARACTERS

The zero suppression picture characters
specify conditional digit positions in the
character-string value and may cause
leading zeros to be replaced by asterisks
or blanks and nonleading zeros to be
replaced by blanks. Leading zeros are
those that occur in the leftmost digit
positions of fixed-point numbers or in the
leftmost digit positions of the two parts
of floating-point numbers, that are to the
left of the assumed position of a decimal
point, and that are not preceded by any of
the digits 1 through 9. The leftmost
nonzero digit in a number and all digits,
zeros or not, to the right of it represent
significant digits. Note that a
floating-point number can also have a
leading zero in the exponent field.

Figure D-3 gives examples of the use of
zero suppression characters. In the
figure, the letter b indicates a blank
character.

Z specifies a conditional digit position
and causes a leading zero in the
associated data position to be replaced
by a blank character. When the
associated data position does not
contain a leading zero, the digit in the
position is not replaced by a blank
character. The picture character Z
cannot appear in the same subfield as
the picture character *, nor can it
appear to the right of a drifting
picture character or any of the picture
characters 9, T, I, or P in a field.

specifies a conditional digit position
and is used the way the picture
character Z is used, except that leading
zeros are replaced by asterisks. The
picture character * cannot appear with
the picture character Z in the same
subfield, nor can it appear to the right

of a drifting picture character or any
of the picture characters 9, T, I, or R
in a field.

Y specifies a conditional digit position
and causes a zero digit, leading or

nonleading, in the associated position
to be replaced by a blank character.
When the associated position does not
contain a zero digit, the digit in the
position is not replaced by a blank
character.

Note: If one of the picture characters Z
or * appears to the right of the picture
character V, then all fractional digit
positions in the specification, as well as
all integer digit positions, must employ
the Z or * picture character, respectively.
When all digit positions to the right of
the picture character V contain zero
suppression picture characters, fractional
zeros of the value are suppressed only if
all positions in the fractional part
contain zeros and all integer positions
have been suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No digits in the fractional part are
replaced by blanks or asterisks if the
fractional part contains any significant
digit.

INSERTION CHARACTERS

The picture characters comma (,), point
(.), slash (/), and blank (B) are insertion
characters; they cause the specified
character to be inserted into the
associated position of the numeric
character data. They do not indicate digit
positions, but are inserted between digits.
Each does, however, actually represent a
character position in the character-string
value, whether or not the character is
suppressed. The comma, point, and slash
are conditional insertion characters;
within a string of zero suppression
characters, they, too, may be suppressed.
The blank (B) is an unconditional insertion
character; it always specifies that a blank
is to appear in the associated position.

Note: Insertion characters are applicable
only to the character-string value. They
specify nothing about the arithmetic value
of the data item.

254

Figure D-3. Examples of Zero Suppression

Figure D-4 gives examples of the use of
insertion characters. In the figure, the
letter b indicates a blank character.

causes a comma to be inserted into the
associated position of the numeric
character data when no zero suppression
occurs. If zero suppression does occur,
the comma is inserted only when an
unsuppressed digit appears to the left
of the comma position, or when a V
appears immediately to the left of it
and the fractional part contains any
significant digits.' In all other cases
where zero suppression occurs, one of
three possible characters is inserted in
place of the comma. The choice of
character to replace the comma depends

'In the special case of a conditional
insertion character that is preceded either
by nothing or only by characters that do
not specify digit positions, the
conditional position will always contain
the conditional insertion character.

upon the first picture character that
both precedes the comma position and
specifies a digit position:

• If this character position is an
asterisk, the comma position is
assigned an asterisk.

• If this character position is a
drifting sign or a drifting currency
symbol (discussed later), the
drifting string is assumed to include
the comma position, which is assigned
the drifting character.

• If this character position is not an
asterisk or a drifting character, the
comma position is assigned a blank
character.

is used the same way the comma picture
character is used, except that a point
(.) is assigned to the associated
position. This character never causes
point alignment in the picture
specifications of a fixed-point decimal
number and is not a part of the

Section D: Picture Specification Characters 255

arithmetic value of the data item. That
function is served solely by the picture
character V. Unless the V actually
appears, it is assumed to be to the
right of the rightmost digit position in
the field, and point alignment is
handled accordingly, even if the point
insertion character appears elsewhere.
The point (or the comma or slash) can be
used in conjunction with the V to cause
insertion of the point (or comma or
slash) in the position that delimits the
end of the integer portion and the
beginning of the fractional portion of a
fixed-point (or floating-point) number,
as might be desired in printing, since
the V does not cause printing of a
point. The point must immediately
precede or immediately follow the V. If
the point precedes the V, it will be

inserted only if a significant digit
appears to the left of the V, even if
all fractional digits are significant.
If the point immediately follows the V,
it will be suppressed if all digits to
the right of the V are suppressed, but
it will appear if there are any
significant fractional digits (along
with any intervening zeros).

is used the same way the comma picture
character is used, except that a slash
(/) is inserted in the associated
position.

B specifies that a blank character always
be inserted into the associated position
of the character-string value of the
numeric character data.

256

Figure D-4. Examples of Insertion Characters

SIGNS AND CURRENCY SYMBOL

The picture characters S, +, and - specify
signs in numeric character data. The
picture character $ specifies a currency
symbol in the character-string value of
numeric character data.

These picture characters may be used in
either a static or a drifting manner. A
drifting character is similar to a zero
suppression character in that it can cause
zero suppression. However, the character
specified by the drifting string is always
inserted in the position specified by the
end of the drifting string or in the

position immediately to the left of the
first significant digit.

The static use of these characters
specifies that a sign, a currency symbol,
or a blank always appears in the associated
position. The drifting use specifies that
leading zeros are to be suppressed. In
this case, the rightmost suppressed
position associated with the picture
character will contain a sign, a blank, or
a currency symbol.

A drifting character is specified by
multiple use of that character in a picture
field. Thus, if a field contains one
currency symbol (0, it is interpreted as
static; if it contains more than one, it is

Section D: Picture Specification Characters 257

interpreted as drifting. The drifting
character must be specified in each digit
position through which it may drift.

Drifting characters must appear in
strings. A string is a sequence of the
same drifting character, optionally
containing a V and one of the insertion
characters comma, point, slash, or B. Any
of the insertion characters slash, comma,
point, or B following the last drifting
symbol of the string is considered part of
the drifting string. However, a following
V terminates the drifting string and is not
part of it. A field of a picture
specification can contain only one drifting
string. A drifting string cannot be
preceded by a digit position. The picture
characters * and Z cannot appear to the
right of a drifting string in a field.

Figure D-5 gives examples of the use of
drifting picture characters. In the
figure, the letter b indicates a blank

character.

The position in the data associated with
the characters slash, comma, point, and B
appearing in a string of drifting
characters will contain one of the
following:

• slash, comma, point, or blank if a
significant digit has appeared to the
left

• the drifting symbol, if the next
position to the right contains the
leftmost significant digit of the field

• blank, if the leftmost significant digit
of the field is more than one position
to the right

If a drifting string contains the
drifting character n times, then the string
is associated with n-1 conditional digit

•Figure D-5. Examples of Drifting Picture Characters

258

positions. The position associated with
the leftmost drifting character can contain
only the drifting character or blank, never
a digit. If a drifting string is specified
for a field, the other potentially drifting
characters can appear only once in the
field, i.e., the other character represents
a static sign or currency symbol.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit positions of the
subfield following the V must also be part
of the drifting string that commences the
second subfield.

Only one type of sign character can
appear in each field. An S, +, or - used
as a static character can appear to the
left of all digits in the mantissa and
exponent fields of a floating-point
specification, and either to the right or
left of all digit positions of a
fixed-point specification.

In the case in which all digit positions
after the V contain drifting characters,
suppression in the subfield will occur only
if all of the integer and fractional digits
are zero. The resulting edited data item
twill then be all blanks. If there are any
significant fractional digits, the entire
fractional portion will appear
unsuppressed.

$ specifies the currency symbol. If this
character appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
the left of all digit positions in a
field of a specification or to the right
of all digit positions in a
specification. See details above for
the drifting use of the character.

S specifies the plus sign character (+) if
the data value is >=0, otherwise it
specifies the minus sign character (-).
The character may be drifting or static.
The rules are identical to those for the
currency symbol.

+ specifies the plus sign character (+) if
the data value is >=0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

- specifies the minus sign character (-)
if the data value is <0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

CREDIT, DEBIT, AND OVERPUNCHED SIGNS

The character pairs CR (credit) and DB
(debit) specify the signs of real numeric
character data items and usually appear in
business report forms.

Any of the picture characters T, I, or R
specifies an overpunched sign in the
associated digit position of numeric
character data. An overpunched sign is a
12-punch (for plus) or an 11-punch (for
minus) punched into the same column as a
digit. It indicates the sign of the
arithmetic data item. Only one overpunched
sign can appear in a specification for a
fixed-point number. A floating-point
specification can contain two, one in the
mantissa field and one in the exponent
field. The overpunch character can,
however, be specified for any digit
position within a field. The overpunched
number then will appear in the specified
digit position.

Note: When an overpunch character occurs
in a P format item for edit-directed input,
the corresponding character in the input
stream may contain an overpunched sign.

Figure D-6 gives examples of the CR, DH,
and overpunch characters. In the figure,
the letter b indicates a blank character.

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
Otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB appear in
the associated positions.

T specifies that the associated position,
on input, will contain a digit
overpunched with the sign of the data.
It also specifies that an overpunch is
to be indicated in the character-string
value.

Section D: Picture Specification Characters 259

Figure D-6. Examples of CR, DB, T, I, and R Picture Characters

I specifies that the associated position,
on input, will contain a digit
overpunched with + if the value is >=0;
otherwise, it will contain the digit
with no overpunching. It also
specifies that an overpunch is to be
indicated in the character-string value
if the data value is >=0.

R specifies that the associated position,
on input, will contain a digit
overpunched with - if the value is <0;
otherwise, it will contain the digit
with no overpunching. It also
specifies that an overpunch is to be
indicated in the character-string value
if the data value is <0.

Note: The picture characters CR, DB, T, I,
and R cannot be used with any other sign
characters in the same field.

EXPONENT SPECIFIERS

The picture characters K and E delimit the
exponent field of a numeric character
specification that describes floating-point
decimal numbers. The exponent field is
always the last field of a numeric
character floating-point picture
specification. The picture characters K
and E cannot appear in the same
specification.

Figure D-7. Examples of Floating-Point Picture Specifications

260

Figure D-7 gives examples of the use of
exponent delimiters. In the figure, the
letter b indicates a blank character.

K specifies that the exponent field
appears to the right of the associated
position. It does not specify a
character in the numeric character data
item.

E specifies that the associated position
contains the letter E, which indicates
the start of the exponent field.

The value of the exponent is adjusted in
the character-string value so that the
first significant digit of the first field
(the mantissa) appears in the position
associated with the first digit specifier
of the specification (even if it is a zero
suppression character).

SCALING FACTOR

The picture character F specifies a scaling
factor for fixed-point decimal numbers. It
appears at the right end of the picture
specification and is used in the following
format:

F ([+|-] decimal-integer-constant)

F specifies that the optionally signed
decimal integer constant enclosed in
parentheses is the scaling factor. The
scaling factor specifies that the
decimal point in the arithmetic value
of the variable is that number of
places to the right (if the scaling
factor is positive) or to the left (if
negative) of its assumed position in
the character-string value.

For System/360 implementations, the
scaling factor cannot specify a
fixed-point number that contains more
than 15 digits.

Figure D-8 shows examples of the use of
the scaling factor picture character.

STERLING PICTURES

The following picture characters are used
in picture specifications for sterling
data:

8 specifies the position of a shilling
digit in BSI single-character
representation. Ten shillings is
represented by a 12-punch (&) and
eleven through nineteen shillings are
represented by the characters A through
I, respectively.

7 specifies the position of a pence
digit in BSI single-character
representation. Ten pence is
represented by a 12-punch (&) and
eleven pence is represented by an
11-punch (-).

6 specifies the position of a pence digit
in IBM single-character representation.
Ten pence is represented by an 11-punch
(-) and eleven pence is represented by
a 12-punch (&).

P specifies that the associated position
contains the pence character D.

G specifies the start of a sterling
picture. It does not specify a
character in the numeric character data
item.

H specifies that the associated position
contains the shilling character S.

M specifies the start of a field. It
does not specify a character in the
numeric character data item.

Figure D-8. Examples of Scaling Factor Picture Characters

Section D: Picture Specification Characters 261

Figure D-9 gives examples of the use of
sterling picture specifications.

Sterling data items are considered to be
real fixed-point decimal data. When
involved in arithmetic operations, they are
converted to a value representing
fixed-point pence. Sterling pictures have
the general form:

"Editing character 1" can be one or more
of the following static picture characters:

The "pounds field" can contain the
following picture characters:

The last four characters ($ + - S) must
be drifting characters. The comma can be
used as an insertion character.

"Separator 1" can be one or more of the
following picture characters:

The "shillings field" can be:

One of the nines can be replaced by T, I,
or R, if no other sign indicator appears in
any of the fields of the specification.

"Separator 2" can be one or more of the
picture characters:

The "pence field" takes the form:

One of the nines can be replaced by T, I,
or R, if no other sign indicator appears in
any of the fields of the specification.

"Editing character 2" can be one or more
of the static picture characters $, +, -,
or S and one or more of B, P, CR, or DB. A
sign character or CR or DB can appear only
if no other sign indicator appears in any
of the fields of the specification.

The pounds, shillings, and pence fields
must each contain at least one digit
position.

Zero suppression in sterling pictures is
performed on the total data item, not
separately on each of the pounds,
shillings, and pence fields. The Z picture
character is not allowed to the right of a
6, 7, 8, or 9 picture character in a
sterling specification. In sterling
pictures, the field separator characters
slash (/), point (.), B, and H are never
suppressed.

Figure D-9. Examples of Sterling Picture Specifications

262

Section E: Edit-Directed Format Items

This section describes each of the
edit-directed format items that can appear
in the format list of a GET or PUT
statement.

There are three categories of format
items: data format items., control format
items, and the remote format item.

In this section, the three categories
are discussed separately and the format
items are listed under each category. The
remainder of the section contains detailed
discussions of each of the format items,
with the discussions appearing in
alphabetic order.

Data Format Items

A data format item describes the external
format of a single data item.

For input, the data in the stream is
considered to be a continuous string of
characters; all blanks are treated as
characters in the stream, as are quotation
marks. Each data format item in a GET
statement specifies the number of
characters to be obtained from the stream
and describes the way those characters are
to be interpreted. strings should not be
enclosed in quotation marks, nor should the
letter B be used to identify bit strings.
If the characters in the stream cannot be
interpreted in the manner specified, the
CONVERSION condition is raised.

For output, the data in the stream takes
the form specified by the format list.
Each data format item in a PUT statement
specifies the width of a field into which
the associated data item in character form
is to be placed and describes the format
that the value is to take. Enclosing
quotation marks are not inserted, nor is
the letter B to identify bit strings.

Leading blanks are not inserted
automatically to separate data items in the
output stream. String data is
left-adjusted in the field, whose width is
specified. Arithmetic data is
right-adjusted. Because of the rules for
conversion of arithmetic data to character
type, which can cause up to three leading
blanks to be inserted (in addition to any
blanks that replace leading zeros), there
generally will be at least one blank
preceding an arithmetic item in the

converted field. Leading blanks will not
appear in the stream, however, unless the
specified field width allows for them.
Truncation, due to inadequate field-width
specification is on the left for arithmetic
items, on the right for string items.

Note that the value of binary data both
on input and output is always represented
in decimal form for edit-directed
transmission.

Following is a list of data format
items:

Fixed-point 	F(specification)
format item

Floating-point 	E(specification)
format item

Complex format 	C(specification)
item

Picture format 	P'picture-specification'
item

Bit-string 	B(specification)
format item

Character-string A(specification)
format item

Control Format Items

The control format items specify the layout
f the data set associated with a file.
The following is a list of control format
items:

Paging format 	PAGE
item

Line skipping 	SKIP[(specification)]
format item

Line position 	LINE (specification)
format item

Column position 	COLUMN(specification)

Spacing 	 X(specification)
format item

A control format item has no effect
unless it is encountered before the data
list is exhausted.

Section E: Edit-Directed Format Items 263

The PAGE and LINE format items apply
only to output and only to files with the
PRINT attribute. The SKIP and COLUMN
format items apply to both input and
output.

The PAGE, SKIP, and LINE format items
have the same effect as the corresponding
options of the PUT statement (and of the
GET statement, in the case of SKIP), except
that the format items take effect only when
they are encountered in the format list,
while the options take effect before any
data is transmitted.

The COLUMN format item positions the
file to the specified character position in
the current line.

The spacing format item specifies
relative horizontal spacing. On input, it
specifies a number of characters in the
stream to be skipped over and ignored; on
output, it specifies a number of blanks to
be inserted into the stream.

Remote Format Item

The remote format item specifies the label
of a FORMAT statement that contains a
format list which is to be taken to replace
the remote format item.

The remote format item is:

R(statement-label-designator)

The "statement label designator" is a
label constant or an element label
variable.

Use of Format Items

The "specification" that is listed above
for all but the picture, PAGE, and remote
format items can contain one or more
expressions. Such expressions can be
specified as decimal integer constants, as
element variables, or as other element
expressions. The value assigned to a
variable during an input operation can be
used in an expression in a format item that
is associated with a later data item. An
expression is evaluated and converted to an
integer each time the format item is used.

Alphabetic List of Format Items

The A Format Item

The A format item is:

A [(field-width)]

The character-string format item
describes the external representation of a
string of characters.

General rules:

1. The "field width" is an expression
that is evaluated and converted to an
integer each time the format item is
used. It specifies the number of
character positions in the data stream
that contain (or will contain) the
string.

2. On input, the specified number of
characters is obtained from the data
stream and assigned, with any
necessary conversion, truncation, or
padding, to the associated element in
the data list. The field width is
always required on input, and if it
has a value less than or equal to
zero, a null string is assumed. If
quotation marks appear in the stream,
they are treated as characters in the
string.

3. On output, the associated element in
the data list is converted, if
necessary, to a string of characters
and is truncated or extended with
blanks on the right to the specified
field width before being placed into
the data stream. If the field width
is less than or equal to zero, the
format item and its associated element
in the data list are skipped, and no
characters are placed into the data
stream. Enclosing quotation marks are
never inserted. If the field width is
not specified, it is assumed to be
equal to the character-string length
of the element named in the data list
(after conversion, if necessary,
according to the rules given in
Section F, "Problem Data Conversion").

The B Format Item

The B format item is:

B [(field-width)]

The bit-string format item describes the
external representation of a bit string.

264

Each bit is represented by the character 0
or 1.

General rules:

1. The "field width" is an expression
that is evaluated and converted to an
integer each time the format item is
used. It specifies the number of
data-stream character positions that
contain (or will contain) the bit
string.

2. On input, the character representation
of the bit string may occur anywhere
within the specified field. Blanks,
which may appear before and after the
bit string in the field, are ignored.
Any necessary conversion occurs when
the bit string is assigned to the
associated element in the data list.
The field width is always required on
input, and if it is less than or equal
to zero, a null string is assumed.
Any character other than 0 or 1 in the
string, including embedded blanks,
quotation marks, or the letter B, will
raise the CONVERSION condition.

3. On output, the character
representation of the bit string is
left-adjusted in the specified field,
and necessary truncation or extension
with blanks occurs on the right. Any
necessary conversion to bit-string is
performed. No quotation marks are
inserted, nor is the identifying
letter B. The field width need not be
specified when the associated element
in the data list is a bit string; in
this case, the current length of the
associated string is used, and the
data item completely fills the field.
The field width is always required if
the data-list item is arithmetic or
pictured. If the field width is less
than or equal to zero, the format item
and its associated element in the data
list are skipped, and no characters
are placed into the data stream.

The C Format Item

The C format item is:

C(real-format-item[,real-format-item])

The complex format item describes the
external representation of a complex data
item.

General rules:

1. Each "real format item" is specified
by one of the F, E, or P format items.

The P format item must describe
fixed-point or floating-point numeric
character data; it cannot describe
sterling or character-string data.

2. On input, the complex format item
describes the real and imaginary parts
of the complex data item within
adjacent fields in the data stream.
If the second real format item is
omitted, it is assumed to be the same
as the first. The letter I will cause
the CONVERsION condition to be raised.

3. On output, the real format items
describe the forms of the real and
imaginary parts of the complex data
item in the data stream. If the
second real format item is omitted, it
is assumed to be the same as the
first. The letter I is never appended
to the imaginary part. If the second
real format item (or the first, if
only one appears) is an F or F item,
the internal sign will be printed only
if the value of the imaginary part is
less than zero. If the real format
item is a P item, the sign will be
printed only if the s or - or +
picture character is specified. If
the I is to be appended, it must be
specified as a separate data item in
the data list, immediately following
the variable that specifies the
complex item. The I, then, must have
a corresponding format item (either A
or P).

The COLUMN Format Item

The COLUMN format item is:

COLUMN (character-position)

The column position format item
positions the file to a specified character
position within the line. It can be used
with either input or output files.

General rules:

1. The "character position" can be
specified by an expression, which is
evaluated and converted to an integer
each time the format item is used.

2. The file is positioned to the
specified character position in the
current line. On input, intervening
character positions are ignored; on
output, they are filled with blanks.
If the file is already positioned
after the specified character position,
the current line is completed and a
new line, is started; the format item
is then applied to the new line.

Section E: Edit-Directed Format Items 265

3. If the specified character position
lies beyond the rightmost character
position of the current line, or if
the value of the expression for the
character position is less than one,
then the character position is assumed
to be one.

Note: The rightmost character position
is determined as follows:

a. For output files, it is determined
by the line size;

b. For input files, the F Compiler
uses the length of the current
logical record to determine the
line size and, hence, the
rightmost character position. In
the case of V-format records, this
line size is equal to the logical
record length minus the number of
bytes containing control
information.

4. The COLUMN format item has no effect
unless it is encountered before the
data list is exhausted.

The E Format Item

The E format item is:

E(field-width,number-of-fractional-digits
[,number-of-significant-digits])

The floating-point format item describes
the external representation of decimal
arithmetic data in floating-point format.

General rules:

1. The "field width," "number of
fractional digits," and "number of
significant digits" can be represented
by expressions, which are evaluated
and converted to integers when the
format item is used.

"Field width" specifies the total
number of characters in the field.

"Number of fractional digits"
specifies the number of digits in the
mantissa that follow the decimal
point.

"Number of significant digits"
specifies the number of digits that
must appear in the mantissa.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
floating-point or fixed-point constant

located anywhere within the specified
field. If the data item is a
fixed-point number, an exponent of
zero is assumed.

The external form of a floating-point
number is:

The mantissa must be a decimal
fixed-point constant.

a. The number can appear anywhere
within the specified field; blanks
may appear before and after the
number in the field and are
ignored. If the entire field is
blank, the CONVERSION condition is
raised. When no decimal point
appears, the expression for the
number of fractional digits
specifies the number of character
positions in the mantissa to the
right of the assumed decimal
point. If a decimal point does
appear in the number, it overrides
the specification of the number of
the fractional digits.

The value expressed by "field
width" includes trailing blanks,
the exponent position, the
positions for the optional plus or
minus signs, the position for the
optional letter E, and the
position for the optional decimal
point in the mantissa.

b. The exponent is a decimal integer
constant. Whenever the exponent
and preceding sign or letter E are
omitted, a zero exponent is
assumed.

3. On output, the internal data is
converted to floating-point, and the
external data item in the specified
field has the following general form:

In this form, s represents the number
of significant digits, and d
represents the number of fractional
digits. The value is rounded if
necessary.

a. The exponent is a two-digit
decimal integer constant, which
may be two zeros. The exponent is
automatically adjusted so that the
leading digit of the mantissa is
nonzero. When the value is zero,
zero suppression is applied to all
digit positions (except the first)

266

to the left of the decimal point.
All other digit positions contain
zero.

b. If the above form of the number
does not fill the specified field
on output, the number is
right-adjusted and extended on the
left with blanks. If the number
of significant digits is not
specified, it is taken to be 1
plus the number of fractional
digits. For System/360
implementations, the field width
for non-negative values of the
data item must be greater than or
equal to 5 plus the number of
significant digits. For negative
values of the data item, the field
width must be greater than or
equal to 6 plus the number of
significant digits. However, if
the number of fractional digits is
zero, the decimal point is not
written, and the above figures for
the field width are reduced by 1.

c. The rounding of internal data is
as follows: if truncation causes a
digit to be lost from the right,
and this digit is greater than or
equal to 5, then 1 is added to the
digit to the left of the truncated
digit.

d. If the field width is such that
significant digits or the sign is
lost, the SIZE condition is
raised.

4. When using the E format item E(w,d,s),
s must be less than 17 digits. When
using E(w,d), d must be less than 16
digits. If the number of significant
digits in E format data is greater
than 16, then:

E format input: CONVERSION condition
raised

E format output: ERROR condition raised

The F Format Item

The F format item is:

F(field-width[,number-of-fractional-digits
[,scaling-factor]])

The fixed-point format item describes
the external representation of a decimal
arithmetic data item in fixed-point format.

General rules:

1. The "field width," "number of
fractional digits," and "scaling
factor" can be represented by element
expressions, which are evaluated and
converted to integers when the format
item is used.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
fixed-point constant located anywhere
within the specified field. Blanks
may appear before and after the number
in the field and are ignored. If the
entire field is blank, it is
interpreted as zero.

The number of fractional digits, if
not specified, is assumed to be zero.

If no scaling factor is specified and
no decimal point appears in the field,
the expression for the number of
fractional digits specifies the number
of digits in the field to the right of
the assumed decimal point. If a
decimal point actually does appear in
the data, it overrides the expression
for the number of fractional digits.

If a scaling factor is specified, it
effectively multiplies the value of
the data item in the data stream by 10
raised to the integral value (p) of
the scaling factor. Thus, if p is
positive, the number is treated as
though the decimal point appeared p
places to the right of its given
position. If p is negative, the
number is treated as though the
decimal point appeared p places to the
left f its given position. The given
position of the decimal point is that
indicated either by an actual point,
if it appears, or by the expression
for the number of fractional digits,
in the absence of an actual point.

3. On output, the internal data is
converted, if necessary, to
fixed-point; the external data is the
character representation of a decimal
fixed-point number, rounded if
necessary, and right-adjusted in the
specified field.

If only the field width is specified
in the format item, only the integer
portion of the number is written; no
decimal point appears.

If both the field width and number of
fractional digits are specified, but
the scale factor is not, both the
integer and fractional portions of the
number are written. If the value (d)

Section E: Edit-Directed Format Items 267

of the number of fractional digits is
greater than zero, a decimal point is
inserted before the rightmost d
digits. Trailing zeros are supplied
when the number of fractional digits
is less than d (the value d must be
less than the field width).
Suppression of leading zeros is
applied to all digit positions (except
the first) to the left of the decimal
point.

The rounding of internal data is as
follows: if truncation causes a digit
to be lost from the right, and this
digit is greater than or equal to 5,
then 1 is added to the digit to the
left of the truncated digit.

The integer value (p) of the scaling
factor effectively multiplies the
value of the associated element in the
data list by 10 raised to the power of
p, before it is edited into its
external character representation.
When the number of fractional digits
is zero, only the integer portion of
the number is used.

On output, if the value of the
fixed-point number is less than zero,
a minus sign is prefixed to the
external character representation; if
it is greater than or equal to zero,
no sign appears. Therefore, for
negative values of the fixed-point
number, the field width specification
must include a count of both the sign
and the decimal point.

If the field width is such that
significant digits or the sign is
lost, the SIZE condition is raised.

The LINE Format Item

The LINE format item is:

LINE (line-number)

The line position format item specifies
the particular line on a page of a PRINT
file upon which the next data item is to be
printed.

General rules:

1. The "line number" can be represented
by an expression, which is evaluated
and converted to an integer each time
the format item is used.

2. The LINE format item specifies that
blank lines are to be inserted so that
the next line will be the specified
line of the current page.

3. If the specified line has already been
passed on the current page, or if the
specified line is beyond the limits
set by the PAGESIZE option of the OPEN
statement (or by default), the ENDPAGE
condition is raised.

4. If "line number" is less than or equal
to zero, it is assumed to be one.

5. The LINE format item has no effect
unless it is encountered before the
data list is exhausted.

The P Format Item

The P format item is:

P 'picture-specification'

The picture format item describes the
external representation of numeric
character data and of character-string
data.

The "picture specification" is discussed
in detail in Section D, "Picture
Specification Characters" and in the
discussion of the PICTURE attribute in
Section I, "Attributes."

On input, the picture specification
describes the form of the data item
expected in the data stream and, in the
case of a numeric character string, how its
arithmetic value is to be interpreted.
Note that the picture specification should
accurately describe the data in the input
stream, including characters represented by
editing characters. If the indicated
character does not appear in the stream,
the CONVERSION condition is raised.

On output, the value of the associated
element in the data list is edited to the
form specified by the picture specification
before it is written into the data stream.

The PAGE Format Item

The PAGE format item is:

PAGE

The paging format item specifies that a
new page is to be established. It can be
used only with PRINT files.

General rules:

1. The establishment of a new page
implies that the next printing is to
be on line one.

268

2. The PAGE format item has no effect
unless it is encountered before the
data list is exhausted.

The R Format Item

The R format item is:

R (statement-label-designator)

The remote format item allows format
items in a FORMAT statement to replace the
remote format item.

General rules:

1. The "statement label designator" is a
label constant or an element label
variable that has as its value the
statement label of a FORMAT statement.
The FORMAT statement includes a format
list that is taken to replace the
format item.

2. The R format item and the specified
FORMAT statement must be internal to
the same block. (If the procedure is
executed recursively, they must be in
the same invocation.)

3. There can be no recursion within a
FORMAT statement. That is, a remote
FORMAT statement cannot contain an R
format item that names itself as a
statement label designator, nor can it
name another remote FORMAT statement
that will lead to the naming of the
original FORMAT statement. Avoidance
of recursion can be assured if the
FORMAT statement referred to by a
remote format item does not itself
contain a further remote format item.

4. Any conditions enabled for the GET or
PUT statement must also be enabled for
the remote FORMAT statement(s) that
are referred to.

5. If the GET or PUT statement is the
single statement of an on-unit, it
cannot contain a remote format item.

The SKIP Format Item

The SKIP format item is:

SKIP[(relative-position-of-next-line)]

The line skipping format item specifies
that a new line is to be defined as the
current line.

General rules:

1. The "relative position of next line"
can be specified by an element
expression, which is evaluated and
converted to an integer each time the
format item is used. It must be
greater than zero for non-PRINT files.
If it is not, or if it is omitted, 1
is assumed.

2. The new line is the specified number
of lines beyond the present line.

3. If the value of the relative position
is greater than one, then on input,
one or more lines will be ignored; on
output, one or more blank lines will
be inserted.

4. The value of the relative position may
be less than or equal to zero for
PRINT files only; the effect is that
of a carriage return without line
spacing. Characters previously
written may be overprinted.

5. If the SKIP format item is not
specified at the end of a line, then
SKIP (1) is assumed, that is, single
spacing.

6. For PRINT files, if the specified
relative position is beyond the limit
set by the PAGESIZE option of the OPEN
statement (or the default), the
ENDPAGE condition is raised.

7. The SKIP format item has no effect
unless it is encountered before the
data list is exhausted.

The X Format Item

The X format item is:

X (field-width)

The spacing format item controls the
relative spacing of data items in the data
stream. It is not limited to PRINT files.

General rules:

1. The "field width" can be represented
by an expression, which is evaluated
and converted to an integer each time
the format item is used. The integer
specifies the number of blanks before
the next field of the data stream,
relative to the current position in
the stream.

2. On input, the specified number of
characters is spaced over in the data

Section E: Edit-Directed Format Items 269

stream and not transmitted to the
program.

3. On output, the specified number of
blank characters are inserted into the
stream.

4. If the field width is less than zero,
it is assumed to be zero.

5. The spacing format item has no effect
unless it is encountered before the
data list is exhausted.

270

Section F: Problem Data Conversion

This section lists the rules for arithmetic
conversion and for conversion of problem
data types. Each type conversion is listed
under a separate heading. In addition to
the text, 14-figures appear:

• Figures F-3 through F-6 show the data
type of the result of an operation
involving two operands of possibly
differing types. Note that although
the figures are for two operands, these
operands could themselves be the result
of other operations: any expression
involving a number of infix operators
will be eventually reduced, during
evaluation, to a single infix operation
with two operands. Note also that the
result is the result of the expression
only, and may be converted on
subsequent assignment.

• Figure F-7 states the rules for
computing the precision of the result
of an arithmetic conversion.

• Figure F-8 states the rules for
computing the length of the result of
an arithmetic to character-string
conversion.

• Figure F-9 states the rules for
computing the length of the result of
an arithmetic to bit-string conversion.

• Figure F-10 can be used to find the
ceiling (CEIL) of any value between 1
and 15 when that value is multiplied by
3.32 or it can be used to find the
ceiling (CEIL) of any value between 1
and 56 when that value is divided by
3.32.

• Figures F-11 through F-14 illustrate
conversion in arithmetic expression
operations, and they give attributes of
the results based upon the operator
specified and the attributes of the two
operands.

represented in binary. The magnitude of
such changes in value depends upon the
precisions of the target and source. In
expression evaluation, the precision of the
target is derived from the precision of the
source. In order to estimate and to
understand the errors that can occur, the
precision rules must be understood; and
since the rules also leave some latitude
for the implementation, it is helpful to
have some knowledge of the way in which
conversions are implemented.

Floating-Point Conversion

In System/360 implementations, both decimal
and binary floating-point numbers are
maintained in the internal hexadecimal form
used in System/360. If the specified
precision is more than 6 decimal digits, or
21 binary digits, the number is maintained
in long floating-point form (14 hexadecimal
digits with a hexadecimal exponent). If
the precision is 6 decimal digits or less,
or 21 binary digits or less, the number is
maintained in short floating-point form (6
hexadecimal digits and a hexadecimal
exponent).

No actual conversions between binary and
decimal are performed on floating-point
data. The only precision changes are from
long to short, which is done by truncation,
and from short to long, which is done by
extending with zeros. The declared
precision of floating-point data and the
base, however, do affect the calculation of
target attributes, as well as the
attributes of intermediate forms that are
determined from the source.

Mode Conversion
ARITHMETIC CONVERSION

The rules for arithmetic conversion specify
the way in which a value is transformed
from one arithmetic representation to
another. It can be that, as a result of
the transformation, the value will change.
For example, the number .2, which can be
exactly represented as a decimal
fixed-point number, cannot be exactly

If a complex value is converted to a real
value, the result is the real part of the
complex value.

If a real value is converted to a
complex value, the result is a complex
value that has the value of the real source
as the real part and zero as the imaginary
part.

Section F: Problem Data Conversion 271

Precision Conversion

Precision conversion occurs if the
specified target precision is different
from the source precision. In particular,
there always is a precision change when the
source and target are of different bases.
It is also possible that there is an actual
change in precision when converting from
floating-point to fixed-point, because of
the way in which floating-point numbers are
represented. Precision changes are
performed by truncation or by padding with
zeros. Floating-point numbers are
converted from short precision to long
precision by extending with zeros on the
right, and from long precision to short
precision by truncation on the right.

Fixed-point numbers maintain decimal or
binary point alignment and may be truncated
on the left or right, or extended with
zeros on the left or right.

No indication is given of loss of
significant digits on the right. Loss of
digits on the left can be checked for if
the SIZE condition is enabled. In
System/360 implementations, binary
fixed-point numbers are stored in words of
31 bits, whatever the declared width.
Decimal numbers are always stored as an odd
number of digits, since they are maintained
in System/360 packed decimal format, with
the rightmost four bits of the rightmost
byte expressing the sign.

Base Conversion

Changes in base will usually affect only
the value of noninteger fixed-point
numbers. Some decimal fractions cannot be
expressed exactly in binary, and some
errors will then occur due to truncation.
Some binary fractions will also require
more decimal digits for exact
representation than are automatically
generated by the conversion rules, and this
may also cause errors resulting from
truncation.

Since the range of binary fixed-point
numbers is smaller than the range of
decimal fixed-point numbers, it is possible
for significant digits to be lost on the
left in conversion from decimal to binary.
This will raise the SIZE condition, but an
interrupt will not occur unless the
condition is explicitly enabled by a SIZE
prefix.

The natural notation for constants is
decimal and, therefore, most constants are
written in decimal. The precision of a

constant is derived from the way in which
it is written. Care should therefore be
taken when writing noninteger constants
that will be converted to fixed-point
binary.

The following examples illustrate how
the representation of a decimal constant
(.1) is converted when used in an
arithmetic expression (such as A+.1).
Target attributes are derived from the
attributes of A, the operator, and the
attributes of the constant, which are, in
this case, DECIMAL FIXED (1,1).

Attributes of A: 	FIXED BIN(10,2)
Value: 	 .1
Target: 	 FIXED BIN(5,4)
Final Value: 	.0625

Attributes of A: 	FLOAT BIN(50)
Value: 	 .1
Target: 	 FLOAT BIN(4)
Final Value: 	.1>value>.0625

Coded Arithmetic to Numeric Character

Coded arithmetic data being converted to
numeric character is converted, if
necessary, to a decimal value whose scale
and precision are determined by the PICTURE
attribute of the numeric character item.

Numeric Character to Coded Arithmetic

Numeric character data being converted to
coded arithmetic is first interpreted as a
decimal item of the scale and precision
determined by the corresponding PICTURE
attribute. This item is then converted to
the base, scale, and precision of the coded
arithmetic target.

DATA TYPE CONVERSION

Character-String to Arithmetic

The source string must represent a valid
arithmetic constant or complex expression.
The constant may optionally be signed, and
may be surrounded by blanks, but cannot
contain blanks between the sign and the
value of the constant, or between the end
of the real part and the sign of the
imaginary part in a complex expression.

272

The permitted forms are:

[+|-]arithmetic-constant

[+I-]real-constant{+|-}imaginary-constant

A null string gives the value zero.

The constant will itself have the
attributes of base, scale, mode, and
precision. It will be converted to conform
with the attributes of the target.

Even when converting from character
string to numeric character field, the
source must still contain a constant which
is valid according to the rules for
constants in PL/I source programs. The
value of this constant is then converted
and edited to the picture representation.

The following example will therefore
result in a conversion error:

DCL A PICTURE '$$$9V.99';

A='$17.95';

The currency symbol makes the
character-string constant invalid for
conversion to the arithmetic value of the
numeric character variable, even though its
character-string value contains a currency
symbol.

Correct examples are:

A='17.95';

A=17.95;

either of which would result in A having
the character-string value b$17.95.

For conversion from character string to
arithmetic, the attributes assumed for the
target are those attributes that would have
been assumed if a fixed-point decimal
integer of precision (15,0) had appeared in
place of the string. (The precision given
is that for the F Compiler.)

Arithmetic to Character-String

The arithmetic value is converted to a
decimal arithmetic constant. The constant
is inserted in an intermediate character
string whose length is derived from the
attributes of the source (see Figure F-8,
"Lengths of Converted Character Strings").
Except for the base and precision, the
attributes of the constant are the same as
the attributes of the source.

In the case of the conversion of
expression results, the intermediate string
is assigned to the target string, and may
be truncated or padded with zeros on the
right.

Since the rules of arithmetic to
character-string conversion are also used
for list-directed and data-directed output,
and for evaluating keys {even for REGIONAL
files) this type of conversion will be
found in most programs, and should be
thoroughly understood.

Numeric Character to Character-String

Real numeric character fields are
treated as character strings and assigned
to the target string from left to right
according to the rules for character-string
assignment.

The real and imaginary parts of complex
numeric character fields are concatenated,
and the resulting string is assigned to the
target. No character, including I or
blank, is inserted between or following the
two parts.

Fixed-Point to Character-String

A binary fixed-point source is first
converted to decimal, and the decimal
precision is derived from the precision of
the binary source (see Figure F-7,
"Precision for Arithmetic Conversions").

A decimal fixed-point source with
• precision (p,q) is converted to
character-string representation as follows:

1. If p>=q>=0 (that is, if the assumed
decimal point lies within the field of
the internal representation) then:

• The constant is right adjusted in a
field of width p+3.

• Leading zeros are replaced by
blanks, except for a single zero
that immediately precedes the
decimal point of a fractional
number.

• If the value is negative, a minus
sign precedes the first significant
digit (or the zero before the point
of a fractional number). Positive
values are unsigned.

• Unless the source is an integer,
the constant has q fractional
digits. If the source is an
integer, there is no decimal point.

2. If q is negative or greater than p, a

Section F: Problem Data Conversion 273

Figure F-1. Examples of Conversion from Fixed-Point to Character-String

scaling factor is appended to the
right of the constant. The constant
itself is of the same form as an
integer. The scaling factor has the
form:

F{+|-}nnn

where {+|-}nnn has the value -q.

The number of digits in the scaling
factor is just sufficient to contain
the value of q without leading zeros.

The length of the intermediate string is:

p+3+k

where k is the number of digits
necessary to represent the value of q
(not including a sign or the letter
F). For example, given:

DCL A FIXED(4,-3),
C CHAR(10);
A=1234.0E3;
C=A;

The intermediate string generated in
converting A would be:

b1234F+3

which, when assigned to C, would give:

b1234F+3bb

Other examples are shown in Figure F-1.

Floating-Point to Character-String

If the source is binary, its binary
precision is converted to the equivalent
decimal precision (see Figure F-7,
"Precision for Arithmetic Conversions").

The decimal source with precision p is
converted as if it were transmitted by an E
format item of the form E(w,d,s) where:

w, the length of the intermediate
string, is p+6 (for the F Compiler)

d, the number of fractional digits, is
p-1

s, the number of significant digits,
is p

For the F Compiler, an E format item
generates a floating-point decimal constant
with a signed two-digit exponent. (See
Part II, Section E, "Edit-Directed Format
Items.")

The following examples illustrate the
intermediate string generated for a
floating-point to character-string
conversion:

Source Attributes: 	FLOAT DEC(6)
Source Value: 	1735x105
Intermediate String: b1.73500E+08

Source Attributes: 	FLOAT BIN(20)
Source Value: 	-91882x102
Intermediate String: -9.188200E+06

Source Attributes: FLOAT DEC(5)
Source Value: 	-.0016632
Intermediate String: -1.6632E-03

274

Complex to Character-String

The intermediate string that is
generated contains a complex expression.
Its length is 1 plus twice the length of
the character string generated by a real
source with corresponding attributes. The
intermediate string consists of two
concatenated strings. The left-hand, or
real, part consists of a string generated
exactly as for a real source. The
right-hand, or imaginary, part is always
signed, and it has an I appended. The
string length of the imaginary part is one
character longer than the real part (to
allow for the I). The resulting string is
a complex expression, with a sign but no
blanks between its elements.

The following examples illustrate the
intermediate string that results from a
complex to character-string conversion:

Source: COMPLEX DEC FLOAT(5)
Value: 	17.3+1.5I
Result: 	b1.7300E+01+1.5000E+001

Source: 	COMPLEX DEC FIXED(4,3)
Value: 	0.133+0.007I
Result: 	bbb0.133+0.007I

If the source bit string is shorter than
the target character string, the remainder
of the target is padded with blanks.

The following are examples of bit-string
to character-string conversion:

Source Value:
	'101011B

Target Attributes:
	CHAR(10) VAR

Result:
	 '10101'

Source Value:
	'10101'B

Target Attributes: 	CHAR(10)
Result:
	 '10101bbbbb'

Source Value:
	'0001'B

Target Attributes:
	CHAR(1)

Result:
	 '0'

The CONVERSION condition cannot be
raised on conversion from bit to character;
however, a character string created by
conversion from a bit string can cause a
conversion error when reconverted if blanks
have been inserted.

Character-String to Bit-string
Arithmetic to Bit-string

The character 1 in the source string
becomes the bit 1 in the target string.
The character 0 in the source string
becomes the bit 0 in the target string.
Amy character other than 0 and 1 in the
source string will raise the CONVERSION
condition. A null character string becomes
a null bit string.

If the source string is longer than the
target, excess characters on the right are
ignored (so that excess characters other
than 0 or 1 will not raise the CONVERSION
condition). If the target is longer than
the source, the target is padded on the
right with zeros.

Bit-string to Character-String

The bit 0 becomes the character 0, and the
bit 1 becomes the character 1. A null bit
string becomes a null character string.
The generated character string, which has
the same length as the source bit string,
is assigned to the target.

The absolute arithmetic value is first
converted to a real binary integer, whose
precision is the same as the length of the
bit-string target as given in Figure F-9.
This integer, without a sign, is then
treated as a bit string. This intermediate
string is then assigned to the target.

Examples are shown in Figure F-2.

Bit-string to Arithmetic

For the F Compiler, the effect is as if the
bit string were interpreted as an unsigned
binary integer of maximum precision (56,0).
If the string is longer than 56 bits, bits
on the left are ignored: the SIZE condition
will be raised if nonzero bits are lost,
provided that SIZE is enabled. Note that
truncation is on the left, not on the
right. The null string gives the value
zero; otherwise, the result of a bit-string
to arithmetic conversion is always
positive.

Section F: Problem Data Conversion 275

Figure F-2. Examples of Conversion From Arithmetic to Bit-string

Figure F-3. Data Type of Result of Bit-string Operation

Figure F-4. Data Type of Result of Concatenation Operation

Figure F-5a. Data Type of Result of Comparison Operation

276

Figure F-5b. Data Type of Intermediate Operands of Comparison Operation

Figure F-6. Data Type of Result of Arithmetic Operation

Figure F-7. Precision for Arithmetic Conversions

Section F: Problem Data Conversion 277

Figure F-8. Lengths of Converted Character Strings (Arithmetic To Character-String)

Figure F-9. Lengths of Converted Bit Strings (Arithmetic to Bit-Strings)

Figure F-10. Ceiling Values

278

CEILING VALUES

Figure F-10 is intended to aid the
programmer in computing the ceiling values
used to determine precisions and lengths in
conversions. It gives the ceiling for the
result of a multiplication by 3.32 of any
value {x) between 1 and 15. It also gives
the ceiling for the result of a division by
3.32 of any value {y) between 1 and 56.

RESULTS OF ARITHMETIC OPERATIONS

Figures F-11 through F-14 give the
attributes of the results of arithmetic
operations, based on the operator specified
and the attributes of the two operands. In
these figures, the target precisions (i.e.,
the precisions of the converted operands)
can never exceed the implementation-defined
maximums, which, for System/360
implementations, are: 15 for FIXED DECIMAL,
31 for FIXED BINARY, 16 for FLOAT DECIMAL,
and 53 for FLOAT BINARY.

Figure F-11. Attributes of Result in Addition and Subtraction Operations

Section F: Problem Data Conversion 279

Figure F-12. Attributes of Result in Multiplication Operations

Figure F-13. Attributes of Result in Division Operations

280

Figure F-14. Attributes of Result in Exponentiation Operations

Section F: Problem Data Conversion 281

String Handling:
BIT
BOOL
CHAR
HIGH
INDEX

| LENGTH
LOW

Arithmetic:
ABS
ADD
BINARY
CEIL
COMPLEX
CONJG
DECIMAL
DIVIDE
FIXED
FLOAT
FLOOR

REPEAT
STRING
SUBSTR
TRANSLATE
UNSPEC
VERIFY

IMAG
MAX
MIN
MOD
MULTIPLY
PRECISION
REAL
ROUND
SIGN
TRUNC

Section G: Built-In Functions and Pseudo-Variables

All of the built-in functions and
pseudo-variables that are available to the
PL/I programmer are given in this section.
The general organization of this section is
as follows:

1. Computational Built-in Functions

a. String-handling built-in functions

b. Arithmetic built-in functions

c. Mathematical built-in functions

d. Array manipulation built-in
functions

2. Condition Built-in Functions

3. Based Storage Built-in Functions

4. Multitasking Built-in Functions

5. Miscellaneous Built-in Functions

6. Pseudo-Variables

The computational built-in functions,
shown above, provide string handling,
arithmetic operations (addition, division,
etc.), 	mathematical operations 	(trig-
onometric functions, square root, etc.),
and array manipulation. The computational
built-in functions are:

Mathematical:
ATAN
	

LOG10
ATAND
	

LOG2
ATANH
	

SIN
COS
	

SIND
COSD
	

SINH
COSH
	

SQRT
ERF
	

TAN
ERFC
	 TAND

EXP
	

TANH
LOG

Array Manipulation:
ALL 	 LBOUND
ANY 	 POLY
DIM 	 PROD
HBOUND 	 SUM

The condition built-in functions allow
the PL/I programmer to investigate
interrupts arising from enabled
ON-conditions. The condition built-in
functions are:

DATAFIELD
	 ONFILE

ONCHAR
	 ONKEY

ONCODE
	

ONLOC
ONCOUNT
	

ONSOURCE

The based storage built-in functions are
designed to facilitate list processing and
the use of based storage. They mainly
return special values which can be assigned
to locator and area variables. The based
storage built-in functions are:

ADDR
	 NULL

EMPTY
	

NULLO

The multitasking built-in functions
allow the programmer to investigate the
current state of a task or asynchronous
input/output operation, or the current
priority of a task. The multitasking
built-in functions are:

COMPLETION
PRIORITY
STATUS

282

The miscellaneous built-in functions
perform various duties; for example, one
function provides the current date, another
provides a count of data items transmitted
during a STREAM input/output operation,
while another provides an indication of
whether or not a controlled variable is in
an allocated state. The miscellaneous
built-in functions are:

ALLOCATION
	

LINENO
COUNT
	 TIME

DATE

The section on pseudo-variables gives a
short discussion for each of the PL/I
pseudo-variables. A more complete
description can be found in the discussion
of the corresponding built-in function.
The pseudo-variables are:

BIT String Built-in Function

Definition: BIT converts a given value to
a bit string and returns the result to the
point of invocation. This function allows
the programmer to control the size of the
result of a bit-string conversion.

Reference: BIT (expression (, size])

Arguments: The argument "expression"
represents the quantity to be converted to
a bit string. The argument "size," when
specified, must be a decimal integer
constant giving the length of the result.
If "size" is not specified, it is
determined according to the type conversion
rules given in Section F, "Problem Data
Conversion." If "expression" is an array
expression, "size" applies to each element
of the array.

All of the built-in functions and
pseudo-variables are presented in
alphabetical order under their proper
headings.

Computational Built-In Functions

STRING HANDLING BUILT-IN FUNCTIONS

The functions described in this section may
be used for manipulating strings. Unless
it is specifically stated otherwise, any
argument can be an element expression or an
array expression. If an argument is an
array, the value returned by the built-in
function is an array with bounds identical
to that argument (the function having been
performed for each element of the array).
For those functions where two or more array
arguments are allowed, the arguments must
have identical bounds. Except where
otherwise stated an argument that is
specified as "string" can be an expression
of any data type, but if it is arithmetic,
it is converted to bit-string {if binary
base) or character-string (if decimal base)
before the function is invoked.

All conversions mentioned in this
section are made according to the rules for
the conversion of expression operands as
specified in Section F, "Problem Data
Conversion."

BOOL String Built-in Function

Definition: BOOL produces a bit string
whose bit representation is a result of a
given boolean operation on two given bit
strings.

Reference: BOOL (x,y,w)

Arguments: Arguments "x" and "y" are the
two bit strings upon which the boolean
operation specified by "w" is to be
performed. If "x" and "y" are not bit
strings, they are converted to bit strings.
If "x" and "y" differ in length, the
shorter string is extended with zeros on
the right to match the length of the longer
string.

Argument "w" represents the boolean
operation. It is a bit string of length 4
and is defined as n1 n 2 n3 n 4 , where each n
is either 0 or 1. There are 16 possible
bit combinations and thus 16 possible
boolean operations. As for "x" and "y,"
"w" is converted to a bit string {of length
4) before the function is invoked, if
necessary.

If more than one argument is an array,
the arrays must have identical bounds.
Note that if only "w" is an array, the
returned value is an array with identical
bounds, each element of which is the result
of the corresponding boolean operation
performed on "x" and "y."

Section G: Built-In Functions and Pseudo-Variables 283

Result: The value returned by this
function is a bit string, z, whose length
is equal to the longer of "x" and "y."
Each bit of z is determined by the boolean
operation on the corresponding bits of "x"

Example: In the following assignment
statement, assume that U and ID have been
declared as bit strings, XXX is the string
'011'B, YYY is the string '110'B, and the
boolean operator is '0110'B:

U=ID||BOOL (XXX, YYY, '0110'B);

Further, assume that Z represents the value
returned to the point at which BOOL is
invoked (that is, Z is a bit string of
length 3 that is to be concatenated with
ID), then the boolean table for this
invocation of BOOL can be defined as:

which is interpreted as follows:

Whenever the ith bits of XXX and YYY are
0 and 0, respectively, the ith bit of Z
is 0; whenever the ith bits of XXX and
YYY are 0 and 1, respectively, the ith
bit of Z is 1, and so on.

Thus, since the first bits of XXX and YYY
are 0 and 1, respectively, the first bit of
Z is 1; since the second bits of XXX and
YYY are 1 and 1, respectively, the second
bit of Z is 0; and since the third bits of
XXX and YYY are 1 and 0, respectively, the

and "y" as follows: the ith bit of z is set
to the value of 	n2, n3 , or n4 depending
on the combination of the ith bits of "x"
and "y" as shown in the following boolean
table:

third bit of Z is 1. Therefore, the value
returned to the point of invocation is the
bit string '101'B.

CHAR String Built-in Function

Definition: CHAR converts a given value to
a character string and returns the result
to the point of invocation. This function
allows the programmer to control the size
of the result of a character-string
conversion.

Reference: CHAR (expression(, size])

Arguments: The argument "expression"
represents the quantity to be converted to
a character string. The argument "size,"
when specified, must be a decimal integer
constant giving the length of the result.
If "size" is not specified, it is
determined according to the type conversion
on rules given in Section F, "Problem Data
Conversion." If "expression" is an array
expression, "size" applies to each element
of the array.

Result: The value returned by this
function is "expression" converted to a
character string. The length of this
character string is determined by "size,"
as described above.

HIGH String Built-in Function

Definition: HIGH forms a character string
of a given length from the highest
character in the collating sequence; that
is, each character in the constructed
string is the highest character in the
collating sequence.

Reference: HIGH (i)

Argument: The argument, "i," must be a
decimal integer constant specifying the
length of the string that is to be formed.

Result: The value returned by this
function is a character string of length
"i;" each character in the string is the
highest character in the collating
sequence. For System/360 implementations,
this character is stored as hexadecimal FF.

284

INDEX String Built-in Function

Definition: INDEX searches a specified
string for a specified bit or character
string configuration. If the configuration
is found, the starting location of that
configuration within the string is returned
to the point of invocation.

Reference: INDEX {string, config)

Arguments: Two arguments must be
specified. The first argument, "string,"
represents the string to be searched; the
second argument, "config," represents the
bit or character string configuration for
which "string" is to be searched. If both
arguments are bit-string, no conversion is
performed. If both arguments are binary,
or if one argument is bit and one binary,
both arguments are converted to bit.
Otherwise both arguments are converted to
character.

If both arguments are arrays, the arrays
must have identical bounds.

LENGTH String Built-in Function

Definition: LENGTH finds the string length
of a given value and returns it to the
point of invocation.

Reference: LENGTH (string)

Argument: The argument, "string,"
represents a character string or a bit
string whose length is to be found. The
argument need not represent a string; if it
does not, it is converted before the
function is invoked to a character string
(if the argument is DECIMAL) or a bit
string (if the argument is BINARY).

Result: The value returned by this
function is a fixed binary integer of
default precision giving the current length
of "string." If "string " is an array
expression, an array of identical bounds is
returned.

Example: If XYZ is a varying-length
character string whose maximum length is
30, but whose current length is 25, then
the statement:

I = LENGTH(SUBSTR(XYZ,4));

Result: The value returned by this
function is a binary integer of default
precision. This binary integer is either:

1. The location in "string" at which
"config" has been found. If more than
one "config" exists in "string," the
location of the first one found (in a
left-to-right sense) will be returned.

2. The value 0, if "config" does not
exist within "string" or if either of
the arguments has a length of zero.

Example: If ASTRING is a character string
containing:

'912NAMEA,1,FIRST,2,SECOND'

then the statement:

I = INDEX(ASTRING,'1,');

will return a binary value of ten to the
point of invocation. This binary value
represents the location of the
configuration '1,' within ASTRING.
However, if the statement had been:

I = INDEX(ASTRING,'1');

then a binary value of two would be
returned to the point of invocation. This
value is the location of the first '1'
appearing within ASTRING.

will assign a binary value of 22 to I.

LOW String Built-in Function

Definition: LOW forms a character string
of specified length from the lowest
character in the collating sequence; i.e.,
each character of the formed string will be
the lowest character in the collating
sequence.

Reference: LOW (i)

Argument: The argument, "i" must be an
unsigned decimal integer constant
specifying the length of the string being
formed.

Result: The value returned by this
function is a character string of length
"i"; each character in the string is the
lowest character in the collating sequence.
For System/360 implementations, this
character is stored as hexadecimal 00.

REPEAT String Built-in Function

Definition: REPEAT takes a given string
value and forms a new string consisting of
the given string value concatenated with
itself a specified number of times.

Section G: Built-In Functions and Pseudo-Variables 285

Reference: REPEAT (string,i)

Arguments: The argument "string"
represents a character string or bit string
from which the new string will be formed.
The argument need not represent a string,
however; if an argument other than a bit
string or character string is specified, it
is converted, before the function is
invoked, to a bit or character string.

The argument "i" must be an optionally
signed decimal integer constant. It
represents the number of times that
"string" is to be concatenated with itself.

If "string" is an array expression, the
value of "i" is applied to each element.

Result: The value returned by this
function is "string" concatenated with
itself "i" times. In other words, the
returned value will be a string containing
(1+1) occurrences of the value "string."
If "i" is less than or equal to zero, the
returned value is identical to the argument
(i.e., the converted argument, if the
ori g inal argument was not a string).

Example: If BSTR is a bit string
containing '101'B, the statement

A = REPEAT(BSTR,6);

will cause the following value to be
returned to the point of invocation:

'101101101101101101101`B

STRING String Built-in Function

Definition: STRING concatenates all the
elements in an aggregate variable into a
single string element. (STRING can also be
used as a pseudo-variable.)

Reference: STRING(x)

Argument: The argument, "x," is an
element, array, or structure variable,
composed either entirely of character
strings and/or numeric character data, or
entirely of bit strings. If "x" is an
element variable, the value returned is
identical to the value of the variable.
The argument, "x", cannot be an operational
expression. "x" can be ALIGNED or
UNALIGNED; if it is ALIGNED, padding is not
included in the result.

Result: The value returned by this
function is an element bit string or
character string, the concatenation of all
the elements in "x." If "x" contains one
or more varying strings, the result is a

varying string. For the F Compiler there
is no implementation if x is an element of
an interleaved array of varying strings, or
a cross-section of array of structures to
STRING built-in function. The concatenated
string in the result has a maximum length
of 32,767 bytes.

SUBSTR String Built-in Function

Definition: SUBSTR extracts a substring of
user-defined length from a given string and
returns the substring to the point of
invocation. (SUBSTR can also be used as a
pseudo-variable.)

Reference: SUBSTR (string,i[,j])

Arguments: The argument "string"
represents the string from which a
substring will be extracted. If this
argument is not a string, it will be
converted to a string. Argument "i"
represents the starting point of the
substring and "j" represents the length of
the substring. Arguments "i" and "j" must
be integers or expressions that can be
converted to integers.

If more than one argument is an array,
the arrays must have identical bounds.

Assuming that the length of "string" is
k, arguments "i" and "j" must satisfy the
following conditions:

1. j must be less than or equal to k and
greater than or equal to 0.

2. i must be less than or equal to k and
greater than or equal to 1.

3. The value of i+j-1 must be less than
or equal to k.

Thus, the substring, as specified by "i"
and "j" must lie within "string."

If "j" is not specified, it is assumed
to be equal to the value of k-i+1. In
other words, it is assumed to be the length
of the remainder of "string," beginning at
the ith position in "string."

When these conditions are not satisfied,
the SUBSTR reference causes the STRINGRANGE
condition to be raised, if it is enabled.
If STRINGRANGE is not enabled, the result
of the erroneous reference is undefined.

Result: The value returned by this
function is a varying-length string whose
current length is defined as follows:

1. If j=0, the returned value is the null
string.

286

2. If j is greater than 0, the returned
value is that substring beginning at
the ith character or bit of the first
argument and extending j characters or
bits.

3. If j is not specified, the returned
value is that substring beginning at
the ith character or bit and extending
to the end of "string."

Example: If AAA is a character string of
length 30, the statement:

ITEM = SUBSTR(AAA, 7, 14);

will cause a 14-character substring to be
extracted from AAA, starting at the seventh
character of AAA. The extracted string is
then returned to the point of invocation,
after which it is assigned to ITEM.

TRANSLATE String Built-in Function

Definition: TRANSLATE returns the
translated value of a specified string to
the point of invocation. The translation
is performed in accordance with a
translation table supplied in the form of
two arguments to the function.

Reference: TRANSLATE(s,r[,p])

Arguments: The argument "s" represents the
source string, i.e., the string that
supplies the value to be translated.
Arguments "r" and "p" represent the
replacement and position strings
respectively; these strings correspond to
each other to provide the translation
table. If "p" is not specified, an
implementation-defined character string is
provided; for the F Compiler, this string
consists of the 256 possible EBCDIC
characters arranged in ascending order
(i.e., from hexadecimal 00 through FF).

Arguments, where conversion is
necessary, are converted according to the
following rules: If all arguments are
bit-strings, or all arguments
character-strings, there is no conversion.
If all arguments are binary, or the
arguments comprise a mixture of binary and
bit-string items only, the binary arguments
are converted to bit-strings, and no
further conversion takes place. Otherwise,
all arguments that are not already
character-strings are converted to
character-strings. The above conversions
are carried out according to standard PL/I
data conversion rules. If "r" is shorter
than "p," it is padded on the right (with
blanks or zeros, depending on the string
type) to the length of "p."

Result: The value returned by this
function is a string identical in length
and value to the source string "s," except
that if any character/bit position of "s"
contains a character or bit that has been
specified for replacement (by inclusion of
that value in the position string "p"),
that value will be replaced by the
corresponding value from the replacement
string "r." The correspondence is by
position: character/bit positions 1,2,3,...
n of "p" correspond respectively to
character/bit positions 1,2,3 ... n of
"r."

Example:

DECLARE (S,T) CHAR(10),
(P,R) CHAR(3);

P='.$';
R='.,D';

A: GET DATA(S);
T=TRANSLATE(S,R,P);
PUT DATA(T);
GO TO A;

The above sequence reads in data from
SYSIN, translates commas to periods,
periods to commas, and dollar signs to the
character 'D', and writes out the result on
SYSPRINT. Thus, if the string
S='$12,345.50' were read in, the string
T='D12.345,50' would be written out. (For
the F Compiler, precisely the same result
could be achieved by omitting P altogether
and making R consist of the EBCDIC sequence
except for the replacement of the comma,
period, and dollar-sign characters by the
period, comma, and 'D' characters
respectively.)

UNSPEC String Built-in Function

Definition: UNSPEC returns a bit string
that is the internal coded representation
of a given value. (UNSPEC can also be used
as a pseudo-variable.)

Reference: UNSPEC (x)

Argument: The argument, "x," may be an
arithmetic or string constant, variable, or
expression, or an area, pointer, or offset
variable, whose internal coded
representation is to be found.

Result: The value returned by this
function is the internal coded
representation of "x." This representation
is in bit-string form. The length of this
string depends upon the attributes of "x,"
and is defined by System/360
implementations as follows;

287 Section G: Built-In Functions and Pseudo -Variables

1. If "x" is FIXED BINARY of precision
(p,q), the length is as follows:

a. If p < 16, and the argument is a
single variable the length is 16.

b. If p < 16, and the argument is not
a single variable the length is
32.

c. If p > 15 the length is 32.

2. If "x" is FIXED DECIMAL of precision
(p,q), the length is defined as
8*FLOOR ((p+2)/2).

| 3. If "x" is FLOAT BINARY of precision p,
the length is

a. 32, if p is less than or equal to
21.

b. 64, if p is greater than 21.

4. If "x" is FLOAT DECIMAL of precision
p, the length is

a. 32, if p is less than or equal to
6.

b. 64, if p is greater than 6.

5. If "x" is a character-string of length
n or a numeric character data item
whose character-string value is of
length n, the length is 8*n.

6. If "x" is a bit-string of length n,
the length is n.

7. If "x" is complex, the length is twice
that of the corresponding real value.

8. If "x" is a pointer, the length is 32.

9. If "x" is an offset, the length is 32.

10. If "x" is an area of size n, the
length is 8*(n+16).

VERIFY String Built-in Function

Definition: VERIFY examines two given
strings to verify that each character or
bit in the first string is represented in
the second string, returning a fixed binary
value of 0 if this is the case; otherwise,
the value returned is the index of the
first character (in the first string) that
is not represented in the second string.

Reference: VERIFY{string-1,string-2)

Arguments: The arguments "string-1" and
"string-2" are expressions representing the

source and verification strings
respectively. Arguments, where conversion
is necessary, are converted according to
the following conversions: If both
arguments are bit-string, or
character-strings, there is no conversion.
If both arguments are binary, or if one
argument is bit-string and the other
binary, the binary arguments are converted
to bit-strings, and no further conversion
takes place. Otherwise, both arguments, if
not already character-strings, are
converted to character-strings. The above
conversions are carried out according to
standard PL/I data conversion rules.

Result: The value returned by this
function is a fixed binary integer of
default precision ((15,0) for the F
Compiler), determined as follows:

Each character or bit, c, of the source
string is examined to see if it is
represented anywhere in the verification
string, i.e., to determine if

INDEX(string-2,c)=0

The characters or bits of the source string
are examined from left to right. If an
examined character or bit is not
represented in the verification string, the
index of that character or bit in the
source string is returned. If each
character or bit in the source string is
represented in the verification string, the
returned value is zero. If string-1 is
null the value 0 will be returned. If
string-2 is null and string-1 is not null
the value 1 will be returned.

Example: Assume that B is a character
string of length 48, containing the 48
characters permitted in the 48-character
set. The expression

VERIFY(A,B)

will then return a value of zero for any
value of A that consists solely of
characters from the 48-character set, but
will index the first character in a value
of A that does not conform to the
48-character set (e.g., if A = 'P GT X' the
returned value is zero; if A = 'P > X', the
returned value is 3).

ARITHMETIC BUILT-IN FUNCTIONS

All values returned by arithmetic built-in
functions are in coded arithmetic form.
The arguments of these functions should
also be in that form. If an argument is
not coded arithmetic, then, before the
function is invoked, it is converted to

288

coded arithmetic according to the rules
stated in Section F, "Problem Data
Conversion.* Note, therefore, that in the
function descriptions below, a reference to
an argument always means the converted
argument, if conversion was necessary.

In some function descriptions, the
phrase "converted to the highest
characteristics" is used; this means that
the rules for mixed characteristics are
followed (these rules are stated in the
section "Data Conversion in Arithmetic
Operations" in Part I, Chapter 4,
"Expressions and Data Conversion.")

In general, an argument of an arithmetic
built-in function may be an element or
array expression. If an argument is an
array, the value returned by the built-in
function is an array of the same dimension
and bounds as the argument (the function
having been performed once for each element
of the array). Thus, for example, if an
array argument is passed to the absolute
value function ABS, the returned value is
an array, each element of which is the
absolute value of the corresponding element
in the argument array.

Unless it is specifically stated
otherwise:

1. The mode of an argument may be real or
complex.

2. The base, scale, mode, and precision
of the returned value are determined
according to the rules for the
conversion of expression operands as
given in Section F, "Problem Data
Conversion."

In many of these built-in functions, the
symbol N is used. "This symbol represents
the maximum precision that a value may
have. It is defined, for System/360
implementations, as follows:

N is 15 for FIXED DECIMAL values

16 for FLOAT DECIMAL values

31 for FIXED BINARY values

53 for FLOAT BINARY values

The precision of decimal and binary
floating-point items should be noted when
using the built-in functions ADD, BINARY,
DECIMAL, DIVIDE, FLOAT, MULTIPLY, and
PRECISION. For decimal floating-point
items: if the precision is less than or
equal to (6), short floating-point form is
used; if the precision is greater than {6),
long floating-point form is used. For
binary floating-point items: if the
precision is less than or equal to (21),

short floating-point form is used; if the
precision is greater than (21), long
floating-point form is used.

ABS Arithmetic Built-in Function

Definition: ABS finds the absolute value
of a given quantity and returns it to the
point of invocation.

Reference: ABS (x)

Argument: The quantity whose absolute
value is to be found is given by "x."

Result: The value returned by this
function is the absolute value of "x." If
"x" is real, the result is the positive
value of "x"; if "x" is complex, the result
is the positive square root of the sum of
squares of the real and imaginary parts of
"x." The mode of the result is real, while
the base, scale, and precision are the same
as those of "x," with one exception: if "x"
is a complex fixed-point value of precision
(p,q), the precision of the result is:

(MIN(N,p+1),q)

ADD Arithmetic Built-in Function

Definition: ADD finds the sum of two given
values and returns it to the point of
invocation. This function allows the
programmer to control the precision of the
result of an add operation.

Reference: ADD (x,y,[,q])

Arguments: Arguments "x" and "y" represent
the values to be added. Arguments "p" and
"q" must be decimal integer constants
specifying the precision of the result; "q"
may be signed. If the scale of the result
is fixed-point, both "p" and "q" must be
specified; if the scale of the result is
floating-point, only "p" must be specified.
In either case, "p" must not exceed N.

Result: The value returned by this
function is the sum of "x" and "y." The
precision of the result is determined by
"p" and "q"; this precision is maintained
throughout the execution of the function.

BINARY Arithmetic Built-in Function

Definition: BINARY converts a given value
to binary base and returns the converted

Section G: Built-In Functions and Pseudo-Variables 289

value to the point of invocation. This
function allows the programmer to control
the precision of the result of a binary
conversion.

Reference: BINARY (x[,p[,q]])

Arguments: The first argument, "x,"
represents the value to be converted to
binary base. Arguments "p" and "q," when
specified, must be decimal integer
constants giving the precision of the
binary result; "q" may be signed. The
precision of a fixed-point result is (p,q);
the precision of a floating-point result is
(p). If both "p" and "q" are omitted, the
precision of the result is determined
according to the rules given for base
conversion in Section F, "Problem Data
Conversion." Note that "q" must be omitted
for floating-point arguments.

Result: The value returned by this
function is the binary equivalent of "x."
The scale and mode of this value are the
same as those of "x." The precision is
given by "p" and "q."

CEIL Arithmetic Built-in Function

Definition: CEIL determines the smallest
integer that is greater than or equal to a
given real value and returns that integer
to the point of invocation.

Reference: CEIL (x)

Argument: The argument, "x," must not be
complex.

Result: The value returned by this
function is the smallest integer that is
greater than or equal to "x." The base,
scale, mode, and precision are the same as
those of "x," with one exception: if "x" is
a fixed-point value of precision (p,q), the
precision of the result is defined as:

(MIN(N,MAX(p-q+1,1)),0)

COMPLEX Arithmetic Built-in Function

Definition: COMPLEX forms a complex number
from two given real values and returns it
to the point of invocation. (COMPLEX can
also be used as a pseudo-variable.)

Reference: COMPLEX (x,y)

Arguments: Arguments "x" and "y" must both
be real; "x" represents the real part of
the complex number to be formed and "y"
represents the imaginary part.

Result: The value returned by this
function is the complex number that has
been formed from "x" and "y."

CONJG Arithmetic Built-in Function

Definition: CONJG finds the conjugate of a
complex value and returns it to the point
of invocation. (The conjugate of a complex
number is the complex number with the sign
of the imaginary part reversed.)

Reference: CONJG (x)

Argument: The argument, "x," is the value
whose conjugate is to be found; it must be
complex.

Result: The value returned by this
function is the conjugate of "x." The
base, scale, mode, and precision of the
conjugate are the same as those of the
argument.

DECIMAL Arithmetic Built-in Function

Definition: DECIMAL converts a given value
to decimal base and returns the converted
value to the point of invocation. This
function allows the programmer to control
the precision of the result of a decimal
conversion.

Reference: DECIMAL (x[,p[,q]])

Arguments: The first argument, "x,"
represents the value to be converted to
decimal base. Arguments "p" and "q," when
specified, must be decimal integer
constants giving the precision of the
decimal result; "q" may be signed. The
precision of a fixed-point result is (p,q);
the precision of a floating-point result is
(p). If both "p" and "q" are omitted,
however, the precision of the result is
determined according to the rules given for
base conversion in Section F, "Problem Data
Conversion." Note that "q" must be omitted
for floating-point arguments.

Result: The value returned by this
function is the decimal equivalent of the
argument "x"; its precision is given by "p"
and "q."

DIVIDE Arithmetic Built-in Function

Definition: DIVIDE divides a given value
by another given value and returns the

290

quotient to the point of invocation. This
function allows the programmer to control
the precision of the result of a divide
operation.

Reference: DIVIDE (x,y,p[,q])

Arguments: The argument, "x," is the
dividend and argument "y" is the divisor.
Arguments "p" and "q" ("q" is optional and
may be signed) must be decimal integer
constants specifying the precision of the
result. If the result is a fixed-point
value, "p" and "q" must both be specified;
if the result is a floating-point value,
only "p" must be specified. In either
case, "p" must not exceed N.

Result: The value returned by this
function is the quotient resulting from the
division of "x" by "y." The precision of
the result is determined by "p" and "q" as
described above; this precision is
maintained throughout the execution of the
function.

FIXED Arithmetic Built-in Function

Definition: FIXED converts a given value
to fixed-point scale and returns the
converted value to the point of invocation.
This function allows the programmer to
control the precision of the result of a
fixed-point conversion.

Reference: FIXED (x[,p[,q]])

Argument: The first argument, "x,"
represents the value to be converted to
fixed-point scale. Arguments "p" and "q,"
when specified, must be decimal integer
constants ("q" can be signed) giving the
precision of the result, (p,q). For
System/360 implementations, if "p" and "q"
are omitted, "p" is assumed to be 15 for
binary "x" and 5 for decimal "x"; "q" is
assumed to be 0.

Result: The value returned by this
function is the fixed-point equivalent of
the argument "x"; its precision is (p,q).

FLOAT Arithmetic Built-in Function

Definition: FLOAT converts a given value
to floating-point scale and returns the
converted value to the point of invocation.
This function allows the programmer to
control the precision of the result of a
floating-point conversion.

Reference: FLOAT (x[,p])

Arguments: The first argument, "x,"
represents the value to be converted to
floating-point scale. The second argument,
"p," when specified, must be a decimal
integer constant giving the precision of
the result. For System/360
implementations, if "p" is omitted, it is
assumed to be 21 for binary "x" and 6 for
decimal "x."

Result: The value returned by this
function is the floating-point equivalent
of "x"; its precision is "p."

FLOOR Arithmetic Built-in Function

Definition: FLOOR determines the largest
integer that does not exceed a given value
and returns that integer to the point of
invocation.

Reference: FLOOR (x)

Argument: The argument, "x," must not be
complex.

Result: The value returned by this
function is the largest integer that does
not exceed "x." The base, scale, mode, and
precision of this value are the same as
those of "x," with one exception: if "x" is
a fixed-point value of precision (p,q), the
precision of the result is:

(MIN(N,MAX(p-q+1,1)),0)

IMAG Arithmetic Built-in Function

Definition: IMAG extracts the imaginary
part of a given complex number and returns
it to the point of invocation. (IMAG can
also be used as a pseudo-variable.)

Reference: IMAG (x)

Argument: The argument, "x," is the
complex value whose imaginary part is to be
extracted.

Result: The value returned by this
function is the imaginary part of "x." The
base, scale, and precision of the imaginary
part are unchanged. The mode of the
returned value is real.

MAX Arithmetic Built-in Function

Definition: MAX extracts the
highest-valued expression from a given set

Section G: Built-In Functions and Pseudo-Variables 291

of two or more expressions and returns that
value to the point of invocation.

Reference: MAX (x1,x2,...,xn)

Arguments: Two or more arguments must be
given. The arguments must not be complex.

Result: The value returned by MAX is the
value of the maximum-valued argument. The
returned value is converted to conform to
the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point values and have
precisions:

(P1,q1), (P2,q2),•... (Pn.qn)

then the precision of the result is as
follows:

(MIN(N,MAX(p1-q1,....pn-qn)+
MAX(q1,...,qn)),MAX(q1,...qn))

MIN Arithmetic Built-in Function

Definition: MIN extracts the lowest-valued
expression from a given set of two or more
expressions and returns that value to the
point of invocation.

Reference: MIN (x1,x2,...,xn)

Arguments: Two or more arguments must be
given. The arguments must not be complex.

Result: The value returned by MIN is the
value of the lowest-valued argument. The
returned value is converted to conform to
the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point values and have
precisions:

(p1,q1), (p2,q2),...,(pn,qn)

then the precision of the result is as
follows:

(MIN(N,MAX(p1-q1,....Pn-qn)+
MAX(q1,...qn)),MAX(q1,...,qn))

MOD Arithmetic Built-in Function

Definition: MOD extracts the remainder
resulting from the division of one real
quantity by another and returns it to the
point of invocation.

Reference: MOD (x1,x2)

Arguments: Two arguments must be given.
They must not be complex. Before the
function is invoked, the base and scale of
each argument are converted according to
the rules for the conversion of expression
operands, as given in Section F, "Problem
Data Conversion."

Result: Division is done ignoring the
signs. If there is no remainder, the value'
returned is zero.

If there is a remainder, and the signs
of the dividend and the divisor are the
same, the value returned is that remainder.

If there is a remainder and the signs
of the dividend and the divisor are
different, the value returned is the
difference between the remainder and the
divisor ignoring any signs.

For example:

MOD(29,6) returns the value 5, while
MOD(-29,6) returns the value 1.

If the result is in floating-point scale,
its precision is the higher of the
precisions of the arguments; if the result
is in fixed-point scale, its precision is
defined as follows:

(MIN(N,p2-q2+MAX(q1,q2)),MAX(q1,q2))

where (p1,q1) and (p2 ,q2) are the precision
of "x1" and "x 2 ," respectively.

If the value of the second argument is
zero, the ZERODIVIDE condition is raised.

Note: When the MOD function is used with
FIXED arguments of different scale factors,
the results may be truncated. If SIZE is
enabled, an error message will be printed;
if SIZE is disabled, no error message will
be printed and the result is undefined.

MULTIPLY Arithmetic Built-in Function

Definition: MULTIPLY finds the product of
two given values and returns it to the
point of invocation. This function allows
the programmer to control the precision of
the result of a multiplication operation.

Reference: MULTIPLY (x1,x2,p[,q])

Arguments: Arguments•"x1" and "x2"
represent the values to be multiplied.
Arguments "p" and "q" ("q" is optional and
may be signed) are decimal integer

292

constants specifying the precision of the
result. If the result is a fixed-point
value, "p" and "q" must both be specified;
if the result is a floating-point value,
only "p" must be specified. In either
case, "p" must not exceed N.

Result: The value returned by this
function is the product of "x," and "x2."
The precision of the result is as
specified; this precision is maintained
throughout the execution of the function.

PRECISION Arithmetic Built-in Function

Definition: PRECISION converts a given
value to a specified precision and returns
the converted value to the point of
invocation.

Reference: PRECISION (x,p[,q])

Arguments: The first argument, "x,"
represents the value to be converted to the
specified precision. Arguments "p" and "q"
("q" is optional and may be signed) are
decimal integer constants specifying the
precision of the result. If "x" is a
fixed-point value, "p" and "q" must be
specified; if "x" is a floating-point
value, only "p" must be specified.

Result: The value returned by this
function is the value of "x" converted to
the specified precision. The base, scale,
and mode of the returned value are the same
as those of "x."

REAL Arithmetic Built-in Function

Definition: REAL extracts the real part of
a given complex value and returns it to the
point of invocation. (REAL can also be
used as a pseudo-variable.)

Reference: REAL (x)

Argument: The argument, "x," must be a
complex expression.

Result: The value returned by this
function is the real part of the complex
value represented by "x." The base, scale,
and precision of the real part are
unchanged.

ROUND Arithmetic Built-in Function

Definition: ROUND rounds a given value at
a specified digit and returns the rounded
value to the point of invocation.

Reference: ROUND (expression,n)

Arguments: The first argument,
"expression," is an element or array
representing the value (or values, in the
case of an array expression) to be rounded;
the second argument, "n," is a signed or
unsigned decimal integer constant
specifying the digit at which the value of
"expression" is to be rounded. If "n" is
positive, rounding occurs at the nth digit
to the right of the decimal (or binary)
point in the value of "expression"; if "n"
is zero, rounding occurs at the first digit
to the left of the decimal (or binary)
point in the value of "expression"; if "n"
is negative, rounding occurs at the nth+1
digit to the left of the decimal (or
binary) point in the value of "expression."
Note that the decimal (or binary) point is
assumed to be at the left for
floating-point values.

Result: For fixed-point values, ROUND
returns the value of "expression" rounded
at the nth digit to the right of the
decimal (or binary) point for positive "n",
or at the first digit to the left of the
decimal (or binary) point for zero "n", or
at the nth+1 digit to the left of the
'decimal (or binary) point for negative or
'zero "n." Thus, when "n" is negative, the
returned value is an integer.

If "expression" is a floating-point
expression, the second argument is ignored,
and the rightmost bit in the internal
floating-point representation of the
expression's value is set to 1 if it is 0.
If the rightmost bit is 1, it is left
unchanged.

If "expression" is a string, the
returned value is the same string
unmodified.

The base, scale, and mode of the
returned value are those of the value of
"expression".

The precision of the returned value for
floating-point expressions is that of
"expression"; the precision of the returned
value for fixed-point expressions is
(MIN(p+1,N),q). The extra digit (p+1) of
the returned value for fixed-point
expressions is to allow for those cases in
which rounding would give a result that
could not be expressed in "p" digits, for
example, ROUND(9.999,2) would result in
10.000.

Section G: Built-In Functions and Pseudo-Variables 293

Note that the rounding of a negative
quantity results in the rounding of the
absolute value of that quantity.

SIGN Arithmetic Built-in Function

Definition: SIGN determines whether a
value is positive, negative, or zero, and
it returns an indication to the point of
invocation.

Reference: SIGN (x)

Argument: The argument, "x," must not be
complex.

Result: This function returns a real
fixed-point binary value of default
precision according to the following rules:

1. If the argument is greater than 0, the
returned value is 1.

2. If the argument is equal to zero, the
returned value is 0.

3. If the argument is less than zero, the
returned value is -1.

TRUNC Arithmetic Built-in Function

Definition: TRUNC truncates a given value
to an integer as follows: first, it
determines whether a given value is
positive, negative, or equal to zero. If
the value is negative, TRUNC returns the
'smallest integer that is not less than that
value; if the value is positive or equal to
zero, TRUNC returns the largest integer
that does not exceed that value.

Reference: TRUNC (x)

Argument: The argument, "x," must not be
complex.

Result: If "x" is less than zero, the
value returned by TRUNC is CEIL(x). If "x"
is greater than or equal to zero, the value
returned by TRUNC is FLOOR(x). In either
case, the base, scale, and mode of the
result are the same as those of "x." If
"x" is a floating-point value, the
precision remains the same. If "x" is a
fixed-point value of precision (p,q), the
precision of the result is:

(MIN(N,MAX(p-q+1,1)),0)

MATHEMATICAL BUILT-IN FUNCTIONS

All arguments to the mathematical built-in
functions should be in coded arithmetic
form and in floating-point scale. Any
argument that does not conform to this rule
is converted to coded arithmetic and
floating-point before the function is
invoked, according to the rules stated in
Section F, "Problem Data Conversion."
Note, therefore, that in the function
descriptions below, a reference to an
argument always means the converted
argument, if conversion was necessary

In general, an argument to a
mathematical built-in function may be an
element or array expression. If an
argument is an array, the value returned by
the built-in function is an array of the
same dimension and bounds as the argument
(the function having been performed once
for each element of the array). Thus, for
example, an array to the cosine function
COS results in an array, each element of
which is the cosine of the corresponding
element in the argument array.

Unless it is specifically stated
otherwise, an argument may be real or
complex. Figure G-1 at the end of this
section provide a quick reference for those
mathematical functions that accept either
real or complex arguments and those that
accept only real arguments.

All of the mathematical built-in
functions return coded arithmetic
floating-point values. The mode, base, and
precision of these values are always the
same as those of the arguments.

ATAN Mathematical Built-in Function

Definition: ATAN finds the arctangent of a
given value and returns the result
expressed in radians, to the point of
invocation.

Reference: ATAN (x[,y])

Arguments: The argument, "x," must always
be specified; the argument "y" is optional.
If "y" is omitted, "x" represents the value
whose arctangent is to be found; in such a
case, "x" may be real or complex, but if it
is complex, it must not be equal to ±1i.

If "y" is specified, then the value
whose arctangent is to be found is taken to
be the expression x/y. In this case, both
"x" and "y" must be real, and both cannot
be equal to 0 at the same time.

294

Result: When "x" alone is specified, the
value returned by ATAN depends on the mode
of "x." If "x" is real, the returned value
is the arctangent of "x," expressed in
radians, where:

-pi/2<ATAN(x)<pi/2

If "x" is complex, the arctangent function
is multiple-valued, and hence only the
principal value can be returned. The
principal value of ATAN for a complex
argument "x" is defined as follows:

-i*ATANH(i*x)

If both "x" and "y" are specified, the
possible values returned by this function
are defined as follows:

1. If y>0, the value is arctangent (x/y)
in radians.

2. If x>0 and y=0, the value is (pi/2)
radians.

3. If x>=0 and y<0, the value is (pi+
arctangent (x/y)) radians.

4. If x<0 and y=0, the value is (-pi/2)
radians.

5. If x<0 and y<0, the value is (-pi+
arctangent (x/y)) radians.

ATAND Mathematical Built-in Function

Definition: ATAND finds the arctangent of
a given real value and returns the result,
expressed in degrees, to the point of
invocation.

Reference: ATAND (x[,y]])

Arguments: Arguments "x" and "y" ("y" may
be omitted) must be real values. If "y" is
omitted, "x" represents the value whose
arctangent is to be found. If "y" is
specified, the value whose arctangent is to
be found is represented by the expression
x/y; in this case, both "x" and "y" cannot
be equal to 0 at the same time.

Result: If "y" is not specified, the value
returned by this function is simply the
arctangent of "x," expressed in degrees,
where:

-90<ATAND(x)<90

If "y" is specified, the value returned
by this function is ATAN (x,y), except that
the value is expressed in degrees and not
in radians (see "ATAN Mathematical Built-in
Function" in this section); that is, the
returned value is defined as:

ATAND(x,y) = (180/pi)*ATAN(x,y)

ATANH Mathematical Built-in Function

Definition: ATANH finds the inverse
hyperbolic tangent of a given value and
returns the result to the point of
invocation.

Reference: ATANH (x)

Argument: The value whose inverse
hyperbolic tangent is to be found is
represented by "x." If "x" is real, the
absolute value of "x" must not be greater
than or equal to 1; that is, for real "x,"
it is an error if ABS(x)>=1. If "x" is
complex, it must not be equal to ±1.

Result: If "x" is real, the value returned
by this function is the inverse hyperbolic
tangent of "x." For complex "x," the
inverse hyperbolic tangent is defined as
follows:

(LOG((1+x)/(1-x)))/2

COS Mathematical Built-in Function

Definition: COS finds the cosine of a
given value, which is expressed in radians,
and returns the result to the point of
invocation.

Reference: COS (x)

Argument: The value whose cosine is to be
found is given by "x"; this value can be
real or complex and must be expressed in
radians.

Result: The value returned by this
function is the cosine of "x." For complex
argument "x," the cosine of "x" is defined
below, where x = y1+iy2:

cos(x)=cos(y1)*cosh(y2)-i*sin(y1)*sinh(y2)

COSD Mathematical Built-in Function

Definition: COSD finds the cosine of a
given real value, which is expressed in

Section G: Built-In Functions and Pseudo-Variables 295

degrees, and returns the result to the
point of invocation.

Reference: COSD (x)

Argument: The value whose cosine is to be
found is given by "; this value must be
real and must be expressed in degrees.

Result: The value returned by this
function is the cosine of "x."

COSH Mathematical Built-in Function

Definition: COSH finds the hyperbolic
cosine of a given value and returns the
result to the point of invocation.

Reference: COSH (x)

Argument: The value whose hyperbolic
cosine is to be found is given by "x."

Result: The value returned by this
function is the hyperbolic cosine of x."
For complex argument "x," the hyperbolic
cosine of "x" is defined below, where x =

ERF Mathematical Built-in Function

Definition: ERF finds the error function
of a given real value and returns it to the
point of invocation.

Reference: ERF (x)

Argument: The value for which the error
function is to be found is represented by
"x"; this value must be real.

Result: The value returned by this
function is defined as follows:

ERFC Mathematical Built-in Function

Definition: ERFC finds the complement of
the error function (ERF) for a given real
value and returns the result to the point
of invocation.

Reference: ERFC (x)

Argument: The argument, x," represents

the value whose error function complement
is to be found; "x" must be real.

Result: The value returned by this
function is defined as follows:

ERFC(x) = 1-ERF(x)

EXP Mathematical Built-in Function

Definition: EXP raises e (the base of the
natural logarithm system) to a given power
and returns the result to the point of
invocation.

Reference: EXP (x)

Argument: The argument, "x," specifies the
power to which e is to be raised.

Result: The value returned by this
function is e raised to the power of x."

LOG Mathematical Built-in Function

Definition: LOG finds the natural
logarithm (i.e., base e) of a given value
and returns it to the point of invocation.

Reference: LOG (x)

Argument: The argument, "x," is the value
whose natural logarithm is to be found. If
"x" is real, it must not be less than or
equal to 0; if "x" is complex, it must not
be equal to 0+0i.

Result: The value returned by this
function is the natural logarithm of "x."
However, if "x" is complex, the function is
multiple-valued; hence, only the principal
value can be returned. The principal value
has the form w = u±i*v, where v lies in the
range:

-pi<v<=pi

LOG10 Mathematical Built-in Function

Definition: LOG10 finds the common
logarithm (i.e., base 10) of a given real
value and returns it to the point of
invocation.

Reference: LOG10 (x)

Argument: The argument, x," represents
the value whose common logarithm is to be
found; this value must be real and it must
not be less than or equal to 0.

296

Result: The value returned by this
function is the common logarithm of "x."

LOG2 Mathematical Built-in Function

Definition: LOG2 finds the binary (i.e.,
base 2) logarithm of a given real value and
returns it to the point of invocation.

Reference: LOG2 (x)

Argument: The argument, x," is the value
whose binary logarithm is to be found; it
must be real and it must not be less than
or equal to 0.

Result: The value returned to this
function is the binary logarithm of "x."

SIN Mathematical Built-in Function

Definition: SIN finds the sine of a given
value, which is expressed in radians, and
returns it to the point of invocation.

Reference: SIN (x)

Argument: The argument, x," is the value
whose sine is to be found; it must be
expressed in radians.

Result: The value returned by this
function is the sine of "x." For complex
argument "x," the sine of x" is defined
below, where x = y1+i*y2:

SIND Mathematical Built-in Function

Definition: SIND finds the sine of a given
real value, which is expressed in degrees,
and returns the result to the point of
invocation.

Reference: SIND (x)

Argument: The argument, x," is the value
whose sine is to be found; "x" must be real
and it must be expressed in degrees.

Result: The value returned by this
function is the sine of "x."

SINH Mathematical Built-in Function

Definition: SINH finds the hyperbolic sine
of a given value and returns the result to
the point of invocation.

Reference: SINH (x)

Argument: The argument, x," is the value
whose hyperbolic sine is to be found.

Result: The value returned by this
function is the hyperbolic sine of "x."
For complex argument x," the hyperbolic
sine of "x" is defined below, where x =

SQRT Mathematical Built-in Function

Definition: SQRT finds the square root of
a given value and returns it to the point
of invocation.

Reference: SQRT (x)

Argument: The argument, x," is the value
whose square root is to be found. If x"
is real, it must not be less than 0.

Result: If "x" is real, the value returned
by this function is the positive square
root of "x." If x" is complex, the square
root function is multiple-valued; hence,
only the principal value can be returned to
the user. The principal value has the form
w = u±i*v, where either u>0, or u=0 and
v>=0.

TAN Mathematical Built-in Function

Definition: TAN finds the tangent of a
given value, which is expressed in radians,
and returns it to the point of invocation.

Reference: TAN (x)

Argument: The argument, x," represents
the value whose tangent is to be found; x"
must be expressed in radians.

Result: The value returned by this
function is the tangent of "x."

Section G: Built-In Functions and Pseudo-Variables 297

TAND Mathematical Built-in Functions

Definition: TAND finds the tangent of a
given real value which is expressed in
degrees, and returns the result to the
point of invocation.

Reference: TAND (x)

Argument: The argument, x," represents
the value whose tangent is to be found; "x"
must be expressed in degrees.

Result: The value returned by this
function is the tangent of x."

TANH Mathematical Built-in Function

Definition: TANH finds the hyperbolic
tangent of a given value and returns the
result to the point of invocation.

Reference: TANH (x)

Argument: The argument, x," represents
the value whose hyperbolic tangent is to be
found.

Result: The value returned by this
function is the hyperbolic tangent of "x."

Summary of Mathematical Functions

Figure G-1 summarizes the mathematical
built-in functions. In using it, the
reader should be aware of the following:

1. A complex argument, "x," is
defined as x = y1+i*y2.

2. The value returned by each function is
always in floating-point.

3. The error conditions are those defined
by the PL/I Language. Additional
error conditions detected by the
F-Compiler are described in the
publication IBM System/360 Operating
System, PL/I Subroutine Library,
Computational Subroutines, Form
C28-6590.

4. All arguments must be coded arithmetic
and floating-point scale, or such that
they can be converted to coded
arithmetic and floating-point.

ARRAY MANIPULATION BUILT-IN FUNCTIONS

The built-in functions described here may
be used for the manipulation of arrays.
All of these functions require array
arguments (which may be expressions) and
return single element values. Note that
since these functions return element
values, a function reference to any of them
is considered an element expression.

298

Figure G-1. Mathematical Built-In Functions

Section G: Built-In Functions and Pseudo-Variables 299

Figure G-1. Mathematical Built-In Functions (continued)

ALL Array Manipulation Function

Definition: ALL tests all bits of a given
bit-string array and returns the result, in
the form of an element bit-string, to the
point of invocation. The element
bit-string indicates whether or not the
corresponding bits of given array elements
are all ones.

Reference: ALL (x)

Argument: The argument, "x," is an array
of bit strings. If the elements are not
bit strings, they are converted to bit
strings.

Result: The value returned by this
function is a bit string whose length is
equal to the length of the longest element
in "x" and whose bit values are determined
by the following rule:

300

If the ith bits of all of the elements
in "x" exist and are 1, then the ith bit
of the result is 1; otherwise, the ith
bit of the result is 0.

ANY Array Manipulation Function

Definition: ANY tests the bits of a given
bit-string array and returns the result, in
the form of an element bit-string, to the
point of invocation. The element bit-
string indicates whether or not at least
one of the corresponding bits of the given
array elements is set to 1.

Reference: ANY (x)

Argument: The argument, "x," is an array
of nit strings. If the elements are not
bit strings, they are converted to bit
strings.

Result: The value returned by this
function is a bit string whose length is
equal to the length of the longest element
in "x" and whose bit values are determined
by the following rule:

If the ith bit of any element in "x"
exists and is 1, then the ith bit of the
result is 1; otherwise, the ith bit of
the result is 0.

DIM Array Manipulation Function

Definition: DIM finds the current extent
for a specified dimension of a given array
and returns it to the point of invocation.

Reference: DIM (x,n)

Arguments: 	The argument "x" is the array
to be investigated; "n" is the dimension of
"x," the extent of which is to be found.
If "n" is not a binary integer, it is
converted to a binary integer of default
precision. It is an error if "x" has less
than "n" dimensions, if "n" is less than or
equal to 0, or if "x" is not currently
allocated.

Result: The value returned by this
function is a binary integer of default
precision, giving the current extent of the
nth dimension of "x."

HBOUND Array Manipulation Function

Definition: HBOUND finds the current upper
bound for a specified dimension of a given
array and returns it to the point of
invocation.

Reference: HBOUND (x,n)

Arguments: The argument "x" is the array
to be investigated; "n" is the dimension of
"x" for which the upper bound is to be
found. If "n" is not a binary integer, it
is converted to a binary integer of default
precision. It is an error if "x" has less
than "n" dimensions, if "n" is less than or
equal to 0, or if "x" is not currently
allocated.

Result: The value returned by this
function is a binary integer of default
precision giving the current upper bound
for the nth dimension of "x."

LBOUND Array Manipulation Function

Definition: LBOUND finds the current lower
bound for a specified dimension of a given
array and returns it to the point of
invocation.

Reference: LBOUND (x,n)

Arguments: The argument "x" is the array
to be investigated; "n" is the dimension of
"x" for which the lower bound is to be
found. If "n" is not a binary integer, it
is converted to a binary integer of default
precision. It is an error if "x" has less
than "n" dimensions, if "n" is less than or
equal to 0, or if "x" is not currently
allocated.

Result: The value returned by this
function is a binary integer of default
precision giving the current lower bound of
the nth dimension of "x."

POLY Array Manipulation Function

Definition: POLY forms a polynomial from
two given arguments and returns the result
of the evaluation of that polynomial to the
point of invocation.

Reference: POLY (a,x)

Arguments: Arguments "a" and "x" must be
one-dimension arrays (vectors). They are
defined as follows:

Section G: Built-In Functions and Pseudo-Variables 301

a(m:n)

x(p:q)

where (m:n) and (p:q) represent the bounds
of "a" and "x," respectively.

Result: The value returned by this
function is defined as:

If (q-p)<(n-m-1), then x(p+i)=x(q) for
(p+i)>q. If m=n , then the result is a(m).

If "x" is an element variable, it is
interpreted as an array of one element,
i.e., x(1), and the result is then:

PROD Array Manipulation Function

Definition: PROD finds the product of all
of the elements of a given array and
returns that product to the point of
invocation.

Reference: PROD (x)

Argument: The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converted to coded arithmetic and
floating-point before being multiplied with
the previous product.

Result: The value returned by this
function is the product of all of the
elements in "x." The scale of the result
is floating-point, while the base, mode,
and precision are those of the converted
elements of "x."

SUM Array Manipulation Function

Definition: SUM finds the sum of all of
the elements of a given array and returns
that sum to the point of invocation.

Reference: SUM (x)

Argument: The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converted to coded arithmetic and
floating-point before being summed with the
previous total.

Result: The value returned by this
function is the sum of all of the elements
in "x." The scale of the result is
floating-point, while the base, mode, and
precision are those of the converted
elements of the argument.

Condition Built-In Functions

The condition built-in functions allow the
PL/I programmer to investigate interrupts
that arise from enabled ON-conditions.
None of these functions requires arguments.
Each condition built-in function returns
the value described only when executed in
an on-unit (or a block activated directly
or indirectly by an on-unit) that is
entered as a result of an interrupt caused
by one of the ON-conditions for which the
function can be used. Such an on-unit can
be one specific to the condition, or it can
be for the ERROR or FINISH condition when
these conditions are raised as standard
system action. If a condition built-in
function is used out of context, the value
returned is as described for each function.

The on-units in which each function can
be used are given in the function
definition.

DATAFIELD Condition Built-in Function

Definition: Whenever the NAME condition is
raised, DATAFIELD may be used to extract
the contents of the data field that caused
the condition to be raised. It can be used
only in an on-unit for the NAME condition
or in an ERROR or FINISH condition raised
as a result of standard system action for
the NAME condition.

Reference: DATAFIELD

Result: The value returned by this
function is a varying-length character
string giving the contents of the data
field that caused the NAME condition to be
raised. The maximum length of this string
is defined by the F Compiler as 255. If
DATAFIELD is used out of context, a null
string is returned.

ONCHAR Condition Built-in Function

Definition: Whenever the CONVERSION
condition is raised, ONCHAR may be used to
extract the character that caused the
condition to be raised. It can be used

302

only in an on-unit for the CONVERSION
condition or in an on-unit for an ERROR or
FINISH condition raised as standard system
action for the CONVERSION condition.
(ONCHAR can also be used as a
pseudo-variable.)

Reference: ONCHAR

Result: The value returned by this
function is a character string of length 1,
containing the character that caused the
CONVERSION condition to be raised. This
character can be modified in the on-unit by
the use of the ONCHAR or ONSOURCE
pseudo-variables. If ONCHAR is used out of
context, a blank is returned.

ONCODE Condition Built-in Function

Definition: ONCODE can be used in any
on-unit to determine the type of interrupt
that caused the on-unit to become active.

ONKEY Condition Built-in Function

ONFILE Condition Built-in Function

Definition: ONFILE determines the name of
the file for which an input/output or
CONVERSION condition was raised and returns
that name to the point of invocation. This
function can be used in the on-unit for any
input/output or CONVERSION condition; it
also can be used in an on-unit for an ERROR
or FINISH condition raised as standard
system action for an input/output or
CONVERSION condition.

Reference: ONFILE

Result: The value returned by this
function is a varying-length character
string, of 31-character maximum length,
consisting of the name of the file for
which an input/output or CONVERSION
condition was raised. In the case of a
CONVERSION condition, if that condition is
not associated with a file, the returned
value is the null string.

Reference: ONCODE

Result: ONCODE returns a binary integer of
default precision. This "code" defines the
type of interrupt that caused the entry
into the currently active on-unit. The
codes for the F Compiler are given in
section H, "ON-Conditions." If ONCODE is
used out of context, a value of 0 is
returned.

ONCOUNT Condition Built-In Function

Definition: ONCOUNT can be used in any
on-unit entered due to the abnormal
completion of an input/output event to
determine the number of interrupts
(including the current one) that remain to
be handled when a multiple interrupt has
resulted from that abnormal completion.
(Multiple interrupts
are discussed in Section 	H, 	"ON-
Conditions.")

Reference: ONCOUNT

Result: ONCOUNT returns a binary value of
default precision. If ONCOUNT is used in
an on-unit entered as part of a multiple
interrupt, this value specifies the
corresponding number of equivalent single
interrupts (including the current one) that
remain to be handled; if ONCOUNT is used in
any other case, the returned value is zero.

Definition: ONKEY extracts the value of
the key for the record that caused an
input/output condition to be raised. This
function can be used in the on-unit for an
input/output condition or a CONVERSION
condition; it can also be used in an
on-unit for an ERROR or FINISH condition
raised as standard system action for one of
the above conditions.

Reference: ONKEY

Result: The value returned by this
function is a varying-length character
string giving the value of the key for the
record that caused an input/output
condition to be raised., If the interrupt
is not associated with a keyed record, the
returned value is the null string. For the
F Compiler, the returned value is a null
string in the case of the PENDING
condition.

ONLOC Condition Built-in Function

Definition: Whenever an ON-condition is
raised, ONLOC may be used in the on-unit
for that condition to determine the entry
point to the procedure in which that
condition was raised. ONLOC may be used in
any on-unit.

Reference: ONLOC

Section G: Built-In Functions and Pseudo-Variables 303

Result: The value returned by this
function is a varying-length character
string giving the name of the entry point
to the procedure in which the ON-condition
was raised. If ONLOC is used out of
context, a null string is returned.

ONSOURCE Condition Built-in Function

Definition: Whenever the CONVERSION
condition is raised, ONSOURCE may be used
to extract the contents of the field that
was being processed when the condition was
raised. This function can be used in the
on-unit for a CONVERSION condition or in an
on-unit for an ERROR or FINISH condition
raised as standard system action for a
CONVERSION condition. (ONSOURCE can also
be used as a pseudo-variable.)

Reference: ONSOURCE

Result: The value returned by this
function is a varying-length character
string (maximum length is 255 for the F
Compiler) giving the contents of the field
being processed when CONVERSION was raised.
This string may be modified in the on-unit
by use of the ONCHAR or ONSOURCE
pseudo-variable. If ONSOURCE is used out
of context, a null string is returned.

Based Storage Built-In Functions

The based storage built-in functions
generally return special values to program
control variables concerned in the use of
based storage and list processing. Only
ADDR requires an argument.

ADDR Based Storage Built-in Function

Definition: ADDR finds the location at
which a given variable has been allocated
and returns a pointer value to the point of
invocation. The pointer value identifies
the location at which the variable has been
allocated.

Reference: ADDR (x)

Argument: The argument, "x," is the
variable whose location is to be found. It
can be any variable that represents an
element, an array, a structure, an area, an
element of an array, a minor structure, or
an element of a structure. It can be of
any data type and storage class. For the F
Compiler, the variable should not be a

bit-string variable forming part of an
unaligned array or structure.

Result: ADDR returns a pointer value
identifying the location at which "x" has
been allocated. If "x" is a parameter, the
returned value identifies the corresponding
argument (dummy or otherwise). If "x" is a
based variable, the returned value is
determined from the pointer variable
declared with "x"; if this pointer variable
has not been set, the value returned by
ADDR is undefined. If "x" is an
unallocated controlled variable, a null
pointer value is returned.

EMPTY Based Storage Built-in Function

Definition: EMPTY clears an area of
storage defined by an area variable, by
effectively freeing all the allocations
contained within the area. The area can
then be used for a new set of allocations.

Reference: EMPTY

Arguments: None

Result: EMPTY returns an area of zero
size, containing no allocations, to the
point of invocation. When this value is
assigned to an area variable, all the
allocations contained within the area are
freed.

Note: The value of the EMPTY built-in
function is automatically assigned to all
area variables when they are allocated.

NULL Based Storage Built-in Function

Definition: NULL returns a null pointer
value (that is, a pointer value that cannot
identify any allocation) so as to indicate
that a pointer variable does not currently
identify an allocation.

Reference: NULL

Arguments: None

Result: The value returned by this
function is a null pointer value. This
value cannot be converted to offset type.

NULLO Based Storage Built-in Function

Definition: NULLO returns a null offset
value (that is, an offset value that cannot

304

identify any relative location of a based
variable allocation) so as to indicate that
an offset variable does not currently
identify an allocation.

Reference: NULLO

Arguments: None

Result: The value returned by this
function is a null offset value. This
value cannot be converted to pointer type.

Multitasking Built-In Functions

The multitasking built-in functions are
used during multitasking and during
asynchronous input/output operations. They
allow the programmer to investigate the
relative priority of a task or the current
state of execution of a task or
asynchronous input/output operation. They
all require arguments.

COMPLETION Multitasking Built-in Function

Definition: COMPLETION determines the
completion value of a given event variable.
(COMPLETION can also be used as a
pseudo-variable.)

Reference: COMPLETION (event-name)

Argument: The argument, "event-name", can
be an event element or an event array. It
represents the event (or events) whose
completion value is to be determined. The
event can be associated with completion of
a task, or with completion of an
input/output operation, or it can be
user-defined. It can be active or
inactive. An array argument causes an
array value to be returned.

Result: The value returned by this
function is '0'B if the event is
incomplete, '1'B if the event is complete.

PRIORITY Multitasking Built-in Function

Result: The value returned by this task is
a fixed binary value of precision (n,0),
where n is implementation-defined (15, for
the F Compiler). The value is the priority
value of the named task, relative to the
priority of the task evaluating the
function. No interrupt can occur during
evaluation of PRIORITY.

STATUS Multitasking Built-in Function

Definition: STATUS determines the status
value of a given event variable. (STATUS
can also be used as a pseudo-variable.)

Reference: STATUS (event-name)

Argument: The argument, "event-name", can
be an event element or an event array. It
represents the event (or events) whose
status value is to be determined. The
event can be associated with completion of
a task, or with completion of an
input/output operation, or it can be
user-defined. It can be active or
inactive. An array argument causes an
array value to be returned.

Result: The value returned by this
function is a fixed binary value of default
precision ((15,0) for the F Compiler). It
is zero if the event is normal, or nonzero
if abnormal. The nonzero value is set to 1
as a result of the completion of the task,
or input/output operation, with which the
event variable has been associated by the
event option. If the nonzero value is user
defined it can be set to any value the use
selects.

Miscellaneous Built-In Functions

The functions described in this section
have little in common with each other and
with the other categories of built-in
functions. some require arguments and
others do not. Those that do not require
arguments will be so identified.

Definition: PRIORITY determines the
relative priority of a given task.
(PRIORITY can also be used as a
pseudo-variable.)

Reference: PRIORITY (task-name)

Argument: The argument, "task-name,"
represents the task whose relative priority
is to be determined.

ALLOCATION Built-in Function

Definition: ALLOCATION determines whether
or not storage is allocated for a given
controlled variable and returns an
appropriate indication to the point of
invocation.

Reference: ALLOCATION (x)

Section G: Built-In Functions and Pseudo-Variables 305

Argument: The argument, "x," must be an
unsubscripted array name, a major structure
name, or an element variable name, and it
must have the CONTROLLED attribute.

Result: The value returned by this
function is defined as follows: if storage
has been allocated for "x," the returned
value is '1'B (provided that the allocation
is known to the task executing the
function); if storage has not been
allocated for "x," the returned value is
'0'B.

COUNT Built-in Function

Definition: COUNT determines the number of
data items that were transmitted during the
last GET or PUT operation on a given file
and returns the result to the point of
invocation.

Reference: COUNT (file-name)

Argument: The argument, "file name,"
represents the file to be investigated.
This file must have the STREAM attribute.

Result: The value returned by this
function is a binary fixed-point integer of
default precision specifying the number of
element data items that were transmitted
during the last GET or PUT operation on
"file name." Note that if an on-unit or
procedure is entered during a GET or PUT
operation, and within that on-unit or
procedure a GET or PUT is executed for the
same file, the value of COUNT is reset for
the new operation and is not restored when
the original GET or PUT is continued.

DATE Built-in Function

Definition: DATE returns the current date
to the point of invocation.

Reference: DATE

Arguments: None

Result: The value returned by this
function is a character string of length
six, in the form yymmdd, where:

yy is the current year

mm is the current month

dd is the current day

Example: If the current date is February
29, 1968, execution of the statement

X = DATE;

will cause the character string '680229' to
be returned to the point of invocation.

LINENO Built-in Function

Definition: LINENO finds the current line
number for a file having the PRINT
attribute and returns that number to the
point of invocation.

Reference: LINENO (file-name)

Argument: The argument, "file name," must
be the name of a file having the PRINT
attribute.

Result: The value returned by this
function is a binary fixed-point integer of
default precision specifying the current
line number of "file name."

TIME Built-in Function

Definition: TIME returns the current time
to the point of invocation.

Reference: TIME

Arguments: None

Result: The value returned by this
function is a character string of length
nine, in the form hhmmssttt, where:

hh is the current hour of the day

mm is the number of minutes

ss is the number of seconds

ttt is the number of milliseconds in
machine-dependent increments

Example: If the current time is 4 P.M., 23
minutes, 19 seconds, and 80 milliseconds, a
reference to the TIME function, for some
computers, will return the character string
'162319080' to the point of invocation.

Pseudo-Variables

In general, pseudo-variables are certain
built-in functions that can appear wherever
other variables can appear in order to
receive values. In short, they are
built-in functions used as receiving
fields. For example, a pseudo-variable may

306

appear on the left of the equal sign in an
assignment or DO statement; it may appear
in the data list of a GET statement; it may
appear as the string name in the STRING
option of a PUT statement.

Since all pseudo-variables have built-in
function counterparts, only a short
description of each pseudo-variable is
given here; the discussion of the
corresponding built-in function should be
consulted for the details. Note that
pseudo-variables cannot be nested; for
example, the following statement is
invalid:

UNSPEC(SUBSTR(A,1,2))='00'B;

COMPLETION Pseudo-variable

Reference: COMPLETION (event-name)

Description: The named event variable must
be inactive and is as described for the
COMPLETION built-in function. The value
received by this pseudo-variable is a
bit-string of length 1. This value sets
the completion value of the event variable.
A value of '0'B specifies that the event
associated with the "event variable" is
incomplete; a value of '1'B specifies that
the event is complete. No interrupt can
take place during assignment to the
pseudo-variable.

COMPLEX Pseudo-variable

Reference: COMPLEX (a,b)

Description: Only complex values can be
assigned to this pseudo-variable. The real
part of the complex value is assigned to
the variable "a"; the imaginary part is
assigned to the variable "b." If either
"a" and "b" is an array, both must be
arrays of identical bounds.

PRIORITY Pseudo-variable

ONCHAR Pseudo-variable

Reference: ONCHAR

Description: ONCHAR can be used in the
on-unit for a CONVERSION condition or in
the on-unit for an ERROR or FINISH
condition raised as standard system action
for a CONVERSION condition; it can also be
used in a block directly or indirectly
activated by such an on-unit. If ONCHAR is
used in some other context, it is an error.

The expression being assigned to ONCHAR
is evaluated, converted to a character
string of length 1, and assigned to the
character that caused the error. The new
character will displace the current value
of the ONCHAR built-in function, and will
be used when the conversion is
re-attempted, upon the resumption of
execution at the point of interrupt.

ONSOURCE Pseudo-variable

Reference: ONSOURCE

Description: ONSOURCE can be used in the
on-unit for a CONVERSION condition or in an
on-unit for an ERROR or FINISH condition
raised as standard system action for a
CONVERSION condition; it can also be used
in a block directly or indirectly activated
by such an on-unit. If ONSOURCE is used in
some other context, it is an error.

The expression being assigned to
ONSOURCE is evaluated, converted to a
character string, and assigned to the
string that caused the CONVERSION condition
to be raised. The string will be padded
with blanks, if necessary, to match the
length of the string that caused the error.
This new string displaces the current value
of the ONSOURCE built-in function and will
be used when the conversion is
re-attempted, upon the resumption of
execution at the point of interrupt.

IMAG Pseudo-variable

Reference: IMAG (c)

Description: Real or complex values may be
assigned to this pseudo-variable. The real
value or the real part of the complex value
is assigned to the imaginary part of the
complex variable "c," which may be an
element variable or an array variable.

Reference: PRIORITY [(task-name)]

Description: The "task-name" is as
described for the PRIORITY built-in
function, but need not be specified. The
value received by this pseudo-variable is a
fixed-point binary value of precision
(n,0), where n is implementation-defined
(15, for the F Compiler). The priority
value of the named task variable is

Section G: Built-In Functions and Pseudo-Variables 307

adjusted so that it becomes n relative to
the priority that the current task had
prior to the assignment. If an active task
is associated with the named task variable,
its priority is given the same value as the
task variable.

If "task-name" is not specified, the
task variable associated with the current
task (if there is such a variable) is
implied, and the priority of this variable
is modified; hence, the priority of the
current task is modified.

No interrupt can occur during assignment
to the PRIORITY pseudo-variable.

REAL Pseudo-variable

Reference: REAL (c)

Description: Real or complex values may be
assigned to this pseudo-variable. The real
value or the real part of the complex value
is assigned to the real part of the complex
variable "c," which may be an element
variable or an array variable.

STATUS Pseudo-variable

Reference: STATUS (event-name)

Description: The named event variable can
be active or inactive, and is as described
for the STATUS built-in function. The
value received by this pseudo-variable is a
fixed point binary value of default
precision ((15,0) for the F Compiler). No
interrupt can occur during assignment to
the pseudo-variable.

The value being assigned must be an
element expression and is converted, if
necessary, to bit-string or
character-string type, depending on the
characteristics of the argument "x." It is
then assigned piece by piece to the
elements of "x," using the normal rules of
string assignment, until either all of the
elements of the aggregate have been
assigned to, or no portion of the assigned
string remains. In the latter case, the
normal string assignment rules apply to the
remainder of the aggregate, i.e., varying
strings are given a zero length, and
non-varying strings are filled with blanks.
(The length of each assigned piece is
determined by the length of the
corresponding element of the argument; the
normal rules for string assignment apply if
the last piece is too short.)

STRING pseudo-variable can only be used
in an assignment statement and a DO
statement. It cannot be used in options
such as REPLY and KEYTO.

SUBSTR Pseudo-variable

Reference: SUBSTR (string,i[,j])

Description: The value being assigned to
SUBSTR is assigned to the substring of the
character- or bit-string variable "string,"
as defined for the built-in function
SUBSTR. If "string" is an array, i and/or
j may be arrays, in which case they must
have identical bounds. The remainder of
"string" remains unchanged. The SUBSTR
pseudo-variable cannot be applied to a
numeric picture.

UNSPEC Pseudo-variable

Reference: UNSPEC (v)
STRING Pseudo-variable

Reference: STRING(x)

Description: The argument "x" is an
element, array, or structure variable,
composed either entirely of character
strings and/or numeric character data, or
entirely of bit strings. The variable may
be aligned or unaligned.

Note: The argument to STRING
pseudo-variable cannot be a cross section
of an array for the F Compiler.

Description: The letter "v" represents an
'element or array variable of arithmetic,
string, area, pointer, or offset type. The
value being assigned to UNSPEC is
evaluated, converted to a bit string (the
length of which is a function of the
characteristics of "v" -- see the UNSPEC
built-in function), and then assigned to
"v," without conversion to the type of "v."
If "v" is a string of varying length, its
length after the assignment will be the
same as that of the bit string assigned to
it.

308

Section H: ON-Conditions

Introduction

The ON-conditions are those exceptional
conditions that can be specified in PL/I by
means of an ON statement. If a condition
is enabled, the occurrence of the condition
will result in an interrupt. The
interrupt, in turn, will result in the
execution of the current action
specification for that condition. If an ON
statement for that condition is not in
effect, the current action specification is
the standard system action for that
condition. If an ON statement for that
condition is in effect, the current action
specification is either SYSTEM, in which
case the standard system action for that
condition is taken, or an on-unit, in which
case the programmer has supplied his own
action to be taken for that condition.

If a condition is not enabled (i.e., if
it is disabled), and the condition occurs,
an interrupt will not take place, and
errors may result.

Some conditions are always enabled
unless they have been explicitly disabled
by condition prefixes; others are always
disabled unless they have been explicitly
enabled by condition prefixes; and still
others are always enabled and cannot be
disabled.

Those conditions that are always enabled
unless they have been explicitly disabled
by condition prefixes are:

CONVERSION

FIXEDOVERFLOW

OVERFLOW

UNDERFLOW

ZERODIVIDE

Each of the above conditions can be
disabled by a condition prefix specifying
the condition name preceded by NO without
intervening blanks. Thus, one of the
following names in a condition prefix will
disable the respective condition:

NOCONVERSION

NOFIXEDOVERFLOW

NOOVERFLOW

NOUNDERFLOW

NOZERODIVIDE

Such a condition prefix renders the
corresponding condition disabled throughout
the scope of the prefix; the condition
remains enabled outside this scope. (Scope
of a condition prefix is discussed in Part
I, Chapter 13, "Exceptional Condition
Handling and Program Checkout.")

Conversely, those conditions that are
always disabled unless they have been
enabled by a condition prefix are:

SIZE

SUBSCRIPTRANGE

STRINGRANGE

CHECK

The appearance of one of these four in a
condition prefix renders the condition
enabled throughout the scope of the prefix;
the condition remains disabled outside this
scope. 	Further, a condition prefix speci-
fying NOSIZE, NOSUBSCRIPTRANGE, NOSTRING-
RANGE, or NOCHECK will disable the
corresponding condition throughout the
scope of that prefix.

All other conditions are always enabled
and remain so for the duration of the
program. These conditions are:

AREA

CONDITION

ENDFILE

ENDPAGE

ERROR

FINISH

KEY

NAME

PENDING

Section H: ON-Conditions 309

RECORD

TRANSMIT

UNDEFINEDFILE

Condition Codes (ON-Codes)

The ONCODE built-in function may be used by
the programmer in any on-unit to determine
the nature of the error or condition that
caused entry into that on-unit. The codes
corresponding to the conditions and errors
checked for by the F Compiler are given
below:

Code Condition/Error

0 ONCODE function used out of context
3 Source program error
4 FINISH (normal termination, or

signaled by STOP or EXIT)
9 ERROR (signaled)
10 NAME
20 RECORD (signaled)
21 RECORD (record variable smaller than

record size)
22 RECORD (record variable larger than

record size)
23 RECORD (attempt to write zero length

record)
24 RECORD (zero length record has been

read)
40 TRANSMIT (signaled)
41 TRANSMIT (output)
42 TRANSMIT (input)
50 	KEY (signaled)
51 KEY (keyed record not found)
52 KEY (attempt to add duplicate key)
53 KEY (key sequence error)
54 KEY (key conversion error)
55 KEY (key specification error)
56 KEY (keyed relative record/track

outside data set limit)
57 KEY (no space available to add keyed

record)
70 ENDFILE
80 UNDEFINEDFILE (signaled)
81 UNDEFINEDFILE (attribute conflict)
82 UNDEFINEDFILE (access method not

supported)
83 UNDEFINEDFILE (blocksize not

specified)
84 UNDEFINEDFILE (file cannot be

opened, no DD card)
85 UNDEFINEDFILE (error initializing

REGIONAL data set)
90 ENDPAGE
300 OVERFLOW
310 FIXEDOVERFLOW
320 ZERODIVIDE
330 UNDERFLOW
340 SIZE (normal)

341 	SIZE (I/O)
350 STRINGRANGE
360 AREA (raised by based variable

allocation)
361 AREA (raised by area assignment)
362 AREA (signaled)
500 CONDITION
510 CHECK (LABEL)
511 CHECK (variable)
520 SUBSCRIPTRANGE
600 CONVERSION (internal) (signaled)
601 CONVERSION (I/O)
602 CONVERSION (transmit)
603 CONVERSION (error in F-format input)
604 CONVERSION (error in F-format input)

(I/O)
605 CONVERSION (error in F-format input)

(transmit)
606 CONVERSION (error in E-format input)
607 CONVERSION (error in E-format input)

(I/O)
608 CONVERSION (error in E-format input)

(transmit)
609 CONVERSION (error in B-format input)
610 CONVERSION (error in B-format input)

(I/O)
611 CONVERSION (error in B-format input)

(transmit)
612 CONVERSION (character-string to

arithmetic)
613 CONVERSION (character-string to

arithmetic) (I/O)
614 CONVERSION (character-string to

arithmetic) (transmit)
615 CONVERSION (character-string to

bit-string)
616 CONVERSION (character-string to

bit-string) (I/O)
617 CONVERSION (character-string to

bit-string) (transmit)
618 CONVERSION (character to picture)
619 CONVERSION (character to picture)

(I/O)
620 CONVERSION (character to picture)

(transmit)
621 CONVERSION (P-format input --

decimal)
622 CONVERSION (P-format input --

decimal) (I/O)
623 CONVERSION (P-format input --

decimal) (transmit)
624 CONVERSION (P-format input --

character)
625 CONVERSION (P-format input --

character) (I/O)
626 CONVERSION (P-format input --

character) (transmit)
627 CONVERSION (P-format input --

sterling)
628 CONVERSION (P-format input --

sterling) (I/O)
629 CONVERSION (P-format input --

sterling) (transmit)
1000 Attempt to read output file
1001 Attempt to write input file
1002 GET/PUT string length error
1003 Unacceptable output transmission

error

310

1004 Print option on non-PRINT file
1005 Message length for DISPLAY

statements is zero
1006 Illegal array data item for

data-directed input
1007 REWRITE not immediately preceded by

READ
1008 GET STRING -- unrecognizable data

name
1009 Unsupported file operation
1010 File type not supported
1011 Inexplicable I/O error
1012 Outstanding read for update exists
1013 No completed read exists --

incorrect NCP value
1014 Too many incomplete I/O operations
1015 Event variable already in use
1016 Implicit open failures -- cannot

proceed
1017 Attempt to rewrite out of sequence
1018 ERROR condition raised when end of

file encountered unexpectedly in
list-directed or data-directed
input, or when field width in format
list of edit-directed input would
take scan beyond end of file.

11019 Attempt to close file not opened in
current task

1500 Short SQRT error
1501 Long SQRT error
1504 Short LOG error
1505 Long LOG error
1506 Short SIN error
1507 Long SIN error
1508 Short TAN error
1509 Long TAN error
1510 Short ARCTAN error
1511 Long ARCTAN error
1512 Short SINH error
1513 Long SINH error
1514 Short ARCTANH error
1515 Long ARCTANH error
1550 Invalid exponent in short float

integer exponentiation
1551 Invalid exponent in long float

integer exponentiation
1552 Invalid exponent in short float

general exponentiation
1553 Invalid exponent in long float

general exponentiation
1554 Invalid exponent in complex short

float integer exponentiation
1555 Invalid exponent in complex long

float integer exponentiation
1556 Invalid exponent in complex short

float general exponentiation
1557 Invalid exponent in complex long

float general exponentiation
1558 Invalid argument in short float

complex ARCTAN or ARCTANH
1559 Invalid argument in long float

complex ARCTAN or ARCTANH
2000 Unacceptable DELAY statement
2001 Unacceptable TIME statement
3000 E-format conversion error
3001 F-format conversion error
3002 A-format conversion error
3003 B-format conversion error

3004 A-format input error
3005 B-format input error
3006 Picture character-string error
3798 ONSOURCE or ONCHAR pseudo-variables

used out of context
3799 Improper return from CONVERSION

on-unit
3800 Structure length >= 16**6 bytes
3801 Virtual origin of array >= 16**6 or

<=16**6
3900 Attempt to wait on inactive and

incomplete event
3901 Task variable already active
3902 Event already being waited for
3903 Wait on more than 255 incomplete

events
3904 Active event variable as argument to

COMPLETION pseudo-variable
3905 Invalid task variable as argument to

PRIORITY pseudo-variable
3906 Event variable active in assignment

statement
3907 Event variable already active
3908 Attempt to wait for I/O event in

wrong task
8091 Invalid operation
8092 Privileged operation
8093 EXECUTE statement executed
8094 Protection violation
8095 Addressing interruption
8096 	Specification interruption
8097 Data interruption
9000 Too many active on-units and entry

parameter procedures
9001 No invocation count
9002 	Invalid free storage (main

procedure)
9003 Invalid free VDA

Multiple Interrupts

A multiple interrupt can occur only for an
input/output operation that has been
associated with an event variable. It
occurs during the execution of the WAIT
statement naming that event variable, if
the event has been completed abnormally
(i.e., if one or more conditions occurred
during the operation). Since conditions
for an input/output event are raised at the
execution of the WAIT for that event, the
interrupts for these conditions also occur
at this time. It is possible for more than
one interrupt to occur for an input/output
event. The aggregate of interrupts for an
input/output event is called a multiple
interrupt.

When an input/output event is completed
abnormally, the order in which the
conditions are raised, and therefore, the
order in which the interrupts for these
conditions occur, 	is implementation-
defined. If the on-unit for such a
condition ends abnormally, then all

Section H: ON-Conditions 311

unprocessed conditions (i.e., remaining
interrupts of the multiple interrupt) are
ignored; if an on-unit ends normally, the
next condition is processed. If an on-unit
has not been established for such a
condition or if SYSTEM is in effect, the
next condition outstanding will be
processed only if the standard system
action is to comment and continue; if the
standard system action is otherwise, all
remaining interrupts in the multiple
interrupt will be ignored.

Note: If the UNDEFINEDFILE condition is
raised by an attempt at implicit opening,
caused by a statement associated with an
event variable, the condition is raised
immediately, and the interrupt will occur
even before the WAIT statement is executed.

Section Organization

This section presents each condition in its
logical grouping, and in alphabetical order
within that grouping. In general, the
following information is given for each
condition:

1. General format -- given only when it
consists of more than the condition
name.

2. Description -- a discussion of the
condition, including the circumstances
under which the condition can be
raised. Note that an enabled
condition can always be raised by a
SIGNAL statement; this fact is not
included in the descriptions.

3. Result -- the result of the operation
that caused the condition to occur.
This applies when the condition is
disabled as well as when it is
enabled. In some cases, the result is
not defined; that is, it cannot be
predicted. This is stated wherever
applicable.

4. Standard system action -- the action
taken by the system when an interrupt
occurs and the programmer has not
specified an on-unit to handle that
interrupt.

5. Status -- an indication of the
enabled/disabled status of the
condition at the start of the program,
and how the condition may be disabled
(if possible) or enabled.

6. Normal return -- the point to which
control is returned as a result of the
normal termination of the on-unit. A

GO TO statement that transfers control
out of an on-unit is an abnormal
on-unit termination. Note that if a
condition has been raised by the
SIGNAL statement, the normal return is
always to the statement immediately
following SIGNAL.

The conditions are grouped as follows:

1. Computational conditions -- those
conditions associated with data
handling, expression evaluation, and
computation. They are:

CONVERSION
FIXEDOVERFLOW
OVERFLOW
SIZE
UNDERFLOW
ZERODIVIDE

2. Input/output conditions -- those
conditions associated with data
transmission. They are:

ENDFILE
ENDPAGE
KEY
NAME
PENDING
RECORD
TRANSMIT
UNDEFINEDFILE

3. Program-checkout conditions -- those
conditions that facilitate the
debugging of a program. They are:

CHECK
SUBSCRIPTRANGE
STRINGRANGE

4. List processing condition -- the AREA
condition, which is associated with
area usage.

5. System action conditions -- those
conditions that provide facilities to
extend the standard system action that
is taken after the occurrence of a
condition or at the completion of a
program. They are:

ERROR
FINISH

6. Programmer-named condition -- the
CONDITION condition.

312

Computational Conditions

The CONVERSION Condition

Description: The CONVERSION condition
occurs whenever an illegal conversion is
attempted on character-string data. This
attempt may be made internally or during an
input/output operation. For example, the
condition occurs when a character other
than 0 or 1 exists in a character string
being converted to a bit string; other
examples are when a character string being
converted to a numeric character field
contains characters not permitted by the
PICTURE specification, or when a string
being converted to coded arithmetic data
does not contain the character
representation of an arithmetic constant.

All conversions of character-string data
are carried out character-by-character in a
left-to-right sequence and the condition
occurs for each invalid character. When an
invalid character is encountered, an
interrupt occurs (provided, of course, that
CONVERSION has not been disabled) and the
current action specification for the
condition is executed. If the action
specification is an on-unit, the invalid
character can be corrected within the unit
by using the ONSOURCE or ONCHAR
pseudo-variables. On return from the
on-unit, the conversion of the string is
retried from the beginning. For the F
Compiler, if the illegal character has not
been corrected, a message is printed and
the ERROR condition is raised.

Result: When CONVERSION occurs, the
contents of the entire result field are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: CONVERSION is enabled throughout
the program, except within the scope of a
condition prefix specifying NOCONVERSION.

Normal Return: Upon the normal termination
of the on-unit for this condition, control
returns to the beginning of the string and
the conversion is retried.

The FIXEDOVERFLOW Condition

Description: The FIXEDOVERFLOW condition
occurs when the length of the result of a

fixed-point arithmetic operation exceeds
the maximum length allowed by the
implementation. For System/360

implementations, this maximum is 15 for
decimal fixed-point values and 31 for
binary fixed-point values.

Result: The result of the invalid
fixed-point operation is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: FIXEDOVERFLOW is enabled
throughout the program, except within the
scope of a condition prefix that specifies
NOFIXEDOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

The OVERFLOW Condition

Description: The OVERFLOW condition occurs
when the magnitude of a floating-point
number exceeds the permitted maximum. (For
System/360 implementations, the magnitude
of a floating-point number or intermediate
result must not be greater than
approximately 10 75 or 2252.)

Result: The value of such an illegal
floating-point number is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: OVERFLOW is enabled throughout the
program, except within the scope of a
condition prefix specifying NOOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

The SIZE Condition

Description: The SIZE condition occurs
only when high-order (i.e., leftmost)
significant binary or decimal digits are
lost in an assignment to a variable or a
temporary or in an input/output operation.
This loss may result from a conversion
involving different data types, different
bases, different scales, or different
precisions.

The SIZE condition differs from the
FIXEDOVERFLOW condition in an important
sense, i.e., FIXEDOVERFLOW occurs when the

Section H: ON-Conditions 313

size of a calculated fixed-point value
exceeds the maximum allowed by the
implementation (see the description of the
FIXEDOVERFLOW condition), whereas SIZE is
raised when the size of the value being
assigned to a data item exceeds the
declared (or default) size of the data
item. SIZE can be raised on assignment of
a value regardless of whether or not
FIXEDOVERFLOW was raised in the calculation
of that value.

The declared size is not necessarily the
actual precision with which the item is
held in storage; however, the limit for
SIZE is the declared or default size, not
the actual size in storage. For example,
with the F Compiler, a fixed binary item of
precision (20) will occupy a fullword in
storage, but SIZE is raised if a value
whose size exceeds FIXED BINARY(20) is
assigned to it.

Result: The contents of the data item
receiving the wrong-sized value are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SIZE is disabled within the scope
of a NOSIZE condition prefix and elsewhere
throughout the program, except within the
scope of a condition prefix specifying
SIZE.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

The UNDERFLOW Condition

Description: The UNDERFLOW condition
occurs when the magnitude of a
floating-point number is smaller than the
permitted minimum. (For System/360
implementations, the magnitude of a
floating-point value may not be less than
approximately 10- 76 or 2-260.)

UNDERFLOW does not occur when equal
numbers are subtracted (often called
significance error).

Note that, for the F Compiler, the
expression X**(-Y) (where Y>0) is evaluated
by taking the reciprocal of X**Y; hence,
the OVERFLOW condition may be raised
instead of the UNDERFLOW condition.

Result: The invalid floating-point value
is set to 0.

Standard System Action: In the absence of
an on-unit, the system prints a message and
continues execution from the point at which
the interrupt occurred.

Status: UNDERFLOW is enabled throughout
the program, except within the scope of a
condition prefix specifying NOUNDERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

The ZERODIVIDE Condition

Description: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised for
fixed-point and floating-point division.

Result: The result of a division by zero
is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: ZERODIVIDE is enabled throughout
the program, except within the scope of a
condition prefix specifying NOZERODIVIDE.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

Input/Output Conditions

The input/output conditions are always
enabled and cannot appear in condition
prefixes; they can be specified only in ON,
SIGNAL, and REVERT statements.

The ENDFILE Condition

General Format: ENDFILE (file-name)

Description: The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attempt to read past the
file delimiter of the file named in the GET
or READ statement. It applies only to
SEQUENTIAL files.

If the file is not closed after ENDFILE
occurs, then any subsequent GET or READ
statement for that file immediately raises
the ENDFILE condition again.

314

If ENDFILE is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: The ENDFILE condition is always
enabled; it cannot be disabled.

Normal Return: Upon the normal termination
of the on-unit for the condition, execution
continues with the statement immediately
following the statement that caused the
ENDFILE condition to be raised (or, if
ENDFILE was raised by a READ with the EVENT
option, control passes back to the WAIT
statement from which the on-unit was
invoked).

If ENDPAGE is raised during data
transmission, then, on return from the
on-unit, the data is written on the current
line, which may have been changed by the
on-unit. If ENDPAGE results from a LINE or
SKIP option, then, on return from the
on-unit, the action specified by LINE or
SKIP is ignored.

Standard System Action: In the absence of
an on-unit, the system starts a new page.
If the condition is signaled, execution is
unaffected and continues with the statement
following the SIGNAL statement.

Status: ENDPAGE is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition,
execution of the PUT statement continues in
the manner described above.

The ENDPAGE Condition
The KEY Condition

General Format: ENDPAGE (file-name)

The "file name" must be the name of a
file having the PRINT attribute.

Description: The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a new line beyond the
limit specified for the current page. This
limit can be specified by the PAGESIZE
option in an OPEN statement; if PAGESIZE
has not been specified, a default limit of
60 applies for the F Compiler. The attempt
to exceed the limit may be made during data
transmission (including associated format
items, if the PUT statement is
edit-directed), by the LINE option, or by
the SKIP option. ENDPAGE can also be
raised by a LINE option or LINE format item
that specifies a line number less than the
current line number.

When ENDPAGE is raised, the current line
number is one greater than that specified
by the PAGESIZE option (or 61, if the
default applies) so that it is possible to
continue writing on the same page. The
on-unit may start a new page by execution
of a PAGE option or a PAGE format item,
which sets the current line to 1.

ENDPAGE is raised only once per page.
If the on-unit does not start a new page,
the current line number may increase
indefinitely. If a subsequent LINE option
or LINE format item specifies a line number
that is less than the current line number,
ENDPAGE is not raised, but a new page is
started with the current line set to 1.

General Format: KEY (file-name)

Description: The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the
following cases:

1. The keyed record cannot be found.

2. An attempt is made to add a duplicate
key.

3. The key is out of sequence.

4. An error occurred in the conversion of
the key.

5. The key has not been specified
correctly.

6. No space is available to add the keyed
record.

If KEY is raised by an input/output
statement using the EVENT option, the
interrupt does not occur until the
execution of a subsequent WAIT statement
for that event in the same procedure.

The condition is not raised for a LOCATE
statement until actual transmission is
attempted (that is, immediately before
execution of the next WRITE or LOCATE
statement for the file, or immediately
before the file is closed); until the error
is corrected, the record cannot be
transmitted, nor can any further operation
take place for the file.

Section H: ON-Conditions 315

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: KEY is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, control
passes to the statement immediately
following the statement that caused KEY to
be raised (or, if KEY was raised by an
input/output statement with the EVENT
option, control passes back to the WAIT
statement from which the on-unit was
invoked).

The NAME Condition

General Format: NAME (file-name)

Description: The NAME condition can be
raised only during a data-directed GET
statement. It can be raised either when an
identifier in the input stream does not
have a counterpart in the data list of the
GET statement or when the GET statement has
no data list and an identifier that is not
known in the block is encountered in the
stream.

NAME is raised at the time the unmatched
identifier is encountered in the stream.

The programmer may retrieve the data
field (i.e., the identifier and its value)
containing the unmatched identifier by
using the built-in function DATAFIELD in
the on-unit.

Standard System Action: In the absence of
an on-unit, the system ignores the
incorrect data field, prints a message, and
continues the execution of the GET
statement.

Status: NAME is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, the
execution of the GET statement continues
with the next identifier in the stream.

The PENDING Condition

General Format: PENDING (file-name)

Description: Except when signaled, the
PENDING condition can be raised only during
execution of a READ statement for a
TRANSIENT INPUT file. It is raised when an

attempt is made to read a record that is
temporarily unavailable (i.e., for the F
Compiler, when the message queue associated
with the file contains no messages at the
time the READ statement is executed).

Standard System Action: In the absence of
an on-unit, the action is as described for
normal return.

Status: PENDING is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit for .this condition, control
returns to the point of interrupt (unless
the condition was signaled), where
execution is suspended until an appropriate
record becomes available. If the condition
was signaled, execution continues with the
statement immediately following the SIGNAL
statement that caused the interrupt.

Note: The value of the ONKEY built-in
function when the PENDING condition is
raised is a null string.

The RECORD Condition

General Format: RECORD (file-name)

Description: The RECORD condition can be
raised only during a READ, WRITE, or
RE-WRITE operation. It is raised by any of
the following:

1. The size of the record is greater than
the size of the variable.

2. The size of the record is less than
the size of the variable.

3. A record of zero length has been read.

4. An attempt is made to write a record
of zero length.

If the size of the record is greater
than the size of the variable, the excess
data in the record is lost on input and is
unpredictable on output. If the size of
the record is less than the size of the
variable, the excess data in the variable
is not transmitted on output and is
unaltered on input. (Thus, if a zero
length record is read, the variable
contains the same data that it contained
before the read operation.) If an attempt
is made to write a record of zero length,
the attempt is aborted, and, in effect, the
statement is ignored.

If RECORD is raised during transmission
of an area, the area control field will
contain incorrect information

316

If RECORD is raised by an input/output
statement using the EVENT option, the
interrupt does not occur until the
execution of a subsequent WAIT statement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: RECORD is always enabled; it
cannot be disabled.

Normal Return: Upon normal completion of
the on-unit, execution continues with the
statement immediately following the one for
which RECORD occurred (or if RECORD was
raised by an input/output statement with an
EVENT option, control returns to the WAIT
statement from which the on-unit was
invoked).

The TRANSMIT Condition

General Format: TRANSMIT (file-name)

Description: The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error, and therefore signifies that any
data transmitted is potentially incorrect.
During input, the condition is raised after
assignment of the potentially incorrect
data item or record. During output, the
condition is raised after the transmission
of the potentially incorrect data item or
record has been attempted.

If TRANSMIT is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: TRANSMIT is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, processing continues as
though no error had occurred, allowing
another condition (e.g., RECORD) to be
raised by the statement or data item that
raised the TRANSMIT condition. (If
TRANSMIT is raised by an input/output
statement with an EVENT option, control
returns to the WAIT statement from which

the on-unit was invoked.)

The UNDEFINEDFILE Condition

General Format: UNDEFINEDFILE (file-name)

Description: The UNDEFINEDFILE condition
is raised whenever an attempt to open a
file is unsuccessful. If the attempt is
made by means of an OPEN statement that
specifies more than one file name, attempts
to open all other files in that statement
will be made before the condition is
raised. If the condition is raised for
more than one file in the same OPEN
statement, on-units will be executed
according to the order of appearance (taken
from left to right) of the file names in
that OPEN statement.

If the condition is raised by an
implicit file opening in an input/output
statement without the EVENT option, then,
upon normal return from the on-unit,
processing continues with the remainder of
the interrupted input/output statement. If
the file was not opened in the on-unit,
then the statement cannot be continued and
the ERROR condition is raised.

If the condition is raised by an
implicit file opening in an input/output
statement having an EVENT option, then the
interrupt occurs before the event variable
is initialized. In other words, the event
variable retains its previous value and
remains inactive. On normal return from

e the on-unit, the event variable is
initialized, that is, it is made active and
its completion value is set to '0'B
(provided the file has been opened in the
on-unit). Processing then continues with
the remainder of the interrupted statement.
However, if the file has not been opened in
the on-unit, the event variable remains
uninitialized, the statement cannot be
continued, and the ERROR condition is
raised.

For the F Compiler, some cases for which
the UNDEFINEDFILE condition is raised are
as follows:

1. A conflict in attributes exists.

2. The blocksize has not been specified.

3. There is no recognizable DD statement
for the file.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: UNDEFINEDFILE is always enabled;
it cannot be disabled.

Normal Return: Upon the normal completion
of the final on-unit, control is given to

Section H: ON-Conditions 317

the statement immediately following the
statement that caused the condition to be
raised (see "Description" for action in the
case of an implicit opening).

Program-Checkout Conditions

The CHECK Condition

General Format: CHECK (name-list)

The "name list" is one or more names
separated by commas; a name may be a
qualified name. Each name must be one of
the following:

1. An entry name

2. A statement label constant

3. An unsubscripted name representing an
element, an array, or a structure

The names appearing in a CHECK prefix
refer to the names known within the block
to which the prefix is attached. A name
cannot be a parameter or a variable having
the DEFINED or BASED atrributes.

Description: The CHECK condition is raised
only within the scope of a CHECK condition
prefix. Such a condition prefix may be
prefixed only to a PROCEDURE or BEGIN
statement. The CHECK condition is enabled
separately for each name in the list of the
CHECK prefix. For example, the prefix
CHECK (A,B,C) is equivalent to CHECK (A):
CHECK (B): CHECK (C). Hence, the action
specification can be controlled separately
for each name. The REVERT statement can be
used to change the action specification for
one or more names in the list. Also, a
NOCHECK prefix can be used to disable the
CHECK condition for a specific name (like
CHECK, NOCHECK can appear only as a prefix
to a PROCEDURE or BEGIN statement).

If the name of a structure or array of
structures appears in the name list
following CHECK, such a list is equivalent
to one that contains, in the order in which
they were declared, the elements of that
structure or array of structures. For
example, if P is defined:

DECLARE 1 P, 2 Q, 2 R, 2 S;

then:

CHECK (P)

is equivalent to:

CHECK (Q,R,S)

The CHECK condition is raised within the
scope of a CHECK prefix in any of the
following cases:

1. If a name in the CHECK prefix is a
statement label constant, the
condition is raised and the interrupt
occurs prior to the execution of the
statement to which the label is
prefixed. If the label is prefixed to
a DECLARE or FORMAT statement, the
condition is not raised.

2. If a name in the CHECK prefix is a
variable (as specified in item 3 of
the general format above), the
condition is raised whenever the value
of the variable, or of any part of the
variable, is changed by any statement
within the scope of the prefix.

Specifically, if the identifier ID
represents the variable, the condition
is raised in the following cases:

a. ID appears on the left-hand side
of an assignment statement. (This
applies to BY NAME assignment even
if the name mentioned does not
appear in the final expansion of
the statement.)

b. ID is set as a result of a
pseudo-variable appearing on the
left-hand side of an assignment
statement.

c. ID appears as the control variable
of a DO-group or a repetitive
specification in a data list (or
it is set as a result of a
pseudo-variable appearing as the
control variable of a DO-group or
a repetitive specification in a
data list).

d. ID appears in the data list of an
edit-directed or list-directed GET
statement.

e. ID is altered by data-directed
input.

f. ID appears in the REPLY option of
a DISPLAY statement.

g. ID appears in the STRING option of
a PUT statement.

h. ID is passed as an argument to a
programmer-defined procedure, no
intermediate argument is created,
and the procedure terminates with
a RETURN or END.

i. ID appears in the KEYTO or INTO

318

option of a READ statement. Note
that if the READ statement has an
EVENT option, the CHECK condition
will not be raised.

j. ID is a pointer variable and
appears in a SET option.

Note that in a, b, d, and e above, if
ID is a structure, the CHECK condition
is raised each time an element of that
structure is given a value, but the
interrupt for each condition does not
occur until after the statement that
caused the condition to be raised has
been executed completely.

The condition is not raised under any of
the following circumstances:

a. If the value of a variable defined
on ID or on part of ID changes in
any of the ways described above.

b. If the parameter that represents
the argument ID changes value.

c. If ID appears in a GO TO or RETURN
statement or any statement that
involves the execution of a GO TO
or RETURN statement.

d. If ID is set by the INITIAL
attribute.

Note that in all of the above
contexts, ID can appear in subscripted

or qualified form. Note also that ID
need not appear in the name list of a
CHECK prefix; it only need represent a
structure or element contained by, or
containing, a name in the list.

The interrupt for a CHECK condition
occurs after the statement that caused
the condition to be raised has been
executed. (Note that an IF statement
is considered executed just prior to
the execution of the THEN or ELSE
clause.) If the statement is a DO
statement, the interrupt occurs each
time control proceeds sequentially to
the statement following the DO
statement. If the DO specifies
repetitive execution, the interrupt
occurs each time the control variable
changes value.

Only a data-directed GET statement or
a DO statement can cause a condition
to be raised more than once for the
same appearance of the same name. If
a statement causes a CHECK condition
to be raised for several names, the
conditions will be raised in the
left-to-right order of appearance of
the names.

3. If a name in the CHECK prefix is an
entry name, the condition is raised
and the interrupt occurs prior to each
invocation of the entry point
corresponding to the entry name. The
condition is raised only if the entry
point is invoked by the entry name
given in the prefix.

4. For the F Compiler the number of
characters in a qualified name, which
is to be used in CHECK name lists,
must not exceed 256.

5. The maximum number of entries in a
CHECK condition, whether in a prefix
list or in an ON statement, is 510.
The maximum number of data items being
checked at any point in the
compilation varies between 2078-2n and
3968-2n, where n is the number of
currently checked items which have the
attribute EXTERNAL.

Result: When CHECK is raised, there is no
effect on the statement being executed.

Standard System Action: In the absence of
an on-unit, if the name in the name list is
a statement-label constant, a
statement-label variable, a task name, an
event name, an area variable, a locator
variable, or an entry name, then for the F
Compiler, only the name is printed on
SYSPRINT; in all other cases, the name and
its new value are printed on SYSPRINT in
the format of data-directed output.

Note: Standard system action for the CHECK
condition requires access to the variable;
consequently, if SIGNAL CHECK is given for
an unallocated variable, an error will
result, as it would if the variable were
accessed by an on-unit.

Status: CHECK is disabled by default and
within the scope of a NOCHECK condition
prefix. It is enabled only within the
scope of a CHECK prefix.

Normal Return: Upon the normal completion
of the on-unit for the CHECK condition,
execution continues immediately following
the point at which the interrupt occurred.

The STRINGRANGE Condition

Definition: The STRINGRANGE condition is
raised whenever the lengths of the
arguments to a SUBSTR reference fail to
comply with the rules described for the
SUBSTR built-in function. It is raised for
each such reference.

Section H: ON-Conditions 319

Standard System Action: Execution
continues as described for normal return.

Status: STRINGRANGE is disabled by default
and within the scope of a NOSTRINGRANGE
condition prefix. It is enabled only
within the scope of a STRINGRANGE condition
prefix.

Normal Return: On normal return from the
on-unit, execution continues with a revised
SUBSTR reference whose value is defined as
follows:

Assuming that the length of the source
string (after execution of the on-unit, if
specified) is k, the starting point is i,
and the length of the substring is j;

1. If i is greater than k the value is
the null string.

2. If i is less than or equal to k, the
value is that substring beginning at
the mth character or bit of the source
string and extending n characters or
bits, where m and n are defined by:

m=MAX(i,1)

n=MAX(0,MIN(j+MIN(i,1)-1,k-m+1))
[if j is specified]

n=k-m+1
[if j is not specified]

This means that the new arguments are
forced within the limits.

The values of i and j are established
before entry to the on-unit; they are not
reevaluated on return from the on-unit.

The SUBSCRIPTRANGE Condition

Description: SUBSCRIPTRANGE can be raised
whenever a subscript is evaluated and found
to lie outside its specified bounds. If
more than one subscript is associated with
an identifier, e.g., A(I,J,K),
SUBSCRIPTRANGE is raised after each
erroneous subscript has been checked.
Thus, if both I and J in the above example
were in error, SUBSCRIPTRANGE would be
raised after I was evaluated and again
after J was evaluated.

Result: When SUBSCRIPTRANGE has been
raised, the value of the illegal subscript
is undefined, and, hence, the reference is
also undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SUBSCRIPTRANGE is disabled by
default and within the scope of a
NOSUBSCRIPTRANGE condition prefix. It is
enabled only within the scope of a
SUBSCRIPTRANGE condition prefix.

Normal Return: Upon the normal completion
of the on-unit for this condition,
execution continues immediately following
the point at which the condition occurred.

List Processing Condition

The AREA Condition

Description: The AREA condition is raised
in either of the following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
contains insufficient storage to
accommodate the allocations in the
source area.

Result: If the condition occurs as the
result of an attempted allocation, the
allocation has no effect; if the condition
occurs as a result of an area assignment,
the contents of the target area are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: AREA is always enabled; it cannot
be disabled.

Normal Return: On normal return from the
on-unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is
reattempted. If the on-unit has
changed the value of a pointer
qualifying the reference to the
inadequate area so that it points to
another area, the allocation is
reattempted within the new area.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interrupt.

320

System Action Conditions

The ERROR Condition

Description: The ERROR condition is raised
under the following circumstances:

1. As a result of the standard system
action for an ON-condition for which
that action is to "print an error
message and raise the ERROR condition"

2. As a result of an error (for which
there is no ON-condition) occurring
during program execution

3. As a result of a SIGNAL ERROR
statement

Standard System Action: For the F
Compiler, if the condition is raised in the
major task, the FINISH condition is raised,
and subsequently the major task is
terminated. If the condition is raised in
any other task, that task is terminated.

Status: ERROR is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit, the standard system action
is taken.

The FINISH Condition

Description: The FINISH condition is
raised during execution of a statement
which would cause the termination of the
major task of a PL/I program, that is, by a
STOP statement in any task, or an EXIT
statement in the major task, or a RETURN or
END statement in the initial external
procedure of the major task. The condition
is also raised by SIGNAL EINISH in any
task, and as part of the standard system
action for the ERROR condition. The
interrupt occurs in the task in which the
statement is executed, and any on-unit
specified for the condition is executed as

part of that task. An abnormal return from
the on-unit will avoid any subsequent task
termination processes and permit the
interrupted task to continue.

Standard System Action: In the absence of
an on-unit, no action is taken; that is,
execution of the interrupted statement is
resumed.

Status: FINISH is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, execution of the
interrupted statement is resumed.

Programmer-Named Condition

The CONDITION Condition

General Format: CONDITION (identifier)

The "identifier" must be specified by
the programmer. The appearance of an
identifier with CONDITION in an ON, SIGNAL,
or REVERT statement constitutes a
contextual declaration for it; the
identifier is given the EXTERNAL attribute.

Description: CONDITION is raised by a
SIGNAL statement that specifies the
appropriate identifier. The identifier
specified in the SIGNAL statement
determines which CONDITION condition is to
be raised.

Standard System Action: In the absence of
an on-unit for this condition, the system
prints a message and continues with the
statement following SIGNAL.

Status: CONDITION is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, execution continues with
the statement following the SIGNAL
statement that caused the interrupt.

Section H: ON-Conditions 321

Section I: Attributes

A name appearing in a PL/I program may have
one of many different meanings. It may,
for example, be a variable referring to
arithmetic data items; it may be a file
name; it may be a variable referring to a
character string, or it may be a statement
label or a variable referring to a
statement label.

Properties, or characteristics, of the
values a name represents (for example,
arithmetic characteristics of data items
represented by an arithmetic variable) and
other properties of the name itself (such
as scope, storage class, etc.) together
make up the set of attributes that can be
associated with a name.

The attributes enable the compiler to
assign a unique meaning to the identifier
specified in a DECLARE statement. For
example, if the variable is an arithmetic
data variable, the base, scale, mode, and
precision attributes must be associated
with the name. Associated attributes are
those specified in a DECLARE statement or
assumed by default.

This section discusses the different
attributes. The attributes are grouped by
function and then detailed discussions
follow, in alphabetic order, showing the
rules, defaults, and format for each
attribute.

Specification of Attributes

Attributes, other than the dimension,
length, and precision attributes, specified
in DECLARE statements, are separated by
blanks and may appear in any order. The
dimension attribute specification must
immediately follow the array name; the
length and precision attribute
specifications must follow one of their
associated attributes. A comma must follow
the last attribute specification for a
particular name (or the name itself if no
attributes are specified with it), unless
it is the last name in the DECLARE
statement, in which case the semicolon is
used.

FACTORING OF ATTRIBUTES

Attributes common to several names can be
factored in a declaration to eliminate
repeated specification of the same
attribute for many identifiers. Factoring
is achieved by enclosing the names in
parentheses, and following this by the set
of attributes which apply. All factored
attributes must apply to all of the names.
No factored attribute can be overridden for
any of the names, but any name within the
list may be given other attributes so long
as there is no conflict with the factored
attributes. Factoring of attributes is
permitted only in the DECLARE statement,
but not within an ENTRY attribute
declaration. The number of left
parentheses used for factoring attributes
in DECLARE statements is limited to 73 in a
compilation. The dimension attribute may
be factored. The precision and length
attributes can be factored only in
conjunction with an associated keyword
attribute. Factoring can be nested as
shown in the fourth example below.

Names within the parenthesized list are
separated by commas.

Note: Structure level numbers can also be
factored, but a factored level number must
precede the parenthesized list.

DECLARE (A,B,C,D) BINARY FIXED (31);

DECLARE (E DECIMAL(6,5),
F CHARACTER(10)) STATIC;

DECLARE 1 A, 2(B,C,D) (3,2) BINARY
FIXED (15), ...;

DECLARE ((A,B) FIXED(10), C FLOAT(5))
EXTERNAL;

Data Attributes

PROBLEM DATA

Attributes for problem data are used to
describe arithmetic and string variables.
Arithmetic variables have attributes that
specify the base, scale, mode, and
precision of the data items. String
variables have attributes that specify
whether the variable represents character
strings or bit strings and that specify the

322

length to be maintained. The arithmetic
data attributes are:

BINARY|DECIMAL

FIXED|FLOAT

REAL|COMPLEX

(precision)

PICTURE

The string data attributes are:

BIT|CHARACTER

(length)

VARYING

PICTURE

Other attributes can also be declared
for data variables. The INITIAL attribute
specifies the initial value to be given to
the variable. The DEFINED attribute
specifies that the data item is to occupy
the same storage area as that assigned to
other data. The ALIGNED and UNALIGNED
attributes specify the positioning of data
elements in storage. The storage class and
scope attributes also apply to data.

Other attributes apply only to data
aggregates. For array variables, the
dimension attribute specifies the number of
dimensions and the bounds of an array. The
LIKE attribute specifies that the structure
variable being declared is to have the same
structuring as the structure of the name
following the attribute LIKE.

PROGRAM CONTROL DATA

Attributes for program control data specify
that the associated name is to be used by
the programmer to control the execution of
this program. The LABEL, TASK, EVENT,
POINTER, OFFSET, and AREA attributes
specify program control data.

Entry Name Attributes

The entry name attributes identify the name
being declared as an entry name and
describe features of that entry point. For
example, the attribute BUILTIN specifies
that the reference to the associated name
within the scope of the declaration is
interpreted as a reference to the built-in
function or pseudo-variable of the same
name. The entry name attributes are:

ENTRY

RETURNS

GENERIC

BUILTIN

File Description Attributes

The file description attributes establish
an identifier as a file name and describe
characteristics for that file, e.g., how
the data is to be transmitted, whether
records are to be buffered. If the same
file name is declared in more than one
external procedure, the declarations must
not conflict, unless one is declared with
the INTERNAL attribute.

The file description attributes are:

FILE

STREAM|RECORD

INPUT|OUTPUT|UPDATE
PRINT

SEQUENTIAL|DIRECT|TRANSIENT

BUFFERED|UNBUFFERED

BACKWARDS

ENVIRONMENT(option-list)

KEYED

EXCLUSIVE

Note that file description attributes,
except for the ENVIRONMENT attribute, can
be specified as options in the option list
of the OPEN statement.

Scope Attributes

The scope attributes are used to specify
whether or not a name may be known in
another external procedure. The scope
attributes are EXTERNAL and INTERNAL.

All external declarations for the same
identifier in a program are linked as
declarations of the same name. The scope
of this name is the union of the scopes of
all the external declarations for this
identifier.

Section I: Attributes 323

In all of the external declarations for
the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single name.
For example, it would be an error if the
identifier ID were declared as an EXTERNAL
file name in one block and as an EXTERNAL
entry name in another block in the same
program.

The INTERNAL attribute specifies that
the declared name cannot be known in any
other block except those contained in the
block in which the declaration is made.

The same identifier may be declared with
the INTERNAL attribute in more than one
block without regard to whether the
attributes given in one block are
consistent with the attributes given in
another block, since the compiler regards
such declarations as referring to different
names.

For a discussion of the scope of names,
see Part I, Chapter 7, "Recognition of
Names."

Storage Class Attributes

The storage class attributes are used to
specify the type of storage for a data
variable. The storage class attributes
are:

STATIC

AUTOMATIC

CONTROLLED

BASED

Alphabetic List of Attributes

Following are detailed descriptions of the
attributes, listed in alphabetic order.
Alternative attributes are discussed
together, with the discussion listed in the
alphabetic location of the attribute whose
name is the lowest in alphabetic order. A
cross-reference to the combined discussion
appears wherever an alternative appears in
the alphabetic listing.

ALIGNED and UNALIGNED (Data Attributes)

The ALIGNED and UNALIGNED attributes
specify the positioning of data elements in
storage, to influence speed of access or
storage economy respectively. They may be
specified for element, array, or structure
variables.

ALIGNED in System/360 implementations
specifies that the data element is to be
aligned on the storage boundary
corresponding to its data type requirement.

UNALIGNED in System/360 implementations
specifies that the data element is to be
stored contiguously with the data element
preceding it, and that a word or doubleword
item is to be mapped on the next available
byte boundary in a similar manner to
character strings of length 4 or 8.

General format:

ALIGNED|UNALIGNED

General rules:

1. Although they are essentially element
data attributes, ALIGNED and UNALIGNED
can be applied to any array or
structure. This is equivalent to
applying the attribute to all
contained elements that are not
explicitly declared with the ALIGNED
or UNALIGNED attribute.

2. Application of either attribute to a
contained array or structure overrides
an ALIGNED or UNALIGNED attribute that
otherwise would apply to elements of
the contained aggregate by having been
specified for the containing
structure.

3. The LIKE attribute is expanded before
the ALIGNED and UNALIGNED attributes
are applied to the contained elements
of the LIKE structure variable. The
only ALIGNED and UNALIGNED attributes
that are carried over from the LIKE
structure variable (i.e., A in the
example below) are those explicitly
specified for substructures and
elements of the structure variable.

Example:

DECLARE 1 A ALIGNED,
2 B, 	 /* ALIGNED FROM A */
2 C UNALIGNED,

3 D; 	 /* UNALIGNED FROM C */

DECLARE 1 X UNALIGNED LIKE A;

DECLARE 1 Y LIKE A;

324

The second declare statement is
equivalent to:

DECLARE 1 X UNALIGNED,
2 B, 	 /* UNALIGNED FROM X */
2 C UNALIGNED,

3 D; 	 /* UNALIGNED FROM C */

The third declare statement is
equivalent to:

AREA (Program Control Data Attribute)

The AREA attribute defines storage that, on
allocation, is to be reserved for the
allocation of based variables. Storage
thus reserved can be allocated to and freed
from based variables by naming the area
variable in the IN option of the ALLOCATE
and FREE statements. Storage that has been
freed can be subsequently reallocated to a
based variable.

4. For overlay defining involving bit-
and character-class data (see Figure
I-1), both the defined item and the
overlaid part of the base item must be
unaligned. For all other types of
defining, equivalent items must be
either both ALIGNED or both UNALIGNED.

5. The ALIGNED and UNALIGNED attributes
of an argument in a procedure
invocation must match the attributes
of the corresponding parameter. If
these attributes of the original
argument do not match those of the
corresponding parameter in an ENTRY
attribute declaration, a dummy
argument is created, with the
attributes specified in the ENTRY
attribute declaration, and the
original argument is assigned to it.

6. If a based variable is used to refer
to a generation of another variable,
the ALIGNED and UNALIGNED attributes
of both variables must agree.

7. Default assumptions for ALIGNED and
UNALIGNED are applied on an element
basis.

8. POINTER, OFFSET, LABEL, EVENT and AREA
cannot be unaligned.

Assumptions:

1. Defaults are applied at element level.
The default for bit-string data,
character-string data, and numeric
character data is UNALIGNED; for all
other types of data, the default is
ALIGNED.

2. For all operators and built-in
functions, the default for ALIGNED or
UNALIGNED is applicable to the
elements of the result.

3. Constants take the default for ALIGNED
or UNALIGNED.

1. The area size for areas that are not
of static storage class is given by an
expression whose integral value
specifies the number of units of
storage to be reserved. The unit for
System/360 implementations is the
byte.

2. The size for areas of static storage
class must be specified as a constant;
for the F Compiler, it must be a
decimal integer constant.

3. Data of the area type cannot be
converted to any other type; an area
can be assigned to an area variable
only.

4. No operators can be applied to area
variables.

5. Only the INITIAL CALL form of the
INITIAL attribute is allowed with area
variables.

6. An area variable cannot be unaligned.

Assumptions:

1. The implementation maximum size AREA
is 32,767 bytes. If the size
specification is omitted, a default
value is assumed. For the F Compiler,
this is 1000.

2. An area variable can be contextually
declared by its appearance in an
OFFSET attribute or an IN option.
Note, however, that all contextually
declared area variables are given the
AUTOMATIC attribute. The F Compiler
implementation requires that the
variable named in the OFFSET attribute
must be based; if a nonbased area
variable is named, the offset variable
will be changed to a pointer variable.
Hence, unless the variable named in
the OFFSET attribute is explicitly

Section I: Attributes 325

 3.
declared, OFFSET effectively becomes
POINTER, and a severe error occurs.

AUTOMATIC, STATIC, CONTROLLED and BASED
(Storage Class Attributes)

The storage class attributes are used to
specify the type of storage allocation to
be used for data variables.

AUTOMATIC specifies that storage is to
be allocated upon each entry to the block
to which the storage declaration is
internal. The storage is released upon
exit from the block. If the block is a
procedure that is invoked recursively, the
previously allocated storage is "pushed
down" upon entry; the latest allocation of
storage is "popped up" upon termination of
each generation of the recursive procedure
(for a discussion of push-down and pop-up
stacking, see Part I, Chapter 6, "Blocks,
Flow of Control, and Storage Allocation").

STATIC specifies that storage is to be
allocated when the program is loaded and is
not to be released until program execution
has been completed.

CONTROLLED specifies that full control
will be maintained by the programmer over
the allocation and freeing of stora ge by
means of the ALLOCATE and FREE statements.
Multiple allocations of the same controlled
variable, without intervening freeing, will
cause stacking of generations of the
variable.

BASED, like CONTROLLED, specifies that
full control over storage allocation and
freeing will be maintained by the
programmer, but by various methods that are
described in Chapter 14, "Based Variables
and List Processing." Multiple allocations
are not stacked but are available at any
time; each can be identified by the value
of a pointer variable.

General format:

STATIC|AUTOMATIC|
CONTROLLED|BASED(pointer-variable)

General rules:

1. Automatic and based variables can have
internal scope only. Static and
controlled variables may have either
internal or external scope.

2. Storage class attributes cannot be
specified for entry names, file names,
members of structures, or DEFINED data
items.

STATIC, AUTOMATIC, and BASED
attributes cannot be specified for
parameters.

4. Variables declared with adjustable
array bounds, string lengths, or area
sizes cannot have the STATIC
attribute.

5 For a structure variable, a storage
class attribute can be given only for
the major structure name. The
attribute then applies to all elements
of the structure or to the entire
array of structures. If the attribute
CONTROLLED or BASED is given to a
structure, only the major structure
and not the elements can be allocated
and freed.

6. The following rules govern the use of
based variables:

a. The pointer variable named in the
BASED attribute must be a
nonbased, unsubscripted, element
pointer variable. This applies to
explicit pointer qualifiers also.

b. Whenever a pointer value is needed
to complete a based variable
reference, and none is explicitly
specified, the pointer variable
named in the relevant BASED
attribute is used.

c. Based variables cannot have the
INITIAL attribute. Based label
arrays cannot be initialized by
subscripted label prefixes.

d. When reference is made to a based
variable, the data attributes
assumed are those of the based
variable, while the qualifying
pointer variable identifies the
location of data.

e. A based variable can be used to
identify and describe existing
data; to obtain storage by means
of the ALLOCATE statement; or to
obtain storage in an output buffer
by means of the LOCATE statement.

f. The relative locations of based
variables allocated within an area
can be identified by the values of
offset variables, but these must
be assigned to pointer variables
for the purpose of explicit
qualification.

g. The EXTERNAL attribute cannot
appear with a based variable
declaration, but a based variable
reference can be qualified by an
external pointer variable.

326

h. A based structure can be declared
to contain only one adjustable
bound or length specification.
See "The REFER Option," in Chapter
14, "Based Variables and List
Processing."

i. Based variables cannot be
transmitted using data-directed
input/output.

j. The VARYING attribute cannot be
applied to based variables.

Assumptions:

1. If no storage class attribute is
specified and the scope is internal,
AUTOMATIC is assumed.

2. If no storage class attribute is
specified and the scope is external,
STATIC is assumed.

3. If neither the storage class nor the
scope attribute is specified,
AUTOMATIC is assumed.

4. A pointer variable can be contextually
declared by its appearance in the
EASED attribute.

BACKWARDS (File Description Attribute)

The BACKWARDS attribute specifies that the
records of a SEQUENTIAL INPUT file
associated with a data set on magnetic tape
are to be accessed in reverse order, i.e.,
from the last record to the first record.

General format: BACKWARDS

General rules:

1. The BACKWARDS attribute applies to
RECORD files only; that is, it
conflicts with the STREAM attribute.
It implies RECORD and SEQUENTIAL.

2. The BACKWARDS attribute applies only
to files associated with data sets on
magnetic tape.

BASED (Storage Class Attribute)

See AUTOMATIC.

BINARY and DECIMAL (Arithmetic Data
Attributes)

The BINARY and DECIMAL attributes specify
the base of the data items represented by
an arithmetic variable as either binary or
decimal.

General format:

BINARY|DECIMAL

General rule:

The BINARY or DECIMAL attribute cannot
be specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimensions, UNALIGNED, ALIGNED, scope, and
storage class attributes) are assumed to be
arithmetic variables with assigned
attributes depending upon the initial
letter. For identifiers beginning with any
letter I through N, the default attributes
are REAL FIXED BINARY (15,0). For
identifiers beginning with any other
alphabetic character, the default
attributes are REAL FLOAT DECIMAL (6). If
FIXED or FLOAT and/or REAL or COMPLEX are
declared, then DECIMAL is assumed. The
default precisions are those defined for
System✓ 360 implementations.

BIT and CHARACTER (String Attributes)

The BIT and CHARACTER attributes are used
to specify string variables. The BIT
attribute specifies a bit string. The
CHARACTER attribute specifies a character
string. The length attribute for the
string must also be specified.

General format:

BIT
(length) [VARYING]

CHARACTER

General rules:

1. The length attribute specifies the
length of a fixed-length string or the
maximum length of a varying-length
string.

2. The VARYING attribute specifies that
the variable is to represent
varying-length, strings, in which case
length specifies the maximum length.
The current length at any time is the
length of the current value. For the

Section I: Attributes 	327

F Compiler, the length of an
uninitialized varying-length string is
set to zero. VARYING may appear
anywhere in the declaration of the
string, and it may be factored.
VARYING cannot be applied to based
variables.

3. The length attribute must immediately
follow the CHARACTER or BIT attribute
at the same factoring level with or
without intervening blanks.

4. The length attribute may be specified
by an expression or an asterisk.

If the length specification is an
expression, it is converted to an
integer when storage is allocated for
the variable.

The asterisk notation can be used for
the length attribute specification to
indicate that the length is specified
elsewhere. For parameters or
CONTROLLED variables, the length can
be taken from a previous allocation
or, for CONTROLLED variables, it can
be specified in a subsequent ALLOCATE
statement.

5. If a string has the STATIC attribute,
the length attribute must be a decimal
integer constant.

6. If a string has the BASED attribute,
the length attribute must be a decimal
integer constant unless the string is
a member of a based structure and the
REFER option is used, in which case
one adjustable string length may be
allowed. (See "The REFER Option" in
Chapter 14.)

7. The BIT, CHARACTER, and VARYING
attributes cannot be specified with
the PICTURE attribute.

8. The PICTURE attribute can be used
instead of CHARACTER to declare a
fixed-length character-string variable
(see the PICTURE attribute).

9. All of the string attributes must be
declared explicitly unless the PICTURE
attribute is used. There are no
defaults for string data.

BUFFERED and UNBUFFERED (File Description
Attributes)

The UNBUFFERED attribute specifies that
such records need not pass through buffers.
It does not, however, specify that they
must not. For the F Compiler, hidden
buffers will, in fact, be used if INDEXED
or REGIONAL (2) or (3) is specified in the
ENVIRONMENT attribute or if the records are
variable-length.

General format:

BUFFERED|UNBUFFERED

General rule:

The BUFFERED and UNBUFFERED attributes
can be specified for TRANSIENT or
SEQUENTIAL RECORD files only.

Assumption:

Default is BUFFERED.

BUILTIN (Entry Attribute)

The BUILTIN attribute specifies that any
reference to the associated name within the
scope of the declaration is to be
interpreted as a reference to the built-in
function or pseudo-variable of the same
name.

General format:

BUILTIN

General rules:

1 BUILTIN is used to refer to a built-in
function or pseudo-variable in a block
that is contained in another block in
which the same identifier has been
declared to have another meaning.

2 If the BUILTIN attribute is declared
for an entry name, the entry name can
have no other attributes.

3. The BUILTIN attribute cannot be
declared for parameters.

328

COMPLEX and REAL (Arithmetic Data
Attributes)

The COMPLEX and REAL attributes are used to
specify the mode of an arithmetic variable.
REAL specifies that the data items
represented by the variable are to be real
numbers. COMPLEX specifies that the data
items represented by the variable are to be
complex numbers, that is, each data item is
a pair: the first member is a real number
and the second member an imaginary number.

General format:

REAL|COMPLEX

General rule:

If a numeric character variable is to
represent complex values, the COMPLEX
attribute must be specified with the
PICTURE attribute. The COMPLEX attribute
is the only other arithmetic or string data
attribute that can be specified with the
PICTURE attribute.

Assumption:

Default is REAL.

CONTROLLED (Storage Class Attribute)

See AUTOMATIC.

DECIMAL (Arithmetic Data Attribute)

See BINARY.

DEFINED (Data Attribute)

The DEFINED attribute specifies that the
variable being declared is to represent
part or all of the same storage as that
assigned to other data. The DEFINED
attribute can be declared for element,
array, or structure variables.

General format:

DEFINED base-identifier
{[subscript-list]|[POSITION

(decimal-integer-constant)]}

The "base identifier" is an unsubscripted,
optionally qualified variable whose storage
is also to be represented by the variable
being declared. The "subscript list" is a

specification used to determine the portion
of a base identifier array that the
currently declared variable will represent.
POSITION is discussed under the rules for
overlay defining.

Rules for defining:

1. The INITIAL, storage class, and scope
attributes cannot be specified for the
defined item. The defined item must
be a level 1 variable and it cannot be
a parameter. The VARYING attribute
must not be specified for either the
defined item or the base identifier.
It should be noted that although the
base can have the EXTERNAL attribute,
the defined item always has the
INTERNAL attribute and cannot be
declared with any scope attribute. If
the base is external, its name will be
known in all blocks in which it is
declared external, but the name of the
defined item will not. However, the
value of the defined item will be
changed if the value of the base item
is changed in any block.

2. The base identifier must always be
known within the block in which the
defined item is declared. The base
identifier cannot have the DEFINED
attribute. It can represent a minor
structure. The current F Compiler
does not allow the base identifier to
be controlled or based.

There are two types of defining,
correspondence defining and overlay
defining. If iSUB variables are involved,
or if both the defined item and base
identifier are arrays with the same number
of dimensions and the POSITION attribute is
not specified, correspondence defining is
in effect. In all other cases, overlay
defining is in effect.

In correspondence defining, the elements
of the base identifier and the elements of
the defined item must have the same
attributes. The lengths need not be the
same; however, the length of the defined
item must not be greater than the length of
the base item. The current F Compiler does
not allow correspondence defining for
arrays of structures.

Correspondence Defining

When correspondence defining has been
specified, a reference to an element of the
defined item is interpreted as a reference
to the corresponding element of the base
identifier. A reference to the defined
array is interpreted as a reference to the
aggregate of all of the base elements that

Section I: Attributes 329

correspond to some element of the defined
array.

If there is no subscript list following
the base identifier, then the
correspondence is direct. In such a case,
the arrays must have the same number of
dimensions, and a reference to an element
of the defined item would be interpreted as
a reference to an element of the base with
the same subscripts.

If a subscript list follows the base
identifier in the DEFINED attribute
specification, each subscript can be an
expression and each expression may contain
references to the dummy variables indicated
by iSUB.

In the dummy variable iSUB, i is a
decimal integer constant in the range 1 to
n, where n is the number of dimensions of
the defined item. Thus, 1SUB represents
subscripts of the first dimension of the
defined array, 2SUB represents the second
dimension of the defined array, and so
forth. The subscript list following the
name of the base array in the DEFINED
attribute specification must contain the
same number of subscript expressions as
there are dimensions of the base array.

At least one reference to iSUB must
appear in the subscript list. An array
defined by using iSUB variables in the
subscript list cannot be passed as an
argument. The base array can be passed,
and an equivalent array can be defined on
the corresponding parameter.

The base element corresponding to a
defined element is obtained by replacing
each iSUB in the subscript list by the
integer value of the ith subscript of the
defined element.

The bounds of a defined array must be
within the bounds of the base array.

Overlay Defining

Overlay defining specifies that the defined
item is to occupy part or all of the
storage allocated to the base. In this
way, changes to the value of either
variable may be reflected in the value of
the other. Overlay defining is permitted
between the items shown in Figure I-1.

Rules for overlay defining:

1. For bit and character class data, the
POSITION attribute may be specified
for the defined item. If POSITION is
specified, the DEFINED attribute must
also be specified. POSITION need not
necessarily follow the appearance of
DEFINED; it may precede it in the same
declaration, if so desired. The
general format of the POSITION
attribute is as follows:

POSITION (decimal-integer-constant)

This specifies the position, in
relation to the start of the base, at
which the defined item is to begin.
If this attribute is omitted, POSITION
(1) is assumed; that is, the defined
item is to begin at the first position
of the base. The maximum value of the
integer constant in the POSITION
attribute is 32,767.

2. For bit and character class data, the
extent of the defined item must not be
larger than the extent of the base.
Extent is calculated by summing the
lengths of the parts of the data,
including all individual elements of
arrays, and, in the case of the
defined item, adding n - 1 (where n is
the position in relation to the start
of the base).

330

Figure I-1. Permissible Items for Overlay Defining

Order of Evaluation

Evaluation proceeds as follows:

1. Expressions specified in all
attributes of the defined item (other
than the DEFINED attribute) are
evaluated on entry to the declaring
block.

2. Subscripts in the subscript list
following the base identifier are
evaluated when a reference to the
defined item is made.

Examples of Defining

1. DECLARE A(20,20), B(10)
DEFINED A(2*1SUB, 2*1SUB);

In this example of correspondence
defining, B is a vector consisting of
every even element in the diagonal of
the array A. In other words, B(1)
corresponds to A(2,2), B(2)
corresponds to A(4,4), etc.

2. DECLARE 1 P, 2 Q CHARACTER (10),
2 R CHARACTER (100),

PSTRING1 CHARACTER (110)
DEFINED P;

In this example of overlay defining,
PSTRING1 is a character string that
represents the concatenation of the
two character strings Q and R, which
are elements of the structure P. Note
that P has the UNALIGNED attribute by
default.

Section I: Attributes 331

3. DECLARE LIST CHARACTER (40),
ALIST CHARACTER (10) DEFINED LIST,
BUST CHARACTER (20)

DEFINED LIST POSITION (21),
CLIST CHARACTER (10)

DEFINED LIST POSITION (11);

In this example of overlay defining,
ALIST refers to the first ten
characters of LIST, BUST refers to
the twenty-first through fortieth
characters of LIST, and CLIST refers
to the eleventh through twentieth
characters of LIST.

4. DECLARE 1 A,
2 B FIXED,
2 C FLOAT,

1 X DEFINED A,
2 Y FIXED,
2 Z FLOAT;

In this example of overlay defining, Y
refers to B and Z refers to C.

Note: Although the language rules specify
that the attributes (except for length) of
the defined item must exactly match the
attributes of the base item, the F Compiler
allows a programmer to make an exception to
this rule, under certain circumstances.

If attributes declared for the defined
item differ from those of the base
identifier, the compiler notes this with a
message at the ERROR level. If, however,
the error code of the EXECUTE job control
statement of the following step is high
enough, linkage editing and execution of
the compiled procedure can continue. For
example:

DECLARE A FIXED BINARY(31),
B BIT (32) DEFINED A;

Compilation of this DECLARE statement would
cause an error message to be issued by the
compiler. However, execution of the
program could be successful, and arithmetic
operations performed upon A would result in
the change of value of the bit-string
variable B.

Dimension (Array Attribute)

The dimension attribute specifies the
number of dimensions of an array and the
bounds of each dimension. The dimension
attribute either specifies the bounds
(either the upper bound or the upper and
lower bounds) or indicates, by use of an
asterisk, that the actual bounds for the
array are to be taken from elsewhere.

General format:

(bound (,bound]...)

where "bound" is:

((lower-bound:] upper-bound}|*

and "upper-bound" and "lower-bound" are
element expressions.

General rules:

1. The number of bounds specifications
indicates the number of dimensions in
the array unless the variable being
declared is contained in an array of
structures, in which case it inherits
dimensions from the containing
structure.

2. The bounds specification indicates the
bounds as follows:

a. If only the upper bound is given,
the lower bound is assumed to be
1.

b. The lower bound must be less than
or equal to the upper bound.

c. If asterisk notation is used, an
asterisk must be used for each
bounds specification of the array.
An asterisk specifies that the
actual bounds are to be specified
in an ALLOCATE statement, if the
variable is CONTROLLED, or in a
declaration of an associated
argument, if the variable is a
simple parameter. Thus, the
asterisk notation can be used only
for parameters and CONTROLLED
variables.

3. Bounds that are expressions are
evaluated and converted to integer
data -- for System/360
implementations, BINARY(15) -- when
storage is allocated for the array.
For dummy arguments that are arrays,
the bounds are determined at
invocation of the block containing the
ENTRY attribute. For simple
parameters, bounds can be only
optionally signed decimal integer
constants or asterisks.

4. The bounds of arrays declared STATIC
must be optionally signed decimal
integer constants.

5. The bounds of arrays declared BASED
must be optionally signed decimal
integer constants unless the array is
part of a based structure and the
REFER option is used, in which case
one adjustable bound specification is

332

allowed. (See "The REFER Option" in
Chapter 14.)

6. The dimension attribute must
immediately follow the array name (or
the parenthesized list of names, if it
is being factored). Intervening
blanks are optional.

7. If the asterisk notation is used to
declare dimensions of an array of
structures, all dimension declarations
within the major structure must also
be asterisks.

8. Arrays are limited, for each
dimension, to a lower bound of -32,768
and to an upper bound of 32,767.

DIRECT, SEQUENTIAL, and TRANSIENT (File
Description Attributes)

The DIRECT, SEQUENTIAL, and TRANSIENT
attributes specify access information for
the data set associated with a file.

The DIRECT and SEQUENTIAL attributes
specify the manner in which the records in
a data set associated with a RECORD file
are to be accessed, SEQUENTIAL implies that
the records are to be accessed according to
their sequence in the data set. (The
records in an INDEXED data set are
processed in their logical sequence; the
records in a CONSECUTIVE or REGIONAL data
set are processed in their physical
sequence.) DIRECT specifies that the
records are to be accessed by use of a key;
each record must, therefore, have a key
associated with it. Either of these two
attributes implies the RECORD attribute.

The TRANSIENT attribute is designed for
teleprocessing applications. It indicates
that the contents of the data set
associated with the file are re-established
each time the data set is accessed. In
effect, this means that records can be
continually added to the data set by one
program during the execution of another
program that continually removes records
from the data set. Thus the data set can
be considered to be a continuous queue
through which the records pass in transit
between a message control program and a
message processing program.

Note that DIRECT and SEQUENTIAL specify
only the current usage of the file; they do
not specify physical properties of the data
set associated with the file. The data set
associated with a SEQUENTIAL file may
actually have keys recorded with the data.
Most data sets accessed by DIRECT files are
created by SEQUENTIAL files. However, a

data set associated with a TRANSIENT file
differs from those associated with DIRECT
and SEQUENTIAL files in that its contents
are dynamic; reading a record removes it
from the data set. Such a data set can
never be created or accessed by a DIRECT or
SEQUENTIAL file.

The use of TRANSIENT files is almost
totally dependent on the implementation;
for this reason, a list of rules for the
use of TRANSIENT with the F Compiler is
given below the general rules and
assumptions.

General Format:

DIRECT|SEQUENTIAL|TRANSIENT
General rules:

1. DIRECT files must also have the KEYED
attribute (which is implied by
DIRECT). SEQUENTIAL files may or may
not have the KEYED attribute.
TRANSIENT files must also have the
KEYED attribute (for the (F)
Compiler).

2. The DIRECT and SEQUENTIAL attributes
cannot be specified for files with the
STREAM attribute.

3. The TRANSIENT attribute cannot be
specified with the UPDATE attribute or
with the STREAM attribute.

Assumptions:

1. Default is SEQUENTIAL for RECORD
files.

2. If a file is implicitly opened by an
UNLOCK statement, DIRECT is assumed.

3. The TRANSIENT attribute does not imply
any file attributes other than FILE.

The following rules apply specifically
to the use of TRANSIENT with the F
Compiler:

1. The TRANSIENT attribute can be
specified only for RECORD KEYED
BUFFERED files with either the INPUT
or OUTPUT attribute.

2. The ENVIRONMENT attribute with one of
the two teleprocessing format options
(G and R) must be declared for
TRANSIENT files.

3. Input can be specified only by a READ
statement with the KEYTO option and
either the INTO option or the SET
option.

4. Output can be specified only by a

Section I: Attributes 333

WRITE statement or a LOCATE statement,
either of which must have the KEYFROM
option.

5. The EVENT option is not permitted,
since TRANSIENT files are always
BUFFERED.

6. The "data set" associated with a
TRANSIENT file is in fact a queue of
messages maintained automatically in
main storage by a separate message
control program using the QTAM (Queued
Telecommunications Access Method)
facilities of the operating system.
The queue is always accessed
sequentially. For more details of the
message control program, see IBM
System/360 Operating System: PL/I (F)
Programmer's Guide.

7. The name or title of a TRANSIENT INPUT
file must be the name of a recognized
queue set up by the message control
program. For TRANSIENT OUTPUT files,
any name can be declared, since the
file is re-associated for each output
operation with a queue determined by
the terminal name, as specified in the
KEYFROM option.

8. The element expression specified in
the KEYFROM option must have as its
value a recognized terminal or process
queue identification.

ENTRY Attribute

The ENTRY attribute specifies that the
identifier being declared is an entry name.
It also is used to describe the attributes
of parameters of the entry point.

General format:

ENTRY [(parameter-attribute-list
[,parameter-attribute-list]...)]

Each "parameter attribute list" describes
the attributes of a single parameter; the
parameter name is not listed, but if the
parameter is a structure, the level number
must precede the attributes for each level.
If a parameter is an array, the dimension
attribute must be the first specified for
that parameter; otherwise, attributes may
appear in any order. Parameter attribute
lists must appear in the same order as the
associated parameters. If the attribute of
any parameter need not be described, the
absence of the corresponding parameter
attribute list must be indicated by a
comma.

General rules:

1. The ENTRY attribute with associated
parameter attribute lists must be
declared for any entry name that is
invoked within the block if the
attributes of any argument of the
invocation differ from the attributes
of the associated parameter. This
specifies that the compiler is to
create the necessary dummy arguments.

2. The ENTRY attribute must be specified
for any entry name that is declared
elsewhere and not recognized as such
within the block if any reference is
made to that entry name (such as in an
argument list) unless, within the
block:

a. The entry name appears in a CALL
statement or a function reference
with an argument list, either of
which constitutes a contextual
declaration of the ENTRY
attribute, or

b. The entry name is declared to have
the RETURNS attribute (which
implies ENTRY) or the BUILTIN
attribute. The ENTRY attribute
cannot be specified for a name
that is given the BUILTIN or
GENERIC attributes.

3. The ENTRY attribute must be specified
or implied for an entry name that is a
parameter.

4. Expressions used for length or bounds
in an ENTRY attribute specification
for non-CONTROLLED parameters are
evaluated upon entry to the block to
which the declaration of the ENTRY
attribute is internal.

5. Factoring of attributes is not
permitted within parameter attribute
lists of an ENTRY attribute
specification.

6. The ENTRY attribute must appear for
each entry name in a GENERIC attribute
specification.

7. The ENTRY attribute can be declared
for an internal entry name only within
the block to which the name is
internal.

8. For the F Compiler the maximum nesting
of ENTRY attributes within an ENTRY or
GENERIC attribute is 3.

Assumptions:

The ENTRY attribute can be assumed
either contextually or by implication, as
described in rule 2. The appearance of a
name as a label prefix of either a

334

PROCEDURE statement or an ENTRY statement
constitutes an explicit declaration of that
identifier as an entry name. No defaults
are applied for parameters unless
attributes and/or level numbers are
specified. If only a level number and/or
the dimension attribute is specified for a
parameter, FLOAT, DECIMAL, and REAL are
assumed.

ENVIRONMENT (File Description Attribute)

The ENVIRONMENT attribute is an
implementation-defined attribute that
specifies various file characteristics that
are not part of the PL/I language.

General format:

ENVIRONMENT (option-list)

Each option in the "option list" is
separated by one or more blanks. The
options themselves cannot contain blanks.
The option list is defined individually for
each implementation of PL/I. For the F
Compiler, it has the following format:

([record-format] [buffer-allocation]
[data-set-organization]
[volume-disposition]
[printer-punch-control]
[data-interchange]
[data-management-optimization]
[key-classification] [track-overflow]
[asynchronous-operations-limit]}|
teleprocessing-format

The options may appear in any order.
Note that "teleprocessing format" can only
appear alone.

General rules:

1. The ENVIRONMENT attribute can be
specified only in a DECLARE statement.
It cannot be specified as an option of
an OPEN statement.

2. The "record format" describes the
format of the records to be written or
retrieved. The record format
specification is as follows:

F(block-size[,record-size])
V(max-block-size[,max-record-size])
{VS|VBS} (max-block-size

[,max-record-size])
U(max-block-size)

F(block-size[,record-size]) specifies
fixed-length records with the block
size stated in bytes. If the record
size is specified (also in number of
bytes), it indicates that records are
blocked, that is, that each block
contains more than one record. In
such cases, the block size must be a
simple multiple of the record size.
If the record size is not specified,
record size is the same as block size.

V(max-block-size[,max-record-size])
specifies variable-length records that
can be contained within the stated
maximum block size. If the maximum
record size is not specified, each
block contains only one record. If
the maximum record size is specified,
each block will contain as many
complete records as it can
accommodate.

{VS|VBS}(max-block-size[,max-record -size]) specifies variable-length
records that may exceed the maximum
block size. If necessary, a record is
segmented and continued in consecutive
blocks. If VS is specified, each
block contains only one record or
segment; if VBS is specified, each
block contains as many records and/or
segments as it can accommodate. The
specification of a maximum record size
does not affect blocking.

Four bytes of control information per
block, plus four bytes per record or
segment of record, are included
automatically by the system for
variable-length records. These
control bytes must be included in the
count of maximum block size and
maximum record size.

U(max-block-size) specifies records of
undefined length up to the maximum
stated. No control information is
included, and the record size is the
same as the block size.

Neither record size nor block size can
exceed 32,760 bytes.

3. "Buffer allocation" specifies the
number of buffers to be allocated for
the file; the specification is as
follows:

BUFFERS(n)

The number (n), which is specified by a
decimal integer constant, must not exceed
255. For BUFFERED files, one or two
buffers are automatically allocated,
depending on the access method, unless a
greater number is indicated in the
BUFFERS(n) option. For UNBUFFERED files

Section I: Attributes 335

that require hidden buffers, one buffer is
automatically allocated. If not specified
in the ENVIRONMENT option, the buffer count
can be specified in the BUFNO subparameter
of the associated DD statement.

4. The "data set organization" describes
some physical characteristics of the
data set and how records are to be
written or retrieved. Data set
organization is specified by one of
the following:

CONSECUTIVE

INDEXED

REGIONAL(1)

REGIONAL(2)

REGIONAL(3)

CONSECUTIVE describes a data set
consisting of unkeyed records that are
to be written or retrieved in a
physically sequential order. This
organization is assumed if none is
specified. Note the difference
between CONSECUTIVE and SEQUENTIAL.
CONSECUTIVE specifies physical
characteristics of the data set;
SEQUENTIAL specifies how a file is to
be used to process the records in the
data set. A file declared SEQUENTIAL
can have any of the five data set
organization options.

INDEXED describes a data set that
consists of keyed records, any one of
which can be located by means of
several levels of indexes.

REGIONAL (1) describes a data set that
consists of records without recorded
keys but which can be located by means
of a source key that specifies a
relative record position within the
data set.

REGIONAL (2) describes a data set that
consists of records with recorded
keys. A source key specifies the
relative record and the recorded key.
A search for the record with the
specified recorded key starts at the
beginning of the track on which the
relative record resides.

REGIONAL (3) describes a data set that
consists of records with recorded
keys. A source key specifies the
relative track and the recorded key.
The search is similar to that for

REGIONAL(2), but starts at the
beginning of the specified relative
track.

5. The "volume-disposition" specifies the
action to be taken when the end of a
magnetic tape volume is reached during
access to a data set or when a data
set on a magnetic tape volume is
closed normally or abnormally. Volume
disposition is specified by one of the
following ENVIRONMENT attribute
options:

LEAVE

REWIND

LEAVE specifies that no repositioning
of the volume is to take place if the
end of the volume has been reached.
The channel can then be freed. If a
data set is closed normally or
abnormally, LEAVE specifies that the
tape is to be positioned at the end of
the data set or at the beginning of
the data set if a BACKWARDS file is
being used. If the data set continues
on another volume, the tape is
positioned at the end of the current
volume or at the beginning if a
BACKWARDS file is being used. The
channel remains busy during the
positioning operation.

REWIND allows the end-of-volume or
data-set-closure tape action to be
controlled by the DISP field of the
associated DD statement. If
DISP=(status,DELETE) is specified in
the DD statement, the tape is rewound
but not unloaded. If
DISP=(status,KEEP|CATLG|UNCATLG) is
specified, the tape is rewound and
unloaded. If DISP=(status,PASS) is
specified, the tape is wound on to the
end of the data set, unless a
BACKWARDS file is being used, in which
case the tape is repositioned at the
beginning of the data set. When
DISP=(status,PASS) is specified, the
channel is kept busy when positioning;
in the other two cases the channel is
freed when positioning.

6. The "printer/punch control" specifies
that the first character of a record
is to be interpreted as a control
character. The control options are:

CTLASA, which specifies that the first
character of a record is to be
interpreted as an ASA standard control
character, and

CTL360, which specifies that the first
character of a record is to be
interpreted as an IBM System/360
machine code control character.

7. The "data interchange" option is
specified as follows:

336

COBOL

It specifies that the file will
contain structures mapped according to
the COBOL (F) algorithm. This type of
file can be used only with READ INTO
and WRITE FROM statements.

8. The 'data management optimization"
increases program efficiency, in
certain circumstances, when DIRECT
files are used to access INDEXED data
sets. The data management
optimization options are:

INDEXAREA[(index-area-size)]

NOWRITE

INDEXAREA[(index-area-size)] improves
the input/output speed of a DIRECT
INPUT or DIRECT UPDATE file with
INDEXED data set organization, by
having the highest level of index
placed in main storage. The "index
area size," when specified, must be a
decimal integer constant whose value
lies within the range zero through
32,767. If an index area size is not
specified, the highest level index is
moved unconditionally into main
storage. If an index area size is
specified, the highest level index is
held in main storage, provided that
its size does not exceed that
specified. If the specified size is
less than zero or greater than 32,767,
the compiler issues a warning message
and ignores the parameter of the

option.

NOWRITE can be specified only for
DIRECT UPDATE files with INDEXED data
set organization. It informs the
compiler that no records are to be
added to the data set and that data
management modules concerned solely
with adding records are not required;
it thus allows the size of the
compiled program to be reduced.

9. The "key classification" option GENKEY
(generic key), applies only to INDEXED
data sets. It enables the programmer
to classify keys recorded in a data
set and to use a SEQUENTIAL KEYED
INPUT or SEQUENTIAL KEYED UPDATE file
to access records according to their
key classes.

A generic key is a character string
that identifies a class of keys: all
keys that begin with the string are
members of that class. For example,
the recorded keys 'ABCD', 'ABCE', and
'ABDF' are all members of the classes
identified by the generic keys 'A' and
'AB', and the first two are also

members of the class 'ABC'; and the
three recorded keys can be considered
to be unique members of the classes
'ABCD', 'ABCE', and 'ABDF',
respectively.

The GENKEY option allows the
programmer to start sequential reading
or updating of an INDEXED data set
from the first non-dummy record that
has a key in a particular class; the
class is identified by the inclusion
of its generic key in the KEY option
of a READ statement. Subsequent
records can be read by READ statements
without the KEY option. No indication
is given when the end of a key class
is reached.

If the data set contains no records
with keys in the specified class, or
if all the records with keys in the
specified class are dummy records, the
KEY condition is raised and the data
set is positioned to read the first
record.

The GENKEY option affects the
execution of a READ statement that
supplies a source key shorter than the
key length specified in the KEYLEN
subparameter of the DD statement that
defines the data set. GENKEY causes
the key to be interpreted as a generic
key, and the data set is positioned to
the first non-dummy record in the data
set whose key begins with the source
key. If GENKEY is not specified, a
short source key is padded on the
right with blanks to the specified key
length, and the data set is positioned
to the record that has this padded
key(if such a record exists).

The use of the GENKEY option does not
affect the result of supplying a
source key whose length is greater
than or equal to the specified key
length. The source key, truncated on
the right if necessary, identifies a
specific record (whose key can be
considered to be the only member of
its class).

10. The "track overflow" option indicates
that records transmitted to a
direct-access storage device can be
written on overflow tracks if
necessary. It is specified as
follows:

TRKOFL

11. The "asynchronous operations limit"
specifies the number of incomplete
input/output operations that are
allowed to exist for the file at one
time (see "The EVENT Option" in

Section I: Attributes 337

Chapter 10, "Record-Oriented
Transmission"). The specification is
as follows:

NCP(decimal-integer-constant)

The decimal integer constant must have
a value in the range 1 through 99;
otherwise, 1 is assumed and an error
message is issued.

12. The "teleprocessing format" option is
the equivalent, for teleprocessing
applications, of "record format." It
must be specified for TRANSIENT files;
it cannot be specified for DIRECT,
SEQUENTIAL, or STREAM files; and it
cannot appear in conjunction with any
other option of the ENVIRONMENT
attribute. The teleprocessing format
specification is as follows:

G(maximum-message-size)
R(maximum-record-size)

The maximum message size and maximum
record size are specified by decimal
integer constants.

G(maximum-message-size) specifies that
execution of an input/output statement
will result in the movement of a
complete message to or from a message
queue.

R(maximum-record-size) specifies that
execution of an input-output statement
will result in the movement of one
record of a message to or from a
message queue

For both G and R formats, a buffer is
always used, and its length will
depend on the value of the specified
decimal integer constant. The value
that must be specified will depend on
the message format as set up by the
separate message control program (see
"Teleprocessing" in Chapter 10,
"Record-Oriented Transmission"). The
PL/I programmer must have details of
the message format in order to write a
message processing program. In
general, the messages and records are
treated as if they were V-format
records.

Assumptions:

(The following assumptions do not apply
when a teleprocessing format option is
specified.) CONSECUTIVE data set
organization is assumed unless stated
otherwise. Tape reels are rewound unless
the LEAVE option is specified. If the
BUFFERS(n) option is not specified, two
buffers are allocated for BUFFERED files,
and one is allocated for UNBUFFERED files

that require hidden buffers. NCP(1) is
assumed unless otherwise specified.

EVENT (Program Control Data Attribute)

The EVENT attribute specifies that the
associated identifier is used as an event
name. Event names are used to investigate
the current state of tasks or of
asynchronous input/output operations. They
can also be used as program switches.

General format:

EVENT

General rules:

1. An identifier may be explicitly
declared with the EVENT attribute in a
DECLARE statement. It may be
contextually declared by its
appearance in an EVENT option of a
CALL statement, in a WAIT statement,
in a DISPLAY statement, or in various
input/output statements (see Chapter
10, "Record-Oriented Transmission,"
and Chapter 15, "Multitasking.")

2. Event names may also have the
following attributes:

Dimension

Scope (the default is INTERNAL)

Storage class (the default is
AUTOMATIC)

DEFINED (event names may only be
defined on other event names)

3. An event variable has two separate
values:

a. A single bit which reflects the
completion value of the variable.
'1'B indicates complete, '0'B
indicates incomplete.

b. A fixed-point value of default
precision ((15,0) for the F
Compiler) which reflects the
status value of the variable. A
zero value indicates normal,
nonzero indicates abnormal status.

The values of the event variable can
be separately returned by use of the
COMPLETION and STATUS built-in
functions. The COMPLETION function
returns a bit-string value
corresponding to the completion value
of the variable; STATUS returns a
fixed binary value corresponding to
the status value.

338

Assignment of one event variable to
another causes both the completion and
status values to be assigned.
Conversion between event variables and
any other data type is not possible.

4. Event variables may be elements of an
array. Arrays containing event
variables may take part in assignment,
provided that this would not require
conversion to or from event data.

5. The values of the event variable can
be set by one of the following means:

a. Use of the COMPLETION
pseudo-variable, to set the
completion value.

b. Use of the STATUS pseudo-variable,
to set the status value.

c. Event variable assignment.

d. By a statement with the EVENT
option.

e. By a WAIT statement for an event
variable associated with an
input/output event.

f. By the termination of a task with
which the event variable is
associated.

g. By closing a file on which an
input/output operation with an
event option is in progress.

6. On allocation of an event variable,
its status and completion values are
undefined.

7. An event variable may be associated
with an event, that is, a task or an
input/output operation, by means of
the EVENT option on a statement. The
variable remains associated with the
event until the event is completed.
For a task the event is completed when
the task is terminated because of a
RETURN, END or EXIT; for an
input/output event, the event is
completed during the execution of the
WAIT for the associated event. During
this period the event variable is said
to be active. It is an error to
associate an active event variable
with another event, or to modify the
completion value of an active event
variable by event variable assignment
or by use of the COMPLETION
pseudo-variable.

8. It is an error to assign to an active
event variable (including an event
variable in an array, structure, or

area) by means of an input/output
statement.

9. On execution of a CALL statement with
the EVENT option, the event variable,
if inactive, is set to zero status
value and to incomplete. The sequence
of these two assignments is
uninterruptable, and is completed
before control passes to the named
entry point. On termination of the
task initiated by the CALL statement,
the event variable is set complete and
is no longer active. If the task
termination is not due to RETURN or
END in the task, then theevent
variable status is set to 1, unless it
is already nonzero. The sequence of
the two assignments to the event
variable values is uninterruptable.

10. On execution of an input/output
statement with the EVENT option, the
event variable, if inactive, is set to
zero status value and to incomplete.
The sequence of these two assignments
is uninterruptable and is completed
before any transmission is initiated
but after any action associated with
an implicit opening is completed. An
input/output event variable will not
be set complete until either the
termination of the task that initiated
the event or the execution, by that
task, of a WAIT statement naming the
associated event variable. The WAIT
operation delays execution of this
task until any transmission associated
with the event is terminated. If no
input/output conditions are to be
raised for the operation, the event
variable is set complete and is no
longer active. If any input/output
conditions are to be raised, the event
variable is set to have a status value
of 1 and the relevant conditions are
raised. On normal return from the
last on-unit entered as a result of
these conditions, or on abnormal
return from one of the on-units, the
event variable is set complete and is
no longer active.

11. Event variables cannot be unaligned.

EXCLUSIVE (File Description Attribute)

The EXCLUSIVE attribute specifies that
records in a data set associated with a
DIRECT UPDATE file may be locked by an
accessing task to prevent other tasks from
interfering with an operation. The section
entitled "The EXCLUSIVE Attribute," in
Chapter 15, "Multitasking," contains a
table showing the effects of various

Section I: Attributes 339

operations on EXCLUSIVE files and the
records contained in the associated data
sets.

General format:

EXCLUSIVE

General rules:

1. The EXCLUSIVE attribute can be applied
to RECORD KEYED DIRECT UPDATE files
only.

2. A READ statement referring to an
EXCLUSIVE file has the effect of
locking the record that is read,
unless the READ statement has the
NOLOCK option, or unless the record
has already been locked by another
task; in the latter case, the task
executing the READ statement will wait
until the record is unlocked before
proceeding.

3. A DELETE or REWRITE statement
referring to a locked record will
automatically unlock the record at the
end of the DELETE or REWRITE
operation; if the record has been
locked by another task, the task
executing the DELETE or REWRITE
statement will wait until the record
is unlocked. While a DELETE or
REWRITE operation is taking place, the
record is always locked.

4. Automatic unlocking takes place at the
end of the operation, on normal return
from any on-units entered because of
the operation (that is, at the
corresponding WAIT statement when the
EVENT option has been specified).

5. A locked record can be explicitly
unlocked by the task that locked it,
by means of the UNLOCK statement.

6. Closing an EXCLUSIVE file unlocks all
the records locked by the file.

7. When a task is terminated, all records
locked by that task are unlocked.

Assumptions:

1. If a file is implicitly opened by the
UNLOCK statement, it is given the
EXCLUSIVE attribute.

2. EXCLUSIVE implies RECORD, KEYED,
DIRECT, and UPDATE.

EXTERNAL and INTERNAL (Scope Attributes)

The EXTERNAL and INTERNAL attributes
specify the scope of a name. INTERNAL
specifies that the name can be known only
in the declaring block and its contained
blocks. EXTERNAL specifies that the name
may be known in other blocks containing an
external declaration of the same name.

General format:

EXTERNAL|INTERNAL

General rules:

1. When a major structure name is
declared EXTERNAL in more than one
block, the attributes of the structure
members must be the same in each case,
although the corresponding member
names need not be identical.

2. Members of structures always have the
INTERNAL attribute and cannot be
declared with any scope attribute.
However, a reference to a member of an
external structure, using the member
name known to the block containing the
reference, is effectively a reference
to that member in all blocks in which
the external name is known, regardless
of whether the corresponding member
names are identical.

Assumptions:

INTERNAL is assumed for entry names of
internal procedures and for variables with
any storage class. EXTERNAL is assumed for
file names and entry names of external
procedures. Programmer-defined condition
names are assumed to be EXTERNAL.

FILE (File Description Attribute)

The FILE attribute specifies that the
identifier being declared is a file name.

General format:

FILE

Assumptions:

The FILE attribute can be implied by any
of the other file description attributes.
In addition, an identifier may be
contextually declared with the FILE
attribute through its appearance in the
FILE option of any input/output statement,
or in an ON statement for any input/output
condition.

340

FIXED and FLOAT (Arithmetic Data
Attributes)

The FIXED and FLOAT attributes specify the
scale of the arithmetic variable being
declared. FIXED specifies that the
variable is to represent fixed-point data
items. FLOAT specifies that the variable
is to represent floating-point data items.

General format:

FIXED|FLOAT

General rule:

The FIXED and FLOAT attributes cannot be
specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimension, PACKED, ALIGNED, scope, and
storage class attributes) are assumed to be
arithmetic variables with assigned
attributes depending upon the initial
letter. For identifiers beginning with any
letter I through N, the default attributes
are REAL FIXED BINARY (15,0). For
identifiers beginning with any other
alphabetic character, the default
attributes are REAL FLOAT DECIMAL (6). If
BINARY or DECIMAL and/or REAL or COMPLEX
are specified, FLOAT is assumed. The
default precisions are those defined for

System/360 implementations.

FLOAT (Arithmetic Data Attribute)

See FIXED.

GENERIC (Entry Name Attribute)

The GENERIC attribute is used to define a
name as a family of entry names, each of
which is referred to by the name being
declared. When the generic name is
referred to, the proper entry name is
selected, based upon the arguments
specified for the generic name in the
procedure reference.

General format:

GENERIC (entry-name-declaration
[,entry-name-declaration]...)

General rules:

1. No other attributes can be specified

for the name being given the GENERIC
attribute.

2. Each "entry name declaration"
following the GENERIC attribute
corresponds to one member of the
family, and has the form:

entry-name attribute-list

3. The "attribute list" of each entry
name declaration specifies attributes
of the entry name. It must include
the ENTRY attribute. It may
optionally have INTERNAL, EXTERNAL,
and RETURNS attributes. No entry name
declaration can have the GENERIC
attribute, nor can it have the BUILTIN
attribute.

4. Each entry name declaration must
specify attributes or level numbers
for each parameter. An ENTRY
declaration within a GENERIC
declaration is exactly the same as any
other ENTRY declaration. Therefore,
no other entry attribute declaration
for the same identifier can appear in
the same block if the entry name
appears in a GENERIC attribute
specification.

5. When a generic name is referred to,
the attributes of the arguments must
match exactly the list following the
entry name declaration of one and only
one member of the family. The
reference is then interpreted as a
reference to that member. Thus, the
selection of a particular entry name
is based upon the arguments of the
reference to the generic name. Note
that no conversion is done for
arguments passed to generic functions.
Consequently, the precision of a
constant or any other expression must
match the precision of a parameter.

6. The selection of a particular entry
name is first based on the number of
arguments in the reference to the
name. The following attributes are
then considered in choice of generic
members:

Base

Scale

Mode

Precision

PICTURE

Section I: Attributes 341

LABEL (but not label list)

Number of dimensions (but not
bounds)

CHARACTER (but not length)

BIT (but not length)

VARYING

ENTRY (but not parameter
description or other attributes of
entry names)

FILE (but no other FILE attributes)

ALIGNED

UNALIGNED

AREA (but not size)

OFFSET (but not specified area
variable)

POINTER

TASK

EVENT

7. Generic entry names (as opposed to
references) may be specified as
arguments to non-generic procedures if
the invoked entry name is explicitly
declared with the ENTRY attribute.
This ENTRY attribute must specify that
the appropriate parameter is an entry
name and must specify, by means of a
further ENTRY attribute, the
attributes of all its parameters.
This enables a choice to be made of
which family member is to be passed.

8. There is a limitation on the number of
family members and arguments which may
be associated with a GENERIC entry
name. The value given by evaluating
the following formula must not exceed
700:

9. For the F Compiler the maximum nesting
of ENTRY attributes within a GENERIC
attribute is 3.

INITIAL (Data Attribute)

The INITIAL attribute has two forms. The
first specifies an initial constant value
to be assigned to a data item when storage
is allocated to it. The second form
specifies that, through the CALL option, a
procedure is to be invoked to perform
initialization at allocation.

General format:

1. INITIAL (item [,item]...)

2. INITIAL CALL entry-name
[argument-list]

General rule:

The INITIAL attribute cannot be given
for entry names, file names, defined data,
structures, parameters, or based variables.

Rules for form 1:

1. In this discussion, the term
"constant" denotes one of the
following:

[+|-] arithmetic-constant

character-string-constant

bit-string-constant

[+|-]real-constant{+|-}imaginary-constant

2. Only one constant value can be
specified for an element variable;
more than one can be specified for an
array variable. A structure variable
can be initialized only by separate
initialization of its elementary
names, whether they are element or
array variables.

3. Constant values specified for an array
are assigned to successive elements of
the array in row-major order (final
subscript varying most rapidly).

4. If too many constant values are
specified for an array, excess ones
are ignored; if not enough are
specified, the remainder of the array
is not initialized.

5. Each item in the list can be a
constant, an asterisk denoting no
initialization for a particular
element, or an iteration
specification.

6. The iteration specification has one of
the following general forms:

342

(iteration-factor) constant

(iteration-factor)(item[,item]...)

(iteration-factor) *

The "iteration factor" specifies the
number of times the constant, or item
list, is to be repeated in the
initialization of elements of an
array. If a constant follows the
iteration factor, then the specified
number of elements are to be
initialized with that value. If a
list of items follows the iteration
factor, then the list is to be
repeated the specified number of
times, with each item initializing an
element of the array. If an asterisk
follows the iteration factor, then the
specified number of elements are to be
skipped in the initialization
operation.

7. The iteration factor can be an element
expression, except for STATIC data, in
which case it must be an unsigned
decimal integer constant. When
storage is allocated for the array,
the expression is evaluated to give an
integer that specifies the number of
iterations.

B. A negative or zero iteration factor
causes no initialization.

9. For initialization of a string array,
if only one parenthesized element
expression precedes the string initial
value, the expression is interpreted
to be a string repetition factor for
the string; that is, it is interpreted
as a part of the specification of the
value for a single element of the
array. Consequently, for an
expression to cause initialization of
more than one element of a string
array, both the string repetition
factor and the iteration factor must
be explicitly stated, even if the
string repetition factor is (1). For
example, consider the following:

((2) 'A') is equivalent to ('AA')
(for a single element)

((2)(1)'A') is equivalent to
('A', 'A') (for two elements)

10. Iterations may be nested.

11. Label constants given as initial
values for label variables must be
known within the block in which the
label variable declarations occur.
STATIC label variables cannot have the
INITIAL attribute.

12. An alternate method of initialization
is available for elements of arrays of
non-STATIC statement label variables:
an element of a label array can appear
as a statement prefix, provided that
all subscripts are optionally signed
decimal integer constants. The effect
of this appearance is the
initialization of that array element
to a value that is a constructed label
constant for the statement prefixed
with the subscripted reference. This
statement must be internal to the
block containing the declaration of
the array. Only one form of
initialization can be used for a given
label array. If CHECK is specified
for a label array and the elements of
the label array are initialized by a
label prefix, the CHECK condition is
not raised at initialization.

13. For the F Compiler, character-string
or bit-string data having the STATIC
attribute cannot he initialized with
complex values.

14. This form of the INITIAL attribute
cannot be used in the declaration of
locator or area variables.

15. Initialization of LABEL variables on
structures with the LIKE attribute
requires careful handling particularly
as the implementation does not provide
the result specified by the language.
A structure A is declared, using the
LIKE attribute, to be identical to a
structure B. Structure B contains a
LABEL variable that is initialized,
using the INITIAL attribute, to the
value of a LABEL constant. The
initial value of the corresponding
LABEL variable in A is the initial
value of the LABEL constant known in
the block containing the declaration
of B, not A.

For example:

DCL 1 B,
2 L LABEL INITIAL (L1);

L1: .;• 	 /*B.L = Ll*/

BEGIN;•
DCL A LIKE B;

L1: .;▪ 	 /*A.L IS GIVEN THE VALUE OF
L1 IN STRUCTURE B*/

END;

Section I: Attributes 	343

Rules for form 2:

1. The "entry name" and "argument list"
passed must satisfy the condition
stated for prologues as discussed in
Part I, Chapter 6, "Blocks and Flow of
Control."

2. Form 2 cannot be used to initialize
STATIC data.

Example c results in the following: each
of the first 920 elements of A is set to 0,
the next 80 elements consist of 20
repetitions of the sequence 5,5,5,9.

In Example d, INITIALIZE is the name of
a procedure that sets the initial values of
elements in TABLE. X and Y are arguments
passed to INITIALIZE.

In Example e, B and C inherit a
dimension of (8) but, whereas only the
first element of B is initialized, all the
elements of C are initialized.

In the last example, transfer is made to
a particular element of the array Z by
giving I a value of 1,2, or 3.

INPUT, OUTPUT, and UPDATE (File Description
Attributes)

The INPUT, OUTPUT, and UPDATE attributes
indicate the function of the file. INPUT
specifies that data is to be transmitted
from external storage to the program.
OUTPUT specifies that data is to be
transmitted from the program to external
storage. UPDATE specifies that the data
can be transmitted in either direction;
that is, the file is both an input and an
output file.

General format:

INPUT|OUTPUT|UPDATE

General rules:

1. A file with the INPUT attribute cannot
have the PRINT attribute.

2. A file with the OUTPUT attribute
cannot have the BACKWARDS attribute.

3. A file with the UPDATE attribute
cannot have the STREAM, BACKWARDS, or
PRINT attributes. A declaration of
UPDATE for a SEQUENTIAL file indicates
the update-in-place mode: a record can
be updated only by a READ statement
followed by a corresponding REWRITE
statement.

Assumptions:

Default is INPUT. The PRINT attribute
implies OUTPUT. The EXCLUSIVE attribute
implies UPDATE.

The following assumptions are made when
a file is implicitly opened by an
input/output statement:

WRITE, LOCATE, PUT 	OUTPUT

READ, GET 	 INPUT

DELETE, REWRITE, UNLOCK UPDATE

INTERNAL (Scope Attribute)

See EXTERNAL.

344

IRREDUCIBLE and REDUCIBLE

The attributes REDUCIBLE and IRREDUCIBLE
are optimization attributes applied to
ENTRY declarations. A call to an ENTRY
which is declared as REDUCIBLE will be
optimized. A procedure is completely
IRREDUCIBLE if it, or any block activated
by it, does any of the following:

• Returns different function values for
identical argument values

• Maintains any kind of history

• Performs input or output operations

• Returns control from the procedure by
means of a GO TO statement

Assumptions:

Default is IRREDUCIBLE

IRREDUCIBLE and REDUCIBLE attributes
both imply the ENTRY attribute.

KEYED (File Description Attribute)

The KEYED attribute specifies that the
options KEY, KEYTO, and KEYFROM may be used
to access records, in statements that refer
to the file. These options indicate that
keys are involved in accessing the records.

General format:

KEYED

General rules:

1. A KEYED file cannot have the
attributes STREAM or PRINT.

2. The KEYED attribute can be specified
only for RECORD files associated with
data sets on direct-access devices, or
for TRANSIENT files.

3. The KEYED attribute must be specified
for every file with which any of the
options KEY, KEYTO, and KEYFROM is
used. It need not be specified if
none of the options are to be used,
even though the corresponding data set
may actually contain recorded keys.

Assumption:

The DIRECT and EXCLUSIVE attributes
imply KEYED.

LABEL (Program Control Data Attribute)

The LABEL attribute specifies that the
identifier being declared is a label
variable and is to have statement labels as
values. To aid in optimization of the
object program, the attribute specification
may also include the values that the name
can have during execution of the program.

General format:

LABEL [(statement-label-constant
[,statement-label-constant]...)]

General rules:

1. If a list of statement label constants
is given, the variable can have as
values only members of the list. The
label constants in the list must be
known in the block containing the
declaration.

2. The number of statement label
constants specified by the LABEL
attribute is limited to 125 in any
particular label list.

3. If the variable is a parameter, its
value can be any statement label
variable or constant passed as an
argument. If the argument is a label
variable, the value of the label
parameter can be any value permitted
for the label variable that is passed.

4. An entry name cannot be a value of a
label variable.

5. The parenthesized list of statement
label constants can be used in a LABEL
attribute specification for a label
array. A subscripted label specifying
an element of a label array can appear
as a statement label prefix, if the
label variable is not STATIC, but it
cannot appear in an END statement
after the keyword END. For further
information, see general rule 12 in
the discussion of the INITIAL
attribute.

6. The INITIAL attribute cannot be
specified for STATIC label variables.

7. Labels cannot be unaligned.

Length (String Attribute)

See BIT.

Section I: Attributes 	345

LIKE (Structure Attribute)

The LIKE attribute specifies that the name
being declared is a structure variable with
the same structuring as that for the name
following the attribute keyword LIKE.
Substructure names, elementary names, and
attributes for substructure names and
elementary names are to be identical.

General format:

LIKE structure-variable

General rules:

1. The "structure variable" can be a
major structure name or a minor
structure name. It can be a qualified
name, but it cannot be subscripted.

2. The "structure variable" must be known
in the block containing the LIKE
attribute specification. The
structure names in all LIKE attributes
are associated with declared
structures before any LIKE attributes
are expanded. For example:

These declarations result in the
following:

1 A LIKE D is expanded to give:

1 A, 2 C, 3 G, 3 H

1 B LIKE A.0 is expanded to give:

1 B, 3 E, 3 F

3. Neither the "structure variable" nor
any of its substructures can be
declared with the LIKE attribute, nor
may the "structure variable" have been
completed by the LIKE attribute.

4. Neither additional substructures nor
elementary names can be added to the
created structure; any level number
that immediately follows the
"structure variable" in the LIKE
attribute specification in a DECLARE
statement must be algebraically equal
to or less than the level number of

the name declared with the LIKE
attribute.

5. Attributes of the "structure variable"
itself do not carry over to the
created structure. For example,
storage class attributes do not carry
over. If the "structure variable"
following the keyword LIKE represents
an array of structures, its dimension
attribute is not carried over.
Attributes of substructure names and
elementary names, however, are carried
over; contained dimension and length
attributes are recomputed. An
exception is that this does not apply
to the INITIAL attribute for any
elements of a label array that has
been initialized by prefixing to a
statement.

6. If a direct application of the
description to the structure declared
LIKE would cause an incorrect
continuity of level numbers (for
example, if a minor structure at level
3 were declared LIKE a major structure
at level 1) the level numbers are
modified by a constant before
application.

7. The LIKE attribute is expanded before
the ALIGNED and UNALIGNED attributes
are applied to the contained elements
of a structure.

OFFSET and POINTER (Program Control Data
Attributes)

The OFFSET and POINTER attributes describe
locator variables. A pointer variable can
be used in a based variable reference to
identify a particular allocation of the
based variable. Offset variables identify
a location relative to the start of an
area; pointer variables identify any
location, including those within areas.

General format:

POINTER|OFFSET (area-variable)

General rules:

1. A pointer variable can be explicitly
declared in a DECLARE statement, or it
can be contextually declared by its
appearance as a pointer qualifier, by
its appearance in a BASED attribute,
or by its appearance in a SET option.

2. An offset variable must be explicitly
declared.

3. The value of a pointer variable can be
set in any of the following ways:

346

a. With the SET option of a READ
statement;

t. By a LOCATE statement;

c. By an ALLOCATE statement;

d. By assignment of the value of
another locator variable, or a
locator value returned by a
user-defined function;

e. By assignment of an ADDR or NULL
built-in function value.

4. The value of an offset variable can be
set only by assignment of the value of
another locator variable or the value
of the NULLO built-in function.

5. Locator variables cannot be operands
of any operators other than the
comparison operators = and ¬=.

6. Locator data cannot be converted to
any other data type, but pointer can
be converted to offset, and vice
versa.

7. A locator value can be assigned only
to a locator variable. When an offset
value is assigned to an offset
variable, the area variables named in
the OFFSET attributes are ignored.

8. Locator data cannot be transmitted
using STREAM input/output.

9. Only the INITIAL CALL form of the
INITIAL attribute is allowed in
locator declarations.

10. Offset variables cannot be used to
qualify a based reference.

11. For the F Compiler, the area variable
named in an OFFSET attribute must be
of based storage class.

12. Pointer variables and offset variables
cannot be unaligned.

Assumption:

The variable named in the OFFSET
attribute is contextually declared to have
the AREA attribute, but its storage class
will be automatic; hence, it will not
conform to general rule 11, above. For the
F Compiler, therefore, an offset
declaration without an accompanying
explicit area declaration will result in an
error. (See also "AREA (Program Control
Data Attribute)," in this section.)

OUTPUT (File Description Attribute)

See INPUT.

PICTURE (Data Attribute)

The PICTURE attribute is used to define the
internal and external formats of
character-string and numeric character data
and to specify the editing of data.
Numeric character data is data having an
arithmetic value but stored internally in
character form. Numeric character data
must be converted to coded arithmetic
before arithmetic operations can be
performed.

The picture characters are described in
Section D, "Picture Specification
Characters."

General format:

PICTURE

'character-picture-specification'

'numeric-picture-specification'

A "picture specification," either character
or numeric, is composed of a string of
picture characters enclosed in single
quotation marks. An individual picture
character may be preceded by a repetition
factor, which is a decimal integer
constant, n, enclosed in parentheses, to
indicate repetition of the character n
times. If n is zero, the character is
ignored. Picture characters are considered
to be grouped into fields, some of which
contain subfields.

General rules:

1. The "character picture specification"
is used to describe a character-string
data item. Three characters may be
used: A, indicating that the
associated position in the data item
may contain any alphabetic character
or a blank; X, indicating that the
associated postion may contain any
character; and 9, indicating that the
associated position may contain any
decimal digit or a blank. A character
picture specification must include at
least one A or X. Each character
picture specification is a single
field with no contained subfields.

Example:

DECLARE ORDER# PICTURE
'AA(3)9X99X(4)9';

Section I: Attributes 	347

This declaration specifies that values
of ORDER# are to be character strings
of length 13. The string consists of
two letters, three digits, any
character, two digits, any character,
and four digits. For example, the
character string 'G 42-63-0024' would
fit this description.

Editing and suppression characters are
not allowed in character picture
specifications. Each picture
specification character must represent
an actual character in the data item.

2. The "numeric picture specification" is
used to describe a character item that
represents either an arithmetic value
or a character-string value, depending
upon its use. A numeric picture
specification can consist of one or
more fields, some of which can be
divided into subfields. A single
field is used to describe a
fixed-point number or the mantissa of
a floating-point number. Either may
be divided into two subfields, one
describing the integer portion, the
other describing the fractional
portion. For floating-point numbers,
a second field is required to describe
the exponent; it cannot be divided
into subfields. A second field may
optionally be used with fixed-point
numbers to indicate a scaling factor.
Four basic picture characters can be
used in a numeric picture
specification:

9 indicating any decimal digit

✓ indicating the assumed location of
a decimal point. It does not
specify an actual character in the
character-string value of the data
item. The V also indicates the end
of a subfield of a picture
specification.

K indicating, for floating-point data
items, that the exponent should be
assumed to begin at the position
associated with the picture
character following the K. It does
not specify an actual character in
the character-string value of the
data item, either an E or a sign.
The K delimits the two fields of
the specification.

E indicating, for floating-point data
items, that the associated position
will contain the letter E to
indicate the beginning of the
exponent. The E also delimits the
two fields.

In addition to these characters, zero

suppression characters, editing
characters, and sign characters may be
included in a numeric picture
specification to indicate editing.
Editing characters are not a part of
the arithmetic value of a numeric
character data item, but they are a
part of its character-string value.
Repetition factors are allowed in
numeric specifications.

3. A numeric character data item can have
only a decimal base. Its scale and
precision are specified by the picture
characters. The PICTURE attribute
cannot be specified in combination
with base, scale, or precision
attributes. If the mode of the
numeric character data is COMPLEX,
however, the COMPLEX attribute must be
explicitly stated.

4. The following paragraphs indicate the
combinations of picture characters for
different arithmetic data formats.

a. Real decimal fixed-point items are
described in the following general
form:

PICTURE '19]...[V][9]...
[F([+|-] integer)]'

The optional field of the picture
specification, beginning with the
letter F together with a
parenthesized, optionally signed
decimal integer constant, is a
scaling factor that indicates the
location of an assumed decimal
point if that location is outside
the actual data item. The scaling
factor has an effect similar to
the exponent of a floating-point
number; it indicates that the
assumed decimal point is "integer"
places to the right (or left, if
negative) of the position
otherwise indicated.

Sign, editing, and zero
suppression picture characters can
be included in a fixed-point
specification. The V cannot
appear more than once in a
specification, although it may be
used in combination with the
decimal point (.) or comma (,)
editing characters, which cause
insertion of a period or comma.
If no V is included, the decimal
point is assumed to be to the
right of the rightmost digit.
Only one sign indication can be
included in the first field (the

348

actual sign of the integer in a
scaling factor is allowed
additionally). The specification
must include at least one digit
position.

Example:

DECLARE A PICTURE '999V99';

This specification describes
numeric character items of five
digits, two of which are assumed
to be fractional digits.

b. Real decimal floating-point items
are described by the following
general form:

PICTURE '[9]...[V][9]...{E|K}9[9]'

Both the mantissa field and the
exponent field must each contain
at least one digit position. The
exponent field can contain no more
than two digits, since System/360
implementations allow only two
digits in the exponent field of a
decimal floating-point number. If
arithmetic data items are to be
assigned to the described
variable, the exponent field must
contain both of the allowed digit
specification characters, or the
second digit of the exponent field
will be lost and the SIZE
condition will be raised.

Sign, editing, and zero
suppression picture characters can
be included in a floating-point
specification. One sign
indication is allowed for each
field. Only one V is allowed, and
it can appear in the first field
only. As with fixed-point
specifications, the V may appear
in combination with the decimal
point editing character (as .V or
V.).

c. Complex numeric character data is
described using the general form:

PICTURE 'real-picture' COMPLEX

The "real picture" is a
specification for either a decimal
fixed-point or a decimal
floating-point data item. The
single picture specification
describes both parts of a complex
number.

5. The precision of a numeric character
variable is dependent upon the number
of digit positions, actual and
conditional. Digit positions can be
specified by the following characters:

9 which is an actual digit character

Z

* which are conditional digit
characters specifying zero
suppression

Y

T

I which are digit characters
specifying an overpunch

R

+ which are conditional digit
drifting characters

Each but the first conditional digit
drifting character in a drifting
string specifies a digit position. A
conditional digit drifting character
used alone does not specify a digit
position.

Precision of a fixed-point variable is
(p,q), where p is the number of digit
positions in the picture specification
and g is the number of digit positions
following V. Precision of a
floating-point variable is (p), where
p is the number of digit positions
preceding the E or K. Indicated
static editing characters or insertion
characters do not participate in the
specification of precision, but they
must be counted in the number of
characters if the data item is written
as output or assigned internally to a
character string.

6. A variable representing sterling data
items can be specified by using a
numeric picture specification that
consists of three fields, one each for
pounds, shillings, and pence. The
pence field may be divided into two
subfields. Data so described is
stored in character format as three
contiguous numbers corresponding to
each of the three fields. If any
arithmetic operations are specified
for the variable, its value is

Section I: Attributes 349

converted to coded fixed-point decimal
representing the value in pence.
Sterling picture specifications have
the following form:

PICTURE

'G [editing-character-1]...

M pounds-field

M [separator-1]...
shillings-field

M [separator-2]...
pence-field

[editing-character-2]-'

Picture specification characters,
editing characters, and separators can
be used in any of these fields and are
discussed in Section D, "Picture
Specification Characters."

The precision (p,q) of a sterling
numeric character data item is defined
as follows:

q = number of fractional digits in
the pence field

p = 3+q+(number of digit positions,
actual and conditional, in the
pounds field)

POINTER (Program Control Data Attribute)

See OFFSET.

POSITION (Data Attribute)

See DEFINED.

Precision (Arithmetic Data Attribute)

The precision attribute is used to specify
the minimum number of significant digits
to be maintained for the values of the data
items, and to specify the scale factor (the
assumed position of the binary or decimal
point). The precision attribute applies
to both binary and decimal data.

General format:

(number-of-digits [,scale-factor])

The "number of digits" is an unsigned

decimal integer constant and "scale factor"
is an optionally signed decimal integer
constant. The precision attribute
specification is often represented, for
brevity, as (p,q), where p represents the
"number of digits" and g represents the
"scale factor."

General rules:

1. The precision attribute must
immediately follow, with or without
intervening blanks, the scale (FIXED
or FLOAT), base (DECIMAL or BINARY),
or mode (REAL or COMPLEX) attribute at
the same factoring level.

2. The number of digits specifies the
number of digits to be maintained for
data items assigned to the variable.
The scale factor specifies the number
of fractional digits. No point is
actually present; its location is
assumed.

3. The scale factor can be specified for
fixed-point variables only; the number
of digits is specified for both
fixed-point and floating-point
variables.

4. When the scale is FIXED and no scale
factor is specified, it is assumed to
be zero; that is, the variable is to
represent integers.

5. The scale factor of a variable, or of
an intermediate result of type FIXED,
must be in the range -128 and +127.

6. The scale factor can be negative, and
it can be larger than the number of
digits. A negative scale factor (-q)
always specifies integers, with the
point assumed to be located g places
to the right of the rightmost actual
digit. A positive scale factor (q)
that is larger than the number of
digits always specifies a fraction,
with the point assumed to be located g
places to the left of the rightmost
actual digit. In either case,
intervening zeros are assumed, but
they are not stored; only the
specified number of digits are
actually stored.

7. The precision attribute cannot be
specified in combination with the
PICTURE attribute.

8. The maximum number of digits allowed
for System/360 implementations is 15
for decimal fixed-point data, 31 for
binary fixed-point data, 16 for
decimal floating-point data, and 53

350

for binary floating-point data.

Assumptions:

The defaults for System/360
implementations are as follows:

(5,0) for DECIMAL FIXED
(15,0) for BINARY FIXED
(6) for DECIMAL FLOAT
(21) for BINARY FLOAT

PRINT (File Description Attribute)

The PRINT attribute specifies that the data
of the file is ultimately to be printed.
The PAGE and LINE options of the PUT
statement and the PAGES= option of the
OPEN statement can be used only with files
having the PRINT attribute. These options
are described in Section J, "Statements."

General format:

PRINT

General rules:

1. The PRINT attribute implies the OUTPUT
and STREAM attributes.

2. The PRINT attribute conflicts with the
RECORD attribute. (However, through
the use of the DD statement, RECORD
files can be associated with the
printer.)

3. The PRINT attribute causes the initial
data byte within each record to be
reserved for ASA printer control
characters. These control characters
are set by the PAGE, SKIP, or LINE
format items or options.

Assumption:

If no FILE or STRING specification
appears in a PUT statement, the standard
output file SYSPRINT is assumed.

REAL (Arithmetic Data Attribute)

See COMPLEX.

RECORD and STREAM (File Description
Attributes)

The RECORD and STREAM attributes specify
the kind of data transmission to be used
for the file. STREAM indicates that the
data of the file is considered to be a
continuous stream of data items, in
character form, to be assigned from the
stream to variables, or from expressions
into the stream. RECORD indicates that the
file consists of a collection of physically
separate records, each of which consists of
one or more data items in any form. Each
record is transmitted as an entity to or
from a variable.

General format:

RECORD|STREAM

General rules:

1. A file with the STREAM attribute can
be specified only in the OPEN, CLOSE,
GET, and PUT statements.

2. A file with the RECORD attribute can
be specified only in the OPEN, CLOSE,
READ, WRITE, REWRITE, LOCATE, UNLOCK,
and DELETE statements.

3. A file with the STREAM attribute
cannot have any of the following
attributes: UPDATE, DIRECT,
SEQUENTIAL, BACKWARDS, BUFFERED,
UNBUFFERED, EXCLUSIVE, and KEYED, any
of which implies RECORD.

4. A file with the RECORD attribute
cannot have the PRINT attribute.

Assumptions:

Default is STREAM. If a file is
implicitly opened by a READ, WRITE,
REWRITE, UNLOCK, or DELETE statement,
RECORD is assumed.

REDUCIBLE

See IRREDUCIBLE

RETURNS (Entry Name Attribute)

The RETURNS attribute may be specified in a
DECLARE statement for an entry name that is
used in a function reference within the
scope of the declaration. It is used to
describe the attributes of the function
value returned when that entry name is
invoked as a function.

Section I: Attributes 	351

General format:

RETURNS (attribute...)

It is used in the following manner:

DECLARE entry-name
[ENTRY-attribute-specification]
RETURNS (attribute...);

• General rules:

1. The "ENTRY attribute specification"
consists of the keyword ENTRY with or
without associated parameter attribute
lists. If parameter attribute lists
are not required, the keyword ENTRY is
optional, since the RETURNS attribute
implies the ENTRY attribute.

2. The attributes in the parenthesized
list following the keyword RETURNS are
separated by blanks. They must agree
with the attributes specified in the
RETURNS option of the PROCEDURE or
ENTRY statement to which the entry
name is prefixed. If the attributes
of the actual value returned do not
agree with those declared with the
RETURNS attribute, no conversion will
be performed.

3. Only arithmetic, string, locator,
AREA, and PICTURE attributes can be
specified.

4. Length attribute specifications are
evaluated on entry to the block
containing the RETURNS attribute
specification.

5. Unless default attributes for the
entry name apply, any invocation of a
function must appear within the scope
of a RETURNS attribute declaration for
the entry name. For an internal
function, the RETURNS attribute can be
specified only in a DECLARE statement
that is internal to the same block as
the function procedure.

Assumptions:

If the RETURNS attribute is not
specified within the scope of a function
reference, the defaults assumed for the
returned value are FIXED BINARY (15,0) if
the entry name begins with any of the
letters I through N; otherwise, the
defaults are FLOAT DECIMAL (6). Default
precisions are those defined for System/360
implementations.

SEQUENTIAL (File Description Attribute)

See DIRECT.

STATIC (Storage Class Attribute)

See AUTOMATIC.

STREAM (File Description Attribute)

See RECORD.

TASK (Program Control Data Attribute)

The TASK attribute describes a variable
that may be used as a task name, to test or
control the relative priority of a task.

General format:

TASK

General rules:

1. An identifier can be explicitly
declared with the TASK attribute in a
DECLARE statement, or it can be
contextually declared by its
appearance in a TASK option of a CALL
statement.

2. Task variables can also have the
following attributes:

a. Dimension

b. Scope (the default is INTERNAL)

c. Storage class (the default is
AUTOMATIC)

d. DEFINED (task variables may only
be defined on other task names)

3. A task variable can be used in the
following contexts only:

a. In the TASK option of a CALL
statement

b. As an argument of the PRIORITY
pseudo-variable or built-in
function

c. As an argument in a CALL statement
or function reference

352

d. As a parameter in a PROCEDURE or
ENTRY statement or in the
parameter attribute list of an
ENTRY attribute

e. In an ALLOCATE or FREE Statement

4. A task variable may be associated with
the priority of a task by including
the task name in the TASK option of a
CALL statement. A task variable is
said to be active if its associated
task is active. A task variable must
be in an allocated state when it is
associated with a task and must not be
freed while it is active. An active
task variable cannot be associated
with another task.

5. A task variable contains a single
value, a priority value. This value
is a fixed-point binary value of
precision (n,0), where n is
implementation-defined (15, for the F
Compiler). This value can be tested
and adjusted by means of the PRIORITY
built-in function and pseudo-variable.
The built-in function returns the
priority of the task argument relative
to the priority of the task executing
the function. Similarly, the
pseudo-variable permits assignment, to
the named task variable, of a priority
relative to the priority of the task
executing the assignment.

6. Structures, arrays, or areas
containing task variables cannot take
part in assignment or input/output
operations.

7. Task data cannot be converted to any
other data type.

8. A task variable cannot be passed as an
argument if this would require
creation of a dummy argument.

TRANSIENT (File Description Attribute)

See DIRECT

UNALIGNED (Data Attribute)

See ALIGNED.

UNBUFFERED (File Description Attribute)

See BUFFERED.

UPDATE (File Description Attribute)

See INPUT.

VARYING (String Attribute)

See BIT.

Section I: Attributes 	353

This section presents the PL/I statements
in alphabetical order. (The preprocessor
statements are alphabetically arranged at
the end of this section.) Most statements
are accompanied by the following
information:

1. Function -- a short description of the
meaning and use of the statement

2. General format -- the syntax of the
statement

3. Syntax rules -- rules of syntax that
are not reflected in the general
format

4. General rules -- rules governing the
use of the statement and its meaning
in a PL/I program

The ALLOCATE Statement

Function:

The ALLOCATE statement causes storage to
be allocated for specified controlled or
based data.

General format:

Option 1:

ALLOCATE [level] identifier
[dimension] [attribute]...
[,[level] identifier [dimension]
[attribute]...]...;

Option 2:

ALLOCATE based-variable-identifier
[SET (pointer-variable)]
[IN (area-variable)]
[, based-variable-identifier
[SET (pointer-variable)]
[IN (area-variable)]]...;

Syntax rules:

1. Based variables and controlled
variables may both be specified as
identifiers in the same ALLOCATE
statement.

Syntax rules 2 through 7 apply only to
Option 1:

2. "Level" indicates a level number. The
first identifier appearing after the

keyword ALLOCATE must be a level 1
identifier.

3. Each identifier must represent data of
the controlled storage class or be an
element of a controlled major
structure.

4. "Dimension" indicates a dimension
attribute. "Attribute" indicates a
BIT, CHARACTER, or INITIAL attribute.

5. A dimension attribute, if present,
must specify the same number of
dimensions as that declared for the
associated identifier.

6. The attribute BIT may appear only with
a BIT identifier; CHARACTER may appear
only with a CHARACTER identifier.

7. A structure element name, other than
the major structure name, may appear
only if the relative structuring of
the entire structure appears as in the
DECLARE statement for that structure.

Syntax rules 8 and 9 apply only to
Option 2:

8. The based variable appearing in the
ALLOCATE statement may be an element
variable, an array, or a major
structure. When it is a major
structure, only the major structure
name is specified.

9. The SET clause, if present, may appear
preceding or following the IN clause.

General rules:

Rules 1 through 6 apply only to Option 1:

1. When Option 1 is used, an ALLOCATE
statement for an identifier for which
storage was allocated and not freed
causes storage for the identifier to
be "pushed down" or stacked. This
pushing down creates a new generation
of data for the identifier. When
storage for this identifier is freed,
using the FREE statement, storage is
"popped up" or removed from the stack.

2. Bounds for arrays and lengths of
strings are fixed at the execution of
an ALLOCATE statement.

a. If a bound or length is explicitly
specified in an ALLOCATE
statement, that bound or length

354

overrides any bound or length
given in the DECLARE statement.

b. If a bound or length is specified
by an asterisk in an ALLOCATE
statement, that bound or length is
taken from the current generation.
If no generation of the variable
exists, the bound or length is
undefined.

c. Either the ALLOCATE statement or
the DECLARE statement must specify
any necessary dimension size, or
length attributes for an
identifier. Any expression taken
from the DECLARE statement is
evaluated at the point of
allocation using the condition
enabling of the ALLOCATE
statement, although the names are
interpreted in the environment of
the DECLARE statement.

d. If, in either an ALLOCATE or a
DECLARE statement, bounds,
lengths, or area sizes are
specified by expressions that
contain references to the variable
being allocated, the expressions
are evaluated using the value of
the most recent generation of the
variable.

3. Upon allocation of an identifier,
initial values are assigned to it if
the identifier has an INITIAL
attribute in either the ALLOCATE
statement or DECLARE statement.
Expressions or a CALL option in the
INITIAL attribute are executed at the
point of allocation, using the
condition enabling of the ALLOCATE
statement, although the names are
interpreted in the environment of the
declaration. If an INITIAL attribute
appears in both DECLARE and ALLOCATE
statements, the INITIAL attribute in
the ALLOCATE statement is used. If
initialization involves reference to
the variable being allocated, the
reference will be to the new
generation of the variable.

4. To determine whether or not storage
has been allocated for an identifier
the built-in function ALLOCATION may
be used.

5. A parameter that is declared
CONTROLLED may be specified in an
ALLOCATE statement.

6. Any evaluations performed at the time
the ALLOCATE statement is executed
(e.g., evaluation of expressions in an
INITIAL attribute) must not be

interdependent; they cannot depend on
each other at the same time.

Rules 7 through 12 apply only to
Option 2:

7. When Option 2 is used, storage is not
"pushed down" or stacked. In this
case, reference may be made to any
generation of a based variable through
a pointer variable.

8. The SET clause indicates the pointer
variable that is to receive the value
identifying the allocation. The SET
clause need not name the pointer
variable declared with the based
variable. If the SET clause is
omitted, the pointer that was declared
with the based variable is set.

9. If the IN clause appears in the
ALLOCATE statement, storage will be
allocated in the named area, for the
based variable. If sufficient storage
does not exist within this area, the
AREA condition will be raised.

10. The amount of storage allocated for a
based variable depends on its
attributes, and on its dimensions and
length specifications if these are
applicable at the time of allocation.
These attributes are determined from
the declaration of the based variable,
and additional attributes may not be
specified in the ALLOCATE statement.
A based structure may contain one
adjustable array bound or string
length, whose value is taken, on
allocation, from the current value of
a variable outside the structure (see
"The REFER Option", in Chapter 14,
"Based Variables and List
Processing.") Note that the asterisk
notation for bounds and length is not
permitted for based variables.

11. If the area variable is an array, the
subscripts must be specified with the
area variable.

12. A based variable transferred as an
argument to a procedure cannot appear
in an ALLOCATE statement in the called
procedure.

Examples:

1. The following examples illustrate the
use of the ALLOCATE statement for a
controlled identifier:

DECLARE A(N1,N2) CONTROLLED ;

N1, N2 = 10;
ALLOCATE A; 	The bounds are 10 and

10

Section J: Statements 355

ALLOCATE A 	The bounds are K1 and
(K1,K2); 	K2 which override N1

and N2.
N1 = N1 + 1;
ALLOCATE A; 	The bounds are 11 and

10.
ALLOCATE A 	The bounds are 11 and

(*,*); 	 10.
ALLOCATE A 	The bounds are J1 and

(J1, J2); 	J2.

2. The following example illustrates the
use of the ALLOCATE statement when the
DECLARE statement contains asterisks
for the length of a controlled bit
string B:

DECLARE B BIT (*) VARYING CONTROLLED ;

ALLOCATE B 	Invalid; violates rule
BIT (*); 	 2b.

ALLOCATE B; 	Invalid; violates rule
2b.

ALLOCATE B 	The maximum length is
BIT (N); 	N.

ALLOCATE B CHAR- Invalid; violates syn-
ACTER (4); 	tax rule 5.

ALLOCATE B 	The maximum length is
BIT (8); 	8.

3. The following example illustrates the
use of the built-in function
ALLOCATION and of the INITIAL
attribute for a controlled variable in
an ALLOCATE statement:

DECLARE A(N,N) CONTROLLED INITIAL
((N*N)0);

IF ALLOCATION (A) THEN ALLOCATE A
INITIAL (1,(N-1) ((N)0,1));

ALLOCATE A;

4. The following example illustrates
three uses of Option 2 of the ALLOCATE
statement for based identifiers.

DECLARE VALUE BASED (P),
RATES BASED (Q),
1 GROUP BASED (R),

2 DIM FIXED BINARY,
2 VALUES (N REFER (DIM)),

TABLE AREA BASED (S),
N FIXED BINARY,
T POINTER;

a. ALLOCATE VALUE SET (P);
Allocates storage for the based
variable VALUE and sets the
pointer variable P to identify the
particular allocation.

b. ALLOCATE GROUP SET (R);

Allocates storage for the
structure GROUP, and sets the
pointer variable R to identify the
particular allocation. The
current value of N is used to
determine the bound of VALUES, and
this value is assigned to DIM.

C. ALLOCATE RATES SET (T) IN (TABLE);
Allocates storage within the area
S-> TABLE for the variable RATES.
The pointer variable T is set to
identify the location within TABLE
at which RATES is allocated.

The Assignment Statement

Function:

The assignment statement is used to
evaluate an expression and to assign its
value to one or more target variables; the
target variables may be element, array, or
structure variables. The target variables
may be indicated by pseudo-variables.

General formats:

The assignment statement has 3 general
format options. They are given in Figure
J-1.

Syntax rules:

1. In Option 2, each target variable must
be an array. If the right-hand side
contains arrays of structures, then
all target variables must be arrays of
structures. The BY NAME option may be
given only when the right-hand side
contains at least one structure.

2. In Option 3, each target variable must
be a structure.

General rules:

1. Aggregate assignments (Options 2 and
3) are expanded into a series of
element assignments according to rules
5 through 8.

2. An element assignment is performed as
follows:

a. Subscripts of the target
variables, and the second and
third arguments of SUBSTR
pseudo-variable references, are
evaluated from left to right.

b. The expression on the right-hand
side is then evaluated.

c. For each target variable (in left

356

Figure J-1. General Formats of the Assignment Statement

to right order), the expression is
converted to the characteristics
of the target variable according
to rules for data conversion
(except that whenever a conversion
of arithmetic base is involved,
the value is converted directly to
the precision of the target
variable). The converted value is
then assigned to the target
variable.

3. For the F Compiler, multiple
assignments are limited by the
following rule:

Count 11 for each target of a multiple
assignment, add 3 for each
pseudo-variable and then add 11 for
each argument of a pseudo-variable.
The total must not exceed 4,085.

4. The following rules apply to string
element assignment:

a. The assignment is performed from
left to right, starting with the
leftmost position.

b. If the target variable is a
fixed-length string, the
expression value is truncated on
the right if it is too long or
padded on the right (with blanks
for character string, zeros for
bit strings) if the value is too
short. (Note that a string
pseudo-variable is considered to
be a fixed-length string). The
resulting value is assigned to the
target.

c. If the target is a VARYING string
and the value of the expression is
longer than the maximum length

declared for the variable, the
value is truncated on the right.
The target string obtains a
current length equal to its
maximum length. If the value of
the expression is not longer than
the maximum length, the value is
assigned; the target string
obtains a current length equal to
the length of the value.

5. The following rules apply to other
element assignments:

a. If the target is an area variable,
the expression must be an area
variable or function. The AREA
condition will be raised by this
assignment if the size of the
target area is insufficient for
the current extent of the area
being assigned.

b. If the target is a pointer
variable, the expression can only
be a pointer (or offset) variable
or a pointer (or offset) function
reference. If the expression is
of offset type, its value is
converted to pointer.

c. If the target is an offset
variable, the expression can only
be an offset (or pointer) variable
or an offset (or pointer) function
reference. If the expression is
of pointer type, its value is
converted to offset.

d. If the target is a label variable,
the expression can only be a label
variable or label constant.
Environmental information (i.e.,
information that identifies the
invocation of the block) is always

Section 3: Statements 357

assigned to the label variable.

e. If the target is an event
variable, the expression can only
be an event variable. The
assignment is uninterruptable, and
it involves both the completion
and status values. An event
variable does not become active
when it has an active event
variable assigned to it. It is an
error to assign to an active event
variable.

f. If the target is a STATUS
pseudo-variable, a value can be
assigned whether or not the event
variable is active. It is an
error to assign to a COMPLETION
pseudo-variable if the named event
variable is active.

6. The first target variable in an
aggregate assignment is known as the
master variable. If the master
variable is an array, then an array
expansion (Rule 6) is performed;
otherwise, a structure expansion
(Rules 7 and 8) is performed. The
CHECK condition for assignment to a
target variable is not raised during
the assignment; it is raised (when
suitably enabled) after the assignment
is complete. Such CHECK conditions
are raised in the written order of the
enabled identifiers. In the case of
BY NAME assignment, the CHECK
condition for the target variable is
raised regardless of whether any value
is assigned to an item. The label
prefix of the original statement is
applied to a null statement preceding
the other generated statements.

7. In Option 2, all array operands must
have the same number of dimensions and
identical bounds. The array
assignment is expanded into a loop of
the form:

LABEL: DO j1 = LBOUND(master-variable,1) TO
HBOUND(master-variable,1);

DO j2 = LBOUND(master-variable,2) TO
HBOUND(master-variable,2);

DO jn = LBOUND(master-variable,n) TO
HBOUND(master-variable, n);

generated assignment statement

END LABEL;

In this expansion, n is the number

of dimensions of the master variable
that are to participate in the
assignment. In the generated
assignment statement, all array
operands are fully subscripted, using
(from left to right) the dummy
variables j1 to jn. If an array
operand appears with no subscripts, it
will only have the subscripts j1 to
jn; if cross-section notation is used,
the asterisks are replaced by j1 to
jn. If the original assignment
statement (which may have been
generated by Rule 7 or Rule 8) has a
condition prefix, the generated
assignment statement is given this
condition prefix. If the original
assignment statement (which may have
been generated by Rule 8) has a BY
NAME option, the generated assignment
statement is given a BY NAME option.
If the generated assignment statement
is a structure assignment, it is
expanded as given below.

8. In Option 3, where the BY NAME option
is not specified, the following rules
apply:

a. None of the operands can he
arrays, although they may be
structures that contain arrays.

b. All of the structure operands must
have the same number, k, of
immediately contained items.

c. The assignment statement (which
may have been generated by Rule 6)
is replaced by k generated
assignment statements. The ith
generated assignment statement is
derived from the original
assignment statement by replacing
each. structure operand by its ith
contained item; such generated
assignment statements may require
further expansion according to
Rule 6 or Rule 7. All generated
assignment statements are given
the condition prefix of the
original statement.

9. In Option 3, where the BY NAME option
is given, the structure assignment,
which may have been generated by Rule
6, is expanded according to steps (a)
through (d) below. None of the
operands can be arrays.

a. The first item immediately
contained in the master variable
is considered.

b. If each structure operand and
target variable has an immediately
contained item with the same
identifier, an assignment

358

statement is generated as follows:
the statement is derived by
replacing each structure operand
and target variable with its
immediately contained item that
has this identifier. If any
structure contains no such
identifier, no statement is
generated. If the generated
assignment is a structure or
array-of-structures assignment, BY
NAME is appended. The first
generated assignment is given the
label prefix of the original
assignment statement; all
generated assignment statements
are given the condition prefix of
the original assignment statement.

c. Step b is repeated for each of the
items immediately contained in the
master variable. The assignments
are generated in the order of the
items contained in the master
variable.

d. Steps a through c may generate
further array and structure
assignments. These are expanded
according to Rules 6 through 8.

Examples:

1. Suppose that the following three
structures have been declared.

1 ONE 	 1 TWO
2 PART1 	 2 PART1

3 RED 	 3 RED
3 WHITE 	 3 GREEN
3 BLUE 	 3 WHITE

2 PART2 	 2 PART2
3 GREEN 	 3 BLUE
3 YELLOW 	3 YELLOW
3 ORANGE(3) 	3 ORANGE(3)

2 PART3
3 BLACK
3 WHITE

1 THREE
3 PART1

5 BLACK
5 WHITE
5 RED

3 PART2
5 YELLOW
5 WHITE
5 ORANGE(3)
5 PURPLE

Consider the following assignment:

ONE = TWO - 2 * THREE, BY NAME;

By Rule 8 this generates:

ONE.PART1 = TWO.PART1 - 2 *
THREE.PART1, BY NAME;

ONE.PART2 = TWO.PART2 - 2 *
THREE.PART2, BY NAME;

Applying Rule 8 again, these
statements are replaced by:

ONE.PART1.RED = TWO.PART1.RED
- 2 * THREE.PART1.RED;

ONE.PART1.WHITE = TWO.PART1.WHITE
- 2 * THREE.PART1.WHITE;

ONE.PART2.YELLOW = TWO.PART2.YELLOW
- 2 * THREE.PART2.YELLOW;

ONE.PART2.ORANGE = TWO.PART2.ORANGE
- 2 * THREE.PART2.ORANGE;

The final assignment is expanded
according to Rule 6.

2. The following example illustrates
array assignment (Option 2):

Given the array A 	2 	4
3 	6
1 	7
4 	8

and the array B 	1 	5
7 	8
3 	4
6 	3

Consider the assignment statement:

A = (A+B)**2-A(1,1);

After execution, A has the value
7 74
93 189
9 114

93 114

Note that the new value for A(1,1)
which is 7, is used in evaluating the
expression for all other elements.

3. The following example illustrates
string assignment:

Given:

A is a fixed-length string whose
value is 'XZ/BQ'.

B is a varying-length string of
maximum length 8 whose value is
'MAFY'.

C is a fixed-length string of
length 3.

D is a varying-length string of
maximum length 5.

Then in the statement:

C=A, the value of C is 'XZ/'.
C='X', the value of C is 'Xbb'.
D=B, the value of D is 'MAFY'.

Section J: Statements 359

D=SUBSTR(A,2,3)||SUBSTR(A,2,3),
the value of D is 'Z/BZ/'.

SUBSTR(A,2,4)=B, the value of A is
'XMAFY'.

SUBSTR(B,2,2)='R', the value of B
is 'MRbY'.

SUBSTR(B,2)='R', the value of B is
'MRbb'.

The BEGIN Statement

Function:

The BEGIN statement heads and identifies
a begin block.

General format:

BEGIN [ORDER|REORDER];

Syntax rules:

1. A label of a BEGIN statement may be
subscripted, but such a label cannot
appear after an END statement.

2. ORDER and REORDER are options used to
control the optimization performed by
the compiler. The selected option
applies to all nested blocks unless
overridden; if neither option is
specified, the option that applies to
the containing block will apply to the
begin block. (If the containing block
is an external procedure, the
procedure will have the ORDER option
unless REORDER has been explicitly
specified with the PROCEDURE
statement.)

General rules:

1. A BEGIN statement is used in
conjunction with an END statement to
delimit a begin block. A complete
discussion of begin blocks can be
found in Part I, Chapter 6, "Blocks,
Flow of Control, and Storage
Allocation."

2. The ORDER and REORDER options specify,
for optimization purposes, the degree
of language stringency to be observed
during compilation of the block. The
strict rules require that the source
program should be compiled so as to be
executed in the order specified by the
sequence of the statements in the
source program (see "Control
Statements" in Chapter 5, "Statement
Classification"), even if the code
could be reordered so as to produce
the same result more efficiently. The
relaxation allowed by REORDER is such

that if computational or system action
interrupts occur during execution of
the block, the result is not
necessarily the same as it would be
under the strict rules.

3. The ORDER option specifies that the
normal language rules are not to be
relaxed; i.e., any optimization must
be such that the execution of a block
always produces a result that is in
accordance with the strict definition
of PL/I. This means that the values
of variables set by execution of all
statements prior to computational or
system action interrupts are
guaranteed in an on-unit entered as a
result of the interrupt, or anywhere
in the program afterwards. Note that
the strict definition now allows the
compiler to optimize common
expressions, where safely possible, by
evaluating them once only and saving
the result, rather than re-evaluating
for each reference. (A common
expression is an expression that
occurs more than once in a program but
is obviously intended to result in the
same value each time that it is
evaluated, i.e., if a later expression
is identical to an earlier expression,
with no intervening modification to
any operand, the expressions are said
to be common.)

4. The REORDER option specifies that
execution of the block must produce a
result that is in accordance with the
strict definition of PL/I unless a
computational or system action
interrupt occurs during execution of
the block; the result is then allowed
to deviate as follows:

a. After a computational or system
action interrupt has occurred
during execution of the block, the
values of variables modified,
allocated, or freed in the block
are guaranteed only after normal
return from an on-unit or when
accessed by the ONCHAR and
ONSOURCE condition built-in
functions.

b. The values of variables modified,
allocated, or freed in an on-unit
for a computational or system
action condition (or in a block
activated by such an on-unit) are
not guaranteed on return from the
on-unit into the block, except for
values modified by the ONCHAR and
ONSOURCE pseudo-variables.

A program is in error if a
computational or system action
interrupt occurs during the execution

360

of the block and this interrupt is
followed by a reference to a variable
whose value is not guaranteed in such
circumstances.

(See also Chapter 17: "Optimization and
Efficient Performance.")

The CALL Statement

Function:

The CALL statement invokes a procedure
and causes control to be transferred to a
specified entry point of the procedure.

The CALL statement is also used for
linking a PL/I program to library modules
that interface to the operating system
facilities including checkpoint restart,
sort/merge and storage dumping. For
details see the publication: IBM System/360
Operating System PL/I (F) Programmer's
Guide.

General format:

CALL entry-name

[(argument [,argument] . . .)}

[TASK [(scalar-task-name)]]
[EVENT (scalar-event-name)]
[PRIORITY (expression)];

Syntax rules:

1. The entry name, which can be a generic
name, represents the entry point of
the procedure invoked.

2. An argument cannot be a condition
name.

3. The TASK, EVENT, and PRIORITY options
can appear in any order.

General rules:

1. The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to be executed
asynchronously. Note that if either
the EVENT option or the PRIORITY
option, or both, are used without the
TASK option, the created task will
have no name. (See Part I, Chapter
15, "Multitasking.")

2. When the TASK option is used, the task
name, if given, is associated with the
task created by the CALL. Reference
to this name enables the priority of

the task to be controlled at some
other point by the use of the PRIORITY
pseudo-variable and built-in function.

3. When the EVENT option is used, the
event name is associated with the
completion of the task created by the
CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a
WAIT statement.

Upon execution of the CALL
statement, the event variable is made
active, and the completion value is
set to '0'B and the status value to 0.
Upon termination of the created task,
the completion value is set to '1'B
and, unless the task has been
terminated by a RETURN or END
statement, the status is set to 1 if
still zero.

4. If the PRIORITY option is used, the
expression in the PRIORITY option is
evaluated to an integer m, of an
implementation-defined precision
(15,0). The priority of the named
task is then made m relative to the
task in which the CALL is executed.

If a CALL statement with the EVENT
or TASK option does not have the
PRIORITY option, the priority of the
invoked task is made equal to that of
the task variable in the TASK option,
if there is one, or else made equal to
the priority of the invoking task.

5. Expressions in these options, as well
as any argument expressions, are
evaluated in the task in which the
call is executed. This includes
execution of any on-units entered as
the result of the evaluations.

6. The environment of the invoked
procedure is established after
evaluation of the expressions named in
Rule 5, and before the procedure is
invoked.

7. See Part I, Chapter 12, "Subroutines
and Functions" for detailed
descriptions of the interaction of
arguments with the parameters that
represent these arguments in the
invoked procedure.

Section J: Statements 361

Examples:

1. CALL CRITICAL_PATH (A,B*C,D);

 CRITICAL_PATH: PROCEDURE(ALPHA,BETA,
GAMMA);

END;

2. CALL PAYROLL (NAME, DATE, HRRATE);

3. CALL PRINT (A,B) TASK (T2) EVENT (ET2)
PRIORITY (-2);

The CLOSE Statement

Function:

The CLOSE statement dissociates the
named file from the data set with which it
was associated by opening in the current
task.

General format:

CLOSE FILE (file-name) [,FILE
(file-name)]...;

General rules:

1. The FILE(filename) option specifies
which file is to be closed. It must
appear once. Several files can be
closed by one CLOSE statement.

2. A closed file can be reopened.

3. Closing an unopened file, or an
already closed file, has no effect.

4. The CLOSE statement cannot be used to
close a file in a task different from
the one that opened the file.

5. If a file is not closed by a CLOSE
statement, it is automatically closed
at the completion of the task in which
it was opened.

6. All input/output events that have not
been completed before the file is
closed are set complete, with a status
value of 1.

7. A CLOSE statement unlocks all records
previously locked by the file in the
task in which the CLOSE appears.

Examples:

1. CLOSE FILE (MASTER);

The file, MASTER, is closed, and the
facilities allocated to it are
released.

2. CLOSE FILE (TABLEA), FILE (TABLED);

The two files, TABLEA and TABLEB are
closed in the same way as MASTER, in
the preceding example.

The DECLARE Statement

Function:

The DECLARE statement is the principal
method for explicitly declaring attributes
of names.

General format:

DECLARE
[level] identifier [attribute]...
[,[level] identifier [attribute]...]...;

Syntax rules:

1. Any number of identifiers ray be
declared in one DECLARE statement.

2. "Level" is a nonzero unsigned decimal
integer constant. If a level number
is not specified, level 1 is assumed
tor all element and array variables.
Level 1 must be specified for all
major structure names. A blank space
must separate a level number from the
identifier following it.

3. In general, attributes must
immediately follow the identifier to
which they apply as shown in the
general format. However, attributes
can be factored (see "Factoring of
Attributes" in Section I,
"Attributes").

General rules:

1. A particular level 1 identifier can be
specified in only one DECLARE
statement within a particular block.
All attributes given explicitly for
that identifier must be declared
together in that DECLARE statement.
(Note, however, that identifiers
having the FILE attribute may be given
attributes in an OPEN statement as
well. See "The OPEN Statement" in
this section and in Part I, Chapter 8,
"Input and Output," for further
information.)

362

2. Attributes of external names, in
separate blocks and compilations, must
be consistent.

3. Labels may be prefixed to DECLARE
statements (however, such labels are
treated as comments and, hence, have
no meaning). Condition prefixes
cannot be attached to a DECLARE
statement.

The DELAY Statement

Function:

The DELAY statement causes the execution
of a task to be suspended for a specified
period of time.

General format:

DELAY (element-expression);

General rule:

Execution of the DELAY statement causes
the element expression to be evaluated and
converted to an integer n; execution is
then suspended for n milliseconds.

Example:

DELAY (10);

This statement causes execution of the
task to be suspended for ten milliseconds.

The DELETE Statement

Function:

The DELETE statement deletes a record
from an UPDATE file.

General format:

DELETE FILE (file-name) [KEY(expression)]

[EVENT(event-variable)];

General rules:

1. The options may appear in any order.

2. The FILE(filename) option specifies
the UPDATE file; it must be specified.

3. The KEY option must be specified if
the file is a DIRECT UPDATE file; it
cannot be specified otherwise. The

expression is converted to a character
string and determines which record is
to be deleted.

4. If the file is a SEQUENTIAL UPDATE
file, the record to be deleted is the
last record that was read; the data
set organization must be INDEXED.

5. The EVENT option allows processing to
continue while a record is being
deleted. This option cannot be
specified for a SEQUENTIAL BUFFERED
file.

When control reaches a DELETE
statement containing this option, the
"event variable" is made active (that
is, it cannot be associated with
another event) and is given the
completion value '0'B, provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see "Note" below). The event
variable remains active and retains
its '0'B completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following can
occur:

a. If the DELETE statement has been
executed successfully and neither
of the conditions TRANSMIT or KEY
has been raised as a result of the
DELETE, the event variable is set
complete, given the completion
value '1'B, and the event variable
is made inactive, that is, can be
associated with another event.

b. If the DELETE statement has
resulted in the raising of
TRANSMIT or KEY, the interrupt for
each of these conditions does not
occur until the WAIT is
encountered. At such time, the
corresponding on-units (if any)
are entered in the order in which
the conditions were raised. After
a return from the final on-unit,
or if one of the on-units is
terminated by a GO TO statement,
the event variable is given the
completion value '1'B and is made
inactive.

Note: If the DELETE statement causes an
implicit file opening that results in the
raising of UNDEFINEDFILE, the on-unit
associated with this condition is entered
immediately and the event variable remains
unchanged; that is, the event variable
remains inactive and retains the same value
it had when the DELETE was encountered. If
the on-unit does not correct the condition,
then, upon normal return from the on-unit,
the ERROR condition is raised; if the

Section J: Statements 363

condition is corrected in the on-unit, that
is, if the file is opened successfully,
then, upon normal return from the on-unit,
the event variable is set to '0'B, it is
made active, and execution of the DELETE
statement continues.

6. The DELETE statement unlocks a record
only if that record had been locked in
the same task in which the DELETE
appears.

7. The DELETE statement can cause
implicit opening of a file.

Example:

DELETE FILE(ALPHA) KEY (DKEY);

This statement causes the record
identified by DKEY to be deleted from the
data set associated with the file ALPHA.
If the record was previously locked in the
same task, it is unlocked.

The DISPLAY Statement

Function:

The DISPLAY statement causes a message
to be displayed to the machine operator. A
response may be requested.

General format:

Option 1.

DISPLAY (element-expression);

Option 2.

DISPLAY (element-expression)
REPLY (character-variable)
[EVENT (event-variable)];

General rules:

1. Execution of the DISPLAY statement
causes the element expression to be
evaluated and, where necessary,
converted to a varying character
string of implementation-defined
maximum length (72 characters for the
F Compiler). This character string is
the message to be displayed.

2. In Option 2, the character variable
receives a string that is a message to
be supplied by the operator. For the
F Compiler, the message cannot exceed
126 characters.

3. In Option 2, if the EVENT option is
not specified, execution of the

program is suspended until the
operator's message is received. In
option 1, execution continues
uninterrupted.

4. If the EVENT (event-variable) option
is given, execution will not wait for
the reply to be completed before
continuing with subsequent statements.
The completion part of the event
variable will be given the value '0'B
until the reply is completed, when it
will be given the value '1'B. The
reply is considered complete only
after the execution of a WAIT
statement naming the event.

5. The EVENT and REPLY options can be
given in either order.

6. The effect of the DISPLAY statement
when multiple consoles are in use will
depend on the default route code and
descriptor code. For details of these
codes, see IBM System/360 Operating
System: PL/I (F) Programmer's Guide.

Example:

DISPLAY ('END OF JOB');

This statement causes the message "END
OF JOB" to be displayed.

The DO Statement

Function:

The DO statement heads a DO-group and
can also be used to specify repetitive
execution of the statements within the
group.

General formats:

The three format types for the DO
statement are shown in Figure J-2.

Syntax rules:

1. In all three types, the DO statement
is used in conjunction with the END
statement to delimit a DO-group. Only
Type 1 does not provide for the
repetitive execution of the statements
within the group.

2. In Type 3, the variable or
pseudo-variable must represent a
single element; "variable" may be
subscripted and/or qualified. Real
arithmetic variables are generally
used, but label, string, and complex

364

Figure J-2. General Format of the DO Statement

variables are allowed, provided that
the expansions given in the general
rules below result in valid PL/I
programs. Note, however, that if
"variable" is a label variable, each
"specification" must have the
following form:

(element-label-variable

label-constant

[WHILE (expression)]

3. Each expression in a specification
rust be an element expression.

4. If "BY expression3" is omitted from a
"specification," and if "TO
expression2" is included,
"expression3" is assumed to be 1.

5. If "TO expression2" is omitted from a
"specification," repetitive execution
continues until it is terminated by
the WHILE clause or by some statement
within the group.

6. If both "TO expression2" and "BY
expression3" are omitted from a
specification, it implies a single
execution of the group, with the
control variable having the value of
"expression1". If "WHILE expression4"
is included, this single execution
will not take place unless
"expression4" is true.

General rules:

1. In Type 1, the DO statement only
delimits the start of a DO-group; it
does not provide for repetitive
execution.

2. In Type 2, the DO statement delimits
the start of a DO-group and provides

for repetitive execution as defined by
the following:

LABEL: DO WHILE (expression);
statement-1

statement-n
END;

NEXT: statement /*STATEMENT
FOLLOWING THE DO GROUP*/

The above is exactly equivalent to the
following expansion:

LABEL: IF (expression) THEN; ELSE
GO TO NEXT;

statement-1

statement-n
GO TO LABEL;

NEXT: statement /*STATEMENT
FOLLOWING THE DO GROUP*/

3. In Type 3, the DO statement delimits
the start of a DO-group and provides
for controlled repetitive execution as
defined by the following:

LABEL: DO variable (ai,...,an)=
expression1
TO expression2

BY expression3
WHILE (expression4);
statement-1

statement-m
LABEL1: END;

NEXT: statement

Section J: Statements 365

This is exactly equivalent to the
following expansion:

In the above expansion, a1,...,an are
expressions that may appear as
subscripts of the control variable;
temp1....tempn are compiler-created
work areas, with the attributes BINARY
FIXED(15), to which the expression
values are assigned; v is equivalent
to "variable" with the associated
"temp" subscripts; "el," "e2," and
"e3" are compiler-created work areas
having the attributes of "
expression1," "expression2," and "expres-
sion3," respectively. In the simplest
cases, there are no subscripts (i.e.,
n=0) and the first statement in the
expansion is therefore el=expressionl.

Additional rules for the above
expansion follow:

a. The above expansion only shows the
result of one "specification." If
the DO statement contains more
than one "specification," the
statement labeled NEXT is the
first statement in the expansion
for the next "specification." The
second expansion is analogous to
the first expansion in every
respect. Thus, if a second
"specification" appeared in the DO
statement, the second expansion
would look like this:

Note that statements 1 through m are
not actually duplicated in the
program.

b. If the WHILE clause is omitted,
the IF statement immediately
preceding statement-1 in the
expansion is omitted.

c. If "TO expression2" is omitted,
the statement "e2=expression2" and
the IF statement identified by
LABEL2 are omitted.

d. If both "TO expression2" and "BY
expression3" are omitted, all
statements involving e2 and e3, as
well as the statement GO TO
LABEL2, are omitted.

4. The WHILE clause in Types 2 and 3
specifies that before each repetition
of statement execution, the associated
element expression is evaluated, and,
if necessary, converted to a bit
string. If any bit in the resulting
string is 1, the statements of the
DO-group are executed. If all bits
are 0, then, for Type 2, execution of
the DO-group is terminated, while for
Type 3, only the execution associated
with the "specification" containing
the WHILE clause is terminated;
repetitive execution for the next
"specification," if one exists, then
begins.

5. In a "specification," "expression1"
represents the initial value of the
control variable (i.e., "variable" or
"pseudo-variable"); "expression3"
represents the increment to be added
to the control variable after each
execution of the statements in the
group; expression2 represents the
terminating value of the control

366

variable. Execution of the statements
in a DO-group terminates for a
"specification" as soon as the value
of the control variable is outside the
range defined by "expression1" and
"expression2." When execution for the
last "specification" is terminated,
control, in general, passes to the
statement following the DO-group.

6. Control may transfer into a DO-group
from outside the DO-group only if the
DO-group is delimited by the DO
statement in Type 1; that is, only if
repetitive execution is not specified.
Consequently, repetitive DO-groups
cannot contain ENTRY statements.

7. The effect of allocating or freeing
the control variable within the
DO-group is undefined.

The END Statement

Function:

The END statement terminates blocks and
groups.

General format:

END [label];

Syntax rules:

If "label" is specified, it cannot be an
element of a label array; that is, it
cannot be subscripted.

General rules:

1. If a label follows END, the statement
terminates the unterminated group or
block headed by the nearest preceding
DO, BEGIN, or PROCEDURE statement
having that label. It also terminates
any unterminated groups or blocks
physically within that group or block.

2. If a label does not follow END, the
statement terminates that group or
block headed by the nearest preceding
DO, BEGIN, or PROCEDURE statement for
which there is no corresponding END
statement.

3. If control reaches an END statement
for a procedure, it is treated as a
RETURN statement.

The ENTRY Statement

Function:

The ENTRY statement specifies a
secondary entry point of a procedure.

General format:

entry-name: [entry-name:]...
ENTRY [(parameter [,parameter]...)]

[RETURNS(attribute...)]:

Syntax rules:

1. The only attributes that may be
specified in the RETURNS option of an
ENTRY statement are the arithmetic,
string, POINTER, OFFSET, AREA, and
PICTURE attributes. The attributes
specified determine the
characteristics of the value returned
by the procedure when it is invoked as
a function at this entry point.

2. A condition prefix cannot be specified
for an ENTRY statement.

General rules:

1. The relationship established between
the parameters of a secondary entry
point and the arguments passed to that
entry point is exactly the same as
that established for primary entry
point parameters and arguments. See
Part I, Chapter 12, "Subroutines and
Functions," for a complete discussion
of this subject.

2. As stated in syntax rule 1, the
attributes specified in the RETURNS
option of an ENTRY statement determine
the characteristics of the value
returned by the procedure when it is
invoked as a function at this entry
point. The value being returned by
the procedure (i.e., the value of the
expression in a RETURN statement) is
converted, if necessary, to correspond
to the specified attributes. If the
RETURNS option is omitted, default
attributes are applied, according to
the first letter of the entry name
used to invoke the entry point.

3. If an ENTRY statement has more than
one label, each label is interpreted
as though it were a single entry name
for a separate ENTRY statement having
the same parameter list and explicit
attribute specification. For example,
consider the statement:

A: I: ENTRY;

Section J: Statements 367

This statement is effectively the same
as:

A: ENTRY;

I: ENTRY;

Since the attributes of the returned
value are not explicitly stated, the
characteristics of the value returned
by the procedure will depend on
whether the entry point has been
invoked as A or I.

4. The ENTRY statement must be internal
to the procedure for which it defines
a secondary entry point. It may not
be internal to any block contained in
this procedure; nor may it be within a
DC-group that specifies repetitive
execution.

The EXIT Statement

Function:

The EXIT statement causes immediate
termination of the task that contains the
statement and all tasks attached by this
task. If the EXIT statement is executed in
a major task, it is equivalent to a STOP
statement.

General format:

EXIT;

General rule:

If executed in a major task, EXIT causes
the FINISH condition to be raised in that
task. On normal return from the FINISH
on-unit, the task executing the statement,
and all of its descendant tasks are
terminated. The completion values f the
event variables associated with these tasks
are set to '1'B, and their status values to
1 (unless they are already non-zero).

The FORMAT Statement

Function:

The FORMAT statement specifies a format
list that can be used by edit-directed
transmission statements to control the
format of the data being transmitted.

General format:

label: [label:]... FORMAT (format-list);

Syntax rules:

1. The "format list" must be specified
according to the rules governing
format list specifications with
edit-directed transmission as
described in Part I, Chapter 9,
"Stream-Oriented Transmission."

2. At least one "label" must be specified
for a FORMAT statement. One of the
labels (or a label variable having the
value of one of the labels) is the
statement label designator appearing
in a remote format item. None of the
labels can be specified in a GO TO
statement.

General rules:

1. A GET or PUT statement may include a
remote format item, R, in the format
list of an edit-directed data
specification. That portion of the
format list represented by R must be
supplied by a FORMAT statement
identified by the statement label
specified with R.

2. The remote format item and the FORMAT
statement must be internal to the same
block.

3. If a condition prefix is associated
with a FORMAT statement, it must be
identical to the condition prefix
associated with the GET or PUT
statement referring to that FORMAT
statement.

4. When a FORMAT statement is encountered
in normal sequential flow, control
passes around it, and the CHECK
condition will not be raised for a
statement label attached to it.

The FREE Statement

Function:

The FREE statement causes the storage
allocated for specified based or controlled
variables to be freed. For controlled
variables, the next most recent allocation
in the task is made available, and
subsequent references in the task to the
identifier refer to that allocation.

368

General formats:

Option 1

FREE controlled-variable
[,controlled-variable]...;

Option 2

FREE [pointer-qualifier ->]
based-variable[IN(area-variable)]
[,[pointer-qualifier- >]
based-variable
[IN(area-variable)]]...;

Syntax rules:

1. In Option 1, the "controlled variable"
is an element, array, or major
structure of the controlled storage
class.

2. In Option 2, the "based variable" must
be an unsubscripted, level-one based
variable.

3. The forms of Option 1 and Option 2 can
be combined in the same FREE
statement.

General rules:

1. Controlled storage allocated in a task
cannot be freed by a descendant task.

2. If a specified nonbased identifier has
no allocated storage at the time the
FREE statement is executed, it is an
error.

Rules 3 through 6 apply only to Option 2.

3. If the based variable is not qualified
by pointer qualification, the pointer
declared with the based variable will
be used to identify the generation of
data occupying the portion of storage
to be freed.

4. The amount of storage freed depends
upon the attributes of the based
variable, including bounds and/or
lengths at the time the storage is
freed, if applicable. The user is
responsible for determining that this
amount coincides with the amount
allocated. If the variable has not
been allocated, the results are
unpredictable.

5. A based variable can be used to free
storage only if that storage has been
allocated for a based variable having
identical data attributes, including
values of bounds, lengths, and area
size expressions.

6. The IN option must be specified if the

storage to be freed has been allocated
using the IN option, and it must have
been allocated in the area specified
in the FREE statement. The IN option
cannot appear in the FREE statement in
any other circumstances. Note that
area assignment causes allocation of
based storage in the target area; such
allocations can be freed by the IN
option naming the target area.

Examples:

1. FREE X,Y,Z;

2. The following excerpt from a procedure
illustrates the FREE statement in
conjunction with an ALLOCATE
statement:

3. In the example below, it is assumed
the declarations specified in Example
4 of the ALLOCATE statement apply.

FREE VALUE;

Frees that portion of storage which is
occupied by the allocation of VALUE
identified by pointer P.

FREE V->GROUP;

Frees that portion of storage which is
occupied by the allocation of GROUP
identified by pointer V. The value
V->DIM is used to determine the bound
of VALUES.

The GET Statement

Function:

The GET statement is a STREAM
transmission statement that can be used in
either of the following ways:

Section 3: Statements 369

1. It can cause the assignment of data
from an external source (that is, from
a data set) to one or more internal
receiving fields (that is, to one or
more variables).

2. It can cause the assignment of data
from an internal source (that is, from
a character-string variable) to one or
more internal receiving fields (that
is, to one or more variables).

General format:

GET option-list;

Following is the format of "option
list":

FILE(filename) | STRING(character-
string-name)]

[data-specification] [COPY]
[SKIP[(expression)]]

General rules:

1. If neither the FILE(filename) option
nor the STRING(character-string-name)
option appears, the file option
FILE(SYSIN) is assumed.

2. One data specification must appear
unless the SKIP option is specified.

3. The options may appear in any order.

4. The filename refers to a file which
has been associated, by opening, with
the data set which is to provide the
values. It must be a STREAM INPUT
file.

5. The "character-string name" refers to
the character string that is to
provide the data to be assigned to the
data list. This name may be a
reference to a built-in function.
Each GET operation using this option
always begins at the beginning of the
specified string. If the number of
characters in this string is less than
the total number of characters
specified by the data specification,
the ERROR condition is raised.

6. When the STRING option is used under
data-directed transmission, the ERROR
condition is raised if an identifier
within the string does not have a
match within the data specification.

7. The data specification is as described
in Part I, Chapter 9, "Stream-Oriented
Transmission."

8. If the FILE (filename) option refers
to a file that is not open in the
current task, the file is implicitly

opened in the task for stream output
transmission.

9. The COPY option, which may only be
used with the FILE(filename) option,
specifies that the source data, as
read, is to be written, without
alteration, on the standard
installation print file.

10. The SKIP option causes a new current
line to be defined for the data set.
The expression, if present, is
converted to an integer w, which must
be greater than zero. If not, the F
Compiler substitutes a value of 1.
The data set is positioned at the
start of the wth line relative to the
current line. If the expression is
omitted, SKIP(1) is assumed. The SKIP
option is always executed before any
data is transmitted.

Examples:

1. GET LIST (A,B,C);

Specifies the list-directed
transmission of the values to be
assigned to A, B and C from the file
SYSIN.

2. GET FILE (BETA) EDIT (X,Y,Z) (A(5),
F(5,2), A(10));

Specifies the edit-directed
transmission of the values assigned to
X, Y and Z from file BETA.

The GO TO Statement

Function:

The GO TO statement causes control to be
transferred to the statement identified by
the specified label.

General format:

GO TO label-constant;

GOTO 	element-label-variable;

General rules:

1. If an "element label variable" is
specified, the value of the label
variable determines the statement to
which control is transferred. Since
the label variable may have different
values at each execution of the GO TO
statement, control may not always pass
to the same statement.

370

2. A GO TO statement cannot pass control
to an inactive block.

3. A GO TO statement cannot transfer
control from outside a DO-group to a
statement inside the DO-group if the
DO-group specifies repetitive
execution, unless the GO TO terminates
a procedure or on-unit invoked from
within the DO-group.

4. If a GO TO statement transfers control
from within a block to a point not
contained within that block, the block
is terminated, Also, if the transfer
point is contained in a block that did
not directly activate the block being
terminated, all intervening blocks in
the activation sequence are also
terminated (see Part I, Chapter 6,
"Blocks, Flow of Control, and Storage
Allocation," for examples and
details). When one or more blocks are
terminated by a GO TO statement,
conditions are reinstated and
automatic variables are freed just as
if the blocks had terminated in the
usual fashion.

5. When a GO TO statement transfers
control out of a procedure that has
been invoked as a function, the
evaluation of the expression that
contained the corresponding function
reference is discontinued.

The IF Statement

Function:

The IF statement tests the value of a
specified expression and controls the flow
of execution according to the result of
that test.

General fqrmat:

IF element-expression
THEN unit-1
[ELSE unit-2]

Syntax rules:

1. Each unit is either a single statement
(except DO, END, PROCEDURE, BEGIN,
DECLARE, FORMAT, or ENTRY), a DO-
group, or a begin block.

2. The IF statement itself is not
terminated by a semicolon; however,
each "unit" specified must be
terminated by a semicolon.

3. Each "unit" may be labeled and may
have condition prefixes.

General rules:

1. The element expression is evaluated
and, if necessary, converted to a bit
string. When the ELSE clause (that
is, ELSE and its following "unit") is
specified, the following occurs:

If any bit in the string is 1,
"unit-1" is executed, and control
then passes to the statement
following the IF statement. If all
bits in the string have the value
0, "unit-1" is skipped and "unit-2"
is executed, after which control
passes to the next statement.

When the ELSE clause is not specified,
the following occurs:

If any bit in the string is 1,
"unit-1" is executed, and control
then passes to the statement
following the IF statement. If all
bits are 0, "unit-1" is not
executed and control passes to the
next statement.

Each "unit" may contain statements
that specify a transfer of control
(e.g., GO TO); hence, the normal
sequence of the IF statement may be

overridden.

2. IF statements may be nested; that is,
either "unit", or both, may itself be
an IF statement. Since each ELSE
clause is always associated with the
innermost unmatched IF in the same
block or DO-group, an ELSE with a null
statement may be required to specify a
desired sequence of control.

The LOCATE Statement

Function:

The LOCATE statement, which applies to
BUFFERED OUTPUT files, causes allocation of
a based variable in a buffer; it may also
cause transmission of a previously
allocated based variable.

General format:

LOCATE variable FILE(filename)
[SET(pointer-variable)]
[KEYFROM(expression)];

Syntax rules:

1. The options may appear in any order.

2. The "variable" must be an
unsubscripted level 1 based variable.

Section J: Statements 371

General rules:

1. The FILE(filename) option specifies
the file involved. This option must
appear.

2. Execution of a LOCATE statement causes
the specified based variable to be
allocated in the buffer. Oomponents
of the based variable that have been
specified in REFER options are
initialized. A pointer value is
assigned to the pointer variable named
in the SET option or, if the SET
option is omitted, to the pointer
variable specified in the declaration
of the based variable. The pointer
value identifies the record in the
buffer. After execution of the LOCATE
statement, values may be assigned to
the based variable for subsequent
transmission to the data set
associated with the file, which will
cccur immediately before the next
LOCATE, WRITE, or CLOSE operation on
the file, at which time the record is
freed.

3. If the KEYFROM(expression) option
appears, the value of the expression
is converted to a character string and
is used as the key of the record when
it is subsequently written. For the F
Compiler, this option must appear if
the specified file is TRANSIENT.

4. If the FILE(filename) option refers to
an unopened file, the file is opened
automatically; the effect is as if the
LOOATE statement were preceded by an
OPEN statement referring to the file.

Example:

LOCATE ALPHA SET (REC_POINT) FILE
(BETA);

The based variable ALPHA is allocated
in a buffer and REC_POINT is set to
identify ALPHA in the buffer. Values
may subsequently be assigned to ALPHA
and the record will be written in the
data set associated with file BETA
when a subsequent LOCATE or WRITE
statement is executed for file BETA or
if BETA is closed, either explicitly
or implicitly.

The Null Statement

Function:

The null statement causes no action and
does not modify sequential statement
execution. If the label of a null

statement is enabled for the CHECK
condition, CHECK is raised whenever control
reaches the null statement.

General format:

[label:]...;

The ON Statement

Function:

The ON statement specifies what action
is to be taken (programmer-defined or
standard system action) when an interrupt
results from the occurrence of the
specified exceptional condition.

General format:

ON condition[SNAP]{SYSTEM;|on-unit}

Syntax rules:

1. The condition may be any of those
described in Section H, "ON-
Conditions".

2. The "on-unit" represents a
programmer-defined action to be taken
when an interrupt results from the
occurrence of the specified
"condition". It can be either a
single unlabeled simple statement or
an unlabeled begin block. If it is an
unlabeled simple statement, it can be
any simple statement except BEGIN, DO,
END, RETURN, FORMAT, PROCEDURE, or
DECLARE. If the on-unit is an
unlabeled begin block, any statement
can be used freely within that block,
with one exception: A RETURN statement
can appear only within a procedure
nested within the begin block.

3. Since the "on-unit" itself requires a
semicolon, no semicolon is shown for
the "on-unit" in the general format.
However, the word SYSTEM must be
followed by a semicolon.

General rules:

1. The ON statement determines how an
interrupt occurring for the specified
condition is to be handled. Whether
the interrupt is handled in a standard
system fashion or by a
programmer-supplied method is
determined by the action specification
in the ON statement, as follows:

a. If the action specification is
SYSTEM, the standard system action
is taken. The standard system

372

action is not the same for every
condition, although for most
conditions the system simply
prints a message and raises the
ERROR condition. The standard
system action for each condition
is given in Section H,
"ON-Conditions." (Note that the
standard system action is always
taken if an interrupt occurs and
no ON statement for the condition
is in effect.)

b. If the action specification is an
"on-unit," the programmer has
supplied his own
interrupt-handling action, namely,
the action defined by the
statement(s) in the on-unit
itself. The on-unit is not
executed when the ON statement is
executed; it is executed only when
an interrupt results from the
occurrence of the specified
condition (or if the interrupt
results from the condition being
signaled by a SIGNAL statement).

2. The action specification (i.e.,
"on-unit" or SYSTEM) established by
executing an ON statement in a given
block remains in effect throughout
that block and throughout all blocks
in any activation sequence initiated
by that block, unless it is overridden
by the execution of another ON
statement or a REVERT statement, as
follows:

a. If a later ON statement specifies
the same condition as a prior ON
statement and this later ON
statement is executed in a block
that lies within the activation
sequence initiated by the block
containing the prior ON statement,
the action specification f the
prior ON statement is temporarily
suspended, or stacked. It can be
restored either by the execution
of a REVERT statement, or by the
termination of the block
containing the later ON statement.

b. If the later ON statement and the
prior ON statement are internal to
the same invocation of the same
block, the effect of the prior ON
statement is completely nullified.

3. An on-unit is always treated by the
compiler as a procedure internal to
the block in which it appears.
(Conceptually, it is enclosed in
PROCEDURE and END statements.) Any
names used in an on-unit do not belong
to the invocation of the procedure or
block in which the interrupt occurred

(and, hence, effectively, the
procedure or block in which the
on-unit is executed) but, rather, to
the environment of the invocation of
the procedure or block in which the ON
statement for that on-unit was
executed. (Remember that an ON
statement is executed as it is
encountered in statement flow;
whereas, the action specification for
that ON statement is executed only
when the associated interrupt occurs.)

4. A condition raised during execution
results in an interrupt if and only if
the condition is enabled at the point
where it is raised.

a. The conditions AREA, OVERFLOW,
FIXEDOVERFLOW, UNDERFLOW,
ZERODIVIDE, CONVERSION, all of the
input/output conditions, and the
conditions CONDITION, FINISH, and
ERROR are enabled by default.

b. The conditions SIZE, STRINGRANGE,
SUBSCRIPTRANGE, and CHECK are
disabled by default.

c. The enabling and disabling of
OVERFLOW, FIXED OVERFLOW,
UNDERFLOW, ZERODIVIDE, CONVERSION,
SIZE, STRINGRANGE, SUBSCRIPTRANGE,
and CHECK can be controlled by
condition prefixes.

5. If on-unit is a single statement, it
cannot refer to a remote format
specification.

6. If SNAP is specified, then when the
given condition occurs and the
interrupt results, a calling trace is
listed; that is, a trace of all of the
procedures active at the time the
interrupt resulted is printed on
SYSPRINT.

The OPEN Statement

Function:

The OPEN statement opens a file by
associating a file name with a data set.
It can also complete the specification of
attributes for the file, if a complete set
of attributes has not been declared for the
file being opened.

General format:

OPEN FILE(file-name)[options-group]
[,FILE(file-name)[options-group]]...;

Section J: Statements 373

where "options group" is as follows;

[DIRECT|SEQUENTIAL|TRANSIENT]
[BUFFERED|UNBUFFERED]
[STREAM|RECORD]
[INPUT|OUTPUT|UPDATE]

[KEYED] [EXCLUSIVE]
[BACKWARDS]
[TITLE (element-expression)]
[PRINT]
[LINESIZE(element-expression)]
[PAGESIZE(element-expression)]

Syntax rules:

1. The INPUT, OUTPUT, UPDATE, STREAM,
RECORD, DIRECT, SEQUENTIAL, TRANSIENT,
BUFFERED, UNBUFFERED, KEYED,
EXCLUSIVE, BACKWARDS, and PRINT
options specify attributes that
augment the attributes specified in
the file declaration; for rules
governing which of these attributes
can be applied together, see Part I,
Chapter 8, "Input and Output," and the
corresponding attributes in Section I,
"Attributes."

2. The options in an "options group" and
the FILE option for a file may appear
in any order.

3. The "file name" is the name of the
file that is to be associated with a
data set. Several files can be opened
by one OPEN statement.

General rules:

1. The opening of an already open file
does not affect the file if the second
opening takes place in the same task
or an attached task. In such cases,
any expressions in the "options_group"
are evaluated, but they are not used.

2. If the TITLE option is specified, the
"element expression" is converted to a
character string, if necessary, the
first eight characters of which
identify the data set (the ddname) to
be associated with the file. If this
option does not appear, the first
eight characters of the file name
(padded or truncated) are taken to be
the ddname. Note that this is not the
same truncation as that for external
names. If the file name is a
parameter, the identifier of the
original argument passed to the
parameter, rather than the identifier
of the parameter itself, is used as
the identification.

3. The LINESIZE option can be specified
only for a STREAM OUTPUT file. The
expression is evaluated, converted to
an integer, and used as the length of

a line during subsequent operations on
the file. New lines may be started by
use of the printing and control format
items or by options in a GET or PUT
statement. If an attempt is made to
position a file past the end of a line
before explicit action to start a new
line is taken, a new line is
automatically started, and the file is
positioned to the start of this new
line. If no line size is given for a
PRINT file, an implementation-defined
default is supplied. For the F
Compiler, this is 120 characters.

The LINESIZE option cannot be
specified for an INPUT file. The line
size taken into consideration whenever
a SKIP option appears in a GET
statement is the line size that was
used to create the data set, if any;
otherwise, the line size is taken to
be the current length of the logical
record (minus control bytes, for
variable-length records). The maximum
linesize for V format records is
32,751 and for U,F format records is
32,759.

4. The PAGESIZE option can be specified
only for a file having the STREAM and
PRINT attributes. The element
expression is evaluated and converted
to an integer, which represents the
maximum number of lines to a page.
During subsequent transmission to the
PRINT file, a new page may be started
by use of the PAGE format item or by
the PAGE option in the PUT statement.
If a page becomes filled and more data
remains to be printed before action to
start a new page is taken, the ENDPAGE
condition is raised. For the F
Compiler, the maximum size of a page
is 32,767 lines; the minimum is 1
line. If PAGESIZE is not specified,
the default is 60 lines per page.

The PROCEDURE Statement

Function:

The PROCEDURE statement has the
following functions:

• It heads a procedure.

• It defines the primary entry point to
the procedure.

• It specifies the parameters, if any,
for the primary entry point.

• It may specify certain special

374

characteristics that a procedure can
have.

• It may specify the attributes of the
value that is returned by the procedure
if it is invoked as a function at its
primary entry point.

General format:

entry-name: [entry-name:]...
PROCEDURE[(parameter[,parameter]...)]
[OPTIONS (option-list)]
[RECURSIVE] [RETURNS (attribute...)]
[ORDER|REORDER];

Syntax rules:

1. The RETURNS option specifies the
attributes of the value returned by
the procedure when it is invoked as a
function at its primary entry point.
Only arithmetic, string, pointer,
offset, AREA, and PICTURE attributes
are allowed.

2. OPTIONS and RECURSIVE are special
procedure specifications that the user
can specify. They and the other
PL/I-defined options may appear in any
order and are separated by blanks.

3. The "option list" of OPTIONS specifies
one or more additional implementation-
defined options. For the F Compiler,
the "option list" may contain the MAIN
and TASK options, separated by commas.
MAIN specifies that the procedure is
the initial procedure, to be invoked
by the operating system as the first
step in the execution of the PL/I
program; TASK specifies that the
multitasking facilities are to be
used.

4. ORDER and REORDER are options used to
control the optimization performed by
the compiler. The selected option
applies to all nested blocks unless
overridden. (These options are also
allowed on BEGIN statements.) If
neither option is given for an
external procedure, ORDER is assumed.

General rules:

1. When the procedure is invoked, a
relationship is established between
the arguments passed to the procedure
and the parameters that represent
those arguments in the invoked
procedure. This topic is discussed in
Part I, Chapter 12, "Subroutines and
Functions."

2. For the F Compiler, OPTIONS may be
specified only for an external
procedure, and at least one external

procedure must have the OPTIONS (MAIN)
designation; if more than one is so
designated, the operating system will
invoke the one that appears first,
physically. (If multitasking is to be
used, the external procedure must also
have the keyword TASK in the OPTIONS
attribute.) OPTIONS applies to all of
the entry points (both primary and
secondary) that the procedure for
which it has been declared might have.

3. RECURSIVE must be specified if the
procedure might be invoked
recursively; that is, if it might be
re-activated while it is still active.
If specified, it applies to all of the
entry points (primary and secondary)
that the procedure might have. It
applies only to the procedure for
which it is declared.

4. The RETURNS option specifies the
attributes of the value returned by
the procedure when it is invoked as a
function at its primary entry point.
The value specified in the RETURN
statement of the invoked procedure is
converted to conform with these
attributes before it is returned to
the invoking procedure.

If the RETURNS option is omitted,
default attributes are supplied. In
such a case, the name f the entry
point (the entry name by which the
procedure has been invoked) is used to
determine the default base, precision,
and scale. (Since the entry point can
have several entry names, the default
base, precision, and scale can differ
according to the entry name.)

5. If a PROCEDURE statement has more than
one entry name, the first name can be
considered as the only label of the
statement; each subsequent entry name
can be considered as a separate ENTRY
statement having the same parameter
list and RETURNS option as the
PROCEDURE statement. For example, the
statement:

A: I: PROCEDURE RETURNS(BINARY FIXED);

is effectively the same as:

A: PROCEDURE RETURNS(BINARY FIXED);

I: ENTRY RETURNS(BINARY FIXED);

6. The ORDER and REORDER options specify,
for optimization purposes, the degree
of language stringency to be observed
during compilation of the block. The
strict rules require that the source
program should be compiled so as to be
executed in the order specified by the

Section J: Statements 375

sequence of the statements in the
source program, (see "Control
Statements" in Chapter 5, "Statement
Classification"), even if the code
could be reordered so as to produce
the same result more efficiently. The
relaxation allowed by REORDER is such
that if computational or system action
interrupts occur during execution of
the block, the result is not
necessarily the same as it would be
under the strict rules.

7. The ORDER option specifies that the
normal language rules are not to be
relaxed; i.e., any optimization must
be such that the execution of a block
always produces a result that is in
accordance with the strict definition
of PL/I. This means that the values
of variables set by execution of all
statements prior to computational or
system action interrupts are
guaranteed in an on-unit entered as a
result of the interrupt, or anywhere
in the program afterwards. Note that
the strict definition now allows the
compiler to optimize common
expressions, where safely possible, by
evaluating them once only and saving
the result, rather than re-evaluating
for each reference. (A common
expression is an expression that
cccurs more than once in a program but
is obviously intended to result in the
same value each time that it is
evaluated, i.e., if a later expression
is identical to an earlier expression,
with no intervening modification to
any operand, the expressions are said
to be common.)

8. The REORDER option specifies that
execution of the block must produce a
result that is in accordance with the
strict definition of PL/I unless a
computational or system action
interrupt occurs during execution of
the block; the result is then allowed
to deviate as follows:

a. After a computational or system
action interrupt has occurred
during execution of the block, the
values of variables modified,
allocated, or freed in the block
are guaranteed only after normal
return from an on-unit or when
accessed by the ONCHAR and
ONSOURCE condition built-in
functions.

b. The values of variables modified,
allocated, or freed in an on-unit
for a computational or system
action condition (or in a block
activated by such an on-unit) are
not guaranteed on return from the

on-unit into the block, except for
values modified by the ONCHAR and
ONSOURCE pseudo-variables.

A program is in error if a
computational or system action
interrupt occurs during the execution
of the block and this interrupt is
followed by a reference to a variable
whose value is not guaranteed in such
circumstances.

(See also Chapter 17: "Optimization and
Efficient Performance.")

The PUT Statement

Function:

The PUT statement is a STREAM
transmission statement that can be used in
either of the following ways:

1. It can cause the values in one or more
internal storage locations to be
transmitted to a data set on an
external medium.

2. It can cause the values in one or more
internal storage locations to be
assigned to an internal receiving
field (represented by a
character-string variable).

General format:

PUTT
[
 FILE (file-name)
STRING (character-string-variable)
[data-specification]

[

PAGE [LINE(element-expression)]
SKIP [(element-expression)]
LINE(element-expression)

Syntax rules:

1. If neither the FILE nor STRING option
appears, the specification FILE
(SYSPRINT) is assumed. If such a PUT
statement lies within the scope of a
declaration of the identifier
SYSPRINT, SYSPRINT must have been
declared as FILE STREAM OUTPUT. If
the PUT statement does not lie within
the scope of a declaration of
SYSPRINT, SYSPRINT is the standard
system output file.

2. The FILE option specifies transmission
to a data set on an external medium.
The file name in this option is the
name of the file that has been
associated (by implicit or explicit
opening) with the data set that is to
receive the values. This file must
have the OUTPUT and STREAM attributes.

376

3. The STRING option specifies
transmission from internal storage
locations (represented by variables or
expressions in the "data
specification") to a character string
(represented by the "character-string
variable"). The "character-string
variable" can be a string
pseudo-variable.

4. The "data specification" option is as
described in Part I, Chapter 9,
"Stream-Oriented Transmission."

5. The PAGE, SKIP, and LINE options
cannot appear with the STRING option.

6. The options may appear in any order;
at least one must appear.

General rules:

1. If the FILE option is specified, and
the "file name" refers to an unopened
file, the file is opened implicitly as
an OUTPUT file.

2. If the STRING option is specified, the
PUT operation begins assigning values
to the beginning of the string (that
is, at the left-most character
position), after appropriate
conversions have been performed.
Blanks and delimiters are inserted as
usual. If the string is not long
enough to accommodate the data, the
ERROR condition is raised.

3. The PAGE and LINE options can be
specified for PRINT files only. All
of the options take effect before
transmission of any values defined by
the data specification, if given. Of
the three, only PAGE and LINE may
appear in the same PUT statement, in
which case, the PAGE option is applied
first.

4. The PAGE option causes a new current
page to be defined within the data
set. If a data specification is
present, the transmission f values
occurs after the definition of the new
page. The page remains current until
the execution of a PUT statement with
the PAGE option, until a PAGE format
item is encountered, or until an
END-PAGE interrupt results in the
definition of a new page. A new
current page implies line one.

5. The SKIP option causes a new current
line to be defined for the data set.
The expression, if present, is
converted to an integer w, which for
non-PRINT files must be greater than
zero. The data set is positioned at

the start of the wth line relative to
the current line. If the expression
is omitted, SKIP(1) is assumed.

For PRINT files w may be less than or
equal to zero; in this case, the
effect is that of a carriage return
with the same current line. If less
than w lines remain on the current
page when a SKIP(w) is issued, ENDPAGE
is raised.

6. The LINE option causes a new current
line to be defined for the data set.
The expression is converted to an
integer w. The LINE option specifies
that blank lines are to be inserted so
that the next line will be the wth
line of the current page. If at least
w lines have already been written on
the current page or if w exceeds the
limits set by the PAGESIZE option of
the OPEN statement, the ENDPAGE
condition is raised. If w is less
than or equal to zero, it is assumed
to be 1.

7. If the FILE(filename) option refers to
a file that is not open in the current
task, the file is opened implicitly in
this task for stream output.

Examples:

1. PUT DATA (A,B,C);

Specifies the data-directed
transmission of the values A, B and C
to the file SYSPRINT.

2. PUT FILE (LIST) EDIT (X,Y,Z) (A(10))
PAGE;

Specifies that a new page is to be
defined for the print file LIST. The
values f X, Y and Z are placed
starting in the first printing
position of the new page. Each of the
values will use the A(10) format item.

The READ Statement

Function:

The READ statement causes a record to be
transmitted from a RECORD INPUT or RECORD
UPDATE file to a variable or buffer.

General format:

READ option-list;

The format of "option list" is shown in
Figure J-3.

Section J: Statements 377

Figure J-3. Format of Option List for READ Statement

General rules:

1. The options may appear in any order.

2. The FILE(filename) option specifies
the file from which the record is to
be read. This option must appear. If
the file specified is not open in the
current task, it is opened.

3. The INTO(variable) option specifies an
unsubscripted level 1 variable into
which the record is to be read. It
cannot be a parameter, nor can it have
the DEFINED attribute. For TRANSIENT
files, either the INTO option or the
SET option must appear.

4. If the variable in the FROM or INTO
option is a structure, it cannot
contain VARYING strings. However it
is possible to have a VARYING string
element variable in these options.
This is an implementation restriction.

5. The KEY and KEYTO options can be
specified for KEYED files only.

6. The KEY option must appear if the file
has the DIRECT attribute. The
"expression" is converted to a
character string that represents a
key. It is this key that determines
which record will be read.

The KEY option may also appear for
files having the SEQUENTIAL and KEYED
attributes. In such cases, the file
is positioned to the record having the
specified key. Thereafter, records
may be read sequentially from that
point on by using READ statements
withcut the KEY option. For
System/360 implementations, the data
set must have the INDEXED
organization. For the F Compiler, the
KEY option cannot appear if the FILE
is TRANSIENT.

7. The KEYTO option can be given only if
the file has the SEQUENTIAL KEYED or
TRANSIENT KEYED attributes. (For the
F Compiler, it must appear if the file

is TRANSIENT.) It specifies that the
key of the record being read is to be
assigned to the "character-string
variable" according to the rules for
character-string assignment. If
proper assignment cannot be made, the
KEY condition is raised. For the F
Compiler, the value assigned is as
follows:

a. For REGIONAL (1), the eight
character region number, padded or
truncated on the left to the
declared length of the
character-string variable

b. For REGIONAL (2) and REGIONAL (3),
the recorded key without the
region number, padded or truncated
on the right to the declared
length of the character-string
variable

c. For INDEXED, the recorded key,
padded or truncated on the right
to the declared length of the
character-string variable

The KEY condition will not be raised
for such padding or truncation.

Note: The KEYTO option cannot specify
a variable declared with a numeric
picture specification.

8. The EVENT option allows processing to
continue while a record is being read
or ignored. This option cannct be
specified for a BUFFERED file.

When control reaches a READ statement
containing this option, the "event
variable" is made active (that is, it
cannot be associated with another
event) and is given the completion
value '0'B, provided that the
UNDEFINEDFILE condition is not raised
by an implicit file opening (see
"Note" below). The event variable
remains active and retains its '0'B
completion value until control reaches
a WAIT statement specifying that event

378

variable. At this time, either of the
following can occur:

a. If the READ statement has been
executed successfully and none of
the conditions ENDFILE, TRANSMIT,
KEY or RECORD has been raised as a
result of the READ, the event
variable is set complete (given
the completion value '1'B) and is
made inactive, that is, it can be
associated with another event.

b. If the READ statement has resulted
in the raising of ENDFILE,
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value '1'B
and is made inactive.

Note: If the READ statement causes an
implicit file opening that results in
the raising of UNDEFINEDFILE, the

on-unit associated with this condition
is entered immediately and the event
variable remains unchanged; that is,
the event variable remains inactive
and retains the same value it had when
the READ was encountered. If the
on-unit does not correct the ,
condition, then, upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully, then,
upon normal return from the on-unit,
the event variable is set to '0 ' B, it
is made active, and execution of the
READ statement continues.

9. Any READ statement referring to an
EXCLUSIVE file will cause the record
to be locked unless the NOLOCK option
is specified. A locked record cannot
be read, deleted, or rewritten by any
other task until it is unlocked. Any
attempt to read, delete, rewrite, or
unlock a record locked by another task
results in a wait. Subsequent
unlocking occurs as a result of one of
the following actions:

a. The locking task executes an
UNLOCK, REWRITE, or DELETE
statement that specifies the same
file name and key as the locking
READ statement;

b. The locking task executes a CLOSE

statement for the file specified
in the locking READ statement;

c. The locking task is completed.

Note that a record is considered
locked only for tasks other than the
task that actually locks it; in other
words, a locked record can always be
read by the task that locked it and
still remain locked as far as other
tasks are concerned (unless, of
course, the record has been explicitly
unlocked by one of the above methods).

10. The SET option specifies that the
record is to be read into a buffer and
that a pointer value is to be assigned
to the named pointer variable. The
pointer value identifies the record in
the buffer. For TRANSIENT files,
either the SET option or the INTO
option must appear.

11. The IGNORE option may be specified for
SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files. The expression in the IGNORE
option is evaluated and converted to
an integer. If the value, n, is
greater than zero, n records are
ignored; a subsequent READ statement
for the file will access the (n+1)th
record. A READ statement without an
INTO, SET, or IGNORE option is
equivalent to a READ with an
IGNORE(1).

12. An INDEXED data set that is accessed
by a KEYED SEQUENTIAL INPUT file or a
KEYED SEQUENTIAL UPDATE file may be
positioned by issuing a READ statement
with the KEY option. The specified
key will be used to identify the
record required. Thereafter, records
may be read sequentially from that
point by use of READ statements
without the KEY option.

For BUFFERED SEQUENTIAL files, two
positioning statements can be used,
with the following formats:

READ FILE (filename)
INTO (variable)
KEY (expression);

READ FILE (filename)
SET (pointer-variable)
KEY (expression);

For UNBUFFERED SEQUENTIAL files,
only the first form shown immediately
above can be used, and it may be
specified with the EVENT option.

13. If, at the time of execution of a READ
statement for a TRANSIENT file, no
data is available for transmission

Section J: Statements 379

(i.e., the message queue associated
with the file is empty), the PENDING
condition is raised. Standard system
action for this condition is to wait
until data is available before
resuming execution of the READ
statement.

Examples:

1. READ FILE (ALPHA) SET (RECIDENT);

The next record from the data set
associated with ALPHA is made
available and the pointer variable
REC_IDENT is set to identify the
record in the buffer.

2. READ FILE (BETA) KEY (VALUE) INTO
(WORK);

The record identified by the key VALUE
is transmitted from the data set
associated with BETA into the variable
WORK.

The RETURN Statement

Function:

The RETURN statement terminates
execution of the procedure that contains
the RETURN statement. If the procedure has
not been invoked as a task, the RETURN
statement returns control to the invoking
procedure. The RETURN statement may also
return a value.

General format:

Option 1.

RETURN;

Option 2.

RETURN (expression);

General rules:

1. Only the RETURN statement in Option 1
can be used to terminate procedures
not invoked as function procedures;
control is returned to the point
logically following the invocation.

Option 1 represents the only form
of the RETURN statement that can be
used to terminate a procedure
initiated as a task. If the RETURN
statement terminates the major task,
the FINISH condition is raised prior
to the execution of any termination
processes. If the RETURN statement
terminates any other task, the

completion value of the associated
event variable (if any) is set to
'1'B, and the status value is left
unchanged.

2. The RETURN statement in Option 2 is
used to terminate a procedure invoked
as a function procedure only. Control
is returned to the point of
invocation, and the value returned to
the function reference is the value of
the expression specified converted to
conform to the attributes declared for
the invoked entry point. These
attributes may be explicitly specified
at the entry point; they are otherwise
implied by the initial letter of the
entry name through which the procedure
is invoked.

3. If control reaches an END statement
corresponding to the end of a
procedure, this END statement is
treated as a RETURN statement (of the
Option 1 form) for the procedure.

Example:

A: PROCEDURE (X,Y) RETURNS (FIXED);
DECLARE (X,Y) FLOAT;

RETURN (X**2+Y**2);
END;

B: PROCEDURE;
DECLARE A ENTRY RETURNS (FIXED);

R = A(P,Q);

END;

In the assignment statement (R=A(P,Q);),
procedure B invokes procedure A as a
function. Procedure B specifies that the
element expression in the RETURN statement
is to be evaluated; since X and Y are
floating-point variables and the RETURNS
option of the PROCEDURE statement specifies
that the value returned is to be
fixed-point, the value of the expression is
converted to fixed-point, and this value is
returned to B.

The REVERT Statement

Function:

The REVERT statement is used to cancel
the effect of one or more previously

380

executed ON statements. It can affect only
ON statements that are internal to the
block in which the REVERT statement occurs
and which have been executed in the same
invocation of that block. Execution of the
REVERT statement in a given block cancels
the action specification of any ON
statement for the named condition that has
been executed in that block; it then
re-establishes the action specification
that was in force at the time of activation
of the block.

General format:

REVERT condition;

Syntax rule:

The "condition" is any of those
described in Section H, "ON-Conditions."

General rule:

The execution of a REVERT statement has
the effect described above only if (1) an
ON statement, specifying the same condition
and internal to the same block, was
executed after the block was activated and
(2) the execution of no other similar
REVERT statement has intervened. If either
of these two conditions is not met, the
REVERT statement is treated as a null
statement.

The REWRITE Statement

Function:

The REWRITE statement can be used only
for update files. It replaces an existing
record in a data set.

General format:

REWRITE FILE (file-name)
[FROM(variable)]

[KEY (element-expression)]
[EVENT (event-variable)]

Syntax rules:

1. The options may appear in any order.

2. The "FILE (file-name)" option
specifies the name of the file, which
must have the UPDATE attribute.

3. The "variable" in the FROM option must
be an unsubscripted level 1 variable
(that is, a variable not contained in
an array or structure). It cannot
have the DEFINED attribute and it
cannot be a parameter. It represents

the record that will replace the
existing record in the data set.

General rules:

1. If the file whose name appears in the
FILE specification has not been
opened, it is opened implicitly with
the attributes RECORD and UPDATE.

2. The KEY option must appear if the file
has the DIRECT attribute; it cannot
appear otherwise. The
element-expression is converted to a
character string. This character
string is the source key that
determines which record is to be
rewritten. For SEQUENTIAL files
associated with INDEXED data sets in
System/360 implementations, the key
must be the same as the one it
replaces.

3. The FROM option must be specified for
UPDATE files having either the DIRECT
attribute or both the SEQUENTIAL and
UNBUFFERED attributes. A REWRITE
statement in which the FROM option has
not been specified has the following
effect: if the last record was read by
a READ statement with the INTO option,
REWRITE without FROM has no effect on
the record in the data set; if the
last record was read by a READ
statement with the SET option, the
record will be updated by whatever
assignments were made in the buffer
identified by the pointer variable in
the SET option.

4. If the variable in the FROM or INTO
option is a structure, it cannot
contain VARYING strings. However it
is possible to have a VARYING string
element variable in these options.
This is an implementation restriction.

5. The EVENT option allows processing to
continue while a record is being
rewritten. This option cannot be
specified for a SEQUENTIAL BUFFERED
file.

When control reaches a REWRITE
statement containing this option, the
event variable is made active (that
is, it cannot be associated with
another event) and is given the
completion value '0'B, provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see "Note" below). The event
variable remains active and retains
its '0 ' B completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following can
occur:

Section J: Statements 381

a. If the REWRITE statement has been
executed successfully and none of
the conditions TRANSMIT, KEY, or
RECORD has been raised as a result
of the REWRITE, the event variable
is set complete (given the
completion value '1 ' 13), and the
event variable is made inactive
(that is, it can be associated
with another event).

b. If the REWRITE statement has
resulted in the raising of
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value '1'B
and is made inactive.

Note: If the REWRITE statement causes
an implicit file opening that results
in the raising of UNDEFINEDFILE, the
on-unit associated with this condition
is entered immediately and the event
variable remains unchanged, that is,
the event variable remains inactive
and retains the same value it had when
the REWRITE was encountered. If the

on-unit does not correct the
condition, then, upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully, then,
upon normal return from the on-unit,
the event variable is set to '0'B, it
is made active, and execution of the
REWRITE statement continues.

6. If the record rewritten is one that
was locked in the same task, it
becomes unlocked.

The SIGNAL Statement

Function:

The SIGNAL statement simulates the
occurence of an interrupt. It may be used
to test the current action specification
for the associated condition.

General format:

SIGNAL condition;

Syntax rule:

The "condition" is any one of those
described in Section H, "ON-Conditions."

General rules:

1. When a SIGNAL statement is executed,
it is as if the specified condition
has actually occurred. Sequential
execution is interrupted and control
is transferred to the current on-unit
for the specified condition. After
the on-unit has been executed, control
normally returns to the statement
immediately following the SIGNAL
statement.

2. The on-condition CONDITION can cause
an interrupt only as a result of its
specification in a SIGNAL statement.

3. If the specified condition is
disabled, no interrupt occurs, and the
SIGNAL statement becomes equivalent to
a null statement.

4. If there is no current on-unit for the
specified condition, then the standard
system action for the condition is
performed.

The STOP Statement

Function:

The STOP statement causes immediate
termination of the major task and all
sub-tasks

General format:

STOP;

General rule:

Prior to any termination activity the
FINISH condition is raised in the task in
which the STOP is executed. On normal
return from the FINISH on-unit, all tasks
in the program are terminated.

The UNLOCK Statement

Function:

The UNLOCK statement makes the specified
locked record available to other tasks for
operations on the record.

382

General format:

UNLOCK option-list;

Following is the format of "option
list":

FILE(filename) KEY(expression)

General rules:

1. The options may appear in either
order.

2. The FILE(filename) option specifies
the file involved, which must have the
attributes UPDATE, DIRECT, and
EXCLUSIVE.

3. In the KEY(expression) option, the
"expression" is converted to a
character string and determines which
record is unlocked.

4. A record can be unlocked only by the
task which locked it.

The WAIT statement

Function:

The execution of a WAIT statement within
an activation f a block retains control
for that activation of that block within
the WAIT statement until certain specified
events have completed.

General format:

WAIT (event-name [,event-name]...)
[(element-expression)];

General rules:

1. Control for a given block activation
remains within this statement until,
at possibly separate times during the
execution of the statement, the
condition.

COMPLETION(event-name) = '1'B

has been satisfied, for some or all of
the event names in the list.

2. If the optional expression does not
appear, all the event names in the
list must satisfy the above condition
before control returns to the next
statement in this task following the
WAIT.

3. If the optional expression appears,
the expression is evaluated when the
WAIT statement is executed and

converted to an integer. This integer
specifies the number of events in the
list that must satisfy the above
condition before control for the block
passes to the statement following the
WAIT. Of course, if an on-unit
entered due to the WAIT is terminated
abnormally, control might not pass to
the statement following the WAIT.

If the value of the expression is
zero or negative, the WAIT statement
is treated as a null statement. If
the value of the expression is greater
than the number, n, of event names in
the list, the value is taken to be n.
If the statement refers to an array
event name, then each f the array
elements contributes to the count.

4. If the event variable named in the
list has been associated with a task
in its attaching CALL statement, then
the condition in Rule 1 will be
satisfied on termination of that task.

5. If the event variable named in the
list is associated with an
input/output operation initiated in
the same task as the WAIT, the
condition in Rule 1 will be satisfied
when the input/output operation is
completed. The execution f the WAIT
is a necessary part of the completion
of an input/output operation. If
prior to, or during, the WAIT all
transmission associated with the
input/output operation is terminated,
then the WAIT performs the following
action: If the transmission has
finished without requiring any
input/output conditions to be raised,
the event variable is set complete
(i.e., COMPLETION(event name) = '1'B).
If the transmission has been
terminated but has required conditions
to be raised, the event variable is
set abnormal (i.e., STATUS(event
name) = 1) and all the required ON
conditions are raised. On return from
the last on-unit, the event variable
is set complete.

6. The order in which ON conditions for
different input/output events are
raised is not dependent on the order
of appearance of the event names in
the list. If an ON condition for one
event is raised, then all other
conditions for that event are raised
before the WAIT is terminated or
before any other input/output
conditions are raised unless an
abnormal return is made from one of
the on-units thus entered. The
raising of ON conditions for one event

Section J: Statements 383

implies nothing about the completion
or termination of transmission of
other events in the list.

7. If an abnormal return is made from any
on-unit entered from a WAIT, the
associated event variable is set
complete, the execution of the WAIT is
terminated, and control passes to the
point specified by the abnormal
return.

8. If the user wishes to specify more
than one event name in a WAIT
statement, the multiple-wait option
must have been specified at SYSGEN
time.

9. If a WAIT statement is executed and
the events required to satisfy the
WAIT contain a mixture of input/output
and non-input/output events all
non-input/output events will be set
complete before any of the
input/output events.

10. If some of the event names in the WAIT
list are associated with input/output
operations and have not been set
complete before the WAIT is terminated
(either because enough events have
been completed or due to an abnormal
return), then these incomplete events
will not be set complete until the
execution of another WAIT referring to
these events in this same task.

Example:

PI: PROCEDURE;

CALL P2 EVENT(EP2);

WAIT(EP2);

END;

The CALL statement, when executed,
attaches a task whose completion
status is associated with the event
name EP2. When the WAIT statement is
encountered, the execution of the task
is suspended until the value of
EVENT(EP2) is '1'B, i.e., until the
attached task is completed.

The WRITE Statement

Function:

The WRITE statement is a RECORD
transmission statement that transfers a
record from a variable in internal storage
to an OUTPUT or UPDATE file.

General format:

WRITE FILE (file-name) FROM (variable)
[KEYFROM(element-expression)
[EVENT(event-variable)];

Syntax rules:

1. The FILE and FROM specifications and
the KEYFROM and EVENT options may
appear in any order.

2. The "file name" specifies the file in
which the record is to be written.
This file must be a RECORD file that
has either the OUTPUT attribute or the
DIRECT and UPDATE attributes.

3. The "variable" in the FROM
specification must be an unsubscripted
level 1 variable (i.e., a variable not
contained in an array or structure).
It cannot have the DEFINED attribute
and it cannot be a parameter. It
contains the record to be written.

General rules:

1. If the file is not open, it is opened
implicitly with the attributes RECORD
and OUTPUT (unless UPDATE has been
declared).

2. If the KEYFROM option is specified,
the "element expression" is converted
to a character string. This character
string is the source key that
specifies the relative location in the
data set where the record is written.
For REGIONAL (2), REGIONAL (3), and
INDEXED data sets, KEYFROM also
specifies a recorded key whose length
is determined by the KEYLEN
subparameter. For the F Compiler,
this option must appear if the file is
TRANSIENT.

3. The EVENT option allows processing to
continue while a record is being
written. This option cannot be
specified for a TRANSIENT or
SEQUENTIAL BUFFERED file.

The EVENT option should not be used on
a WRITE statement if V or U format
records are being added to a

384

REGIONAL(3) data set which is being
accessed in a direct update mode.

When control reaches a WRITE statement
containing this option, the "event
variable" is made active (that is, it
cannot be associated with another
event) and is given the completion
value '0'B, provided that the
UNDEFINEDFILE condition is not raised
by an implicit file opening (see
"Note" below). The event variable
remains active and retains its '0'B
completion value until control reaches
a WAIT statement specifying that event
variable. At this time, either of the
following can occur:

a. If the WRITE statement has been
executed successfully and none of
the conditions TRANSMIT, KEY, or
RECORD has been raised as a result
of the WRITE, the event variable
is set complete (given the
completion value '1'B), and the
event variable is made inactive,
that is, it can be associated with
another event.

b. If the WRITE statement has
resulted in the raising of
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value ('1'B)
and is made inactive.

4. If the variable in the FROM or INTO
option is a structure, it cannot
contain VARYING strings. However it
is possible to have a VARYING string
element variable in these options.
This is an implementation restriction.

Note: If the WRITE statement causes an
implicit file opening that results in
the raising of UNDEFINEDFILE, the
on-unit associated with this condition
is entered immediately and the event
variable remains unchanged; that is,
the event variable remains inactive
and retains the same value it had when
the WRITE was encountered. If the
on-unit does not correct the
condition, then, upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully, then
upon normal return from the on-unit,

the event variable is set to '0'B, it
is made active, and execution of the
WRITE statement continues.

Preprocessor Statements

All of the statements that can be executed
at the preprocessor stage are presented
alphabetically in this section.

The %ACTIVATE Statement

Function:

The appearance of an identifier in a
%ACTIVATE statement makes it active and
eligible for replacement; that is, any
subsequent encounter of that identifier in
a nonpreprocessor statement, while the
identifier is active, will initiate
replacement activity.

General format:

%[label:]... ACTIVATE identifier
[,identifier]...;

Syntax rules:

1. Each identifier must be either a
preprocessor variable or a
preprocessor procedure name.

2. A %ACTIVATE statement cannot appear
within a preprocessor procedure.

General rules:

1. An identifier cannot be activated
initially by a %ACTIVATE statement;
the appearance of that identifier in a
%DECLARE statement serves that
purpose. An identifier can be
activated by a %ACTIVATE statement
only after it has been deactivated by
a %DEACTIVATE statement.

2. When an identifier is active (and has
been given a value -- if it is a
preprocessor variable) any encounter
of that identifier within a
nonpreprocessor statement will
initiate replacement activity in all
cases except when the identifier
appears within a comment or within
single quotes.

Example:

If the source program contains the
following sequence of statements:

Section J: Statements 385

% DECLARE I FIXED, T CHARACTER;

% DEACTIVATE I;

% I = 15;

% T = 'A(I)';

S = I*T*3;

% I = I+5;

% ACTIVATE I;

% DEACTIVATE T;

R = I*T*2;

then the preprocessed text generated by the
above would be as follows (replacement
blanks are not shown):

S = I*A(I)*3;

R = 20*T*2;

The % Assignment Statement

Function:

The % assignment statement is used to
evaluate preprocessor expressions and to
assign the result to a preprocessor
variable.

General format:

%[label:]... preprocessor-variable =
preprocessor-expression;

General rule:

When the value assigned to a
preprocessor variable is a character
string, this character string should not
contain a preprocessor statement, nor
should it contain unmatched comment or
string delimiters.

The %DEACTIVATE Statement

Function:

The appearance of an identifier in a
%DEACTIVATE statement makes it inactive and
ineligible for replacement; that is, any
subsequent encounter of that identifier in
a nonpreprocessor statement will not
initiate any replacement activity (unless,

of course, the identifier has been
reactivated in the interim).

General format:

%[label:]... DEACTIVATE identifier
[,identifier]...;

Syntax rules:

1. Each "identifier" must be either a
preprocessor variable, the SUBSTR
built-in function, or a preprocessor
procedure name.

2. A %DEACTIVATE statement cannot appear
within a preprocessor procedure.

General rule:

The deactivation of an identifier does
not strip it of its value, nor does it
prevent it from receiving new values in
subsequent preprocessor statements.
Deactivation simply prevents any
replacement for a particular identifier
from taking place.

The %DECLARE Statement

Function:

The %DECLARE statement establishes an
identifier as a preprocessor variable or a
preprocessor procedure name and also serves
to activate that identifier. An identifier
must appear in a %DECLARE statement before
it can be used as a variable or a procedure
name in any other preprocessor statement.

General format:

The general format is shown in Figure
J-4.

Syntax rules:

1. CHARACTER or FIXED must be specified
if the "identifier" is a preprocessor
variable; an entry declaration must be
specified if the "identifier" is a
preprocessor procedure name.

2. Only the attributes shown in the above
format can be specified in a %DECLARE
statement.

3. Factoring of attributes is restricted
to no more than three.

Figure J-4. General Format of the %DECLARE Statement

4. Any label attached to a %DECLARE
statement is ignored by the scan.

General rules:

1. No length can be specified with the
CHARACTER attribute. If CHARACTER is
specified, it is assumed that the
associated identifier represents a
varying-length character string that
has no maximum length.

2. A preprocessor declaration is not
known until it has been encountered by
the scan. If a reference to a
preprocessor variable or procedure is
encountered in a preprocessor
statement before the declaration for
that variable or procedure has been
scanned, then the reference is in
error.

3. The scope of all preprocessor
variables, procedure names, and labels
is the entire source program scanned
by the preprocessor, not including any
preprocessor procedures that redeclare
such identifiers. The scope of a
declaration in a preprocessor
procedure is limited to that
procedure.

4. An entry declaration must be specified
for each preprocessor procedure in the
source program. The ENTRY attribute
specifies the number (and attributes,
if desired) of the parameters of the
procedure; the RETURNS attribute
specifies the attribute of the value
returned by that procedure.

The ENTRY attribute in the entry
declaration must account for every
parameter specified in the %PROCEDURE
statement of the preprocessor
procedure. If the procedure has no
parameters, ENTRY must be specified
without the parenthesized list
following; if the procedure has one
parameter, ENTRY followed by empty
closed parentheses -- ENTRY () -- will
suffice; if the procedure has more
than one parameter, the place of each

additional parameter must be kept by a
comma. Thus, ENTRY („FIXED)
specifies three parameters, the third
of which has the attribute FIXED; the
preprocessor makes no assumptions
about the attributes of the first two.

The RETURNS attribute specifies the
attribute of the value to be returned
by the preprocessor procedure to the
point of invocation. If, in fact, the
attribute of the value does not agree
with the attribute specified by
RETURNS, no conversion is performed
and errors may result.

See "Preprocessor Procedures" in Part
I, Chapter 16, "Compile-Time
Facilities," for a discussion of the
above attributes, as well as a
discussion of the association of
arguments and parameters at the time
of invocation.

5. After a %DECLARE statement has been
executed, it is replaced by a null
statement so that any subsequent
scanning through the statement has no
effect.

The %DO Statement

Function:

The %DO statement is used in conjunction
with a %END statement to delimit a
preprocessor DO-group. It cannot be used
in any other way.

General format:

Syntax rule:

The "i" represents a preprocessor
variable, and "ml," "m2," and "m3" are
preprocessor expressions.

Section J: Statements 387

General rule:

The expansion of a preprocessor DO-group
is the same as the expansion for a
corresponding nonpreprocessor DO-group and
"i," "ml," "m2," and "m3" have the same
meaning that the corresponding expressions
in a nonpreprocessor DO-group have.

See "Preprocessor DO-Groups" in Part I,
Chapter 16, "Compile-Time Facilities," for
a discussion and an example of its use.

The %END Statement

Function:

The %END statement is used in
conjunction with %DO or %PROCEDURE
statements to delimit preprocessor
DO-groups or preprocessor procedures.

General format:

% [label:]... END [label];

Syntax rule:

The label following END must be a label
of a %PROCEDURE or %DO statement. Multiple
closure is permitted.

The %GO TO Statement

Function:

The %GO TO statement causes the
preprocessor to continue its scan at the
specified label.

General format:

% [label:]... {GO TO|GOTO} label;

General rules:

1. The label following the keyword GO TO
determines the point to which the scan
will be transferred. It must be a
label of a preprocessor statement,
although it cannot be the label of a
preprocessor procedure.

2. A preprocessor GO TO statement
appearing within a preprocessor
procedure cannot transfer control to a
point outside of that procedure. In
other words, the label following GO TO
must be contained within the
procedure.

3. See "The %INCLUDE Statement" for a
restriction regarding the use of %GO
TO with included text.

The %IF Statement

Function:

The %IF statement can control the flow
of the scan according to the value of a
preprocessor expression.

General format:

%[label:]...IF preprocessor-expression

%THEN preprocessor-clause-1

[%ELSE preprocessor-clause-2]

Syntax rule:

A preprocessor clause is any single
preprocessor statement other than %DECLARE,
%PROCEDURE, %END, or %DO (percent symbol
included) op a preprocessor DO-group
(percent symbols included). Otherwise, the
syntax is the same as that for
non-preprocessor IF statements.

General rules:

1. The preprocessor expression is
evaluated and converted to a bit
string (if the conversion cannot be
made, it is an error). If any bit in
the string has the value 1, clause-1
is executed and clause-2, if present,
is ignored; if all bits are 0,
clause-1 is ignored and clause-2, if
present, is executed. In either case,
the scan resumes immediately following
the IF statement, unless, of course, a
%GO TO in one of the clauses causes
the scan to resume elsewhere.

2. %IF statements can be nested according
to the rules for nesting
nonpreprocessor IF statements.

388

The %INCLUDE Statement

Function:

The %INCLUDE statement is used to
include (incorporate) strings of external
text into the source program being scanned.
This included text can contribute to the
preprocessed text being formed.

General format:

The %INCLUDE statement is defined as
follows for the F Compiler:

Syntax rules:

1. Each "ddname" and "member name" pair
identifies the external text to be
incorporated into the source program.
This external text rust be a member of
a partitioned data set.

2. A "ddname" specifies the ddname
cccurring in the name field of the
appropriate DD statement. Its
associated "member name" specifies the
name of the data set member to be
incorporated. If "ddname" is omitted,
SYSLIB is assumed, and the SYSLIB DD
statement is required.

3. A %INCLUDE statement cannot be used in
a preprocessor procedure.

General rules:

1. Included text can contain
nonpreprocessor and/or preprocessor
statements.

2. The included text is scanned, in
sequence, in the same manner as the
source program; that is, preprocessor
statements are executed and
replacements are made where required.

3. %INCLUDE statements can be nested. In
other words, included text also can
contain %INCLUDE statements. A %GO TO
statement in included text can
transfer control to a point in the
source program or in any included text
at an outer level of nesting, but the
reverse is not permitted. An
analogous situation exists for nested
DO-groups that specify iterative

execution: control can be transferred
from an inner group to an cuter,
containing group, but not from an
outer group into an inner, contained
group.

4. Preprocessor statements in included
text must be complete. It is not
permissible, for example, to have half
of a %IF statement in included text
and half in the other part of the
source program.

Example:

If the source program contained the
following sequence of statements:

%DECLARE (FILENAME1, FILENAME2)
CHARACTER;

% FILENAME1 = 'MASTER';

% FILENAME2 = 'NEWFILE';

% INCLUDE DCLS;

and if the SYSLIB member name DCLS
contained:

DECLARE (FILENAME1, FILENAME2)
FILE RECORD INPUT
DIRECT KEYED;

then the following would be inserted into
the preprocessed text:

DECLARE (MASTER, NEWFILE)
FILE RECORD INPUT
DIRECT KEYED;

Note that this is a way in which a
central library of file declarations can be
used, with each user supplying his own
names for the files being declared.

The % Null Statement

Function:

The % null statement can be used to
provide transfer targets for %GO TO
statements. It is also useful for
balancing ELSE clauses in nested %IF
statements.

General format:

% [label:]...;

Section J: Statements 389

The %PROCEDURE Statement

Function:

The %PROCEDURE statement is used in
conjunction with a %END statement to
delimit a preprocessor procedure. Such a
preprocessor procedure is an internal
function procedure that can be executed
only at the preprocessor stage.

General format:

% label: [label:]... PROCEDURE
[(identifier [,
'RETURNS(FIXED|CHARACTER)';

Syntax rules:

1. Each "identifier" is a parameter of
the function procedure.

2. One of the attributes CHARACTER or
FIXED must be specified to indicate
the type of value returned by the
function procedure. There can be no
default.

General rules:

1. The only statements and groups that
can be used within a preprocessor
procedure are:

a. the preprocessor assignment
statement

b. the preprocessor DECLARE statement

c. the preprocessor DO-group

d. the preprocessor GO TO statement

e. the preprocessor IF statement

f. the preprocessor null statement

g. the preprocessor RETURN statement

All of these statements and the
DO-group must adhere to the syntax and
general rules given for them in this
section, with one exception; all
percent symbols must be omitted.

2. A GO TO statement appearing in a
preprocessor procedure cannot transfer
control to a point outside of that
procedure.

3. As implied by general rule 1,
preprocessor procedures cannot be
nested.

4. A preprocessor procedure can be
invoked by a function reference in a
preprocessor statement, or, if the
function procedure name is active, by
the encounter of that name in a
nonpreprocessor statement.

5. For the F Compiler there may be no
more than 254 compile-time procedures
per compilation. Further, each
procedure is limited to a maximum of
15 parameters.

The Preprocessor RETURN Statement

Function:

The preprocessor RETURN statement can be
used only in a preprocessor procedure and,
therefore, can have no leading %. It
returns a value as well as control back to
the point from which the preprocessor
procedure was invoked.

General format:

[label:]... RETURN
(preprocessor-expression);

General rule:

The value of the preprocessor expression
is converted to the attribute specified in
the %PROCEDURE statement before it is
passed back to the point of invocation. If
the point of invocation is in a
nonpreprocessor statement, replacement
activity can be performed on the returned
value after that value has replaced the
procedure reference.

Note that the rules for preprocessor
expressions do not permit the value
returned by a preprocessor procedure to
contain preprocessor statements.

390

Section K: Data Mapping

This section describes structure mapping
and alignment of records in buffers as
performed by the F Compiler. The
information is included in this manual
because, under certain circumstances, it
should be borne in mind while the program
is being written. However, the information
is not essential to programmers using
stream-oriented transmission or unaligned
data; it is intended for those using
record-oriented transmission (particularly
locate mode) with aligned structures.

Structure Mapping

For any structure (major or minor), the
length, alignment requirement, and position
relative to a doubleword boundary will
depend on the lengths, alignment
requirements, and relative positions of its
members. The process of determining these
requirements for each level in turn and
finally for the complete structure, is
known as structure mapping.

During the structure mapping process,
the F compiler minimizes the amount of
unused storage (padding) between members of
the structure. It completes the entire
process before the structure is allocated,
according (in effect) to the rules
discussed in the following paragraphs. It
is necessary for the programmer to
understand these rules for such purposes as
determining the record length required for
a structure when record-oriented
input/output is used, and for determining
the amount of padding or rearrangement
required to ensure correct alignment of a
structure for locate-mode input/output (see
"Record Alignment," below).

Structure mapping is not a physical
process. Although during this discussion
such terms as "shifted" and "offset" are
used, these terms are used purely for ease
of discussion, and do not imply actual
movement in storage; when the structure is
allocated, the relative locations are
already known as a result of the mapping
process.

RULES

The mapping for a complete structure
reduces to successively combining pairs of
items (elements, or minor structures whose
individual mappings have already been
determined). Once a pair has been
combined, it becomes a unit to be paired
with another unit, and so on until the
complete structure has been mapped. The
rules for the process are therefore
categorized as:

Rules for determining the order of
pairing

Rules for mapping one pair

These rules are described below, and are
followed by an example showing an
application of the rules in detail.

Note: To follow these rules, it is
necessary to appreciate the difference
between logical level and level number.
The item with the greatest level number is
not necessarily the item with the deepest
logical level. If the structure
declaration is written with consistent
level numbers or suitable indention (as in
the detailed example given after the
rules), the logical levels are immediately
apparent. In any case, the logical level
of each item in the structure can be
determined by applying the following rule
to each item in turn, starting at the
beginning of the structure declaration:

The logical level of a given item is
always one unit deeper than that of the
nearest preceding item that has a
lesser level number than the given
item.

For example:

DCL 1 A, 4 B, 5 C, 5 D, 3 E, 8 F, 7 G;

1 	2 	3 	3 	2 	3 	3

The lower line shows the logical level
for each item in the declaration.

Rules for Order of Pairing

The steps in determining the order of
pairing are as follows:

Section K: Data Mapping 391

1. Find the minor structure with the
deepest logical level (which we will
call logical level n).

2. If the number of minor structures at
logical level n exceeds one, take the
first one of them as it appears in the
declaration.

3. Using the rules for mapping one pair
(see below), pair the first two
elements appearing in this minor
structure, thus forming a unit.

4. Pair this unit with the next element
(if any) appearing in the declaration

' for the minor structure, thus forming
a larger unit.

5. Repeat rule 4 until all the elements
in the minor structure have been
combined into one unit. This
completes the mapping for this minor
structure; its alignment requirement
and length, including any padding, are
now determined and will not change
(unless the programmer changes the
structure declaration). Its offset
from a doubleword boundary will also
have been determined; note that this
offset will be significant during
mapping of any containing structure,
and it may change as a result of such
mapping.

6. Repeat rules 3 through 5 for the next
minor structure (if any) appearing at
logical level n in the declaration.

7. Repeat rule 6 until all minor
structures at logical level n have
been mapped. Each of these minor
structures can now be thought of as an
element for structure mapping
purposes.

8. Repeat the process for minor
structures at the next higher logical
level; that is, make n equal to
(n - 1) and repeat rules 2 through 7.

9. Repeat rule 8 until n = 1; then repeat
rules 3 through 5 for the major
structure.

Rules for Mapping One Pair

(As stated earlier, terms apparently
implying physical storage are used here
only for ease of discussion; the storage
thus implied may be thought of as an
imaginary model consisting of a number of
contiguous doublewords. Each doubleword
has eight bytes numbered zero through 7, so

that the offset from a doubleword boundary
can be given; in addition, the bytes in the
model may be numbered continuously from
zero onwards, starting at any byte, so that
lengths and offsets from the start of a
structure can be given.)

1. Begin the first item of the pair on a
doubleword boundary; or, if the item
is a minor structure that has already
been mapped, offset it from the
doubleword boundary by the amount
indicated.

2. Begin the other item of the pair at
the first valid position following the
end of the first item. This position
will depend on the alignment
requirement of the second item.
Alignment and length requirements for
elements are given in Figures K-1 and
K-2. (If the item is a minor
structure, its alignment requirement
will have been determined already.)

3. Shift the first item towards the
second item as far as the alignment
requirement of the first item will
allow. The amount of shift determines
the offset of this pair from a
doubleword boundary.

After this process has been completed,
any padding between the two items will have
been minimized and will remain unchanged
throughout the rest of the operation. The
pair can now be considered to be a unit of
fixed length and alignment requirement; its
length is the sum of the two lengths plus
padding, and its alignment requirement is
the higher of the two alignment
requirements (if they differ).

Effect of UNALIGNED Attribute

The example of structure mapping given
below shows the rules applied to a
structure declared ALIGNED, because mapping
of aligned structures is more complex owing
to the number of different alignment
requirements. Briefly, with the F
compiler, the general effect of the
UNALIGNED attribute is to reduce fullword
and doubleword alignment requirements down
to byte, and to reduce the alignment
requirement for bit strings from byte down
to bit. The same structure mapping rules
apply, but the reduced alignment
requirements are used. This means that
unused storage between items can only be
bit padding within a byte, and never a
complete byte; bit padding may occur when
the structure contains bit strings.

392

Note: The term CEIL used in some storage calculations has the same meaning as the
CEIL built-in function of PL/I, i.e., the smallest integer that exceeds the value
of the expression in parentheses; thus, CEIL(30/8)=4.

Figure K-1. Summary of Alignment Requirements for ALIGNED Data

POINTER, OFFSET, LABEL, TASK, EVENT, and
AREA data cannot be unaligned. If a
structure has the UNALIGNED attribute and
it contains an element that cannot be
unaligned, then UNALIGNED is ignored for
that element; the element is aligned by the
compiler and error message IEM3181I is put

out. For example, in a program with the
declaration

DECLARE 1 A UNALIGNED,
2 B,
2 C AREA(100);

Section K: Data Mapping 393

Note: POINTER, OFFSET, LABEL, TASK, EVENT, and AREA data cannot be UNALIGNED.

Figure K-2. Summary of Alignment Requirements for UNALIGNED Data

C is given the attribute ALIGNED, as the
inherited attribute UNALIGNED conflicts
with AREA.

EXAMPLE OF STRUCTURE MAPPING

This example shows the application of the
structure mapping rules for a structure
declared as follows:

The minor structure at the deepest
logical level is G, so that this is mapped
first. Then E is mapped, followed by N, S,
C, and M, in that order. Finally, the
major structure A is mapped. For each
structure, a table is given showing the
steps in the process, accompanied by a

394

diagram giving a visual interpretation of
the process. At the end of the example,
the structure map for A is set out in the
form of a table showing the offset of each
member from the start of A.

Figure F-3. Mapping of Minor Structure G

Section Ks Data Mapping 395

Figure K-4. Mapping of Minor Structure E

396

Figure K-5. Mapping of Minor Structure N

Section K: Data Mapping 397

Figure K-6. Mapping of Minor Structure S

398

Figure K-7. Mapping of Minor Structure C

Section K: Data Mapping 399

Figure K-8. Mapping of Minor Structure M

400

Figure K-9. Mapping of Major Structure A

Section K: Data Mapping 401

Figure K-10. Offsets in Final Mapping of Structure A

Record Alignment

The user must pay attention to record
alignment within the buffer when using
locate mode input/output. The first data
byte of the first record in a block is
generally aligned in a buffer on a
doubleword boundary (see Figure K-14); the
next record begins at the next available
byte in the buffer. The user must ensure
that the alignment of this byte matches the
alignment requirements of the based
variable with which the record is to be
associated.

Most of the alignment problems described
here cccur in ALIGNED based or non-based
variables. If these variables were
UNALIGNED, the preservation of the record
alignment in the buffer would be
considerably easier.

If a VB-format record is to be
constructed with logical records defined by
the structure:

1 S,
2 A CHAR(1),
2 B FIXED BINARY(31,0);

this structure is mapped as in Figure K-11.

Figure K-11. Format of Structure S

If the block was created using a
sequence of WRITE FROM(S) statements, the
format of the block would be as in Figure
K-12, and it can be seen that the alignment
in the buffer differs from the alignment of
S.

There is no problem if the file is then
read using move mode READ statements, e.g.,
READ INTO(S), because information is moved
from the buffer to correctly aligned
storage.

If, however, a structure is defined as:

1 SBASED BASED(P) LIKE S;

and READ SET(P) statements are used,
reference to SBASED.B will, for the first
record in the block, be to data aligned at
a doubleword plus one byte, and will
probably result in a specification
interrupt.

402

Figure K-12. Block Created from Structure S

Figure K-13. Block Created by Structure S with Correct Alignment

The same problem would have arisen had
the file originally been created by using
the statement:

LOCATE SBASED SET(P);

Again, for the first record in the
block, P would be set to address a
doubleword and references to SBASED.B would
be invalid.

In both cases the problem is avoided if
the structure is padded in such a way that
B is always correctly aligned:

1 5,
2 PAD CHAR(3),
2 A CHAR(1),
2 B FIXED BINARY;

The block format would now be as in Figure
K-13; B is always on a word boundary.
Padding may be required at the beginning
and end of a structure to preserve
alignment.

The alignment of different types of
record within a buffer is shown in Figure
K-14. For all organizations and record
types except blocked records in INDEXED
data sets with RKP=0, the first data byte
in a block is always on a doubleword
boundary. The position of any successive
records in the buffer depends on the record
format.

For unblocked INDEXED, the LOCATE
statement will use a hidden buffer if the
data set key length is not a multiple of 8.
The pointer variable will point at this
hidden buffer.

A special problem arises when using
locate mode input/output in conjunction
with based variable containing adjustable
extents, i.e., containing a REFER option.
Consider the following structure:

1 S BASED(P),
2 N,
2 C CHAR (L REFER (N));

If it is desired to create blocked V-format
records of this type, using locate mode
input/output, record alignment must be such
that N is word aligned. If L is not a
multiple of 4 then, if the alignment of the
current record is correct, that of the
following record will be incorrect.
Correct alignment can be obtained by the
following sequence:

LENGTH = L;
/* SAVE DESIRED LENGTH L */

L = 4* CEIL(L/4);
/* ROUND UP TO MULTIPLE OF 4 */

LOCATE S FILE (F);
N = LENGTH;

/* SET REFER VARIABLE */

This technique can be adapted to other uses
of the REFER option.

Section K: Data Mapping 403

Figure F-14. Alignment of Data in a Buffer in Locate Mode
Input/Output, for Different Formats and Data Set
Organizations

404

Section L: Definitions of Terms

This section provides definitions for most
of the terms used in this publication.

access: the act that encompasses the
reference to and retrieval of data.

action specification: in an ON statement,
the on-unit or the single keyword SYSTEM,
either of which specifies the action to be
taken whenever an interrupt results from
raising of the named condition.

activation: institution of execution of a
block. A procedure block is activated when
it is invoked at any of its entry points; a
begin block is activated when it is
encountered in normal sequential flow.

active:

1. the state in which a block is said to
be after activation and before
termination.

2. the state in which a preprocessor
variable or preprocessor procedure is
said to be when its value can replace
the corresponding identifier in source
program text.

3. the state in which an event variable
is said to be as a result of its
appearance in the EVENT option of an
executed RECORD input/output
statement. An event variable remains
active, and, hence, cannot be
associated with any other input/output
operation, until a WAIT statement
naming that event variable has been
executed.

additive attributes: file attributes for
which there are no defaults and which, if
required, must always be stated explicitly.

address: a specific storage location at
which a data item can be stored.

adjustable (bounds and lengths): bounds or
lengths that may be different for different
allocations of the associated variable.
Adjustable bounds and lengths are specified
as variables, expressions, or asterisks,
which are evaluated separately at each
allocation. They cannot be used for STATIC
data.

allocated variable: a variable with which
storage has been associated.

allocation: the association of storage
with a variable.

alphabetic character: any of the
characters A through Z and the alphabetic
extenders #, $, and @.

alphameric character: an alphabetic
character or a digit.

alternative attributes: attributes that
may be chosen from groups of two or more
alternatives. If none is specified, a
default is assumed.

area: a block of storage defined by an
area variable and reserved, on allocation,
for the allocation of based variables.

arithmetic conversion: the transformation
of a value from one arithmetic
representation to another arithmetic
representation.

argument: an expression, file name,
statement label constant or variable,
mathematical built-in function name, or
entry name passed to an invoked procedure
as part of the procedure reference.

arithmetic data: data that has the
characteristics of base, scale, mode, and
precision. It includes coded arithmetic
data and numeric character data.

arithmetic operators: any of the prefix
operators, + and -, or the infix operators
+, 	*, /, and **.

array: a named, ordered collection of data
elements, all of which have identical
attributes. An array has dimensions, and
elements that are identified by subscripts.
An array can also be an ordered collection
of identical structures.

array of structures: an ordered collection
of structures formed by giving the
dimension attribute to the name of a
structure.

assignment: giving a value to a variable.

asynchronous: describes either the overlap
of an input/output operation with the
execution of statements, or the concurrent
execution of procedures, using multiple
flows of control.

attachment of a task: the invocation of a
procedure that is to be executed
asynchronously with the invoking procedure.

attribute: a descriptive property
associated with a name or expression to

Section L: Definitions of Terms 405

describe a characteristic of data items, of
a file, or of an entry point the name may
represent.

automatic storage: storage that is
allocated at the activation of a block and
released at the termination of that block.

base: the number system in terms of which
an arithmetic value is represented. In
PL/I, the base is binary or decimal.

based storage: storage whose allocation
and release is controlled by the
programmer, with immediate access to all
unfreed allocations.

begin block: a collection of statements
headed by a BEGIN statement and ended by an
END statement that delimits the scope of
names and, in general, is activated by
normal sequential statement flow. It
controls the allocation and freeing of
automatic storage declared in that block.

binary: the number system based on the
value 2.

bit: a binary digit, either 0 or 1.

bit string: a string composed of zero or
more bits.

bit-string operators: the operators
,(not), &(and), and |(or).

block: a begin block or a procedure block.

bounds: the upper and lower limits of an
array dimension.

buffer: an intermediate area, used in
input/output operations, into which a
record is read during input and from which
a record is written during output.

built-in function: one of the PL/I-defined
functions.

call: the invocation of a subroutine by
means of the CALL statement or the CALL
option of the INITIAL attribute.

character string: A string composed of
zero or more characters from the complete
set of characters whose bit configuration
is recognized by the computer system in
use. For System/360 implementations, any
of the 256 EBCDIC characters can be used.

coded arithmetic data: arithmetic data
whose characteristics are given by the
base, scale, mode, and precision
attributes. The types for System/360 are
packed decimal, binary full words, and
hexadecimal floating-point.

comment: a string of characters, used for
documentation, which is preceded by /* and
terminated by */ and which is treated as a
blank.

common expression: an expression that
occurs more than once in a program but is
obviously intended to result in the same
value each time it is evaluated, i.e., an
expression that is identical to another
expression, with no intervening
modification to any operand. The compiler
is permitted to optimize such expressions
by evaluating them once only and saving the
result, rather than re-evaluating for each
reference.

comparison operators: the operators ¬ < <
<= 	¬= 	>= > ¬>

compile time: in general, the time during
which a source program is translated into
an object module. In PL/I, it is the time
during which a source program can be
altered (preprocessed), if desired, and
then translated into an object program.

compiler: a translator that converts a
source program into an object module. It
consists of two stages, a preprocessor and
a processor.

complex data: arithmetic data consisting
of a real part and an imaginary part.

compound statement: a statement that
contains other statements. IF and ON are
the only compound statements.

concatenation: the operation that connects
two strings in the order indicated, thus
forming one string whose length is equal to
the sum of the lengths of the two strings.
It is specified by the operator |.

condition name: a language keyword that
represents an exceptional condition that
might arise during execution of a program.

condition prefix: a parenthesized list of
one or more condition names prefixed to a
statement by a colon. It determines
whether or not the program is to be
interrupted if one of the specified
conditions occurs within the scope of the
prefix. Condition names within the list
are separated by commas.

constant: an arithmetic or string data
item that does not have a name; a statement
label.

contained in: all of the text of a block
except any entry names of that block. (A
label of a BEGIN statement is not contained
in the begin block defined by that
statement.)

406

contextual declaration: the association of
attributes with an identifier according to
the context in which the identifier
appears.

controlled storage: storage whose
allocation and release is controlled by the
programmer, with immediate access to the
latest allocation only.

conversion: the transformation of a value
from one representation to another.

cross section of an array: every element
represented by the extent of at least one
dimension of an array. An asterisk in the
place of a subscript in an array reference
indicates the entire extent of that
dimension.

data: representation of information or of
value.

data-directed transmission: the type of
STREAM input and output in which
self-identifying data of the type,
variable-name = value, is transmitted.

data item: a single unit of data; it is
synonymous with "element."

data list: a list of expressions used in a
STREAM input/output specification that
represent storage areas to which data items
are to be assigned during input or from
which data items are to be obtained on
output. (On input, the list may contain
only variables.)

data set: a collection of data external to
the program.

data specification: the portion of a
stream-oriented data transmission statement
that specifies the mode of transmission
(DATA, LIST, or EDIT) and includes the data
list and, for edit-directed transmission,
the format list.

deactivated: the state in which a
preprocessor variable is said to be when
its value cannot replace the corresponding
identifier in source program text.

decimal: the number system based on the
value 10.

declaration: the association of attributes
with an identifier explicitly,
contextually, or implicitly.

default: the alternative assumed when an
identifier has not been declared to have
one of two or more alternative attributes.

delimiter: any valid special character or
combination of special characters used to

separate identifiers and constants, or
statements from one another.

dimensionality: the number of bounds
specifications associated with an array.

disabled: the state in which the
occurrence of a particular condition will
not result in a program interrupt.

DO-group: a sequence of statements headed
by a DO statement and closed by its
corresponding END statement.

dummy argument: a compiler-assigned
variable for an argument that has no
programmer-assigned name or whose
attributes do not agree with those declared
with the ENTRY attribute for the
corresponding parameter.

edit-directed transmission: that type of
STREAM transmission for which both a data
list and a format list are specified.

element: a single data item as opposed to
a collection of data items, such as a
structure or an array. (Sometimes called a
"scalar item.")

element variable: a variable that can
represent only a single value at any one
point in time.

enabled: that state in which the
occurrence of a particular condition will
result in a program interrupt.

entry name: a label of a PROCEDURE or
ENTRY statement.

entry point: a point in a procedure at
which it may be invoked by reference to the
entry name. (See primary entry point and
secondary entry point.)

epilogue: those processes which occur at
the termination of a block.

event: an identifiable point in the
execution of a program.

event name: the identifier used to refer
to an event variable.

event variable: a variable associated with
an event; its value shows whether an event
is complete and the status of the
completion.

exceptional condition: an occurrence,
which can cause a program interrupt, of an
unexpected situation, such as an overflow
error, or an occurrence of an expected
situation, such as an end of file, that
occurs at an unpredictable time.

Section L: Definitions of Terms 407

explicit declaration: the assignment of
attributes to an identifier by means of the
DECLARE statement, the appearance of the
identifier as a label, or the appearance of
the identifier in a parameter list.

exponent (of floating-point constant): a
decimal integer constant specifying the
power to which the base of the
floating-point number is to be raised.

expression: the representation of a value;
examples are variables and constants
appearing alone or in combination with
operators, and function references. The
term "expression" refers to an element
expression, an array expression, or a
structure expression.

external declaration: an explicit or
contextual declaration of the EXTERNAL
attribute for an identifier. Such an
identifier is known in all other blocks for
which such a declaration exists.

external name: an identifier which has the
EXTERNAL attribute.

external procedure: a procedure that is
not contained in any other procedure.

field (in the data stream): that portion
of the data stream whose width, in number
of characters, is defined by a single data
or spacing format item.

field (of a picture specification): a
character-string picture specification or
that portion (or all) of a numeric
character picture specification that
describes a fixed-point number. If more
than one field appears in a single
specification, they are divided by the F
scaling-factor character for fixed-point
data, the E or E exponent character for
floating-point data, or the M
field-separator for sterling data.

file: a symbolic representation, within a
program, of a data set.

file name: a symbolic name used within a
program to refer to a data set.

format item: a specification used in
edit-directed transmission to describe the
representation of a data item in the stream
or to control the format of a printed page.

format list: a list of format items
required for an edit-directed data
specification.

function: a procedure that is invoked by
the appearance of one of its entry names in
a function reference.

function reference: the appearance of an
entry name in an expression, usually in
conjunction with an argument list.

generation (of a block): a particular
activation of a block.

generation (of data): a particular
allocation of controlled or automatic
storage.

generic key: a character string that
identifies a class of keys: all keys that
begin with the string are members of that
class. For example, the recorded keys
'ABCD', 'ABCE', and 'ABDF' are all members
of the classes identified by the generic
keys 'A' and 'AB', and the first two are
also members of the class 'ABC'; and the
three recorded keys can be considered to be
unique members of the classes 'ABCD',
'ABCE', and 'ABDF', respectively.

generic name: the name of a family of
entry names. A reference to the name is
replaced by the entry name whose entry
attribute matches the attributes of the
argument list.

group: a DO-group.

identifier: a string of alphameric and
break characters, not contained in a
comment or constant, preceded and followed
by a delimiter and whose initial character
is alphabetic.

imaginary number: a number whose factors
include the square root of -1.

implicit declaration: association of
attributes with an identifier used as a
variable without having been explicitly or
contextually declared; default attributes
apply, depending upon the initial letter of
the identifier.

inactive block: a procedure or begin block
that has not been activated or that has
been terminated.

inactive event variable: an event variable
that is not currently associated with an
event.

infix operator: an operator that defines
an operation between two operands.

initial procedure: an external procedure
whose PROCEDURE statement has the OPTIONS
(MAIN) attribute. Every PL/I program must
have an initial procedure. It is invoked
automatically as the first step in the
execution of a program.

input/output: the transfer of data between
an external medium and internal storage.

408

interleaving of subscripts: a subscript
notation used with subscripted qualified
names that allows one or more of the
required subscripts to immediately follow
any of the component names.

internal block: a block that is contained
within another block.

internal name: an identifier that has the
INTERNAL attribute.

internal procedure: a procedure that is
contained in another block.

internal to: all of the text contained in
a block except that text contained in
another block. Thus the text of an
internal block (except for its entry names)
is not internal to the containing block.
Note: An entry name of a block is not
contained in that block.

interrupt: the suspension of normal
program activities as the result of the
occurrence of an enabled condition.

invoke: to activate a procedure at one of
its entry points; to enter an on-unit.

invoked procedure: a procedure that has
been activated at one of its entry points.

invoking block: a block containing a
statement that activates another block.

iteration factor: an expression that
specifies:

1. the number of consecutive elements of
an array that are to be initialized
with a given constant.

2. the number of times a given format
item or list of format items is to be
used in succession in a format list.

key: see source key and recorded key.

key class: a set of keys that begin with a
common character string; this character
string is the generic key for the class.

keyword: an identifier that is part of the
language and which, when used in the proper
context, has a specific meaning to the
compiler.

known: a term that is used to indicate the
scope of an identifier. For example, an
identifier is always known in the block in
which it has been declared.

label constant: synonymous with statement
label.

label prefix: an unparenthesized

identifier prefixed to a statement by a
colon.

leading zeros: zeros that have no
significance in the value of an arithmetic
number; all zeros to the left of the first
significant digit (1 through 9) of a
number.

level number: an unsigned decimal integer
constant specifying the hierachy of a name
in a structure. It appears to the left of
the name and is separated from it by a
blank.

level-one variable: a major structure
name; any unsubscripted data variable not
contained within a structure.

list-directed transmission: the type of
STREAM transmission in which data in the
stream appears as constants separated by
blanks or commas.

list processing: the use of based
variables and locator variables to build
chains or lists of data.

locator variable: a variable whose value
identifies an allocation of a based
variable in storage. Pointer variables and
offset variables are the two types of
locator variables.

major structure: a structure whose name is
declared with level number 1.

major task: the task that has control at
the outset of execution of a program.

minor structure: a structure whose name is
declared with a level number greater than
1.

mode: real or complex designation for an
arithmetic value.

multiple declaration: two or more
declarations of the same identifier
internal to the same block without
different qualifications, or two or more
EXTERNAL declarations of the same
identifier as different names within a
single program.

multiprogramming: the use of a computing
system to execute a number of instructions
concurrently.

multitasking: the PL/I facility that
allows the programmer to make use of the
multiprogramming capability of a system.

name: an identifier that has been
declared.

nesting:

Section L: Definitions of Terms 409

1. the cccurrence of a block within
another block.

2. the occurrence of a group within
another group.

3. the occurrence of an IF statement in a
THEN clause or an ELSE clause.

4. the occurrence of a function reference
as an argument of another function
reference.

null locator value: a special locator
value that cannot identify any location in
storage; it gives a positive indication
that a locator variable does not currently
identify any allocation of a based
variable.

null string: a string data item of zero
length.

numeric character data: arithmetic data
described by a picture that is stored in
character form. It has both an arithmetic
value and a character-string value. The
picture must not contain either an A or an
X picture specification character.

offset variable: a locator variable whose
value identifies a location in storage,
relative to the start of an area.

on-unit: the action to be executed upon
the occurrence of the ON-condition named in
the containing ON statement.

operator: a symbol specifying an operation
to be performed. See arithmetic operators,
bit-string operators, comparison operators,
and concatenation.

option: a specification in a statement
that may be used by the programmer to
influence the execution of the statement.

packed decimal: the System/360 internal
representation of a fixed-point decimal
data item.

parameter: a name in an invoked procedure
that is used to represent an argument
passed to that procedure.

parameter-attribute list: a description in
an ENTRY attribute specification that lists
attributes of parameters of the named entry
point. This enables dummy arguments to be
created correctly.

picture: a character-by-character
specification describing the composition
and attributes of numeric character and
character-string data. It allows editing.

point of invocation: the point in the

invoking block at which the procedure
reference to the invoked procedure appears.

pointer variable: a locator variable whose
value identifies an absolute location in
storage.

precision: the value range of an
arithmetic variable expressed as the total
number of digits allowed and, for
fixed-point variables, the assumed location
of the decimal (or binary) point.

prefix: a label or a parenthesized list of
condition names connected by a colon to the
beginning of a statement.

prefix operator: an operator that
precedes, and is associated with, a single
operand. The prefix operators are 1 + -

preprocessed text: the output from the
first stage of compile-time activity. This
output is a sequence of characters that is
altered source program text and which
serves as input to the processor stage in
which the actual compilation is performed.

preprocessor: the first of the two
compiler stages. At this stage the source
program is examined for preprocessor
statements which are then executed,
resulting in the alteration of the source
program text.

preprocessor statements: special
statements appearing in the source program
that specify how the source program text is
to be altered; they are identified by a
leading percent sign and are executed as
they are encountered by the preprocessor
(they appear without the percent sign in
preprocessor procedures).

primary entry point: the entry point named
in the PROCEDURE statement.

priority: the value that determines
whether a task will take precedence over
another task.

problem data: string or arithmetic data
that is processed by a PL/I program.

procedure: a block of statements, headed
by a PROCEDURE statement and ended by an
END statement, that defines a program
region and delimits the scope of names and
that is activated by a reference to its
name. It controls allocation and freeing
of automatic storage declared in that
block.

procedure reference: a function or
subroutine reference.

processor: the second of the two compiler
stages. The stage at which the

410

preprocessed text is compiled into an
object module.

program: a set of one or more external
procedures, one of which must have the
OPTIONS(MAIN) attribute in its PROCEDURE
statement.

program control data: data used in a PL/I
program to affect the execution of the
program. Program control data consists of
the following types: label, event, task,
pointer, offset, and area.

prologue: those processes that occur at
the activation of a block.

pseudo-variable: one of the built-in
function names that can be used as a
receiving field.

pushed-down stack: a stack of allocations
to which new allocations are added and
removed from the top on a last-in,
first-cut basis.

qualified name: a sequence of names of
structure members connected by periods, to
uniquely identify a component of a
structure. Any of the names may be
subscripted.

receiving field: any field to which a
value may be assigned.

record: the unit of transmission in a
RECORD input or output operation; in the
internal form of a level-one variable.

recorded key: a character string recorded
in a direct-access volume to identify the
data record that immediately follows.

recursion: the reactivation of a procedure
while it is already active.

repetition factor: a parenthesized
unsigned decimal integer constant preceding
a string configuration as a shorthand
representation of a string constant. The
repetition factor specifies the number of
occurrences that make up the actual
constant. In picture specifications, the
repetition factor specifies repetition of a
single picture character.

repetitive specification: an element of a
data list that specifies controlled
iteration to transmit a list of data items,
generally used in conjunction with arrays.

returned value: the value returned by a
function procedure to the point of
invocation.

scale: fixed- or floating-point
representation of an arithmetic value.

scope (of a condition prefix): the range
of a program throughout which a condition
prefix applies.

scope (of a name): the range of a program
throughout which a name has a particular
interpretation.

secondary entry point: an entry point
defined by a label of an ENTRY statement
within a procedure.

source key: a character string referred to
in a RECORD transmission statement that
identifies a particular record within a
direct-access data set. The source key may
or may not also contain, as its first part,
a substring to be compared with, or written
as, a recorded key to positively identify
the record. Note: The source key can be
identical to the recorded key.

source program: the program that serves as
input to the compiler. The source program
may contain preprocessor statements.

standard file: a file assumed by the
compiler in the absence of a FILE or STRING
option in a GET or PUT statement (the
standard files are: SYSIN for input,
SYSPRINT for output).

statement: a basic element of a PL/I
program that is used to delimit a portion
of the program, to describe data used in
the program, or to specify action to be
taken.

statement label: an identifying name
prefixed to any statement other than a
PROCEDURE or ENTRY statement.

statement label variable: a variable
declared with the LABEL attribute and thus
able to assume as its value a statement
label.

static storage: storage that is allocated
before execution of the program begins and
that remains allocated for the duration of
the program.

stream: data being transferred from or to
an external medium represented as a
continuous string of data items in
character form.

string: a connected sequence of characters
or bits that is treated as a single data
item.

structure: a hierarchical set of names
that refers to an aggregate of data items
that may or may not have different
attributes.

subfield: the integer description portion
or the fraction description portion of a

Section L: Definitions of Terms 411

picture specification field that describes
a noninteger fixed-point data item. The
subfields are divided by the picture
character V.

subroutine: a procedure that is invoked by
a CALL statement or a CALL option. A
subroutine cannot return a value to the
invoking block, but it can alter the value
of variables that are known within the
invoking block.

subscript: an element expression
specifying a location within a dimension of
an array. A subscript can also be an
asterisk, in which case it specifies the
entire extent of the dimension.

subtask: a task that is attached by
another task; any task attached by this
subtask is a subtask of both tasks.

synchronous: describes serial execution of
a program, using a single flow of control.

task: the execution of one or more
procedures.

task name: the identifier used to refer to
a task variable.

task variable: a variable whose value
gives the relative priority of a task.

termination of block: cessation of
execution of a block, and the return of
control to the activating block by means of
a RETURN or END statement, or the transfer
of control to the activating block or some
other active block by means of a GO TO
statement. A return of control to the
operating system via a RETURN or END
statement in the initial procedure or a
STOP or EXIT statement in any block results
in the termination of the program. See
epilogue.

termination of task: conclusion of the
flow of control for a task.

variable: a name that represents data.
Its attributes remain constant, but it can
represent different values at different
times. Variables fall into three
categories: element, array, and structure
variables. Variables may be subscripted
and/or qualified.

412

Index

Index 413

414

Index 415

416

Index 417

418

Index 419

420

Index 421

422

Index 423

424

Index 425

426

Index 427

428

Index 429

430

Index 431

432

Index 433

GC28-8201-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10 017
[International]

READER'S COMMENT FORM

IBM System/360 	 GC28-8201-2

PL/I Reference Manual

• How did you use this publication?

As a reference source 	 ❑
As a classroom text 	 ❑
As a self-study text 	 ❑

• Based on your own experience, rate this publication . . .

As a reference source:
Very 	Good 	Fair 	Poor 	Very

Good 	 Poor

As a text:
Very 	Good 	Fair 	Poor 	Very

Good 	 Poor

• What is your occupation? 	

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC28-8201-2

YOUR COMMENTS PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note : Requests for copies of publications and for assistance in utilizing your IBM system
should be directed to your IBM representative or to the IBM sales office serving your locality.

IBM International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10 017
[International]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436

